2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/replay.h"
32 #include "hw/timer/mc146818rtc.h"
33 #include "qapi/error.h"
34 #include "qapi/qapi-commands-misc.h"
35 #include "qapi/qapi-events-misc.h"
36 #include "qapi/visitor.h"
39 #include "hw/i386/apic.h"
43 //#define DEBUG_COALESCED
46 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
48 # define CMOS_DPRINTF(format, ...) do { } while (0)
51 #ifdef DEBUG_COALESCED
52 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
54 # define DPRINTF_C(format, ...) do { } while (0)
57 #define SEC_PER_MIN 60
58 #define MIN_PER_HOUR 60
59 #define SEC_PER_HOUR 3600
60 #define HOUR_PER_DAY 24
61 #define SEC_PER_DAY 86400
63 #define RTC_REINJECT_ON_ACK_COUNT 20
64 #define RTC_CLOCK_RATE 32768
65 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
67 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
69 typedef struct RTCState
{
73 uint8_t cmos_data
[128];
82 QEMUTimer
*periodic_timer
;
83 int64_t next_periodic_time
;
84 /* update-ended timer */
85 QEMUTimer
*update_timer
;
86 uint64_t next_alarm_time
;
87 uint16_t irq_reinject_on_ack_count
;
88 uint32_t irq_coalesced
;
90 QEMUTimer
*coalesced_timer
;
91 Notifier clock_reset_notifier
;
92 LostTickPolicy lost_tick_policy
;
93 Notifier suspend_notifier
;
94 QLIST_ENTRY(RTCState
) link
;
97 static void rtc_set_time(RTCState
*s
);
98 static void rtc_update_time(RTCState
*s
);
99 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
100 static inline int rtc_from_bcd(RTCState
*s
, int a
);
101 static uint64_t get_next_alarm(RTCState
*s
);
103 static inline bool rtc_running(RTCState
*s
)
105 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
106 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
109 static uint64_t get_guest_rtc_ns(RTCState
*s
)
111 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
113 return s
->base_rtc
* NANOSECONDS_PER_SECOND
+
114 guest_clock
- s
->last_update
+ s
->offset
;
117 static void rtc_coalesced_timer_update(RTCState
*s
)
119 if (s
->irq_coalesced
== 0) {
120 timer_del(s
->coalesced_timer
);
122 /* divide each RTC interval to 2 - 8 smaller intervals */
123 int c
= MIN(s
->irq_coalesced
, 7) + 1;
124 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
125 periodic_clock_to_ns(s
->period
/ c
);
126 timer_mod(s
->coalesced_timer
, next_clock
);
130 static QLIST_HEAD(, RTCState
) rtc_devices
=
131 QLIST_HEAD_INITIALIZER(rtc_devices
);
134 void qmp_rtc_reset_reinjection(Error
**errp
)
138 QLIST_FOREACH(s
, &rtc_devices
, link
) {
139 s
->irq_coalesced
= 0;
143 static bool rtc_policy_slew_deliver_irq(RTCState
*s
)
145 apic_reset_irq_delivered();
146 qemu_irq_raise(s
->irq
);
147 return apic_get_irq_delivered();
150 static void rtc_coalesced_timer(void *opaque
)
152 RTCState
*s
= opaque
;
154 if (s
->irq_coalesced
!= 0) {
155 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
156 DPRINTF_C("cmos: injecting from timer\n");
157 if (rtc_policy_slew_deliver_irq(s
)) {
159 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
164 rtc_coalesced_timer_update(s
);
167 static bool rtc_policy_slew_deliver_irq(RTCState
*s
)
174 static uint32_t rtc_periodic_clock_ticks(RTCState
*s
)
178 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
182 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
184 return periodic_period_to_clock(period_code
);
188 * handle periodic timer. @old_period indicates the periodic timer update
189 * is just due to period adjustment.
192 periodic_timer_update(RTCState
*s
, int64_t current_time
, uint32_t old_period
)
195 int64_t cur_clock
, next_irq_clock
, lost_clock
= 0;
197 period
= rtc_periodic_clock_ticks(s
);
200 /* compute 32 khz clock */
202 muldiv64(current_time
, RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
205 * if the periodic timer's update is due to period re-configuration,
206 * we should count the clock since last interrupt.
