qapi: Empty out qapi-schema.json
[qemu/ar7.git] / hw / timer / mc146818rtc.c
blob6f1f723b1f09151e58c155f693fbecfb12a8f2bc
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/bcd.h"
28 #include "hw/hw.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/replay.h"
32 #include "hw/timer/mc146818rtc.h"
33 #include "qapi/error.h"
34 #include "qapi/qapi-commands-misc.h"
35 #include "qapi/qapi-events-misc.h"
36 #include "qapi/visitor.h"
38 #ifdef TARGET_I386
39 #include "hw/i386/apic.h"
40 #endif
42 //#define DEBUG_CMOS
43 //#define DEBUG_COALESCED
45 #ifdef DEBUG_CMOS
46 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
47 #else
48 # define CMOS_DPRINTF(format, ...) do { } while (0)
49 #endif
51 #ifdef DEBUG_COALESCED
52 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
53 #else
54 # define DPRINTF_C(format, ...) do { } while (0)
55 #endif
57 #define SEC_PER_MIN 60
58 #define MIN_PER_HOUR 60
59 #define SEC_PER_HOUR 3600
60 #define HOUR_PER_DAY 24
61 #define SEC_PER_DAY 86400
63 #define RTC_REINJECT_ON_ACK_COUNT 20
64 #define RTC_CLOCK_RATE 32768
65 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
67 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
69 typedef struct RTCState {
70 ISADevice parent_obj;
72 MemoryRegion io;
73 uint8_t cmos_data[128];
74 uint8_t cmos_index;
75 int32_t base_year;
76 uint64_t base_rtc;
77 uint64_t last_update;
78 int64_t offset;
79 qemu_irq irq;
80 int it_shift;
81 /* periodic timer */
82 QEMUTimer *periodic_timer;
83 int64_t next_periodic_time;
84 /* update-ended timer */
85 QEMUTimer *update_timer;
86 uint64_t next_alarm_time;
87 uint16_t irq_reinject_on_ack_count;
88 uint32_t irq_coalesced;
89 uint32_t period;
90 QEMUTimer *coalesced_timer;
91 Notifier clock_reset_notifier;
92 LostTickPolicy lost_tick_policy;
93 Notifier suspend_notifier;
94 QLIST_ENTRY(RTCState) link;
95 } RTCState;
97 static void rtc_set_time(RTCState *s);
98 static void rtc_update_time(RTCState *s);
99 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
100 static inline int rtc_from_bcd(RTCState *s, int a);
101 static uint64_t get_next_alarm(RTCState *s);
103 static inline bool rtc_running(RTCState *s)
105 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
106 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
109 static uint64_t get_guest_rtc_ns(RTCState *s)
111 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
113 return s->base_rtc * NANOSECONDS_PER_SECOND +
114 guest_clock - s->last_update + s->offset;
117 static void rtc_coalesced_timer_update(RTCState *s)
119 if (s->irq_coalesced == 0) {
120 timer_del(s->coalesced_timer);
121 } else {
122 /* divide each RTC interval to 2 - 8 smaller intervals */
123 int c = MIN(s->irq_coalesced, 7) + 1;
124 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
125 periodic_clock_to_ns(s->period / c);
126 timer_mod(s->coalesced_timer, next_clock);
130 static QLIST_HEAD(, RTCState) rtc_devices =
131 QLIST_HEAD_INITIALIZER(rtc_devices);
133 #ifdef TARGET_I386
134 void qmp_rtc_reset_reinjection(Error **errp)
136 RTCState *s;
138 QLIST_FOREACH(s, &rtc_devices, link) {
139 s->irq_coalesced = 0;
143 static bool rtc_policy_slew_deliver_irq(RTCState *s)
145 apic_reset_irq_delivered();
146 qemu_irq_raise(s->irq);
147 return apic_get_irq_delivered();
150 static void rtc_coalesced_timer(void *opaque)
152 RTCState *s = opaque;
154 if (s->irq_coalesced != 0) {
155 s->cmos_data[RTC_REG_C] |= 0xc0;
156 DPRINTF_C("cmos: injecting from timer\n");
157 if (rtc_policy_slew_deliver_irq(s)) {
158 s->irq_coalesced--;
159 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
160 s->irq_coalesced);
164 rtc_coalesced_timer_update(s);
166 #else
167 static bool rtc_policy_slew_deliver_irq(RTCState *s)
169 assert(0);
170 return false;
172 #endif
174 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
176 int period_code;
178 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
179 return 0;
182 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
184 return periodic_period_to_clock(period_code);
188 * handle periodic timer. @old_period indicates the periodic timer update
189 * is just due to period adjustment.
