target-ppc: Helper to determine page size information from hpte alone
[qemu/ar7.git] / target-arm / helper.c
blobae024869d0e0fc36319490e53129432db0366f63
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "internals.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/cpu_ldst.h"
12 #include "arm_ldst.h"
13 #include <zlib.h> /* For crc32 */
14 #include "exec/semihost.h"
15 #include "sysemu/kvm.h"
17 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
19 #ifndef CONFIG_USER_ONLY
20 static bool get_phys_addr(CPUARMState *env, target_ulong address,
21 int access_type, ARMMMUIdx mmu_idx,
22 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
23 target_ulong *page_size, uint32_t *fsr,
24 ARMMMUFaultInfo *fi);
26 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
27 int access_type, ARMMMUIdx mmu_idx,
28 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
29 target_ulong *page_size_ptr, uint32_t *fsr,
30 ARMMMUFaultInfo *fi);
32 /* Definitions for the PMCCNTR and PMCR registers */
33 #define PMCRD 0x8
34 #define PMCRC 0x4
35 #define PMCRE 0x1
36 #endif
38 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
40 int nregs;
42 /* VFP data registers are always little-endian. */
43 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
44 if (reg < nregs) {
45 stfq_le_p(buf, env->vfp.regs[reg]);
46 return 8;
48 if (arm_feature(env, ARM_FEATURE_NEON)) {
49 /* Aliases for Q regs. */
50 nregs += 16;
51 if (reg < nregs) {
52 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
53 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
54 return 16;
57 switch (reg - nregs) {
58 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
59 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
60 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
62 return 0;
65 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
67 int nregs;
69 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70 if (reg < nregs) {
71 env->vfp.regs[reg] = ldfq_le_p(buf);
72 return 8;
74 if (arm_feature(env, ARM_FEATURE_NEON)) {
75 nregs += 16;
76 if (reg < nregs) {
77 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
78 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
79 return 16;
82 switch (reg - nregs) {
83 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
84 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
85 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
87 return 0;
90 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
92 switch (reg) {
93 case 0 ... 31:
94 /* 128 bit FP register */
95 stfq_le_p(buf, env->vfp.regs[reg * 2]);
96 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
97 return 16;
98 case 32:
99 /* FPSR */
100 stl_p(buf, vfp_get_fpsr(env));
101 return 4;
102 case 33:
103 /* FPCR */
104 stl_p(buf, vfp_get_fpcr(env));
105 return 4;
106 default:
107 return 0;
111 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
113 switch (reg) {
114 case 0 ... 31:
115 /* 128 bit FP register */
116 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
117 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
118 return 16;
119 case 32:
120 /* FPSR */
121 vfp_set_fpsr(env, ldl_p(buf));
122 return 4;
123 case 33:
124 /* FPCR */
125 vfp_set_fpcr(env, ldl_p(buf));
126 return 4;
127 default:
128 return 0;
132 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
134 assert(ri->fieldoffset);
135 if (cpreg_field_is_64bit(ri)) {
136 return CPREG_FIELD64(env, ri);
137 } else {
138 return CPREG_FIELD32(env, ri);
142 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
143 uint64_t value)
145 assert(ri->fieldoffset);
146 if (cpreg_field_is_64bit(ri)) {
147 CPREG_FIELD64(env, ri) = value;
148 } else {
149 CPREG_FIELD32(env, ri) = value;
153 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
155 return (char *)env + ri->fieldoffset;
158 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
160 /* Raw read of a coprocessor register (as needed for migration, etc). */
161 if (ri->type & ARM_CP_CONST) {
162 return ri->resetvalue;
163 } else if (ri->raw_readfn) {
164 return ri->raw_readfn(env, ri);
165 } else if (ri->readfn) {
166 return ri->readfn(env, ri);
167 } else {
168 return raw_read(env, ri);
172 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
173 uint64_t v)
175 /* Raw write of a coprocessor register (as needed for migration, etc).
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
178 * value written.
180 if (ri->type & ARM_CP_CONST) {
181 return;
182 } else if (ri->raw_writefn) {
183 ri->raw_writefn(env, ri, v);
184 } else if (ri->writefn) {
185 ri->writefn(env, ri, v);
186 } else {
187 raw_write(env, ri, v);
191 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
204 if ((ri->type & ARM_CP_CONST) ||
205 ri->fieldoffset ||
206 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
207 return false;
209 return true;
212 bool write_cpustate_to_list(ARMCPU *cpu)
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
215 int i;
216 bool ok = true;
218 for (i = 0; i < cpu->cpreg_array_len; i++) {
219 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
220 const ARMCPRegInfo *ri;
222 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
223 if (!ri) {
224 ok = false;
225 continue;
227 if (ri->type & ARM_CP_NO_RAW) {
228 continue;
230 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
232 return ok;
235 bool write_list_to_cpustate(ARMCPU *cpu)
237 int i;
238 bool ok = true;
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 uint64_t v = cpu->cpreg_values[i];
243 const ARMCPRegInfo *ri;
245 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
246 if (!ri) {
247 ok = false;
248 continue;
250 if (ri->type & ARM_CP_NO_RAW) {
251 continue;
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
257 write_raw_cp_reg(&cpu->env, ri, v);
258 if (read_raw_cp_reg(&cpu->env, ri) != v) {
259 ok = false;
262 return ok;
265 static void add_cpreg_to_list(gpointer key, gpointer opaque)
267 ARMCPU *cpu = opaque;
268 uint64_t regidx;
269 const ARMCPRegInfo *ri;
271 regidx = *(uint32_t *)key;
272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
274 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
275 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
276 /* The value array need not be initialized at this point */
277 cpu->cpreg_array_len++;
281 static void count_cpreg(gpointer key, gpointer opaque)
283 ARMCPU *cpu = opaque;
284 uint64_t regidx;
285 const ARMCPRegInfo *ri;
287 regidx = *(uint32_t *)key;
288 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
290 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
291 cpu->cpreg_array_len++;
295 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
297 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
298 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
300 if (aidx > bidx) {
301 return 1;
303 if (aidx < bidx) {
304 return -1;
306 return 0;
309 void init_cpreg_list(ARMCPU *cpu)
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
314 GList *keys;
315 int arraylen;
317 keys = g_hash_table_get_keys(cpu->cp_regs);
318 keys = g_list_sort(keys, cpreg_key_compare);
320 cpu->cpreg_array_len = 0;
322 g_list_foreach(keys, count_cpreg, cpu);
324 arraylen = cpu->cpreg_array_len;
325 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
326 cpu->cpreg_values = g_new(uint64_t, arraylen);
327 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
330 cpu->cpreg_array_len = 0;
332 g_list_foreach(keys, add_cpreg_to_list, cpu);
334 assert(cpu->cpreg_array_len == arraylen);
336 g_list_free(keys);
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
346 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
347 const ARMCPRegInfo *ri)
349 bool secure = arm_is_secure_below_el3(env);
351 assert(!arm_el_is_aa64(env, 3));
352 if (secure) {
353 return CP_ACCESS_TRAP_UNCATEGORIZED;
355 return CP_ACCESS_OK;
358 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
359 const ARMCPRegInfo *ri)
361 if (!arm_el_is_aa64(env, 3)) {
362 return access_el3_aa32ns(env, ri);
364 return CP_ACCESS_OK;
367 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
369 ARMCPU *cpu = arm_env_get_cpu(env);
371 raw_write(env, ri, value);
372 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
375 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
377 ARMCPU *cpu = arm_env_get_cpu(env);
379 if (raw_read(env, ri) != value) {
380 /* Unlike real hardware the qemu TLB uses virtual addresses,
381 * not modified virtual addresses, so this causes a TLB flush.
383 tlb_flush(CPU(cpu), 1);
384 raw_write(env, ri, value);
388 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
389 uint64_t value)
391 ARMCPU *cpu = arm_env_get_cpu(env);
393 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
394 && !extended_addresses_enabled(env)) {
395 /* For VMSA (when not using the LPAE long descriptor page table
396 * format) this register includes the ASID, so do a TLB flush.
397 * For PMSA it is purely a process ID and no action is needed.
399 tlb_flush(CPU(cpu), 1);
401 raw_write(env, ri, value);
404 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
405 uint64_t value)
407 /* Invalidate all (TLBIALL) */
408 ARMCPU *cpu = arm_env_get_cpu(env);
410 tlb_flush(CPU(cpu), 1);
413 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
414 uint64_t value)
416 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
417 ARMCPU *cpu = arm_env_get_cpu(env);
419 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
422 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
423 uint64_t value)
425 /* Invalidate by ASID (TLBIASID) */
426 ARMCPU *cpu = arm_env_get_cpu(env);
428 tlb_flush(CPU(cpu), value == 0);
431 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
432 uint64_t value)
434 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
435 ARMCPU *cpu = arm_env_get_cpu(env);
437 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
440 /* IS variants of TLB operations must affect all cores */
441 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
442 uint64_t value)
444 CPUState *other_cs;
446 CPU_FOREACH(other_cs) {
447 tlb_flush(other_cs, 1);
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452 uint64_t value)
454 CPUState *other_cs;
456 CPU_FOREACH(other_cs) {
457 tlb_flush(other_cs, value == 0);
461 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
462 uint64_t value)
464 CPUState *other_cs;
466 CPU_FOREACH(other_cs) {
467 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
471 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
472 uint64_t value)
474 CPUState *other_cs;
476 CPU_FOREACH(other_cs) {
477 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
481 static const ARMCPRegInfo cp_reginfo[] = {
482 /* Define the secure and non-secure FCSE identifier CP registers
483 * separately because there is no secure bank in V8 (no _EL3). This allows
484 * the secure register to be properly reset and migrated. There is also no
485 * v8 EL1 version of the register so the non-secure instance stands alone.
487 { .name = "FCSEIDR(NS)",
488 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
489 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
490 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
491 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
492 { .name = "FCSEIDR(S)",
493 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
494 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
495 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
496 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
497 /* Define the secure and non-secure context identifier CP registers
498 * separately because there is no secure bank in V8 (no _EL3). This allows
499 * the secure register to be properly reset and migrated. In the
500 * non-secure case, the 32-bit register will have reset and migration
501 * disabled during registration as it is handled by the 64-bit instance.
503 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
504 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
505 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
506 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
507 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
508 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
509 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
510 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
511 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
512 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
513 REGINFO_SENTINEL
516 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
517 /* NB: Some of these registers exist in v8 but with more precise
518 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
520 /* MMU Domain access control / MPU write buffer control */
521 { .name = "DACR",
522 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
523 .access = PL1_RW, .resetvalue = 0,
524 .writefn = dacr_write, .raw_writefn = raw_write,
525 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
526 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
527 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
528 * For v6 and v5, these mappings are overly broad.
530 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
531 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
532 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
533 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
534 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
535 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
536 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
537 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
538 /* Cache maintenance ops; some of this space may be overridden later. */
539 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
540 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
541 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
542 REGINFO_SENTINEL
545 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
546 /* Not all pre-v6 cores implemented this WFI, so this is slightly
547 * over-broad.
549 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
550 .access = PL1_W, .type = ARM_CP_WFI },
551 REGINFO_SENTINEL
554 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
555 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
556 * is UNPREDICTABLE; we choose to NOP as most implementations do).
558 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
559 .access = PL1_W, .type = ARM_CP_WFI },
560 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
561 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
562 * OMAPCP will override this space.
564 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
565 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
566 .resetvalue = 0 },
567 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
568 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
569 .resetvalue = 0 },
570 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
571 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
572 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
573 .resetvalue = 0 },
574 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
575 * implementing it as RAZ means the "debug architecture version" bits
576 * will read as a reserved value, which should cause Linux to not try
577 * to use the debug hardware.
579 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
580 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
581 /* MMU TLB control. Note that the wildcarding means we cover not just
582 * the unified TLB ops but also the dside/iside/inner-shareable variants.
584 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
585 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
586 .type = ARM_CP_NO_RAW },
587 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
588 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
589 .type = ARM_CP_NO_RAW },
590 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
591 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
592 .type = ARM_CP_NO_RAW },
593 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
594 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
595 .type = ARM_CP_NO_RAW },
596 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
597 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
598 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
599 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
600 REGINFO_SENTINEL
603 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
604 uint64_t value)
606 uint32_t mask = 0;
608 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
609 if (!arm_feature(env, ARM_FEATURE_V8)) {
610 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
611 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
612 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
614 if (arm_feature(env, ARM_FEATURE_VFP)) {
615 /* VFP coprocessor: cp10 & cp11 [23:20] */
616 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
618 if (!arm_feature(env, ARM_FEATURE_NEON)) {
619 /* ASEDIS [31] bit is RAO/WI */
620 value |= (1 << 31);
623 /* VFPv3 and upwards with NEON implement 32 double precision
624 * registers (D0-D31).
626 if (!arm_feature(env, ARM_FEATURE_NEON) ||
627 !arm_feature(env, ARM_FEATURE_VFP3)) {
628 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
629 value |= (1 << 30);
632 value &= mask;
634 env->cp15.cpacr_el1 = value;
637 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
639 if (arm_feature(env, ARM_FEATURE_V8)) {
640 /* Check if CPACR accesses are to be trapped to EL2 */
641 if (arm_current_el(env) == 1 &&
642 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
643 return CP_ACCESS_TRAP_EL2;
644 /* Check if CPACR accesses are to be trapped to EL3 */
645 } else if (arm_current_el(env) < 3 &&
646 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
647 return CP_ACCESS_TRAP_EL3;
651 return CP_ACCESS_OK;
654 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
656 /* Check if CPTR accesses are set to trap to EL3 */
657 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
658 return CP_ACCESS_TRAP_EL3;
661 return CP_ACCESS_OK;
664 static const ARMCPRegInfo v6_cp_reginfo[] = {
665 /* prefetch by MVA in v6, NOP in v7 */
666 { .name = "MVA_prefetch",
667 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
668 .access = PL1_W, .type = ARM_CP_NOP },
669 /* We need to break the TB after ISB to execute self-modifying code
670 * correctly and also to take any pending interrupts immediately.