209 int64_t last_periodic_clock
, next_periodic_clock
;
211 next_periodic_clock
= muldiv64(s
->next_periodic_time
,
212 RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
213 last_periodic_clock
= next_periodic_clock
- old_period
;
214 lost_clock
= cur_clock
- last_periodic_clock
;
215 assert(lost_clock
>= 0);
219 * s->irq_coalesced can change for two reasons:
221 * a) if one or more periodic timer interrupts have been lost,
222 * lost_clock will be more that a period.
224 * b) when the period may be reconfigured, we expect the OS to
225 * treat delayed tick as the new period. So, when switching
226 * from a shorter to a longer period, scale down the missing,
227 * because the OS will treat past delayed ticks as longer
228 * (leftovers are put back into lost_clock). When switching
229 * to a shorter period, scale up the missing ticks since the
230 * OS handler will treat past delayed ticks as shorter.
232 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
233 uint32_t old_irq_coalesced
= s
->irq_coalesced
;
236 lost_clock
+= old_irq_coalesced
* old_period
;
237 s
->irq_coalesced
= lost_clock
/ s
->period
;
238 lost_clock
%= s
->period
;
239 if (old_irq_coalesced
!= s
->irq_coalesced
||
240 old_period
!= s
->period
) {
241 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
242 "period scaled from %d to %d\n", old_irq_coalesced
,
243 s
->irq_coalesced
, old_period
, s
->period
);
244 rtc_coalesced_timer_update(s
);
248 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
249 * is not used, we should make the time progress anyway.
251 lost_clock
= MIN(lost_clock
, period
);
254 assert(lost_clock
>= 0 && lost_clock
<= period
);
256 next_irq_clock
= cur_clock
+ period
- lost_clock
;
257 s
->next_periodic_time
= periodic_clock_to_ns(next_irq_clock
) + 1;
258 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
260 s
->irq_coalesced
= 0;
261 timer_del(s
->periodic_timer
);
265 static void rtc_periodic_timer(void *opaque
)
267 RTCState
*s
= opaque
;
269 periodic_timer_update(s
, s
->next_periodic_time
, 0);
270 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
271 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
272 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
273 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
274 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
275 s
->irq_reinject_on_ack_count
= 0;
276 if (!rtc_policy_slew_deliver_irq(s
)) {
278 rtc_coalesced_timer_update(s
);
279 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
283 qemu_irq_raise(s
->irq
);
287 /* handle update-ended timer */
288 static void check_update_timer(RTCState
*s
)
290 uint64_t next_update_time
;
294 /* From the data sheet: "Holding the dividers in reset prevents
295 * interrupts from operating, while setting the SET bit allows"
298 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
299 assert((s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) == 0);
300 timer_del(s
->update_timer
);
304 guest_nsec
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
305 next_update_time
= qemu_clock_get_ns(rtc_clock
)
306 + NANOSECONDS_PER_SECOND
- guest_nsec
;
308 /* Compute time of next alarm. One second is already accounted
309 * for in next_update_time.
311 next_alarm_sec
= get_next_alarm(s
);
312 s
->next_alarm_time
= next_update_time
+
313 (next_alarm_sec
- 1) * NANOSECONDS_PER_SECOND
;
315 /* If update_in_progress latched the UIP bit, we must keep the timer
316 * programmed to the next second, so that UIP is cleared. Otherwise,
317 * if UF is already set, we might be able to optimize.
319 if (!(s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) &&
320 (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
)) {
321 /* If AF cannot change (i.e. either it is set already, or
322 * SET=1 and then the time is not updated), nothing to do.