191 static void
192 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period)
194 uint32_t period;
195 int64_t cur_clock, next_irq_clock, lost_clock = 0;
197 period = rtc_periodic_clock_ticks(s);
199 if (period) {
200 /* compute 32 khz clock */
201 cur_clock =
202 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
205 * if the periodic timer's update is due to period re-configuration,
206 * we should count the clock since last interrupt.
208 if (old_period) {
209 int64_t last_periodic_clock, next_periodic_clock;
211 next_periodic_clock = muldiv64(s->next_periodic_time,
212 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
213 last_periodic_clock = next_periodic_clock - old_period;
214 lost_clock = cur_clock - last_periodic_clock;
215 assert(lost_clock >= 0);
219 * s->irq_coalesced can change for two reasons:
221 * a) if one or more periodic timer interrupts have been lost,
222 * lost_clock will be more that a period.
224 * b) when the period may be reconfigured, we expect the OS to
225 * treat delayed tick as the new period. So, when switching
226 * from a shorter to a longer period, scale down the missing,
227 * because the OS will treat past delayed ticks as longer
228 * (leftovers are put back into lost_clock). When switching
229 * to a shorter period, scale up the missing ticks since the
230 * OS handler will treat past delayed ticks as shorter.
232 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
233 uint32_t old_irq_coalesced = s->irq_coalesced;
235 s->period = period;
236 lost_clock += old_irq_coalesced * old_period;
237 s->irq_coalesced = lost_clock / s->period;
238 lost_clock %= s->period;
239 if (old_irq_coalesced != s->irq_coalesced ||
240 old_period != s->period) {
241 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
242 "period scaled from %d to %d\n", old_irq_coalesced,
243 s->irq_coalesced, old_period, s->period);
244 rtc_coalesced_timer_update(s);
246 } else {
248 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
249 * is not used, we should make the time progress anyway.
251 lost_clock = MIN(lost_clock, period);
254 assert(lost_clock >= 0 && lost_clock <= period);
256 next_irq_clock = cur_clock + period - lost_clock;
257 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
258 timer_mod(s->periodic_timer, s->next_periodic_time);
259 } else {
260 s->irq_coalesced = 0;
261 timer_del(s->periodic_timer);
265 static void rtc_periodic_timer(void *opaque)
267 RTCState *s = opaque;
269 periodic_timer_update(s, s->next_periodic_time, 0);
270 s->cmos_data[RTC_REG_C] |= REG_C_PF;
271 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
272 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
273 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
274 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
275 s->irq_reinject_on_ack_count = 0;
276 if (!rtc_policy_slew_deliver_irq(s)) {
277 s->irq_coalesced++;
278 rtc_coalesced_timer_update(s);
279 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
280 s->irq_coalesced);
282 } else
283 qemu_irq_raise(s->irq);
287 /* handle update-ended timer */
288 static void check_update_timer(RTCState *s)
290 uint64_t next_update_time;
291 uint64_t guest_nsec;
292 int next_alarm_sec;
294 /* From the data sheet: "Holding the dividers in reset prevents
295 * interrupts from operating, while setting the SET bit allows"
296 * them to occur.
298 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
299 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
300 timer_del(s->update_timer);
301 return;
304 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
305 next_update_time = qemu_clock_get_ns(rtc_clock)
306 + NANOSECONDS_PER_SECOND - guest_nsec;
308 /* Compute time of next alarm. One second is already accounted
309 * for in next_update_time.