671 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
673 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
674 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
675 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
676 .access = PL0_W, .type = ARM_CP_NOP },
677 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
678 .access = PL0_W, .type = ARM_CP_NOP },
679 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
680 .access = PL1_RW,
681 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
682 offsetof(CPUARMState, cp15.ifar_ns) },
683 .resetvalue = 0, },
684 /* Watchpoint Fault Address Register : should actually only be present
685 * for 1136, 1176, 11MPCore.
687 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
688 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
689 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
690 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
691 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
692 .resetvalue = 0, .writefn = cpacr_write },
693 REGINFO_SENTINEL
696 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
698 /* Performance monitor registers user accessibility is controlled
699 * by PMUSERENR.
701 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
702 return CP_ACCESS_TRAP;
704 return CP_ACCESS_OK;
707 #ifndef CONFIG_USER_ONLY
709 static inline bool arm_ccnt_enabled(CPUARMState *env)
711 /* This does not support checking PMCCFILTR_EL0 register */
713 if (!(env->cp15.c9_pmcr & PMCRE)) {
714 return false;
717 return true;
720 void pmccntr_sync(CPUARMState *env)
722 uint64_t temp_ticks;
724 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
725 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
727 if (env->cp15.c9_pmcr & PMCRD) {
728 /* Increment once every 64 processor clock cycles */
729 temp_ticks /= 64;
732 if (arm_ccnt_enabled(env)) {
733 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
737 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
738 uint64_t value)
740 pmccntr_sync(env);
742 if (value & PMCRC) {
743 /* The counter has been reset */
744 env->cp15.c15_ccnt = 0;
747 /* only the DP, X, D and E bits are writable */
748 env->cp15.c9_pmcr &= ~0x39;
749 env->cp15.c9_pmcr |= (value & 0x39);
751 pmccntr_sync(env);
754 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
756 uint64_t total_ticks;
758 if (!arm_ccnt_enabled(env)) {
759 /* Counter is disabled, do not change value */
760 return env->cp15.c15_ccnt;
763 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
764 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
766 if (env->cp15.c9_pmcr & PMCRD) {
767 /* Increment once every 64 processor clock cycles */
768 total_ticks /= 64;
770 return total_ticks - env->cp15.c15_ccnt;
773 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
774 uint64_t value)
776 uint64_t total_ticks;
778 if (!arm_ccnt_enabled(env)) {
779 /* Counter is disabled, set the absolute value */
780 env->cp15.c15_ccnt = value;
781 return;
784 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
785 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
787 if (env->cp15.c9_pmcr & PMCRD) {
788 /* Increment once every 64 processor clock cycles */
789 total_ticks /= 64;
791 env->cp15.c15_ccnt = total_ticks - value;
794 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
797 uint64_t cur_val = pmccntr_read(env, NULL);
799 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
802 #else /* CONFIG_USER_ONLY */
804 void pmccntr_sync(CPUARMState *env)
808 #endif
810 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
811 uint64_t value)
813 pmccntr_sync(env);
814 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
815 pmccntr_sync(env);
818 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
819 uint64_t value)
821 value &= (1 << 31);
822 env->cp15.c9_pmcnten |= value;
825 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
826 uint64_t value)
828 value &= (1 << 31);
829 env->cp15.c9_pmcnten &= ~value;
832 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
833 uint64_t value)
835 env->cp15.c9_pmovsr &= ~value;
838 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
839 uint64_t value)
841 env->cp15.c9_pmxevtyper = value & 0xff;
844 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
845 uint64_t value)
847 env->cp15.c9_pmuserenr = value & 1;
850 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
851 uint64_t value)
853 /* We have no event counters so only the C bit can be changed */
854 value &= (1 << 31);
855 env->cp15.c9_pminten |= value;
858 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
859 uint64_t value)
861 value &= (1 << 31);
862 env->cp15.c9_pminten &= ~value;
865 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
866 uint64_t value)
868 /* Note that even though the AArch64 view of this register has bits
869 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
870 * architectural requirements for bits which are RES0 only in some
871 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
872 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
874 raw_write(env, ri, value & ~0x1FULL);
877 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
879 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
880 * For bits that vary between AArch32/64, code needs to check the
881 * current execution mode before directly using the feature bit.
883 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
885 if (!arm_feature(env, ARM_FEATURE_EL2)) {
886 valid_mask &= ~SCR_HCE;
888 /* On ARMv7, SMD (or SCD as it is called in v7) is only
889 * supported if EL2 exists. The bit is UNK/SBZP when
890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
891 * when EL2 is unavailable.
892 * On ARMv8, this bit is always available.
894 if (arm_feature(env, ARM_FEATURE_V7) &&
895 !arm_feature(env, ARM_FEATURE_V8)) {
896 valid_mask &= ~SCR_SMD;
900 /* Clear all-context RES0 bits. */
901 value &= valid_mask;
902 raw_write(env, ri, value);
905 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
907 ARMCPU *cpu = arm_env_get_cpu(env);
909 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
910 * bank
912 uint32_t index = A32_BANKED_REG_GET(env, csselr,
913 ri->secure & ARM_CP_SECSTATE_S);
915 return cpu->ccsidr[index];
918 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
919 uint64_t value)
921 raw_write(env, ri, value & 0xf);
924 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
926 CPUState *cs = ENV_GET_CPU(env);
927 uint64_t ret = 0;
929 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
930 ret |= CPSR_I;
932 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
933 ret |= CPSR_F;
935 /* External aborts are not possible in QEMU so A bit is always clear */
936 return ret;
939 static const ARMCPRegInfo v7_cp_reginfo[] = {
940 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
941 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
942 .access = PL1_W, .type = ARM_CP_NOP },
943 /* Performance monitors are implementation defined in v7,
944 * but with an ARM recommended set of registers, which we
945 * follow (although we don't actually implement any counters)
947 * Performance registers fall into three categories:
948 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
949 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
950 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
951 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
952 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
954 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
955 .access = PL0_RW, .type = ARM_CP_ALIAS,
956 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
957 .writefn = pmcntenset_write,
958 .accessfn = pmreg_access,
959 .raw_writefn = raw_write },
960 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
961 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
962 .access = PL0_RW, .accessfn = pmreg_access,
963 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
964 .writefn = pmcntenset_write, .raw_writefn = raw_write },
965 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
966 .access = PL0_RW,
967 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
968 .accessfn = pmreg_access,
969 .writefn = pmcntenclr_write,
970 .type = ARM_CP_ALIAS },
971 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
972 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
973 .access = PL0_RW, .accessfn = pmreg_access,
974 .type = ARM_CP_ALIAS,
975 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
976 .writefn = pmcntenclr_write },
977 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
978 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
979 .accessfn = pmreg_access,
980 .writefn = pmovsr_write,
981 .raw_writefn = raw_write },
982 /* Unimplemented so WI. */
983 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
984 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
985 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
986 * We choose to RAZ/WI.
988 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
989 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
990 .accessfn = pmreg_access },
991 #ifndef CONFIG_USER_ONLY
992 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
993 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
994 .readfn = pmccntr_read, .writefn = pmccntr_write32,
995 .accessfn = pmreg_access },
996 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
997 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
998 .access = PL0_RW, .accessfn = pmreg_access,
999 .type = ARM_CP_IO,
1000 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1001 #endif
1002 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1003 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1004 .writefn = pmccfiltr_write,
1005 .access = PL0_RW, .accessfn = pmreg_access,
1006 .type = ARM_CP_IO,
1007 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1008 .resetvalue = 0, },
1009 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1010 .access = PL0_RW,
1011 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1012 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1013 .raw_writefn = raw_write },
1014 /* Unimplemented, RAZ/WI. */
1015 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1016 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1017 .accessfn = pmreg_access },
1018 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1019 .access = PL0_R | PL1_RW,
1020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1021 .resetvalue = 0,
1022 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1023 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1024 .access = PL1_RW,
1025 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1026 .resetvalue = 0,
1027 .writefn = pmintenset_write, .raw_writefn = raw_write },
1028 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1029 .access = PL1_RW, .type = ARM_CP_ALIAS,
1030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1031 .writefn = pmintenclr_write, },
1032 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1033 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1034 .access = PL1_RW, .writefn = vbar_write,
1035 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1036 offsetof(CPUARMState, cp15.vbar_ns) },
1037 .resetvalue = 0 },
1038 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1039 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1040 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1041 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1042 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1043 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1044 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1045 offsetof(CPUARMState, cp15.csselr_ns) } },
1046 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1047 * just RAZ for all cores:
1049 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1050 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1051 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1052 /* Auxiliary fault status registers: these also are IMPDEF, and we
1053 * choose to RAZ/WI for all cores.
1055 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1056 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1057 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1058 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1059 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1060 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1061 /* MAIR can just read-as-written because we don't implement caches
1062 * and so don't need to care about memory attributes.
1064 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1065 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1066 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1067 .resetvalue = 0 },
1068 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1069 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1070 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1071 .resetvalue = 0 },
1072 /* For non-long-descriptor page tables these are PRRR and NMRR;
1073 * regardless they still act as reads-as-written for QEMU.
1075 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1076 * allows them to assign the correct fieldoffset based on the endianness
1077 * handled in the field definitions.
1079 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1080 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1081 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1082 offsetof(CPUARMState, cp15.mair0_ns) },
1083 .resetfn = arm_cp_reset_ignore },
1084 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1085 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1086 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1087 offsetof(CPUARMState, cp15.mair1_ns) },
1088 .resetfn = arm_cp_reset_ignore },
1089 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1090 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1091 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1092 /* 32 bit ITLB invalidates */
1093 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1094 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1095 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1096 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1097 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1098 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1099 /* 32 bit DTLB invalidates */
1100 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1101 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1102 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1103 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1104 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1105 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1106 /* 32 bit TLB invalidates */
1107 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1108 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1109 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1110 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1111 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1112 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1113 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1114 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1115 REGINFO_SENTINEL
1118 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1119 /* 32 bit TLB invalidates, Inner Shareable */
1120 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1121 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1122 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1123 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1124 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1125 .type = ARM_CP_NO_RAW, .access = PL1_W,
1126 .writefn = tlbiasid_is_write },
1127 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1128 .type = ARM_CP_NO_RAW, .access = PL1_W,
1129 .writefn = tlbimvaa_is_write },
1130 REGINFO_SENTINEL
1133 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1134 uint64_t value)
1136 value &= 1;
1137 env->teecr = value;
1140 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1142 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1143 return CP_ACCESS_TRAP;
1145 return CP_ACCESS_OK;
1148 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1149 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1150 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1151 .resetvalue = 0,
1152 .writefn = teecr_write },
1153 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1154 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1155 .accessfn = teehbr_access, .resetvalue = 0 },
1156 REGINFO_SENTINEL
1159 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1160 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1161 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1162 .access = PL0_RW,
1163 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1164 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1165 .access = PL0_RW,
1166 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1167 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1168 .resetfn = arm_cp_reset_ignore },
1169 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1170 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1171 .access = PL0_R|PL1_W,
1172 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1173 .resetvalue = 0},
1174 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1175 .access = PL0_R|PL1_W,
1176 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1177 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1178 .resetfn = arm_cp_reset_ignore },
1179 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1180 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1181 .access = PL1_RW,
1182 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1183 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1184 .access = PL1_RW,
1185 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1186 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1187 .resetvalue = 0 },
1188 REGINFO_SENTINEL
1191 #ifndef CONFIG_USER_ONLY
1193 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1195 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1196 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1197 return CP_ACCESS_TRAP;
1199 return CP_ACCESS_OK;
1202 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1204 unsigned int cur_el = arm_current_el(env);
1205 bool secure = arm_is_secure(env);
1207 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1208 if (cur_el == 0 &&
1209 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1210 return CP_ACCESS_TRAP;
1213 if (arm_feature(env, ARM_FEATURE_EL2) &&
1214 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1215 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1216 return CP_ACCESS_TRAP_EL2;
1218 return CP_ACCESS_OK;
1221 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1223 unsigned int cur_el = arm_current_el(env);
1224 bool secure = arm_is_secure(env);
1226 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1227 * EL0[PV]TEN is zero.
1229 if (cur_el == 0 &&
1230 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1231 return CP_ACCESS_TRAP;
1234 if (arm_feature(env, ARM_FEATURE_EL2) &&
1235 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1236 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1237 return CP_ACCESS_TRAP_EL2;
1239 return CP_ACCESS_OK;
1242 static CPAccessResult gt_pct_access(CPUARMState *env,
1243 const ARMCPRegInfo *ri)
1245 return gt_counter_access(env, GTIMER_PHYS);
1248 static CPAccessResult gt_vct_access(CPUARMState *env,
1249 const ARMCPRegInfo *ri)
1251 return gt_counter_access(env, GTIMER_VIRT);
1254 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1256 return gt_timer_access(env, GTIMER_PHYS);
1259 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1261 return gt_timer_access(env, GTIMER_VIRT);
1264 static CPAccessResult gt_stimer_access(CPUARMState *env,
1265 const ARMCPRegInfo *ri)
1267 /* The AArch64 register view of the secure physical timer is
1268 * always accessible from EL3, and configurably accessible from
1269 * Secure EL1.
1271 switch (arm_current_el(env)) {
1272 case 1:
1273 if (!arm_is_secure(env)) {
1274 return CP_ACCESS_TRAP;
1276 if (!(env->cp15.scr_el3 & SCR_ST)) {
1277 return CP_ACCESS_TRAP_EL3;
1279 return CP_ACCESS_OK;
1280 case 0:
1281 case 2:
1282 return CP_ACCESS_TRAP;
1283 case 3:
1284 return CP_ACCESS_OK;
1285 default:
1286 g_assert_not_reached();
1290 static uint64_t gt_get_countervalue(CPUARMState *env)
1292 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1295 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1297 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1299 if (gt->ctl & 1) {
1300 /* Timer enabled: calculate and set current ISTATUS, irq, and
1301 * reset timer to when ISTATUS next has to change
1303 uint64_t offset = timeridx == GTIMER_VIRT ?