324 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) ||
325 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
326 timer_del(s
->update_timer
);
330 /* UF is set, but AF is clear. Program the timer to target
332 next_update_time
= s
->next_alarm_time
;
334 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
335 timer_mod(s
->update_timer
, next_update_time
);
339 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
341 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
343 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
350 static uint64_t get_next_alarm(RTCState
*s
)
352 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
353 int32_t hour
, min
, sec
;
357 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
358 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
359 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
360 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
362 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
363 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
364 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
365 cur_hour
= convert_hour(s
, cur_hour
);
367 if (alarm_hour
== -1) {
368 alarm_hour
= cur_hour
;
369 if (alarm_min
== -1) {
371 if (alarm_sec
== -1) {
372 alarm_sec
= cur_sec
+ 1;
373 } else if (cur_sec
> alarm_sec
) {
376 } else if (cur_min
== alarm_min
) {
377 if (alarm_sec
== -1) {
378 alarm_sec
= cur_sec
+ 1;
380 if (cur_sec
> alarm_sec
) {
384 if (alarm_sec
== SEC_PER_MIN
) {
385 /* wrap to next hour, minutes is not in don't care mode */
389 } else if (cur_min
> alarm_min
) {
392 } else if (cur_hour
== alarm_hour
) {
393 if (alarm_min
== -1) {
395 if (alarm_sec
== -1) {
396 alarm_sec
= cur_sec
+ 1;
397 } else if (cur_sec
> alarm_sec
) {
401 if (alarm_sec
== SEC_PER_MIN
) {
405 /* wrap to next day, hour is not in don't care mode */
406 alarm_min
%= MIN_PER_HOUR
;
407 } else if (cur_min
== alarm_min
) {
408 if (alarm_sec
== -1) {
409 alarm_sec
= cur_sec
+ 1;
411 /* wrap to next day, hours+minutes not in don't care mode */
412 alarm_sec
%= SEC_PER_MIN
;
416 /* values that are still don't care fire at the next min/sec */
417 if (alarm_min
== -1) {
420 if (alarm_sec
== -1) {
424 /* keep values in range */
425 if (alarm_sec
== SEC_PER_MIN
) {
429 if (alarm_min
== MIN_PER_HOUR
) {
433 alarm_hour
%= HOUR_PER_DAY
;
435 hour
= alarm_hour
- cur_hour
;
436 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
437 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
438 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
441 static void rtc_update_timer(void *opaque
)
443 RTCState
*s
= opaque
;
444 int32_t irqs
= REG_C_UF
;
447 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
449 /* UIP might have been latched, update time and clear it. */
451 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
453 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
455 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
456 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
460 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
461 s
->cmos_data
[RTC_REG_C
] |= irqs
;
462 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
463 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
464 qemu_irq_raise(s
->irq
);
466 check_update_timer(s
);
469 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
470 uint64_t data
, unsigned size
)
472 RTCState
*s
= opaque
;
474 bool update_periodic_timer
;
476 if ((addr
& 1) == 0) {
477 s
->cmos_index
= data
& 0x7f;
479 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
480 s
->cmos_index
, data
);
481 switch(s
->cmos_index
) {
482 case RTC_SECONDS_ALARM
:
483 case RTC_MINUTES_ALARM
:
484 case RTC_HOURS_ALARM
:
485 s
->cmos_data
[s
->cmos_index
] = data
;
486 check_update_timer(s
);
488 case RTC_IBM_PS2_CENTURY_BYTE
:
489 s
->cmos_index
= RTC_CENTURY
;
495 case RTC_DAY_OF_WEEK
:
496 case RTC_DAY_OF_MONTH
:
499 s
->cmos_data
[s
->cmos_index
] = data
;
500 /* if in set mode, do not update the time */
501 if (rtc_running(s
)) {
503 check_update_timer(s
);
507 update_periodic_timer
= (s
->cmos_data
[RTC_REG_A
] ^ data
) & 0x0f;
508 old_period
= rtc_periodic_clock_ticks(s
);
510 if ((data
& 0x60) == 0x60) {
511 if (rtc_running(s
)) {
514 /* What happens to UIP when divider reset is enabled is
515 * unclear from the datasheet. Shouldn't matter much
518 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
519 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
520 (data
& 0x70) <= 0x20) {
521 /* when the divider reset is removed, the first update cycle
522 * begins one-half second later*/
523 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
524 s
->offset
= 500000000;
527 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
529 /* UIP bit is read only */
530 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
531 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
533 if (update_periodic_timer
) {
534 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
538 check_update_timer(s
);
541 update_periodic_timer
= (s
->cmos_data
[RTC_REG_B
] ^ data
)
543 old_period
= rtc_periodic_clock_ticks(s
);
545 if (data
& REG_B_SET
) {
546 /* update cmos to when the rtc was stopping */
547 if (rtc_running(s
)) {
550 /* set mode: reset UIP mode */
551 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
554 /* if disabling set mode, update the time */
555 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
556 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
557 s
->offset
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
561 /* if an interrupt flag is already set when the interrupt