311 next_alarm_sec = get_next_alarm(s);
312 s->next_alarm_time = next_update_time +
313 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
315 /* If update_in_progress latched the UIP bit, we must keep the timer
316 * programmed to the next second, so that UIP is cleared. Otherwise,
317 * if UF is already set, we might be able to optimize.
319 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
320 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
321 /* If AF cannot change (i.e. either it is set already, or
322 * SET=1 and then the time is not updated), nothing to do.
324 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
325 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
326 timer_del(s->update_timer);
327 return;
330 /* UF is set, but AF is clear. Program the timer to target
331 * the alarm time. */
332 next_update_time = s->next_alarm_time;
334 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
335 timer_mod(s->update_timer, next_update_time);
339 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
341 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
342 hour %= 12;
343 if (s->cmos_data[RTC_HOURS] & 0x80) {
344 hour += 12;
347 return hour;
350 static uint64_t get_next_alarm(RTCState *s)
352 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
353 int32_t hour, min, sec;
355 rtc_update_time(s);
357 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
358 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
359 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
360 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
362 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
363 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
364 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
365 cur_hour = convert_hour(s, cur_hour);
367 if (alarm_hour == -1) {
368 alarm_hour = cur_hour;
369 if (alarm_min == -1) {
370 alarm_min = cur_min;
371 if (alarm_sec == -1) {
372 alarm_sec = cur_sec + 1;
373 } else if (cur_sec > alarm_sec) {
374 alarm_min++;
376 } else if (cur_min == alarm_min) {
377 if (alarm_sec == -1) {
378 alarm_sec = cur_sec + 1;
379 } else {
380 if (cur_sec > alarm_sec) {
381 alarm_hour++;
384 if (alarm_sec == SEC_PER_MIN) {
385 /* wrap to next hour, minutes is not in don't care mode */
386 alarm_sec = 0;
387 alarm_hour++;
389 } else if (cur_min > alarm_min) {
390 alarm_hour++;
392 } else if (cur_hour == alarm_hour) {
393 if (alarm_min == -1) {
394 alarm_min = cur_min;
395 if (alarm_sec == -1) {
396 alarm_sec = cur_sec + 1;
397 } else if (cur_sec > alarm_sec) {
398 alarm_min++;
401 if (alarm_sec == SEC_PER_MIN) {
402 alarm_sec = 0;
403 alarm_min++;
405 /* wrap to next day, hour is not in don't care mode */
406 alarm_min %= MIN_PER_HOUR;
407 } else if (cur_min == alarm_min) {
408 if (alarm_sec == -1) {
409 alarm_sec = cur_sec + 1;
411 /* wrap to next day, hours+minutes not in don't care mode */
412 alarm_sec %= SEC_PER_MIN;
416 /* values that are still don't care fire at the next min/sec */
417 if (alarm_min == -1) {
418 alarm_min = 0;
420 if (alarm_sec == -1) {
421 alarm_sec = 0;
424 /* keep values in range */
425 if (alarm_sec == SEC_PER_MIN) {
426 alarm_sec = 0;
427 alarm_min++;
429 if (alarm_min == MIN_PER_HOUR) {
430 alarm_min = 0;
431 alarm_hour++;
433 alarm_hour %= HOUR_PER_DAY;
435 hour = alarm_hour - cur_hour;
436 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
437 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
438 return sec <= 0 ? sec + SEC_PER_DAY : sec;
441 static void rtc_update_timer(void *opaque)
443 RTCState *s = opaque;
444 int32_t irqs = REG_C_UF;
445 int32_t new_irqs;
447 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
449 /* UIP might have been latched, update time and clear it. */
450 rtc_update_time(s);
451 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
453 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
454 irqs |= REG_C_AF;
455 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
456 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
460 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
461 s->cmos_data[RTC_REG_C] |= irqs;
462 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
463 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
464 qemu_irq_raise(s->irq);
466 check_update_timer(s);
469 static void cmos_ioport_write(void *opaque, hwaddr addr,
470 uint64_t data, unsigned size)
472 RTCState *s = opaque;
473 uint32_t old_period;
474 bool update_periodic_timer;
476 if ((addr & 1) == 0) {