1304 cpu->env.cp15.cntvoff_el2 : 0;
1305 uint64_t count = gt_get_countervalue(&cpu->env);
1306 /* Note that this must be unsigned 64 bit arithmetic: */
1307 int istatus = count - offset >= gt->cval;
1308 uint64_t nexttick;
1310 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1311 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1312 (istatus && !(gt->ctl & 2)));
1313 if (istatus) {
1314 /* Next transition is when count rolls back over to zero */
1315 nexttick = UINT64_MAX;
1316 } else {
1317 /* Next transition is when we hit cval */
1318 nexttick = gt->cval + offset;
1320 /* Note that the desired next expiry time might be beyond the
1321 * signed-64-bit range of a QEMUTimer -- in this case we just
1322 * set the timer for as far in the future as possible. When the
1323 * timer expires we will reset the timer for any remaining period.
1325 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1326 nexttick = INT64_MAX / GTIMER_SCALE;
1328 timer_mod(cpu->gt_timer[timeridx], nexttick);
1329 } else {
1330 /* Timer disabled: ISTATUS and timer output always clear */
1331 gt->ctl &= ~4;
1332 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1333 timer_del(cpu->gt_timer[timeridx]);
1337 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1338 int timeridx)
1340 ARMCPU *cpu = arm_env_get_cpu(env);
1342 timer_del(cpu->gt_timer[timeridx]);
1345 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1347 return gt_get_countervalue(env);
1350 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1352 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1355 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1356 int timeridx,
1357 uint64_t value)
1359 env->cp15.c14_timer[timeridx].cval = value;
1360 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1363 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1364 int timeridx)
1366 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1368 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1369 (gt_get_countervalue(env) - offset));
1372 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1373 int timeridx,
1374 uint64_t value)
1376 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1378 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1379 sextract64(value, 0, 32);
1380 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1383 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1384 int timeridx,
1385 uint64_t value)
1387 ARMCPU *cpu = arm_env_get_cpu(env);
1388 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1390 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1391 if ((oldval ^ value) & 1) {
1392 /* Enable toggled */
1393 gt_recalc_timer(cpu, timeridx);
1394 } else if ((oldval ^ value) & 2) {
1395 /* IMASK toggled: don't need to recalculate,
1396 * just set the interrupt line based on ISTATUS
1398 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1399 (oldval & 4) && !(value & 2));
1403 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1405 gt_timer_reset(env, ri, GTIMER_PHYS);
1408 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1409 uint64_t value)
1411 gt_cval_write(env, ri, GTIMER_PHYS, value);
1414 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1416 return gt_tval_read(env, ri, GTIMER_PHYS);
1419 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1420 uint64_t value)
1422 gt_tval_write(env, ri, GTIMER_PHYS, value);
1425 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1426 uint64_t value)
1428 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1431 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1433 gt_timer_reset(env, ri, GTIMER_VIRT);
1436 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1437 uint64_t value)
1439 gt_cval_write(env, ri, GTIMER_VIRT, value);
1442 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1444 return gt_tval_read(env, ri, GTIMER_VIRT);
1447 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1448 uint64_t value)
1450 gt_tval_write(env, ri, GTIMER_VIRT, value);
1453 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1454 uint64_t value)
1456 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1459 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1460 uint64_t value)
1462 ARMCPU *cpu = arm_env_get_cpu(env);
1464 raw_write(env, ri, value);
1465 gt_recalc_timer(cpu, GTIMER_VIRT);
1468 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1470 gt_timer_reset(env, ri, GTIMER_HYP);
1473 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1474 uint64_t value)
1476 gt_cval_write(env, ri, GTIMER_HYP, value);
1479 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1481 return gt_tval_read(env, ri, GTIMER_HYP);
1484 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1485 uint64_t value)
1487 gt_tval_write(env, ri, GTIMER_HYP, value);
1490 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1491 uint64_t value)
1493 gt_ctl_write(env, ri, GTIMER_HYP, value);
1496 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1498 gt_timer_reset(env, ri, GTIMER_SEC);
1501 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1502 uint64_t value)
1504 gt_cval_write(env, ri, GTIMER_SEC, value);
1507 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1509 return gt_tval_read(env, ri, GTIMER_SEC);
1512 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 uint64_t value)
1515 gt_tval_write(env, ri, GTIMER_SEC, value);
1518 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1519 uint64_t value)
1521 gt_ctl_write(env, ri, GTIMER_SEC, value);
1524 void arm_gt_ptimer_cb(void *opaque)
1526 ARMCPU *cpu = opaque;
1528 gt_recalc_timer(cpu, GTIMER_PHYS);
1531 void arm_gt_vtimer_cb(void *opaque)
1533 ARMCPU *cpu = opaque;
1535 gt_recalc_timer(cpu, GTIMER_VIRT);
1538 void arm_gt_htimer_cb(void *opaque)
1540 ARMCPU *cpu = opaque;
1542 gt_recalc_timer(cpu, GTIMER_HYP);
1545 void arm_gt_stimer_cb(void *opaque)
1547 ARMCPU *cpu = opaque;
1549 gt_recalc_timer(cpu, GTIMER_SEC);
1552 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1553 /* Note that CNTFRQ is purely reads-as-written for the benefit
1554 * of software; writing it doesn't actually change the timer frequency.
1555 * Our reset value matches the fixed frequency we implement the timer at.
1557 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1558 .type = ARM_CP_ALIAS,
1559 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1560 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1562 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1563 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1564 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1565 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1566 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1568 /* overall control: mostly access permissions */
1569 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1570 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1571 .access = PL1_RW,
1572 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1573 .resetvalue = 0,
1575 /* per-timer control */
1576 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1577 .secure = ARM_CP_SECSTATE_NS,
1578 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1579 .accessfn = gt_ptimer_access,
1580 .fieldoffset = offsetoflow32(CPUARMState,
1581 cp15.c14_timer[GTIMER_PHYS].ctl),
1582 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1584 { .name = "CNTP_CTL(S)",
1585 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1586 .secure = ARM_CP_SECSTATE_S,
1587 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1588 .accessfn = gt_ptimer_access,
1589 .fieldoffset = offsetoflow32(CPUARMState,
1590 cp15.c14_timer[GTIMER_SEC].ctl),
1591 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1593 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1594 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1595 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1596 .accessfn = gt_ptimer_access,
1597 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1598 .resetvalue = 0,
1599 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1601 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1602 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1603 .accessfn = gt_vtimer_access,
1604 .fieldoffset = offsetoflow32(CPUARMState,
1605 cp15.c14_timer[GTIMER_VIRT].ctl),
1606 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1608 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1609 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1610 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1611 .accessfn = gt_vtimer_access,
1612 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1613 .resetvalue = 0,
1614 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1616 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1617 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1618 .secure = ARM_CP_SECSTATE_NS,
1619 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1620 .accessfn = gt_ptimer_access,
1621 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1623 { .name = "CNTP_TVAL(S)",
1624 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1625 .secure = ARM_CP_SECSTATE_S,
1626 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1627 .accessfn = gt_ptimer_access,
1628 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1630 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1631 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1632 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1633 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1634 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1636 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1637 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1638 .accessfn = gt_vtimer_access,
1639 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1641 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1642 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1643 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1644 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1645 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1647 /* The counter itself */
1648 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1649 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1650 .accessfn = gt_pct_access,
1651 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1653 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1654 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1655 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1656 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1658 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1659 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1660 .accessfn = gt_vct_access,
1661 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1663 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1664 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1665 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1666 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1668 /* Comparison value, indicating when the timer goes off */
1669 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1670 .secure = ARM_CP_SECSTATE_NS,
1671 .access = PL1_RW | PL0_R,
1672 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1673 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1674 .accessfn = gt_ptimer_access,
1675 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1677 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1678 .secure = ARM_CP_SECSTATE_S,
1679 .access = PL1_RW | PL0_R,
1680 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1681 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1682 .accessfn = gt_ptimer_access,
1683 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1685 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1686 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1687 .access = PL1_RW | PL0_R,
1688 .type = ARM_CP_IO,
1689 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1690 .resetvalue = 0, .accessfn = gt_ptimer_access,
1691 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1693 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1694 .access = PL1_RW | PL0_R,
1695 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1696 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1697 .accessfn = gt_vtimer_access,
1698 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1700 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1701 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1702 .access = PL1_RW | PL0_R,
1703 .type = ARM_CP_IO,
1704 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1705 .resetvalue = 0, .accessfn = gt_vtimer_access,
1706 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1708 /* Secure timer -- this is actually restricted to only EL3
1709 * and configurably Secure-EL1 via the accessfn.
1711 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1712 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1713 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1714 .accessfn = gt_stimer_access,
1715 .readfn = gt_sec_tval_read,
1716 .writefn = gt_sec_tval_write,
1717 .resetfn = gt_sec_timer_reset,
1719 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1720 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1721 .type = ARM_CP_IO, .access = PL1_RW,
1722 .accessfn = gt_stimer_access,
1723 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1724 .resetvalue = 0,
1725 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1727 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1728 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1729 .type = ARM_CP_IO, .access = PL1_RW,
1730 .accessfn = gt_stimer_access,
1731 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1732 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1734 REGINFO_SENTINEL
1737 #else
1738 /* In user-mode none of the generic timer registers are accessible,
1739 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1740 * so instead just don't register any of them.
1742 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1743 REGINFO_SENTINEL
1746 #endif
1748 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1750 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1751 raw_write(env, ri, value);
1752 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1753 raw_write(env, ri, value & 0xfffff6ff);
1754 } else {
1755 raw_write(env, ri, value & 0xfffff1ff);
1759 #ifndef CONFIG_USER_ONLY
1760 /* get_phys_addr() isn't present for user-mode-only targets */
1762 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1764 if (ri->opc2 & 4) {
1765 /* The ATS12NSO* operations must trap to EL3 if executed in
1766 * Secure EL1 (which can only happen if EL3 is AArch64).
1767 * They are simply UNDEF if executed from NS EL1.
1768 * They function normally from EL2 or EL3.
1770 if (arm_current_el(env) == 1) {
1771 if (arm_is_secure_below_el3(env)) {
1772 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1774 return CP_ACCESS_TRAP_UNCATEGORIZED;
1777 return CP_ACCESS_OK;
1780 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1781 int access_type, ARMMMUIdx mmu_idx)
1783 hwaddr phys_addr;
1784 target_ulong page_size;
1785 int prot;
1786 uint32_t fsr;
1787 bool ret;
1788 uint64_t par64;
1789 MemTxAttrs attrs = {};
1790 ARMMMUFaultInfo fi = {};
1792 ret = get_phys_addr(env, value, access_type, mmu_idx,
1793 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
1794 if (extended_addresses_enabled(env)) {
1795 /* fsr is a DFSR/IFSR value for the long descriptor
1796 * translation table format, but with WnR always clear.
1797 * Convert it to a 64-bit PAR.
1799 par64 = (1 << 11); /* LPAE bit always set */
1800 if (!ret) {
1801 par64 |= phys_addr & ~0xfffULL;
1802 if (!attrs.secure) {
1803 par64 |= (1 << 9); /* NS */
1805 /* We don't set the ATTR or SH fields in the PAR. */
1806 } else {
1807 par64 |= 1; /* F */
1808 par64 |= (fsr & 0x3f) << 1; /* FS */
1809 /* Note that S2WLK and FSTAGE are always zero, because we don't
1810 * implement virtualization and therefore there can't be a stage 2
1811 * fault.
1814 } else {
1815 /* fsr is a DFSR/IFSR value for the short descriptor
1816 * translation table format (with WnR always clear).
1817 * Convert it to a 32-bit PAR.