562 * becomes enabled, raise an interrupt immediately. */
563 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
564 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
565 qemu_irq_raise(s
->irq
);
567 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
568 qemu_irq_lower(s
->irq
);
570 s
->cmos_data
[RTC_REG_B
] = data
;
572 if (update_periodic_timer
) {
573 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
577 check_update_timer(s
);
581 /* cannot write to them */
584 s
->cmos_data
[s
->cmos_index
] = data
;
590 static inline int rtc_to_bcd(RTCState
*s
, int a
)
592 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
595 return ((a
/ 10) << 4) | (a
% 10);
599 static inline int rtc_from_bcd(RTCState
*s
, int a
)
601 if ((a
& 0xc0) == 0xc0) {
604 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
607 return ((a
>> 4) * 10) + (a
& 0x0f);
611 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
613 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
614 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
615 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
616 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
618 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
622 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
623 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
624 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
626 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
627 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
630 static void rtc_set_time(RTCState
*s
)
634 rtc_get_time(s
, &tm
);
635 s
->base_rtc
= mktimegm(&tm
);
636 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
638 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
), &error_abort
);
641 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
645 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
646 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
647 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
649 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
652 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
653 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
654 if (tm
->tm_hour
>= 12)
655 s
->cmos_data
[RTC_HOURS
] |= 0x80;
657 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
658 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
659 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
660 year
= tm
->tm_year
+ 1900 - s
->base_year
;
661 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
662 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
665 static void rtc_update_time(RTCState
*s
)
671 guest_nsec
= get_guest_rtc_ns(s
);
672 guest_sec
= guest_nsec
/ NANOSECONDS_PER_SECOND
;
673 gmtime_r(&guest_sec
, &ret
);
675 /* Is SET flag of Register B disabled? */
676 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
677 rtc_set_cmos(s
, &ret
);
681 static int update_in_progress(RTCState
*s
)
685 if (!rtc_running(s
)) {
688 if (timer_pending(s
->update_timer
)) {
689 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
690 /* Latch UIP until the timer expires. */
691 if (qemu_clock_get_ns(rtc_clock
) >=
692 (next_update_time
- UIP_HOLD_LENGTH
)) {
693 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
698 guest_nsec
= get_guest_rtc_ns(s
);
699 /* UIP bit will be set at last 244us of every second. */
700 if ((guest_nsec
% NANOSECONDS_PER_SECOND
) >=
701 (NANOSECONDS_PER_SECOND
- UIP_HOLD_LENGTH
)) {
707 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
710 RTCState
*s
= opaque
;
712 if ((addr
& 1) == 0) {
715 switch(s
->cmos_index
) {
716 case RTC_IBM_PS2_CENTURY_BYTE
:
717 s
->cmos_index
= RTC_CENTURY
;
723 case RTC_DAY_OF_WEEK
:
724 case RTC_DAY_OF_MONTH
:
727 /* if not in set mode, calibrate cmos before
729 if (rtc_running(s
)) {
732 ret
= s
->cmos_data
[s
->cmos_index
];
735 ret
= s
->cmos_data
[s
->cmos_index
];
736 if (update_in_progress(s
)) {
741 ret
= s
->cmos_data
[s
->cmos_index
];
742 qemu_irq_lower(s
->irq
);
743 s
->cmos_data
[RTC_REG_C
] = 0x00;
744 if (ret
& (REG_C_UF
| REG_C_AF
)) {
745 check_update_timer(s
);
748 if(s
->irq_coalesced
&&
749 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
750 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
751 s
->irq_reinject_on_ack_count
++;
752 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
753 DPRINTF_C("cmos: injecting on ack\n");
754 if (rtc_policy_slew_deliver_irq(s
)) {
756 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
762 ret
= s
->cmos_data
[s
->cmos_index
];
765 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
771 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
773 RTCState
*s
= MC146818_RTC(dev
);
774 if (addr
>= 0 && addr
<= 127)
775 s
->cmos_data
[addr
] = val
;
778 int rtc_get_memory(ISADevice
*dev
, int addr
)
780 RTCState
*s
= MC146818_RTC(dev
);
781 assert(addr
>= 0 && addr
<= 127);
782 return s
->cmos_data
[addr
];
785 static void rtc_set_date_from_host(ISADevice
*dev
)
787 RTCState
*s
= MC146818_RTC(dev
);
790 qemu_get_timedate(&tm
, 0);
792 s
->base_rtc
= mktimegm(&tm
);
793 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
796 /* set the CMOS date */
797 rtc_set_cmos(s
, &tm
);
800 static int rtc_pre_save(void *opaque
)
802 RTCState
*s
= opaque
;
809 static int rtc_post_load(void *opaque
, int version_id
)
811 RTCState
*s
= opaque
;
813 if (version_id
<= 2 || rtc_clock
== QEMU_CLOCK_REALTIME
) {
816 check_update_timer(s
);
819 /* The periodic timer is deterministic in record/replay mode,
820 * so there is no need to update it after loading the vmstate.