477 s->cmos_index = data & 0x7f;
478 } else {
479 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
480 s->cmos_index, data);
481 switch(s->cmos_index) {
482 case RTC_SECONDS_ALARM:
483 case RTC_MINUTES_ALARM:
484 case RTC_HOURS_ALARM:
485 s->cmos_data[s->cmos_index] = data;
486 check_update_timer(s);
487 break;
488 case RTC_IBM_PS2_CENTURY_BYTE:
489 s->cmos_index = RTC_CENTURY;
490 /* fall through */
491 case RTC_CENTURY:
492 case RTC_SECONDS:
493 case RTC_MINUTES:
494 case RTC_HOURS:
495 case RTC_DAY_OF_WEEK:
496 case RTC_DAY_OF_MONTH:
497 case RTC_MONTH:
498 case RTC_YEAR:
499 s->cmos_data[s->cmos_index] = data;
500 /* if in set mode, do not update the time */
501 if (rtc_running(s)) {
502 rtc_set_time(s);
503 check_update_timer(s);
505 break;
506 case RTC_REG_A:
507 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
508 old_period = rtc_periodic_clock_ticks(s);
510 if ((data & 0x60) == 0x60) {
511 if (rtc_running(s)) {
512 rtc_update_time(s);
514 /* What happens to UIP when divider reset is enabled is
515 * unclear from the datasheet. Shouldn't matter much
516 * though.
518 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
519 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
520 (data & 0x70) <= 0x20) {
521 /* when the divider reset is removed, the first update cycle
522 * begins one-half second later*/
523 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
524 s->offset = 500000000;
525 rtc_set_time(s);
527 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
529 /* UIP bit is read only */
530 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
531 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
533 if (update_periodic_timer) {
534 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
535 old_period);
538 check_update_timer(s);
539 break;
540 case RTC_REG_B:
541 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
542 & REG_B_PIE;
543 old_period = rtc_periodic_clock_ticks(s);
545 if (data & REG_B_SET) {
546 /* update cmos to when the rtc was stopping */
547 if (rtc_running(s)) {
548 rtc_update_time(s);
550 /* set mode: reset UIP mode */
551 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
552 data &= ~REG_B_UIE;
553 } else {
554 /* if disabling set mode, update the time */
555 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
556 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
557 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
558 rtc_set_time(s);
561 /* if an interrupt flag is already set when the interrupt
562 * becomes enabled, raise an interrupt immediately. */
563 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
564 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
565 qemu_irq_raise(s->irq);
566 } else {
567 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
568 qemu_irq_lower(s->irq);
570 s->cmos_data[RTC_REG_B] = data;
572 if (update_periodic_timer) {
573 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
574 old_period);
577 check_update_timer(s);
578 break;
579 case RTC_REG_C:
580 case RTC_REG_D:
581 /* cannot write to them */
582 break;
583 default:
584 s->cmos_data[s->cmos_index] = data;
585 break;
590 static inline int rtc_to_bcd(RTCState *s, int a)
592 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
593 return a;
594 } else {
595 return ((a / 10) << 4) | (a % 10);
599 static inline int rtc_from_bcd(RTCState *s, int a)
601 if ((a & 0xc0) == 0xc0) {
602 return -1;
604 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
605 return a;
606 } else {
607 return ((a >> 4) * 10) + (a & 0x0f);
611 static void rtc_get_time(RTCState *s, struct tm *tm)
613 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
614 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
615 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
616 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
617 tm->tm_hour %= 12;
618 if (s->cmos_data[RTC_HOURS] & 0x80) {
619 tm->tm_hour += 12;
622 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
623 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
624 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
625 tm->tm_year =
626 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
627 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
630 static void rtc_set_time(RTCState *s)
632 struct tm tm;
634 rtc_get_time(s, &tm);
635 s->base_rtc = mktimegm(&tm);
636 s->last_update = qemu_clock_get_ns(rtc_clock);
638 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), &error_abort);