1819 if (!ret) {
1820 /* We do not set any attribute bits in the PAR */
1821 if (page_size == (1 << 24)
1822 && arm_feature(env, ARM_FEATURE_V7)) {
1823 par64 = (phys_addr & 0xff000000) | (1 << 1);
1824 } else {
1825 par64 = phys_addr & 0xfffff000;
1827 if (!attrs.secure) {
1828 par64 |= (1 << 9); /* NS */
1830 } else {
1831 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1832 ((fsr & 0xf) << 1) | 1;
1835 return par64;
1838 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1840 int access_type = ri->opc2 & 1;
1841 uint64_t par64;
1842 ARMMMUIdx mmu_idx;
1843 int el = arm_current_el(env);
1844 bool secure = arm_is_secure_below_el3(env);
1846 switch (ri->opc2 & 6) {
1847 case 0:
1848 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1849 switch (el) {
1850 case 3:
1851 mmu_idx = ARMMMUIdx_S1E3;
1852 break;
1853 case 2:
1854 mmu_idx = ARMMMUIdx_S1NSE1;
1855 break;
1856 case 1:
1857 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1858 break;
1859 default:
1860 g_assert_not_reached();
1862 break;
1863 case 2:
1864 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1865 switch (el) {
1866 case 3:
1867 mmu_idx = ARMMMUIdx_S1SE0;
1868 break;
1869 case 2:
1870 mmu_idx = ARMMMUIdx_S1NSE0;
1871 break;
1872 case 1:
1873 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1874 break;
1875 default:
1876 g_assert_not_reached();
1878 break;
1879 case 4:
1880 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1881 mmu_idx = ARMMMUIdx_S12NSE1;
1882 break;
1883 case 6:
1884 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1885 mmu_idx = ARMMMUIdx_S12NSE0;
1886 break;
1887 default:
1888 g_assert_not_reached();
1891 par64 = do_ats_write(env, value, access_type, mmu_idx);
1893 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1896 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
1897 uint64_t value)
1899 int access_type = ri->opc2 & 1;
1900 uint64_t par64;
1902 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
1904 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1907 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
1909 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
1910 return CP_ACCESS_TRAP;
1912 return CP_ACCESS_OK;
1915 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1916 uint64_t value)
1918 int access_type = ri->opc2 & 1;
1919 ARMMMUIdx mmu_idx;
1920 int secure = arm_is_secure_below_el3(env);
1922 switch (ri->opc2 & 6) {
1923 case 0:
1924 switch (ri->opc1) {
1925 case 0: /* AT S1E1R, AT S1E1W */
1926 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1927 break;
1928 case 4: /* AT S1E2R, AT S1E2W */
1929 mmu_idx = ARMMMUIdx_S1E2;
1930 break;
1931 case 6: /* AT S1E3R, AT S1E3W */
1932 mmu_idx = ARMMMUIdx_S1E3;
1933 break;
1934 default:
1935 g_assert_not_reached();
1937 break;
1938 case 2: /* AT S1E0R, AT S1E0W */
1939 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1940 break;
1941 case 4: /* AT S12E1R, AT S12E1W */
1942 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
1943 break;
1944 case 6: /* AT S12E0R, AT S12E0W */
1945 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
1946 break;
1947 default:
1948 g_assert_not_reached();
1951 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1953 #endif
1955 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1956 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1957 .access = PL1_RW, .resetvalue = 0,
1958 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1959 offsetoflow32(CPUARMState, cp15.par_ns) },
1960 .writefn = par_write },
1961 #ifndef CONFIG_USER_ONLY
1962 /* This underdecoding is safe because the reginfo is NO_RAW. */
1963 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1964 .access = PL1_W, .accessfn = ats_access,
1965 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1966 #endif
1967 REGINFO_SENTINEL
1970 /* Return basic MPU access permission bits. */
1971 static uint32_t simple_mpu_ap_bits(uint32_t val)
1973 uint32_t ret;
1974 uint32_t mask;
1975 int i;
1976 ret = 0;
1977 mask = 3;
1978 for (i = 0; i < 16; i += 2) {
1979 ret |= (val >> i) & mask;
1980 mask <<= 2;
1982 return ret;
1985 /* Pad basic MPU access permission bits to extended format. */
1986 static uint32_t extended_mpu_ap_bits(uint32_t val)
1988 uint32_t ret;
1989 uint32_t mask;
1990 int i;
1991 ret = 0;
1992 mask = 3;
1993 for (i = 0; i < 16; i += 2) {
1994 ret |= (val & mask) << i;
1995 mask <<= 2;
1997 return ret;
2000 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2001 uint64_t value)
2003 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2006 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2008 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2011 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2012 uint64_t value)
2014 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2017 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2019 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2022 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2024 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2026 if (!u32p) {
2027 return 0;
2030 u32p += env->cp15.c6_rgnr;
2031 return *u32p;
2034 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2035 uint64_t value)
2037 ARMCPU *cpu = arm_env_get_cpu(env);
2038 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2040 if (!u32p) {
2041 return;
2044 u32p += env->cp15.c6_rgnr;
2045 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2046 *u32p = value;
2049 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2051 ARMCPU *cpu = arm_env_get_cpu(env);
2052 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2054 if (!u32p) {
2055 return;
2058 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2061 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2062 uint64_t value)
2064 ARMCPU *cpu = arm_env_get_cpu(env);
2065 uint32_t nrgs = cpu->pmsav7_dregion;
2067 if (value >= nrgs) {
2068 qemu_log_mask(LOG_GUEST_ERROR,
2069 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2070 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2071 return;
2074 raw_write(env, ri, value);
2077 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2078 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2079 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2080 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2081 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2082 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2083 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2084 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2085 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2086 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2087 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2088 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2089 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2090 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2091 .access = PL1_RW,
2092 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2093 .writefn = pmsav7_rgnr_write },
2094 REGINFO_SENTINEL
2097 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2098 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2099 .access = PL1_RW, .type = ARM_CP_ALIAS,
2100 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2101 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2102 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2103 .access = PL1_RW, .type = ARM_CP_ALIAS,
2104 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2105 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2106 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2107 .access = PL1_RW,
2108 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2109 .resetvalue = 0, },
2110 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2111 .access = PL1_RW,
2112 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2113 .resetvalue = 0, },
2114 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2115 .access = PL1_RW,
2116 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2117 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2118 .access = PL1_RW,
2119 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2120 /* Protection region base and size registers */
2121 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2122 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2123 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2124 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2125 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2126 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2127 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2128 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2129 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2130 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2131 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2132 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2133 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2134 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2135 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2136 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2137 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2138 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2139 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2140 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2141 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2142 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2143 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2144 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2145 REGINFO_SENTINEL
2148 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2149 uint64_t value)
2151 TCR *tcr = raw_ptr(env, ri);
2152 int maskshift = extract32(value, 0, 3);
2154 if (!arm_feature(env, ARM_FEATURE_V8)) {
2155 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2156 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2157 * using Long-desciptor translation table format */
2158 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2159 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2160 /* In an implementation that includes the Security Extensions
2161 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2162 * Short-descriptor translation table format.
2164 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2165 } else {
2166 value &= TTBCR_N;
2170 /* Update the masks corresponding to the TCR bank being written
2171 * Note that we always calculate mask and base_mask, but
2172 * they are only used for short-descriptor tables (ie if EAE is 0);
2173 * for long-descriptor tables the TCR fields are used differently
2174 * and the mask and base_mask values are meaningless.
2176 tcr->raw_tcr = value;
2177 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2178 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2181 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2182 uint64_t value)
2184 ARMCPU *cpu = arm_env_get_cpu(env);
2186 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2187 /* With LPAE the TTBCR could result in a change of ASID
2188 * via the TTBCR.A1 bit, so do a TLB flush.
2190 tlb_flush(CPU(cpu), 1);
2192 vmsa_ttbcr_raw_write(env, ri, value);
2195 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2197 TCR *tcr = raw_ptr(env, ri);
2199 /* Reset both the TCR as well as the masks corresponding to the bank of
2200 * the TCR being reset.
2202 tcr->raw_tcr = 0;
2203 tcr->mask = 0;
2204 tcr->base_mask = 0xffffc000u;
2207 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2208 uint64_t value)
2210 ARMCPU *cpu = arm_env_get_cpu(env);
2211 TCR *tcr = raw_ptr(env, ri);
2213 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2214 tlb_flush(CPU(cpu), 1);
2215 tcr->raw_tcr = value;
2218 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2219 uint64_t value)
2221 /* 64 bit accesses to the TTBRs can change the ASID and so we
2222 * must flush the TLB.
2224 if (cpreg_field_is_64bit(ri)) {
2225 ARMCPU *cpu = arm_env_get_cpu(env);
2227 tlb_flush(CPU(cpu), 1);
2229 raw_write(env, ri, value);
2232 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2233 uint64_t value)
2235 ARMCPU *cpu = arm_env_get_cpu(env);
2236 CPUState *cs = CPU(cpu);
2238 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2239 if (raw_read(env, ri) != value) {
2240 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2241 ARMMMUIdx_S2NS, -1);
2242 raw_write(env, ri, value);
2246 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2247 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2248 .access = PL1_RW, .type = ARM_CP_ALIAS,
2249 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2250 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2251 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2252 .access = PL1_RW, .resetvalue = 0,
2253 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2254 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2255 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2256 .access = PL1_RW, .resetvalue = 0,
2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2258 offsetof(CPUARMState, cp15.dfar_ns) } },
2259 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2260 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2261 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2262 .resetvalue = 0, },
2263 REGINFO_SENTINEL
2266 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2267 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2268 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2269 .access = PL1_RW,
2270 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2271 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2272 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2273 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2274 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2275 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2276 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2277 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2278 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2279 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2280 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2281 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2282 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2283 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2284 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2285 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2286 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2287 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2288 .raw_writefn = vmsa_ttbcr_raw_write,
2289 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2290 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2291 REGINFO_SENTINEL
2294 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2295 uint64_t value)
2297 env->cp15.c15_ticonfig = value & 0xe7;
2298 /* The OS_TYPE bit in this register changes the reported CPUID! */
2299 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2300 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2303 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2304 uint64_t value)
2306 env->cp15.c15_threadid = value & 0xffff;
2309 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2310 uint64_t value)
2312 /* Wait-for-interrupt (deprecated) */
2313 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2316 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2317 uint64_t value)
2319 /* On OMAP there are registers indicating the max/min index of dcache lines
2320 * containing a dirty line; cache flush operations have to reset these.
2322 env->cp15.c15_i_max = 0x000;
2323 env->cp15.c15_i_min = 0xff0;
2326 static const ARMCPRegInfo omap_cp_reginfo[] = {
2327 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2328 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2329 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2330 .resetvalue = 0, },
2331 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2332 .access = PL1_RW, .type = ARM_CP_NOP },
2333 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2334 .access = PL1_RW,
2335 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2336 .writefn = omap_ticonfig_write },
2337 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2338 .access = PL1_RW,
2339 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2340 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2341 .access = PL1_RW, .resetvalue = 0xff0,
2342 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2343 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2344 .access = PL1_RW,
2345 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2346 .writefn = omap_threadid_write },
2347 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2348 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2349 .type = ARM_CP_NO_RAW,
2350 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2351 /* TODO: Peripheral port remap register:
2352 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2353 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2354 * when MMU is off.
2356 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2357 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2358 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2359 .writefn = omap_cachemaint_write },
2360 { .name = "C9", .cp = 15, .crn = 9,
2361 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2362 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2363 REGINFO_SENTINEL
2366 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2367 uint64_t value)
2369 env->cp15.c15_cpar = value & 0x3fff;
2372 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2373 { .name = "XSCALE_CPAR",
2374 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2375 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2376 .writefn = xscale_cpar_write, },
2377 { .name = "XSCALE_AUXCR",
2378 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2379 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2380 .resetvalue = 0, },
2381 /* XScale specific cache-lockdown: since we have no cache we NOP these
2382 * and hope the guest does not really rely on cache behaviour.
2384 { .name = "XSCALE_LOCK_ICACHE_LINE",
2385 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2386 .access = PL1_W, .type = ARM_CP_NOP },
2387 { .name = "XSCALE_UNLOCK_ICACHE",
2388 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2389 .access = PL1_W, .type = ARM_CP_NOP },
2390 { .name = "XSCALE_DCACHE_LOCK",
2391 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2392 .access = PL1_RW, .type = ARM_CP_NOP },
2393 { .name = "XSCALE_UNLOCK_DCACHE",
2394 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2395 .access = PL1_W, .type = ARM_CP_NOP },
2396 REGINFO_SENTINEL
2399 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2400 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2401 * implementation of this implementation-defined space.
2402 * Ideally this should eventually disappear in favour of actually
2403 * implementing the correct behaviour for all cores.
2405 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2406 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2407 .access = PL1_RW,
2408 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2409 .resetvalue = 0 },
2410 REGINFO_SENTINEL
2413 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2414 /* Cache status: RAZ because we have no cache so it's always clean */
2415 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2416 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2417 .resetvalue = 0 },
2418 REGINFO_SENTINEL
2421 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2422 /* We never have a a block transfer operation in progress */
2423 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2424 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2425 .resetvalue = 0 },
2426 /* The cache ops themselves: these all NOP for QEMU */
2427 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2428 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2429 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2430 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2431 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2432 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2433 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2434 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2435 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2436 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2437 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2438 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2439 REGINFO_SENTINEL
2442 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2443 /* The cache test-and-clean instructions always return (1 << 30)
2444 * to indicate that there are no dirty cache lines.
2446 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2447 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2448 .resetvalue = (1 << 30) },
2449 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2450 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2451 .resetvalue = (1 << 30) },
2452 REGINFO_SENTINEL
2455 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2456 /* Ignore ReadBuffer accesses */
2457 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2458 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2459 .access = PL1_RW, .resetvalue = 0,
2460 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2461 REGINFO_SENTINEL
2464 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2466 ARMCPU *cpu = arm_env_get_cpu(env);
2467 unsigned int cur_el = arm_current_el(env);
2468 bool secure = arm_is_secure(env);
2470 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2471 return env->cp15.vpidr_el2;
2473 return raw_read(env, ri);
2476 static uint64_t mpidr_read_val(CPUARMState *env)
2478 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2479 uint64_t mpidr = cpu->mp_affinity;
2481 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2482 mpidr |= (1U << 31);
2483 /* Cores which are uniprocessor (non-coherent)
2484 * but still implement the MP extensions set
2485 * bit 30. (For instance, Cortex-R5).
2487 if (cpu->mp_is_up) {
2488 mpidr |= (1u << 30);
2491 return mpidr;
2494 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2496 unsigned int cur_el = arm_current_el(env);
2497 bool secure = arm_is_secure(env);
2499 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2500 return env->cp15.vmpidr_el2;
2502 return mpidr_read_val(env);
2505 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2506 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2507 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2508 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2509 REGINFO_SENTINEL
2512 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2513 /* NOP AMAIR0/1 */
2514 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2515 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2516 .access = PL1_RW, .type = ARM_CP_CONST,
2517 .resetvalue = 0 },
2518 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2519 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2520 .access = PL1_RW, .type = ARM_CP_CONST,
2521 .resetvalue = 0 },
2522 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2523 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2524 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2525 offsetof(CPUARMState, cp15.par_ns)} },
2526 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2527 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2528 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2529 offsetof(CPUARMState, cp15.ttbr0_ns) },
2530 .writefn = vmsa_ttbr_write, },
2531 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2532 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2533 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2534 offsetof(CPUARMState, cp15.ttbr1_ns) },
2535 .writefn = vmsa_ttbr_write, },
2536 REGINFO_SENTINEL
2539 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2541 return vfp_get_fpcr(env);
2544 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2545 uint64_t value)
2547 vfp_set_fpcr(env, value);
2550 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2552 return vfp_get_fpsr(env);
2555 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556 uint64_t value)
2558 vfp_set_fpsr(env, value);
2561 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2563 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2564 return CP_ACCESS_TRAP;
2566 return CP_ACCESS_OK;
2569 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2570 uint64_t value)
2572 env->daif = value & PSTATE_DAIF;
2575 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2576 const ARMCPRegInfo *ri)
2578 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2579 * SCTLR_EL1.UCI is set.
2581 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2582 return CP_ACCESS_TRAP;
2584 return CP_ACCESS_OK;
2587 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2588 * Page D4-1736 (DDI0487A.b)
2591 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2592 uint64_t value)
2594 ARMCPU *cpu = arm_env_get_cpu(env);
2595 CPUState *cs = CPU(cpu);
2597 if (arm_is_secure_below_el3(env)) {
2598 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2599 } else {
2600 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2604 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2605 uint64_t value)
2607 bool sec = arm_is_secure_below_el3(env);
2608 CPUState *other_cs;
2610 CPU_FOREACH(other_cs) {
2611 if (sec) {
2612 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2613 } else {
2614 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2615 ARMMMUIdx_S12NSE0, -1);
2620 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2621 uint64_t value)
2623 /* Note that the 'ALL' scope must invalidate both stage 1 and
2624 * stage 2 translations, whereas most other scopes only invalidate
2625 * stage 1 translations.