821 * Reading RTC here would misalign record and replay.
823 if (replay_mode
== REPLAY_MODE_NONE
) {
824 uint64_t now
= qemu_clock_get_ns(rtc_clock
);
825 if (now
< s
->next_periodic_time
||
826 now
> (s
->next_periodic_time
+ get_max_clock_jump())) {
827 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
), 0);
831 if (version_id
>= 2) {
832 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
833 rtc_coalesced_timer_update(s
);
839 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
841 RTCState
*s
= (RTCState
*)opaque
;
842 return s
->irq_reinject_on_ack_count
!= 0;
845 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
846 .name
= "mc146818rtc/irq_reinject_on_ack_count",
848 .minimum_version_id
= 1,
849 .needed
= rtc_irq_reinject_on_ack_count_needed
,
850 .fields
= (VMStateField
[]) {
851 VMSTATE_UINT16(irq_reinject_on_ack_count
, RTCState
),
852 VMSTATE_END_OF_LIST()
856 static const VMStateDescription vmstate_rtc
= {
857 .name
= "mc146818rtc",
859 .minimum_version_id
= 1,
860 .pre_save
= rtc_pre_save
,
861 .post_load
= rtc_post_load
,
862 .fields
= (VMStateField
[]) {
863 VMSTATE_BUFFER(cmos_data
, RTCState
),
864 VMSTATE_UINT8(cmos_index
, RTCState
),
866 VMSTATE_TIMER_PTR(periodic_timer
, RTCState
),
867 VMSTATE_INT64(next_periodic_time
, RTCState
),
869 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
870 VMSTATE_UINT32_V(period
, RTCState
, 2),
871 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
872 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
873 VMSTATE_INT64_V(offset
, RTCState
, 3),
874 VMSTATE_TIMER_PTR_V(update_timer
, RTCState
, 3),
875 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
876 VMSTATE_END_OF_LIST()
878 .subsections
= (const VMStateDescription
*[]) {
879 &vmstate_rtc_irq_reinject_on_ack_count
,
884 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
886 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
887 int64_t now
= *(int64_t *)data
;
889 rtc_set_date_from_host(ISA_DEVICE(s
));
890 periodic_timer_update(s
, now
, 0);
891 check_update_timer(s
);
893 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
894 rtc_coalesced_timer_update(s
);
898 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
899 BIOS will read it and start S3 resume at POST Entry */
900 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
902 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
903 rtc_set_memory(ISA_DEVICE(s
), 0xF, 0xFE);
906 static void rtc_reset(void *opaque
)
908 RTCState
*s
= opaque
;
910 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
911 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
912 check_update_timer(s
);
914 qemu_irq_lower(s
->irq
);
916 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
917 s
->irq_coalesced
= 0;
918 s
->irq_reinject_on_ack_count
= 0;
922 static const MemoryRegionOps cmos_ops
= {
923 .read
= cmos_ioport_read
,
924 .write
= cmos_ioport_write
,
926 .min_access_size
= 1,
927 .max_access_size
= 1,
929 .endianness
= DEVICE_LITTLE_ENDIAN
,
932 static void rtc_get_date(Object
*obj
, struct tm
*current_tm
, Error
**errp
)
934 RTCState
*s
= MC146818_RTC(obj
);
937 rtc_get_time(s
, current_tm
);
940 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
942 ISADevice
*isadev
= ISA_DEVICE(dev
);
943 RTCState
*s
= MC146818_RTC(dev
);
946 s
->cmos_data
[RTC_REG_A
] = 0x26;
947 s
->cmos_data
[RTC_REG_B
] = 0x02;
948 s
->cmos_data
[RTC_REG_C
] = 0x00;
949 s
->cmos_data
[RTC_REG_D
] = 0x80;
951 /* This is for historical reasons. The default base year qdev property
952 * was set to 2000 for most machine types before the century byte was
955 * This if statement means that the century byte will be always 0
956 * (at least until 2079...) for base_year = 1980, but will be set
957 * correctly for base_year = 2000.