641 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
643 int year;
645 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
646 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
647 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
648 /* 24 hour format */
649 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
650 } else {
651 /* 12 hour format */
652 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
653 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
654 if (tm->tm_hour >= 12)
655 s->cmos_data[RTC_HOURS] |= 0x80;
657 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
658 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
659 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
660 year = tm->tm_year + 1900 - s->base_year;
661 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
662 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
665 static void rtc_update_time(RTCState *s)
667 struct tm ret;
668 time_t guest_sec;
669 int64_t guest_nsec;
671 guest_nsec = get_guest_rtc_ns(s);
672 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
673 gmtime_r(&guest_sec, &ret);
675 /* Is SET flag of Register B disabled? */
676 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
677 rtc_set_cmos(s, &ret);
681 static int update_in_progress(RTCState *s)
683 int64_t guest_nsec;
685 if (!rtc_running(s)) {
686 return 0;
688 if (timer_pending(s->update_timer)) {
689 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
690 /* Latch UIP until the timer expires. */
691 if (qemu_clock_get_ns(rtc_clock) >=
692 (next_update_time - UIP_HOLD_LENGTH)) {
693 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
694 return 1;
698 guest_nsec = get_guest_rtc_ns(s);
699 /* UIP bit will be set at last 244us of every second. */
700 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
701 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
702 return 1;
704 return 0;
707 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
708 unsigned size)
710 RTCState *s = opaque;
711 int ret;
712 if ((addr & 1) == 0) {
713 return 0xff;
714 } else {
715 switch(s->cmos_index) {
716 case RTC_IBM_PS2_CENTURY_BYTE:
717 s->cmos_index = RTC_CENTURY;
718 /* fall through */
719 case RTC_CENTURY:
720 case RTC_SECONDS:
721 case RTC_MINUTES:
722 case RTC_HOURS:
723 case RTC_DAY_OF_WEEK:
724 case RTC_DAY_OF_MONTH:
725 case RTC_MONTH:
726 case RTC_YEAR:
727 /* if not in set mode, calibrate cmos before
728 * reading*/
729 if (rtc_running(s)) {
730 rtc_update_time(s);
732 ret = s->cmos_data[s->cmos_index];
733 break;
734 case RTC_REG_A:
735 ret = s->cmos_data[s->cmos_index];
736 if (update_in_progress(s)) {
737 ret |= REG_A_UIP;
739 break;
740 case RTC_REG_C:
741 ret = s->cmos_data[s->cmos_index];
742 qemu_irq_lower(s->irq);
743 s->cmos_data[RTC_REG_C] = 0x00;
744 if (ret & (REG_C_UF | REG_C_AF)) {
745 check_update_timer(s);
748 if(s->irq_coalesced &&
749 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
750 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
751 s->irq_reinject_on_ack_count++;
752 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
753 DPRINTF_C("cmos: injecting on ack\n");
754 if (rtc_policy_slew_deliver_irq(s)) {
755 s->irq_coalesced--;
756 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
757 s->irq_coalesced);
760 break;
761 default:
762 ret = s->cmos_data[s->cmos_index];
763 break;
765 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
766 s->cmos_index, ret);
767 return ret;
771 void rtc_set_memory(ISADevice *dev, int addr, int val)
773 RTCState *s = MC146818_RTC(dev);
774 if (addr >= 0 && addr <= 127)
775 s->cmos_data[addr] = val;
778 int rtc_get_memory(ISADevice *dev, int addr)
780 RTCState *s = MC146818_RTC(dev);
781 assert(addr >= 0 && addr <= 127);
782 return s->cmos_data[addr];
785 static void rtc_set_date_from_host(ISADevice *dev)
787 RTCState *s = MC146818_RTC(dev);
788 struct tm tm;
790 qemu_get_timedate(&tm, 0);
792 s->base_rtc = mktimegm(&tm);
793 s->last_update = qemu_clock_get_ns(rtc_clock);
794 s->offset = 0;
796 /* set the CMOS date */
797 rtc_set_cmos(s, &tm);
800 static int rtc_pre_save(void *opaque)
802 RTCState *s = opaque;
804 rtc_update_time(s);
806 return 0;
809 static int rtc_post_load(void *opaque, int version_id)
811 RTCState *s = opaque;
813 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
814 rtc_set_time(s);
815 s->offset = 0;
816 check_update_timer(s);
819 /* The periodic timer is deterministic in record/replay mode,
820 * so there is no need to update it after loading the vmstate.