2627 ARMCPU *cpu = arm_env_get_cpu(env);
2628 CPUState *cs = CPU(cpu);
2630 if (arm_is_secure_below_el3(env)) {
2631 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2632 } else {
2633 if (arm_feature(env, ARM_FEATURE_EL2)) {
2634 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2635 ARMMMUIdx_S2NS, -1);
2636 } else {
2637 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2642 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2643 uint64_t value)
2645 ARMCPU *cpu = arm_env_get_cpu(env);
2646 CPUState *cs = CPU(cpu);
2648 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2651 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2652 uint64_t value)
2654 ARMCPU *cpu = arm_env_get_cpu(env);
2655 CPUState *cs = CPU(cpu);
2657 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2660 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2661 uint64_t value)
2663 /* Note that the 'ALL' scope must invalidate both stage 1 and
2664 * stage 2 translations, whereas most other scopes only invalidate
2665 * stage 1 translations.
2667 bool sec = arm_is_secure_below_el3(env);
2668 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2669 CPUState *other_cs;
2671 CPU_FOREACH(other_cs) {
2672 if (sec) {
2673 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2674 } else if (has_el2) {
2675 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2676 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2677 } else {
2678 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2679 ARMMMUIdx_S12NSE0, -1);
2684 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2685 uint64_t value)
2687 CPUState *other_cs;
2689 CPU_FOREACH(other_cs) {
2690 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2694 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2695 uint64_t value)
2697 CPUState *other_cs;
2699 CPU_FOREACH(other_cs) {
2700 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2704 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2705 uint64_t value)
2707 /* Invalidate by VA, EL1&0 (AArch64 version).
2708 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2709 * since we don't support flush-for-specific-ASID-only or
2710 * flush-last-level-only.
2712 ARMCPU *cpu = arm_env_get_cpu(env);
2713 CPUState *cs = CPU(cpu);
2714 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2716 if (arm_is_secure_below_el3(env)) {
2717 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2718 ARMMMUIdx_S1SE0, -1);
2719 } else {
2720 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2721 ARMMMUIdx_S12NSE0, -1);
2725 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2726 uint64_t value)
2728 /* Invalidate by VA, EL2
2729 * Currently handles both VAE2 and VALE2, since we don't support
2730 * flush-last-level-only.
2732 ARMCPU *cpu = arm_env_get_cpu(env);
2733 CPUState *cs = CPU(cpu);
2734 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2736 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2739 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2740 uint64_t value)
2742 /* Invalidate by VA, EL3
2743 * Currently handles both VAE3 and VALE3, since we don't support
2744 * flush-last-level-only.
2746 ARMCPU *cpu = arm_env_get_cpu(env);
2747 CPUState *cs = CPU(cpu);
2748 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2753 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2754 uint64_t value)
2756 bool sec = arm_is_secure_below_el3(env);
2757 CPUState *other_cs;
2758 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2760 CPU_FOREACH(other_cs) {
2761 if (sec) {
2762 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2763 ARMMMUIdx_S1SE0, -1);
2764 } else {
2765 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2766 ARMMMUIdx_S12NSE0, -1);
2771 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2772 uint64_t value)
2774 CPUState *other_cs;
2775 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2777 CPU_FOREACH(other_cs) {
2778 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2782 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2783 uint64_t value)
2785 CPUState *other_cs;
2786 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2788 CPU_FOREACH(other_cs) {
2789 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2793 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794 uint64_t value)
2796 /* Invalidate by IPA. This has to invalidate any structures that
2797 * contain only stage 2 translation information, but does not need
2798 * to apply to structures that contain combined stage 1 and stage 2
2799 * translation information.
2800 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2802 ARMCPU *cpu = arm_env_get_cpu(env);
2803 CPUState *cs = CPU(cpu);
2804 uint64_t pageaddr;
2806 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2807 return;
2810 pageaddr = sextract64(value << 12, 0, 48);
2812 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2815 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2816 uint64_t value)
2818 CPUState *other_cs;
2819 uint64_t pageaddr;
2821 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2822 return;
2825 pageaddr = sextract64(value << 12, 0, 48);
2827 CPU_FOREACH(other_cs) {
2828 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2832 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2834 /* We don't implement EL2, so the only control on DC ZVA is the
2835 * bit in the SCTLR which can prohibit access for EL0.
2837 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2838 return CP_ACCESS_TRAP;
2840 return CP_ACCESS_OK;
2843 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2845 ARMCPU *cpu = arm_env_get_cpu(env);
2846 int dzp_bit = 1 << 4;
2848 /* DZP indicates whether DC ZVA access is allowed */
2849 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2850 dzp_bit = 0;
2852 return cpu->dcz_blocksize | dzp_bit;
2855 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2857 if (!(env->pstate & PSTATE_SP)) {
2858 /* Access to SP_EL0 is undefined if it's being used as
2859 * the stack pointer.
2861 return CP_ACCESS_TRAP_UNCATEGORIZED;
2863 return CP_ACCESS_OK;
2866 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2868 return env->pstate & PSTATE_SP;
2871 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2873 update_spsel(env, val);
2876 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2877 uint64_t value)
2879 ARMCPU *cpu = arm_env_get_cpu(env);
2881 if (raw_read(env, ri) == value) {
2882 /* Skip the TLB flush if nothing actually changed; Linux likes
2883 * to do a lot of pointless SCTLR writes.
2885 return;
2888 raw_write(env, ri, value);
2889 /* ??? Lots of these bits are not implemented. */
2890 /* This may enable/disable the MMU, so do a TLB flush. */
2891 tlb_flush(CPU(cpu), 1);
2894 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri)
2896 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
2897 return CP_ACCESS_TRAP_EL2;
2899 if (env->cp15.cptr_el[3] & CPTR_TFP) {
2900 return CP_ACCESS_TRAP_EL3;
2902 return CP_ACCESS_OK;
2905 static const ARMCPRegInfo v8_cp_reginfo[] = {
2906 /* Minimal set of EL0-visible registers. This will need to be expanded
2907 * significantly for system emulation of AArch64 CPUs.
2909 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2910 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2911 .access = PL0_RW, .type = ARM_CP_NZCV },
2912 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2913 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2914 .type = ARM_CP_NO_RAW,
2915 .access = PL0_RW, .accessfn = aa64_daif_access,
2916 .fieldoffset = offsetof(CPUARMState, daif),
2917 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2918 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2919 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2920 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2921 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2922 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2923 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2924 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2925 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2926 .access = PL0_R, .type = ARM_CP_NO_RAW,
2927 .readfn = aa64_dczid_read },
2928 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2929 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2930 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2931 #ifndef CONFIG_USER_ONLY
2932 /* Avoid overhead of an access check that always passes in user-mode */
2933 .accessfn = aa64_zva_access,
2934 #endif
2936 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2937 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2938 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2939 /* Cache ops: all NOPs since we don't emulate caches */
2940 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2942 .access = PL1_W, .type = ARM_CP_NOP },
2943 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2944 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2945 .access = PL1_W, .type = ARM_CP_NOP },
2946 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2947 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2948 .access = PL0_W, .type = ARM_CP_NOP,
2949 .accessfn = aa64_cacheop_access },
2950 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2952 .access = PL1_W, .type = ARM_CP_NOP },
2953 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2954 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2955 .access = PL1_W, .type = ARM_CP_NOP },
2956 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2957 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2958 .access = PL0_W, .type = ARM_CP_NOP,
2959 .accessfn = aa64_cacheop_access },
2960 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2961 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2962 .access = PL1_W, .type = ARM_CP_NOP },
2963 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2964 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2965 .access = PL0_W, .type = ARM_CP_NOP,
2966 .accessfn = aa64_cacheop_access },
2967 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2968 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2969 .access = PL0_W, .type = ARM_CP_NOP,
2970 .accessfn = aa64_cacheop_access },
2971 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2972 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2973 .access = PL1_W, .type = ARM_CP_NOP },
2974 /* TLBI operations */
2975 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2976 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2977 .access = PL1_W, .type = ARM_CP_NO_RAW,
2978 .writefn = tlbi_aa64_vmalle1is_write },
2979 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2980 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2981 .access = PL1_W, .type = ARM_CP_NO_RAW,
2982 .writefn = tlbi_aa64_vae1is_write },
2983 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2984 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2985 .access = PL1_W, .type = ARM_CP_NO_RAW,
2986 .writefn = tlbi_aa64_vmalle1is_write },
2987 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2988 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2989 .access = PL1_W, .type = ARM_CP_NO_RAW,
2990 .writefn = tlbi_aa64_vae1is_write },
2991 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2992 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2993 .access = PL1_W, .type = ARM_CP_NO_RAW,
2994 .writefn = tlbi_aa64_vae1is_write },
2995 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2996 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2997 .access = PL1_W, .type = ARM_CP_NO_RAW,
2998 .writefn = tlbi_aa64_vae1is_write },
2999 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3000 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3001 .access = PL1_W, .type = ARM_CP_NO_RAW,
3002 .writefn = tlbi_aa64_vmalle1_write },
3003 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3004 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3005 .access = PL1_W, .type = ARM_CP_NO_RAW,
3006 .writefn = tlbi_aa64_vae1_write },
3007 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3008 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3009 .access = PL1_W, .type = ARM_CP_NO_RAW,
3010 .writefn = tlbi_aa64_vmalle1_write },
3011 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3012 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3013 .access = PL1_W, .type = ARM_CP_NO_RAW,
3014 .writefn = tlbi_aa64_vae1_write },
3015 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3016 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3017 .access = PL1_W, .type = ARM_CP_NO_RAW,
3018 .writefn = tlbi_aa64_vae1_write },
3019 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3020 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3021 .access = PL1_W, .type = ARM_CP_NO_RAW,
3022 .writefn = tlbi_aa64_vae1_write },
3023 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3024 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3025 .access = PL2_W, .type = ARM_CP_NO_RAW,
3026 .writefn = tlbi_aa64_ipas2e1is_write },
3027 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3028 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3029 .access = PL2_W, .type = ARM_CP_NO_RAW,
3030 .writefn = tlbi_aa64_ipas2e1is_write },
3031 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3032 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3033 .access = PL2_W, .type = ARM_CP_NO_RAW,
3034 .writefn = tlbi_aa64_alle1is_write },
3035 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3036 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3037 .access = PL2_W, .type = ARM_CP_NO_RAW,
3038 .writefn = tlbi_aa64_alle1is_write },
3039 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3040 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3041 .access = PL2_W, .type = ARM_CP_NO_RAW,
3042 .writefn = tlbi_aa64_ipas2e1_write },
3043 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3044 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3045 .access = PL2_W, .type = ARM_CP_NO_RAW,
3046 .writefn = tlbi_aa64_ipas2e1_write },
3047 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3048 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3049 .access = PL2_W, .type = ARM_CP_NO_RAW,
3050 .writefn = tlbi_aa64_alle1_write },
3051 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3052 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3053 .access = PL2_W, .type = ARM_CP_NO_RAW,
3054 .writefn = tlbi_aa64_alle1is_write },
3055 #ifndef CONFIG_USER_ONLY
3056 /* 64 bit address translation operations */
3057 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3058 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3059 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3060 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3061 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3062 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3063 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3064 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3065 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3066 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3067 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3068 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3069 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3070 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3071 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3072 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3073 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3074 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3075 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3076 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3077 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3078 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3079 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3080 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3081 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3082 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3083 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3084 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3085 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3086 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3087 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3088 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3089 .type = ARM_CP_ALIAS,
3090 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3091 .access = PL1_RW, .resetvalue = 0,
3092 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3093 .writefn = par_write },
3094 #endif
3095 /* TLB invalidate last level of translation table walk */
3096 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3097 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3098 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3099 .type = ARM_CP_NO_RAW, .access = PL1_W,
3100 .writefn = tlbimvaa_is_write },
3101 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3102 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3103 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3104 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3105 /* 32 bit cache operations */
3106 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3107 .type = ARM_CP_NOP, .access = PL1_W },
3108 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3109 .type = ARM_CP_NOP, .access = PL1_W },
3110 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3111 .type = ARM_CP_NOP, .access = PL1_W },
3112 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3113 .type = ARM_CP_NOP, .access = PL1_W },
3114 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3115 .type = ARM_CP_NOP, .access = PL1_W },
3116 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3117 .type = ARM_CP_NOP, .access = PL1_W },
3118 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3119 .type = ARM_CP_NOP, .access = PL1_W },
3120 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3121 .type = ARM_CP_NOP, .access = PL1_W },
3122 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3123 .type = ARM_CP_NOP, .access = PL1_W },
3124 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3125 .type = ARM_CP_NOP, .access = PL1_W },
3126 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3127 .type = ARM_CP_NOP, .access = PL1_W },
3128 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3129 .type = ARM_CP_NOP, .access = PL1_W },
3130 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3131 .type = ARM_CP_NOP, .access = PL1_W },
3132 /* MMU Domain access control / MPU write buffer control */
3133 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3134 .access = PL1_RW, .resetvalue = 0,
3135 .writefn = dacr_write, .raw_writefn = raw_write,
3136 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3137 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3138 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3139 .type = ARM_CP_ALIAS,
3140 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3141 .access = PL1_RW,
3142 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3143 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3144 .type = ARM_CP_ALIAS,
3145 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3146 .access = PL1_RW,
3147 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3148 /* We rely on the access checks not allowing the guest to write to the
3149 * state field when SPSel indicates that it's being used as the stack
3150 * pointer.