959 if (s
->base_year
== 2000) {
963 rtc_set_date_from_host(isadev
);
965 switch (s
->lost_tick_policy
) {
967 case LOST_TICK_POLICY_SLEW
:
969 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
972 case LOST_TICK_POLICY_DISCARD
:
975 error_setg(errp
, "Invalid lost tick policy.");
979 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
980 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
981 check_update_timer(s
);
983 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
984 qemu_clock_register_reset_notifier(rtc_clock
,
985 &s
->clock_reset_notifier
);
987 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
988 qemu_register_suspend_notifier(&s
->suspend_notifier
);
990 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
991 isa_register_ioport(isadev
, &s
->io
, base
);
993 qdev_set_legacy_instance_id(dev
, base
, 3);
994 qemu_register_reset(rtc_reset
, s
);
996 object_property_add_tm(OBJECT(s
), "date", rtc_get_date
, NULL
);
998 object_property_add_alias(qdev_get_machine(), "rtc-time",
999 OBJECT(s
), "date", NULL
);
1001 qdev_init_gpio_out(dev
, &s
->irq
, 1);
1004 ISADevice
*mc146818_rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
1010 isadev
= isa_create(bus
, TYPE_MC146818_RTC
);
1011 dev
= DEVICE(isadev
);
1012 s
= MC146818_RTC(isadev
);
1013 qdev_prop_set_int32(dev
, "base_year", base_year
);
1014 qdev_init_nofail(dev
);
1015 if (intercept_irq
) {
1016 qdev_connect_gpio_out(dev
, 0, intercept_irq
);
1018 isa_connect_gpio_out(isadev
, 0, RTC_ISA_IRQ
);
1020 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
1025 static Property mc146818rtc_properties
[] = {
1026 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
1027 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
1028 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
1029 DEFINE_PROP_END_OF_LIST(),
1032 static void rtc_resetdev(DeviceState
*d
)
1034 RTCState
*s
= MC146818_RTC(d
);
1036 /* Reason: VM do suspend self will set 0xfe
1037 * Reset any values other than 0xfe(Guest suspend case) */
1038 if (s
->cmos_data
[0x0f] != 0xfe) {
1039 s
->cmos_data
[0x0f] = 0x00;
1043 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
1045 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1047 dc
->realize
= rtc_realizefn
;
1048 dc
->reset
= rtc_resetdev
;
1049 dc
->vmsd
= &vmstate_rtc
;
1050 dc
->props
= mc146818rtc_properties
;
1051 /* Reason: needs to be wired up by rtc_init() */
1052 dc
->user_creatable
= false;
1055 static void rtc_finalize(Object
*obj
)
1057 object_property_del(qdev_get_machine(), "rtc", NULL
);
1060 static const TypeInfo mc146818rtc_info
= {
1061 .name
= TYPE_MC146818_RTC
,
1062 .parent
= TYPE_ISA_DEVICE
,
1063 .instance_size
= sizeof(RTCState
),
1064 .class_init
= rtc_class_initfn
,
1065 .instance_finalize
= rtc_finalize
,
1068 static void mc146818rtc_register_types(void)
1070 type_register_static(&mc146818rtc_info
);
1073 type_init(mc146818rtc_register_types
)