821 * Reading RTC here would misalign record and replay.
823 if (replay_mode == REPLAY_MODE_NONE) {
824 uint64_t now = qemu_clock_get_ns(rtc_clock);
825 if (now < s->next_periodic_time ||
826 now > (s->next_periodic_time + get_max_clock_jump())) {
827 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0);
831 if (version_id >= 2) {
832 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
833 rtc_coalesced_timer_update(s);
836 return 0;
839 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
841 RTCState *s = (RTCState *)opaque;
842 return s->irq_reinject_on_ack_count != 0;
845 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
846 .name = "mc146818rtc/irq_reinject_on_ack_count",
847 .version_id = 1,
848 .minimum_version_id = 1,
849 .needed = rtc_irq_reinject_on_ack_count_needed,
850 .fields = (VMStateField[]) {
851 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
852 VMSTATE_END_OF_LIST()
856 static const VMStateDescription vmstate_rtc = {
857 .name = "mc146818rtc",
858 .version_id = 3,
859 .minimum_version_id = 1,
860 .pre_save = rtc_pre_save,
861 .post_load = rtc_post_load,
862 .fields = (VMStateField[]) {
863 VMSTATE_BUFFER(cmos_data, RTCState),
864 VMSTATE_UINT8(cmos_index, RTCState),
865 VMSTATE_UNUSED(7*4),
866 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
867 VMSTATE_INT64(next_periodic_time, RTCState),
868 VMSTATE_UNUSED(3*8),
869 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
870 VMSTATE_UINT32_V(period, RTCState, 2),
871 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
872 VMSTATE_UINT64_V(last_update, RTCState, 3),
873 VMSTATE_INT64_V(offset, RTCState, 3),
874 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
875 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
876 VMSTATE_END_OF_LIST()
878 .subsections = (const VMStateDescription*[]) {
879 &vmstate_rtc_irq_reinject_on_ack_count,
880 NULL
884 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
886 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
887 int64_t now = *(int64_t *)data;
889 rtc_set_date_from_host(ISA_DEVICE(s));
890 periodic_timer_update(s, now, 0);
891 check_update_timer(s);
893 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
894 rtc_coalesced_timer_update(s);
898 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
899 BIOS will read it and start S3 resume at POST Entry */
900 static void rtc_notify_suspend(Notifier *notifier, void *data)
902 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
903 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
906 static void rtc_reset(void *opaque)
908 RTCState *s = opaque;
910 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
911 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
912 check_update_timer(s);
914 qemu_irq_lower(s->irq);
916 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
917 s->irq_coalesced = 0;
918 s->irq_reinject_on_ack_count = 0;
922 static const MemoryRegionOps cmos_ops = {
923 .read = cmos_ioport_read,
924 .write = cmos_ioport_write,
925 .impl = {
926 .min_access_size = 1,
927 .max_access_size = 1,
929 .endianness = DEVICE_LITTLE_ENDIAN,
932 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
934 RTCState *s = MC146818_RTC(obj);
936 rtc_update_time(s);
937 rtc_get_time(s, current_tm);
940 static void rtc_realizefn(DeviceState *dev, Error **errp)
942 ISADevice *isadev = ISA_DEVICE(dev);
943 RTCState *s = MC146818_RTC(dev);
944 int base = 0x70;
946 s->cmos_data[RTC_REG_A] = 0x26;
947 s->cmos_data[RTC_REG_B] = 0x02;
948 s->cmos_data[RTC_REG_C] = 0x00;
949 s->cmos_data[RTC_REG_D] = 0x80;
951 /* This is for historical reasons. The default base year qdev property
952 * was set to 2000 for most machine types before the century byte was
953 * implemented.