3152 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3153 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3154 .access = PL1_RW, .accessfn = sp_el0_access,
3155 .type = ARM_CP_ALIAS,
3156 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3157 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3159 .access = PL2_RW, .type = ARM_CP_ALIAS,
3160 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3161 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3162 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3163 .type = ARM_CP_NO_RAW,
3164 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3165 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3166 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3167 .type = ARM_CP_ALIAS,
3168 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3169 .access = PL2_RW, .accessfn = fpexc32_access },
3170 REGINFO_SENTINEL
3173 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3174 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3175 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3176 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3177 .access = PL2_RW,
3178 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3179 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3180 .type = ARM_CP_NO_RAW,
3181 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3182 .access = PL2_RW,
3183 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3184 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3185 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3186 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3187 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3188 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3189 .access = PL2_RW, .type = ARM_CP_CONST,
3190 .resetvalue = 0 },
3191 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3192 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3193 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3194 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3195 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3196 .access = PL2_RW, .type = ARM_CP_CONST,
3197 .resetvalue = 0 },
3198 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3199 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3200 .access = PL2_RW, .type = ARM_CP_CONST,
3201 .resetvalue = 0 },
3202 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3203 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3204 .access = PL2_RW, .type = ARM_CP_CONST,
3205 .resetvalue = 0 },
3206 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3207 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3208 .access = PL2_RW, .type = ARM_CP_CONST,
3209 .resetvalue = 0 },
3210 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3211 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3212 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3213 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3214 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3215 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3216 .type = ARM_CP_CONST, .resetvalue = 0 },
3217 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3218 .cp = 15, .opc1 = 6, .crm = 2,
3219 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3220 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3221 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3222 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3223 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3224 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3225 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3226 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3227 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3228 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3229 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3230 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3231 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3232 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3233 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3234 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3235 .resetvalue = 0 },
3236 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3237 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3238 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3239 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3240 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3241 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3242 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3243 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3244 .resetvalue = 0 },
3245 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3246 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3247 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3248 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3249 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3250 .resetvalue = 0 },
3251 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3252 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3253 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3254 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3255 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3256 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3257 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3258 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3259 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3260 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3261 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3262 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3263 .type = ARM_CP_CONST, .resetvalue = 0 },
3264 REGINFO_SENTINEL
3267 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3269 ARMCPU *cpu = arm_env_get_cpu(env);
3270 uint64_t valid_mask = HCR_MASK;
3272 if (arm_feature(env, ARM_FEATURE_EL3)) {
3273 valid_mask &= ~HCR_HCD;
3274 } else {
3275 valid_mask &= ~HCR_TSC;
3278 /* Clear RES0 bits. */
3279 value &= valid_mask;
3281 /* These bits change the MMU setup:
3282 * HCR_VM enables stage 2 translation
3283 * HCR_PTW forbids certain page-table setups
3284 * HCR_DC Disables stage1 and enables stage2 translation
3286 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3287 tlb_flush(CPU(cpu), 1);
3289 raw_write(env, ri, value);
3292 static const ARMCPRegInfo el2_cp_reginfo[] = {
3293 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3294 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3295 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3296 .writefn = hcr_write },
3297 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3298 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3299 .access = PL2_RW, .resetvalue = 0,
3300 .writefn = dacr_write, .raw_writefn = raw_write,
3301 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3302 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3303 .type = ARM_CP_ALIAS,
3304 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3305 .access = PL2_RW,
3306 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3307 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3308 .type = ARM_CP_ALIAS,
3309 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3310 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3311 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3312 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3313 .access = PL2_RW, .resetvalue = 0,
3314 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3315 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3316 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3317 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3318 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3319 .type = ARM_CP_ALIAS,
3320 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3321 .access = PL2_RW,
3322 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3323 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3324 .type = ARM_CP_ALIAS,
3325 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3326 .access = PL2_RW,
3327 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3328 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3329 .type = ARM_CP_ALIAS,
3330 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3331 .access = PL2_RW,
3332 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3333 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3334 .type = ARM_CP_ALIAS,
3335 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3336 .access = PL2_RW,
3337 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3338 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3339 .type = ARM_CP_ALIAS,
3340 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3341 .access = PL2_RW,
3342 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3343 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3345 .access = PL2_RW, .writefn = vbar_write,
3346 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3347 .resetvalue = 0 },
3348 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3350 .access = PL3_RW, .type = ARM_CP_ALIAS,
3351 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3352 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3353 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3354 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3355 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3356 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3357 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3358 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3359 .resetvalue = 0 },
3360 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3361 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3362 .access = PL2_RW, .type = ARM_CP_ALIAS,
3363 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3364 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3365 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3366 .access = PL2_RW, .type = ARM_CP_CONST,
3367 .resetvalue = 0 },
3368 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3369 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3370 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3371 .access = PL2_RW, .type = ARM_CP_CONST,
3372 .resetvalue = 0 },
3373 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3374 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3375 .access = PL2_RW, .type = ARM_CP_CONST,
3376 .resetvalue = 0 },
3377 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3378 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3379 .access = PL2_RW, .type = ARM_CP_CONST,
3380 .resetvalue = 0 },
3381 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3382 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3383 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3384 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3385 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3386 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3387 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3388 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3389 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3390 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3391 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3392 .access = PL2_RW, .type = ARM_CP_ALIAS,
3393 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3394 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3395 .cp = 15, .opc1 = 6, .crm = 2,
3396 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3397 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3398 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3399 .writefn = vttbr_write },
3400 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3401 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3402 .access = PL2_RW, .writefn = vttbr_write,
3403 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3404 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3405 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3406 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3407 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3408 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3409 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3410 .access = PL2_RW, .resetvalue = 0,
3411 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3412 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3414 .access = PL2_RW, .resetvalue = 0,
3415 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3416 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3417 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3418 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3419 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3420 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3421 .type = ARM_CP_NO_RAW, .access = PL2_W,
3422 .writefn = tlbi_aa64_alle2_write },
3423 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3424 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3425 .type = ARM_CP_NO_RAW, .access = PL2_W,
3426 .writefn = tlbi_aa64_vae2_write },
3427 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3429 .access = PL2_W, .type = ARM_CP_NO_RAW,
3430 .writefn = tlbi_aa64_vae2_write },
3431 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3432 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3433 .access = PL2_W, .type = ARM_CP_NO_RAW,
3434 .writefn = tlbi_aa64_alle2is_write },
3435 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3436 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3437 .type = ARM_CP_NO_RAW, .access = PL2_W,
3438 .writefn = tlbi_aa64_vae2is_write },
3439 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3440 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3441 .access = PL2_W, .type = ARM_CP_NO_RAW,
3442 .writefn = tlbi_aa64_vae2is_write },
3443 #ifndef CONFIG_USER_ONLY
3444 /* Unlike the other EL2-related AT operations, these must
3445 * UNDEF from EL3 if EL2 is not implemented, which is why we
3446 * define them here rather than with the rest of the AT ops.
3448 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3450 .access = PL2_W, .accessfn = at_s1e2_access,
3451 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3452 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3453 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3454 .access = PL2_W, .accessfn = at_s1e2_access,
3455 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3456 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3457 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3458 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3459 * to behave as if SCR.NS was 1.
3461 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3462 .access = PL2_W,
3463 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3464 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3465 .access = PL2_W,
3466 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3467 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3468 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3469 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3470 * reset values as IMPDEF. We choose to reset to 3 to comply with
3471 * both ARMv7 and ARMv8.
3473 .access = PL2_RW, .resetvalue = 3,
3474 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3475 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3476 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3477 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3478 .writefn = gt_cntvoff_write,
3479 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3480 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3481 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3482 .writefn = gt_cntvoff_write,
3483 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3484 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3485 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3486 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3487 .type = ARM_CP_IO, .access = PL2_RW,
3488 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3489 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3490 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3491 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3492 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3493 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3494 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3495 .type = ARM_CP_IO, .access = PL2_RW,
3496 .resetfn = gt_hyp_timer_reset,
3497 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3498 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3499 .type = ARM_CP_IO,
3500 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3501 .access = PL2_RW,
3502 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3503 .resetvalue = 0,
3504 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3505 #endif
3506 /* The only field of MDCR_EL2 that has a defined architectural reset value
3507 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3508 * don't impelment any PMU event counters, so using zero as a reset
3509 * value for MDCR_EL2 is okay
3511 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3512 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3513 .access = PL2_RW, .resetvalue = 0,
3514 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3515 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3516 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3517 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3518 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3519 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3520 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3521 .access = PL2_RW,
3522 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3523 REGINFO_SENTINEL
3526 static const ARMCPRegInfo el3_cp_reginfo[] = {
3527 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3528 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3529 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3530 .resetvalue = 0, .writefn = scr_write },
3531 { .name = "SCR", .type = ARM_CP_ALIAS,
3532 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3533 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3534 .writefn = scr_write },
3535 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3536 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3537 .access = PL3_RW, .resetvalue = 0,
3538 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3539 { .name = "SDER",
3540 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3541 .access = PL3_RW, .resetvalue = 0,
3542 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3543 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3544 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
3545 .access = PL3_W | PL1_R, .resetvalue = 0,
3546 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
3547 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3548 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
3549 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3550 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3551 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3552 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3553 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3554 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
3555 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3556 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3557 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3558 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3559 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3560 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3561 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3562 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3563 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3564 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3565 .type = ARM_CP_ALIAS,
3566 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3567 .access = PL3_RW,
3568 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3569 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3570 .type = ARM_CP_ALIAS,
3571 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3572 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3573 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3575 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3576 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3577 .type = ARM_CP_ALIAS,
3578 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3579 .access = PL3_RW,
3580 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3581 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3582 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3583 .access = PL3_RW, .writefn = vbar_write,
3584 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3585 .resetvalue = 0 },
3586 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3587 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3588 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3589 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3590 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3591 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3592 .access = PL3_RW, .resetvalue = 0,
3593 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3594 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3595 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3596 .access = PL3_RW, .type = ARM_CP_CONST,
3597 .resetvalue = 0 },
3598 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3599 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3600 .access = PL3_RW, .type = ARM_CP_CONST,
3601 .resetvalue = 0 },
3602 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3603 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3604 .access = PL3_RW, .type = ARM_CP_CONST,
3605 .resetvalue = 0 },
3606 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3607 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3608 .access = PL3_W, .type = ARM_CP_NO_RAW,
3609 .writefn = tlbi_aa64_alle3is_write },
3610 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3611 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3612 .access = PL3_W, .type = ARM_CP_NO_RAW,
3613 .writefn = tlbi_aa64_vae3is_write },
3614 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3615 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3616 .access = PL3_W, .type = ARM_CP_NO_RAW,
3617 .writefn = tlbi_aa64_vae3is_write },
3618 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3619 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3620 .access = PL3_W, .type = ARM_CP_NO_RAW,
3621 .writefn = tlbi_aa64_alle3_write },
3622 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3623 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3624 .access = PL3_W, .type = ARM_CP_NO_RAW,
3625 .writefn = tlbi_aa64_vae3_write },
3626 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3627 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3628 .access = PL3_W, .type = ARM_CP_NO_RAW,
3629 .writefn = tlbi_aa64_vae3_write },
3630 REGINFO_SENTINEL
3633 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
3635 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3636 * but the AArch32 CTR has its own reginfo struct)
3638 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3639 return CP_ACCESS_TRAP;
3641 return CP_ACCESS_OK;
3644 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3645 uint64_t value)
3647 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3648 * read via a bit in OSLSR_EL1.
3650 int oslock;
3652 if (ri->state == ARM_CP_STATE_AA32) {
3653 oslock = (value == 0xC5ACCE55);
3654 } else {
3655 oslock = value & 1;
3658 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
3661 static const ARMCPRegInfo debug_cp_reginfo[] = {
3662 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3663 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3664 * unlike DBGDRAR it is never accessible from EL0.
3665 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3666 * accessor.
3668 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3669 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3670 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3671 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3672 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3673 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3674 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3675 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3676 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3677 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3678 .access = PL1_RW,
3679 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3680 .resetvalue = 0 },
3681 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3682 * We don't implement the configurable EL0 access.
3684 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3685 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3686 .type = ARM_CP_ALIAS,
3687 .access = PL1_R,
3688 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3689 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3690 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3691 .access = PL1_W, .type = ARM_CP_NO_RAW,
3692 .writefn = oslar_write },
3693 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
3694 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
3695 .access = PL1_R, .resetvalue = 10,
3696 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
3697 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3698 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3699 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3700 .access = PL1_RW, .type = ARM_CP_NOP },
3701 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3702 * implement vector catch debug events yet.
3704 { .name = "DBGVCR",
3705 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3706 .access = PL1_RW, .type = ARM_CP_NOP },
3707 REGINFO_SENTINEL
3710 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3711 /* 64 bit access versions of the (dummy) debug registers */
3712 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3713 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3714 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3715 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3716 REGINFO_SENTINEL
3719 void hw_watchpoint_update(ARMCPU *cpu, int n)
3721 CPUARMState *env = &cpu->env;
3722 vaddr len = 0;
3723 vaddr wvr = env->cp15.dbgwvr[n];
3724 uint64_t wcr = env->cp15.dbgwcr[n];
3725 int mask;
3726 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3728 if (env->cpu_watchpoint[n]) {
3729 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3730 env->cpu_watchpoint[n] = NULL;
3733 if (!extract64(wcr, 0, 1)) {
3734 /* E bit clear : watchpoint disabled */
3735 return;
3738 switch (extract64(wcr, 3, 2)) {
3739 case 0:
3740 /* LSC 00 is reserved and must behave as if the wp is disabled */
3741 return;
3742 case 1:
3743 flags |= BP_MEM_READ;
3744 break;
3745 case 2:
3746 flags |= BP_MEM_WRITE;
3747 break;
3748 case 3:
3749 flags |= BP_MEM_ACCESS;
3750 break;
3753 /* Attempts to use both MASK and BAS fields simultaneously are
3754 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3755 * thus generating a watchpoint for every byte in the masked region.
3757 mask = extract64(wcr, 24, 4);
3758 if (mask == 1 || mask == 2) {
3759 /* Reserved values of MASK; we must act as if the mask value was
3760 * some non-reserved value, or as if the watchpoint were disabled.
3761 * We choose the latter.
3763 return;
3764 } else if (mask) {
3765 /* Watchpoint covers an aligned area up to 2GB in size */
3766 len = 1ULL << mask;
3767 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3768 * whether the watchpoint fires when the unmasked bits match; we opt
3769 * to generate the exceptions.
3771 wvr &= ~(len - 1);
3772 } else {
3773 /* Watchpoint covers bytes defined by the byte address select bits */
3774 int bas = extract64(wcr, 5, 8);
3775 int basstart;
3777 if (bas == 0) {
3778 /* This must act as if the watchpoint is disabled */
3779 return;
3782 if (extract64(wvr, 2, 1)) {
3783 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3784 * ignored, and BAS[3:0] define which bytes to watch.
3786 bas &= 0xf;
3788 /* The BAS bits are supposed to be programmed to indicate a contiguous
3789 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3790 * we fire for each byte in the word/doubleword addressed by the WVR.
3791 * We choose to ignore any non-zero bits after the first range of 1s.
3793 basstart = ctz32(bas);
3794 len = cto32(bas >> basstart);
3795 wvr += basstart;
3798 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3799 &env->cpu_watchpoint[n]);
3802 void hw_watchpoint_update_all(ARMCPU *cpu)
3804 int i;
3805 CPUARMState *env = &cpu->env;
3807 /* Completely clear out existing QEMU watchpoints and our array, to
3808 * avoid possible stale entries following migration load.
3810 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3811 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3813 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3814 hw_watchpoint_update(cpu, i);
3818 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819 uint64_t value)
3821 ARMCPU *cpu = arm_env_get_cpu(env);
3822 int i = ri->crm;
3824 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3825 * register reads and behaves as if values written are sign extended.
3826 * Bits [1:0] are RES0.
3828 value = sextract64(value, 0, 49) & ~3ULL;
3830 raw_write(env, ri, value);
3831 hw_watchpoint_update(cpu, i);
3834 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835 uint64_t value)
3837 ARMCPU *cpu = arm_env_get_cpu(env);
3838 int i = ri->crm;
3840 raw_write(env, ri, value);
3841 hw_watchpoint_update(cpu, i);
3844 void hw_breakpoint_update(ARMCPU *cpu, int n)
3846 CPUARMState *env = &cpu->env;
3847 uint64_t bvr = env->cp15.dbgbvr[n];
3848 uint64_t bcr = env->cp15.dbgbcr[n];
3849 vaddr addr;
3850 int bt;
3851 int flags = BP_CPU;
3853 if (env->cpu_breakpoint[n]) {
3854 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
3855 env->cpu_breakpoint[n] = NULL;
3858 if (!extract64(bcr, 0, 1)) {
3859 /* E bit clear : watchpoint disabled */
3860 return;
3863 bt = extract64(bcr, 20, 4);
3865 switch (bt) {
3866 case 4: /* unlinked address mismatch (reserved if AArch64) */
3867 case 5: /* linked address mismatch (reserved if AArch64) */
3868 qemu_log_mask(LOG_UNIMP,
3869 "arm: address mismatch breakpoint types not implemented");
3870 return;
3871 case 0: /* unlinked address match */
3872 case 1: /* linked address match */
3874 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3875 * we behave as if the register was sign extended. Bits [1:0] are
3876 * RES0. The BAS field is used to allow setting breakpoints on 16
3877 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3878 * a bp will fire if the addresses covered by the bp and the addresses
3879 * covered by the insn overlap but the insn doesn't start at the
3880 * start of the bp address range. We choose to require the insn and
3881 * the bp to have the same address. The constraints on writing to
3882 * BAS enforced in dbgbcr_write mean we have only four cases:
3883 * 0b0000 => no breakpoint
3884 * 0b0011 => breakpoint on addr
3885 * 0b1100 => breakpoint on addr + 2
3886 * 0b1111 => breakpoint on addr
3887 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3889 int bas = extract64(bcr, 5, 4);
3890 addr = sextract64(bvr, 0, 49) & ~3ULL;
3891 if (bas == 0) {
3892 return;
3894 if (bas == 0xc) {
3895 addr += 2;
3897 break;
3899 case 2: /* unlinked context ID match */
3900 case 8: /* unlinked VMID match (reserved if no EL2) */
3901 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3902 qemu_log_mask(LOG_UNIMP,
3903 "arm: unlinked context breakpoint types not implemented");
3904 return;
3905 case 9: /* linked VMID match (reserved if no EL2) */
3906 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3907 case 3: /* linked context ID match */
3908 default:
3909 /* We must generate no events for Linked context matches (unless
3910 * they are linked to by some other bp/wp, which is handled in
3911 * updates for the linking bp/wp). We choose to also generate no events
3912 * for reserved values.
3914 return;
3917 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3920 void hw_breakpoint_update_all(ARMCPU *cpu)
3922 int i;
3923 CPUARMState *env = &cpu->env;
3925 /* Completely clear out existing QEMU breakpoints and our array, to
3926 * avoid possible stale entries following migration load.
3928 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3929 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3931 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3932 hw_breakpoint_update(cpu, i);
3936 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3937 uint64_t value)
3939 ARMCPU *cpu = arm_env_get_cpu(env);
3940 int i = ri->crm;
3942 raw_write(env, ri, value);
3943 hw_breakpoint_update(cpu, i);
3946 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3947 uint64_t value)
3949 ARMCPU *cpu = arm_env_get_cpu(env);
3950 int i = ri->crm;
3952 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3953 * copy of BAS[0].
3955 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3956 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3958 raw_write(env, ri, value);
3959 hw_breakpoint_update(cpu, i);
3962 static void define_debug_regs(ARMCPU *cpu)
3964 /* Define v7 and v8 architectural debug registers.
3965 * These are just dummy implementations for now.
3967 int i;
3968 int wrps, brps, ctx_cmps;
3969 ARMCPRegInfo dbgdidr = {
3970 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3971 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3974 /* Note that all these register fields hold "number of Xs minus 1". */
3975 brps = extract32(cpu->dbgdidr, 24, 4);
3976 wrps = extract32(cpu->dbgdidr, 28, 4);
3977 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3979 assert(ctx_cmps <= brps);
3981 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3982 * of the debug registers such as number of breakpoints;
3983 * check that if they both exist then they agree.
3985 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3986 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3987 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3988 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3991 define_one_arm_cp_reg(cpu, &dbgdidr);
3992 define_arm_cp_regs(cpu, debug_cp_reginfo);
3994 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3995 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3998 for (i = 0; i < brps + 1; i++) {
3999 ARMCPRegInfo dbgregs[] = {
4000 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4001 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4002 .access = PL1_RW,
4003 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4004 .writefn = dbgbvr_write, .raw_writefn = raw_write
4006 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4007 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4008 .access = PL1_RW,
4009 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4010 .writefn = dbgbcr_write, .raw_writefn = raw_write
4012 REGINFO_SENTINEL
4014 define_arm_cp_regs(cpu, dbgregs);
4017 for (i = 0; i < wrps + 1; i++) {
4018 ARMCPRegInfo dbgregs[] = {
4019 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4020 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4021 .access = PL1_RW,
4022 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4023 .writefn = dbgwvr_write, .raw_writefn = raw_write
4025 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4026 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4027 .access = PL1_RW,
4028 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4029 .writefn = dbgwcr_write, .raw_writefn = raw_write
4031 REGINFO_SENTINEL
4033 define_arm_cp_regs(cpu, dbgregs);
4037 void register_cp_regs_for_features(ARMCPU *cpu)
4039 /* Register all the coprocessor registers based on feature bits */
4040 CPUARMState *env = &cpu->env;
4041 if (arm_feature(env, ARM_FEATURE_M)) {
4042 /* M profile has no coprocessor registers */
4043 return;
4046 define_arm_cp_regs(cpu, cp_reginfo);
4047 if (!arm_feature(env, ARM_FEATURE_V8)) {
4048 /* Must go early as it is full of wildcards that may be
4049 * overridden by later definitions.
4051 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4054 if (arm_feature(env, ARM_FEATURE_V6)) {
4055 /* The ID registers all have impdef reset values */
4056 ARMCPRegInfo v6_idregs[] = {
4057 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4059 .access = PL1_R, .type = ARM_CP_CONST,
4060 .resetvalue = cpu->id_pfr0 },
4061 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4063 .access = PL1_R, .type = ARM_CP_CONST,
4064 .resetvalue = cpu->id_pfr1 },
4065 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4067 .access = PL1_R, .type = ARM_CP_CONST,
4068 .resetvalue = cpu->id_dfr0 },
4069 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4071 .access = PL1_R, .type = ARM_CP_CONST,
4072 .resetvalue = cpu->id_afr0 },
4073 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4075 .access = PL1_R, .type = ARM_CP_CONST,
4076 .resetvalue = cpu->id_mmfr0 },
4077 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4079 .access = PL1_R, .type = ARM_CP_CONST,
4080 .resetvalue = cpu->id_mmfr1 },
4081 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4083 .access = PL1_R, .type = ARM_CP_CONST,
4084 .resetvalue = cpu->id_mmfr2 },
4085 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4087 .access = PL1_R, .type = ARM_CP_CONST,
4088 .resetvalue = cpu->id_mmfr3 },
4089 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4091 .access = PL1_R, .type = ARM_CP_CONST,
4092 .resetvalue = cpu->id_isar0 },
4093 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4095 .access = PL1_R, .type = ARM_CP_CONST,
4096 .resetvalue = cpu->id_isar1 },
4097 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4099 .access = PL1_R, .type = ARM_CP_CONST,
4100 .resetvalue = cpu->id_isar2 },
4101 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4103 .access = PL1_R, .type = ARM_CP_CONST,
4104 .resetvalue = cpu->id_isar3 },
4105 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4107 .access = PL1_R, .type = ARM_CP_CONST,
4108 .resetvalue = cpu->id_isar4 },
4109 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4111 .access = PL1_R, .type = ARM_CP_CONST,
4112 .resetvalue = cpu->id_isar5 },
4113 /* 6..7 are as yet unallocated and must RAZ */
4114 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
4115 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
4116 .resetvalue = 0 },
4117 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
4118 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
4119 .resetvalue = 0 },
4120 REGINFO_SENTINEL
4122 define_arm_cp_regs(cpu, v6_idregs);
4123 define_arm_cp_regs(cpu, v6_cp_reginfo);
4124 } else {
4125 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4127 if (arm_feature(env, ARM_FEATURE_V6K)) {
4128 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4130 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4131 !arm_feature(env, ARM_FEATURE_MPU)) {
4132 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4134 if (arm_feature(env, ARM_FEATURE_V7)) {
4135 /* v7 performance monitor control register: same implementor
4136 * field as main ID register, and we implement only the cycle
4137 * count register.
4139 #ifndef CONFIG_USER_ONLY
4140 ARMCPRegInfo pmcr = {
4141 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4142 .access = PL0_RW,
4143 .type = ARM_CP_IO | ARM_CP_ALIAS,
4144 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4145 .accessfn = pmreg_access, .writefn = pmcr_write,
4146 .raw_writefn = raw_write,
4148 ARMCPRegInfo pmcr64 = {
4149 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4150 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4151 .access = PL0_RW, .accessfn = pmreg_access,
4152 .type = ARM_CP_IO,
4153 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4154 .resetvalue = cpu->midr & 0xff000000,
4155 .writefn = pmcr_write, .raw_writefn = raw_write,
4157 define_one_arm_cp_reg(cpu, &pmcr);
4158 define_one_arm_cp_reg(cpu, &pmcr64);
4159 #endif
4160 ARMCPRegInfo clidr = {
4161 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4162 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4163 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4165 define_one_arm_cp_reg(cpu, &clidr);
4166 define_arm_cp_regs(cpu, v7_cp_reginfo);
4167 define_debug_regs(cpu);
4168 } else {
4169 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4171 if (arm_feature(env, ARM_FEATURE_V8)) {
4172 /* AArch64 ID registers, which all have impdef reset values */
4173 ARMCPRegInfo v8_idregs[] = {
4174 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4176 .access = PL1_R, .type = ARM_CP_CONST,
4177 .resetvalue = cpu->id_aa64pfr0 },
4178 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4180 .access = PL1_R, .type = ARM_CP_CONST,
4181 .resetvalue = cpu->id_aa64pfr1},
4182 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4184 .access = PL1_R, .type = ARM_CP_CONST,
4185 /* We mask out the PMUVer field, because we don't currently
4186 * implement the PMU. Not advertising it prevents the guest
4187 * from trying to use it and getting UNDEFs on registers we
4188 * don't implement.
4190 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4191 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4192 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4193 .access = PL1_R, .type = ARM_CP_CONST,
4194 .resetvalue = cpu->id_aa64dfr1 },
4195 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4197 .access = PL1_R, .type = ARM_CP_CONST,
4198 .resetvalue = cpu->id_aa64afr0 },
4199 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4201 .access = PL1_R, .type = ARM_CP_CONST,
4202 .resetvalue = cpu->id_aa64afr1 },
4203 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4205 .access = PL1_R, .type = ARM_CP_CONST,
4206 .resetvalue = cpu->id_aa64isar0 },
4207 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4209 .access = PL1_R, .type = ARM_CP_CONST,
4210 .resetvalue = cpu->id_aa64isar1 },
4211 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4213 .access = PL1_R, .type = ARM_CP_CONST,
4214 .resetvalue = cpu->id_aa64mmfr0 },
4215 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4216 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4217 .access = PL1_R, .type = ARM_CP_CONST,
4218 .resetvalue = cpu->id_aa64mmfr1 },
4219 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4221 .access = PL1_R, .type = ARM_CP_CONST,
4222 .resetvalue = cpu->mvfr0 },
4223 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4225 .access = PL1_R, .type = ARM_CP_CONST,
4226 .resetvalue = cpu->mvfr1 },
4227 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4229 .access = PL1_R, .type = ARM_CP_CONST,
4230 .resetvalue = cpu->mvfr2 },
4231 REGINFO_SENTINEL
4233 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4234 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4235 !arm_feature(env, ARM_FEATURE_EL2)) {
4236 ARMCPRegInfo rvbar = {
4237 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4238 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4239 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4241 define_one_arm_cp_reg(cpu, &rvbar);
4243 define_arm_cp_regs(cpu, v8_idregs);
4244 define_arm_cp_regs(cpu, v8_cp_reginfo);
4246 if (arm_feature(env, ARM_FEATURE_EL2)) {
4247 uint64_t vmpidr_def = mpidr_read_val(env);
4248 ARMCPRegInfo vpidr_regs[] = {
4249 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4250 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4251 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4252 .resetvalue = cpu->midr,
4253 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4254 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4255 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4256 .access = PL2_RW, .resetvalue = cpu->midr,
4257 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4258 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4259 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4260 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4261 .resetvalue = vmpidr_def,
4262 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4263 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4264 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4265 .access = PL2_RW,
4266 .resetvalue = vmpidr_def,
4267 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4268 REGINFO_SENTINEL
4270 define_arm_cp_regs(cpu, vpidr_regs);
4271 define_arm_cp_regs(cpu, el2_cp_reginfo);
4272 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4273 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4274 ARMCPRegInfo rvbar = {
4275 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4276 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4277 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4279 define_one_arm_cp_reg(cpu, &rvbar);
4281 } else {
4282 /* If EL2 is missing but higher ELs are enabled, we need to
4283 * register the no_el2 reginfos.