955 * This if statement means that the century byte will be always 0
956 * (at least until 2079...) for base_year = 1980, but will be set
957 * correctly for base_year = 2000.
959 if (s->base_year == 2000) {
960 s->base_year = 0;
963 rtc_set_date_from_host(isadev);
965 switch (s->lost_tick_policy) {
966 #ifdef TARGET_I386
967 case LOST_TICK_POLICY_SLEW:
968 s->coalesced_timer =
969 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
970 break;
971 #endif
972 case LOST_TICK_POLICY_DISCARD:
973 break;
974 default:
975 error_setg(errp, "Invalid lost tick policy.");
976 return;
979 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
980 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
981 check_update_timer(s);
983 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
984 qemu_clock_register_reset_notifier(rtc_clock,
985 &s->clock_reset_notifier);
987 s->suspend_notifier.notify = rtc_notify_suspend;
988 qemu_register_suspend_notifier(&s->suspend_notifier);
990 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
991 isa_register_ioport(isadev, &s->io, base);
993 qdev_set_legacy_instance_id(dev, base, 3);
994 qemu_register_reset(rtc_reset, s);
996 object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
998 object_property_add_alias(qdev_get_machine(), "rtc-time",
999 OBJECT(s), "date", NULL);
1001 qdev_init_gpio_out(dev, &s->irq, 1);
1004 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
1006 DeviceState *dev;
1007 ISADevice *isadev;
1008 RTCState *s;
1010 isadev = isa_create(bus, TYPE_MC146818_RTC);
1011 dev = DEVICE(isadev);
1012 s = MC146818_RTC(isadev);
1013 qdev_prop_set_int32(dev, "base_year", base_year);
1014 qdev_init_nofail(dev);
1015 if (intercept_irq) {
1016 qdev_connect_gpio_out(dev, 0, intercept_irq);
1017 } else {
1018 isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
1020 QLIST_INSERT_HEAD(&rtc_devices, s, link);
1022 return isadev;
1025 static Property mc146818rtc_properties[] = {
1026 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
1027 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
1028 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
1029 DEFINE_PROP_END_OF_LIST(),
1032 static void rtc_resetdev(DeviceState *d)
1034 RTCState *s = MC146818_RTC(d);
1036 /* Reason: VM do suspend self will set 0xfe
1037 * Reset any values other than 0xfe(Guest suspend case) */
1038 if (s->cmos_data[0x0f] != 0xfe) {
1039 s->cmos_data[0x0f] = 0x00;
1043 static void rtc_class_initfn(ObjectClass *klass, void *data)
1045 DeviceClass *dc = DEVICE_CLASS(klass);
1047 dc->realize = rtc_realizefn;
1048 dc->reset = rtc_resetdev;
1049 dc->vmsd = &vmstate_rtc;
1050 dc->props = mc146818rtc_properties;
1051 /* Reason: needs to be wired up by rtc_init() */
1052 dc->user_creatable = false;
1055 static void rtc_finalize(Object *obj)
1057 object_property_del(qdev_get_machine(), "rtc", NULL);
1060 static const TypeInfo mc146818rtc_info = {
1061 .name = TYPE_MC146818_RTC,
1062 .parent = TYPE_ISA_DEVICE,
1063 .instance_size = sizeof(RTCState),
1064 .class_init = rtc_class_initfn,
1065 .instance_finalize = rtc_finalize,
1068 static void mc146818rtc_register_types(void)
1070 type_register_static(&mc146818rtc_info);
1073 type_init(mc146818rtc_register_types)