4285 if (arm_feature(env, ARM_FEATURE_EL3)) {
4286 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4287 * of MIDR_EL1 and MPIDR_EL1.
4289 ARMCPRegInfo vpidr_regs[] = {
4290 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4291 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4292 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4293 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4294 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4295 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4296 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4297 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4298 .type = ARM_CP_NO_RAW,
4299 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4300 REGINFO_SENTINEL
4302 define_arm_cp_regs(cpu, vpidr_regs);
4303 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4306 if (arm_feature(env, ARM_FEATURE_EL3)) {
4307 define_arm_cp_regs(cpu, el3_cp_reginfo);
4308 ARMCPRegInfo rvbar = {
4309 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4310 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4311 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
4313 define_one_arm_cp_reg(cpu, &rvbar);
4315 if (arm_feature(env, ARM_FEATURE_MPU)) {
4316 if (arm_feature(env, ARM_FEATURE_V6)) {
4317 /* PMSAv6 not implemented */
4318 assert(arm_feature(env, ARM_FEATURE_V7));
4319 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4320 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4321 } else {
4322 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4324 } else {
4325 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4326 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4328 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4329 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4331 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4332 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4334 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4335 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4337 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4338 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4340 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4341 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4343 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4344 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4346 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4347 define_arm_cp_regs(cpu, omap_cp_reginfo);
4349 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4350 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4352 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4353 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4355 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4356 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4358 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4359 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4361 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4362 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4363 * be read-only (ie write causes UNDEF exception).
4366 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4367 /* Pre-v8 MIDR space.
4368 * Note that the MIDR isn't a simple constant register because
4369 * of the TI925 behaviour where writes to another register can
4370 * cause the MIDR value to change.
4372 * Unimplemented registers in the c15 0 0 0 space default to
4373 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4374 * and friends override accordingly.
4376 { .name = "MIDR",
4377 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4378 .access = PL1_R, .resetvalue = cpu->midr,
4379 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4380 .readfn = midr_read,
4381 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4382 .type = ARM_CP_OVERRIDE },
4383 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4384 { .name = "DUMMY",
4385 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4386 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4387 { .name = "DUMMY",
4388 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4389 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4390 { .name = "DUMMY",
4391 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4392 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4393 { .name = "DUMMY",
4394 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4395 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4396 { .name = "DUMMY",
4397 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4398 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4399 REGINFO_SENTINEL
4401 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4402 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4404 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4405 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4406 .readfn = midr_read },
4407 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4408 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4409 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4410 .access = PL1_R, .resetvalue = cpu->midr },
4411 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4412 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4413 .access = PL1_R, .resetvalue = cpu->midr },
4414 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4416 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4417 REGINFO_SENTINEL
4419 ARMCPRegInfo id_cp_reginfo[] = {
4420 /* These are common to v8 and pre-v8 */
4421 { .name = "CTR",
4422 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4424 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4425 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4426 .access = PL0_R, .accessfn = ctr_el0_access,
4427 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4428 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4429 { .name = "TCMTR",
4430 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4431 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4432 REGINFO_SENTINEL
4434 /* TLBTR is specific to VMSA */
4435 ARMCPRegInfo id_tlbtr_reginfo = {
4436 .name = "TLBTR",
4437 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4438 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4440 /* MPUIR is specific to PMSA V6+ */
4441 ARMCPRegInfo id_mpuir_reginfo = {
4442 .name = "MPUIR",
4443 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4444 .access = PL1_R, .type = ARM_CP_CONST,
4445 .resetvalue = cpu->pmsav7_dregion << 8
4447 ARMCPRegInfo crn0_wi_reginfo = {
4448 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4449 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4450 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4452 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4453 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4454 ARMCPRegInfo *r;
4455 /* Register the blanket "writes ignored" value first to cover the
4456 * whole space. Then update the specific ID registers to allow write
4457 * access, so that they ignore writes rather than causing them to
4458 * UNDEF.
4460 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4461 for (r = id_pre_v8_midr_cp_reginfo;
4462 r->type != ARM_CP_SENTINEL; r++) {
4463 r->access = PL1_RW;
4465 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4466 r->access = PL1_RW;
4468 id_tlbtr_reginfo.access = PL1_RW;
4469 id_tlbtr_reginfo.access = PL1_RW;
4471 if (arm_feature(env, ARM_FEATURE_V8)) {
4472 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4473 } else {
4474 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4476 define_arm_cp_regs(cpu, id_cp_reginfo);
4477 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4478 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4479 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4480 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4484 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4485 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4488 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4489 ARMCPRegInfo auxcr_reginfo[] = {
4490 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4491 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4492 .access = PL1_RW, .type = ARM_CP_CONST,
4493 .resetvalue = cpu->reset_auxcr },
4494 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4495 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4496 .access = PL2_RW, .type = ARM_CP_CONST,
4497 .resetvalue = 0 },
4498 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4499 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4500 .access = PL3_RW, .type = ARM_CP_CONST,
4501 .resetvalue = 0 },
4502 REGINFO_SENTINEL
4504 define_arm_cp_regs(cpu, auxcr_reginfo);
4507 if (arm_feature(env, ARM_FEATURE_CBAR)) {
4508 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4509 /* 32 bit view is [31:18] 0...0 [43:32]. */
4510 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4511 | extract64(cpu->reset_cbar, 32, 12);
4512 ARMCPRegInfo cbar_reginfo[] = {
4513 { .name = "CBAR",
4514 .type = ARM_CP_CONST,
4515 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4516 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4517 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4518 .type = ARM_CP_CONST,
4519 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4520 .access = PL1_R, .resetvalue = cbar32 },
4521 REGINFO_SENTINEL
4523 /* We don't implement a r/w 64 bit CBAR currently */
4524 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4525 define_arm_cp_regs(cpu, cbar_reginfo);
4526 } else {
4527 ARMCPRegInfo cbar = {
4528 .name = "CBAR",
4529 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4530 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4531 .fieldoffset = offsetof(CPUARMState,
4532 cp15.c15_config_base_address)
4534 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4535 cbar.access = PL1_R;
4536 cbar.fieldoffset = 0;
4537 cbar.type = ARM_CP_CONST;
4539 define_one_arm_cp_reg(cpu, &cbar);
4543 /* Generic registers whose values depend on the implementation */
4545 ARMCPRegInfo sctlr = {
4546 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4547 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4548 .access = PL1_RW,
4549 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4550 offsetof(CPUARMState, cp15.sctlr_ns) },
4551 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4552 .raw_writefn = raw_write,
4554 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4555 /* Normally we would always end the TB on an SCTLR write, but Linux
4556 * arch/arm/mach-pxa/sleep.S expects two instructions following
4557 * an MMU enable to execute from cache. Imitate this behaviour.
4559 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4561 define_one_arm_cp_reg(cpu, &sctlr);
4565 ARMCPU *cpu_arm_init(const char *cpu_model)
4567 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4570 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4572 CPUState *cs = CPU(cpu);
4573 CPUARMState *env = &cpu->env;
4575 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4576 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4577 aarch64_fpu_gdb_set_reg,
4578 34, "aarch64-fpu.xml", 0);
4579 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4580 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4581 51, "arm-neon.xml", 0);
4582 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4583 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4584 35, "arm-vfp3.xml", 0);
4585 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4586 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4587 19, "arm-vfp.xml", 0);
4591 /* Sort alphabetically by type name, except for "any". */
4592 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
4594 ObjectClass *class_a = (ObjectClass *)a;
4595 ObjectClass *class_b = (ObjectClass *)b;
4596 const char *name_a, *name_b;
4598 name_a = object_class_get_name(class_a);
4599 name_b = object_class_get_name(class_b);
4600 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4601 return 1;
4602 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4603 return -1;
4604 } else {
4605 return strcmp(name_a, name_b);
4609 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
4611 ObjectClass *oc = data;
4612 CPUListState *s = user_data;
4613 const char *typename;
4614 char *name;
4616 typename = object_class_get_name(oc);
4617 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4618 (*s->cpu_fprintf)(s->file, " %s\n",
4619 name);
4620 g_free(name);
4623 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4625 CPUListState s = {
4626 .file = f,
4627 .cpu_fprintf = cpu_fprintf,
4629 GSList *list;
4631 list = object_class_get_list(TYPE_ARM_CPU, false);
4632 list = g_slist_sort(list, arm_cpu_list_compare);
4633 (*cpu_fprintf)(f, "Available CPUs:\n");
4634 g_slist_foreach(list, arm_cpu_list_entry, &s);
4635 g_slist_free(list);
4636 #ifdef CONFIG_KVM
4637 /* The 'host' CPU type is dynamically registered only if KVM is
4638 * enabled, so we have to special-case it here:
4640 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4641 #endif
4644 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4646 ObjectClass *oc = data;
4647 CpuDefinitionInfoList **cpu_list = user_data;
4648 CpuDefinitionInfoList *entry;
4649 CpuDefinitionInfo *info;
4650 const char *typename;
4652 typename = object_class_get_name(oc);
4653 info = g_malloc0(sizeof(*info));
4654 info->name = g_strndup(typename,
4655 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4657 entry = g_malloc0(sizeof(*entry));
4658 entry->value = info;
4659 entry->next = *cpu_list;
4660 *cpu_list = entry;
4663 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4665 CpuDefinitionInfoList *cpu_list = NULL;
4666 GSList *list;
4668 list = object_class_get_list(TYPE_ARM_CPU, false);
4669 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4670 g_slist_free(list);
4672 return cpu_list;
4675 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
4676 void *opaque, int state, int secstate,
4677 int crm, int opc1, int opc2)
4679 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4680 * add a single reginfo struct to the hash table.
4682 uint32_t *key = g_new(uint32_t, 1);
4683 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4684 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
4685 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4687 /* Reset the secure state to the specific incoming state. This is
4688 * necessary as the register may have been defined with both states.
4690 r2->secure = secstate;
4692 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4693 /* Register is banked (using both entries in array).
4694 * Overwriting fieldoffset as the array is only used to define
4695 * banked registers but later only fieldoffset is used.
4697 r2->fieldoffset = r->bank_fieldoffsets[ns];
4700 if (state == ARM_CP_STATE_AA32) {
4701 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4702 /* If the register is banked then we don't need to migrate or
4703 * reset the 32-bit instance in certain cases:
4705 * 1) If the register has both 32-bit and 64-bit instances then we
4706 * can count on the 64-bit instance taking care of the
4707 * non-secure bank.
4708 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4709 * taking care of the secure bank. This requires that separate
4710 * 32 and 64-bit definitions are provided.
4712 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4713 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
4714 r2->type |= ARM_CP_ALIAS;
4716 } else if ((secstate != r->secure) && !ns) {
4717 /* The register is not banked so we only want to allow migration of
4718 * the non-secure instance.
4720 r2->type |= ARM_CP_ALIAS;
4723 if (r->state == ARM_CP_STATE_BOTH) {
4724 /* We assume it is a cp15 register if the .cp field is left unset.
4726 if (r2->cp == 0) {
4727 r2->cp = 15;
4730 #ifdef HOST_WORDS_BIGENDIAN
4731 if (r2->fieldoffset) {
4732 r2->fieldoffset += sizeof(uint32_t);
4734 #endif
4737 if (state == ARM_CP_STATE_AA64) {
4738 /* To allow abbreviation of ARMCPRegInfo
4739 * definitions, we treat cp == 0 as equivalent to
4740 * the value for "standard guest-visible sysreg".
4741 * STATE_BOTH definitions are also always "standard
4742 * sysreg" in their AArch64 view (the .cp value may
4743 * be non-zero for the benefit of the AArch32 view).
4745 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
4746 r2->cp = CP_REG_ARM64_SYSREG_CP;
4748 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4749 r2->opc0, opc1, opc2);
4750 } else {
4751 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
4753 if (opaque) {
4754 r2->opaque = opaque;
4756 /* reginfo passed to helpers is correct for the actual access,
4757 * and is never ARM_CP_STATE_BOTH:
4759 r2->state = state;
4760 /* Make sure reginfo passed to helpers for wildcarded regs
4761 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4763 r2->crm = crm;
4764 r2->opc1 = opc1;
4765 r2->opc2 = opc2;
4766 /* By convention, for wildcarded registers only the first
4767 * entry is used for migration; the others are marked as
4768 * ALIAS so we don't try to transfer the register
4769 * multiple times. Special registers (ie NOP/WFI) are
4770 * never migratable and not even raw-accessible.
4772 if ((r->type & ARM_CP_SPECIAL)) {
4773 r2->type |= ARM_CP_NO_RAW;
4775 if (((r->crm == CP_ANY) && crm != 0) ||
4776 ((r->opc1 == CP_ANY) && opc1 != 0) ||
4777 ((r->opc2 == CP_ANY) && opc2 != 0)) {
4778 r2->type |= ARM_CP_ALIAS;
4781 /* Check that raw accesses are either forbidden or handled. Note that
4782 * we can't assert this earlier because the setup of fieldoffset for
4783 * banked registers has to be done first.
4785 if (!(r2->type & ARM_CP_NO_RAW)) {
4786 assert(!raw_accessors_invalid(r2));
4789 /* Overriding of an existing definition must be explicitly
4790 * requested.
4792 if (!(r->type & ARM_CP_OVERRIDE)) {
4793 ARMCPRegInfo *oldreg;
4794 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
4795 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
4796 fprintf(stderr, "Register redefined: cp=%d %d bit "
4797 "crn=%d crm=%d opc1=%d opc2=%d, "
4798 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
4799 r2->crn, r2->crm, r2->opc1, r2->opc2,
4800 oldreg->name, r2->name);
4801 g_assert_not_reached();
4804 g_hash_table_insert(cpu->cp_regs, key, r2);
4808 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
4809 const ARMCPRegInfo *r, void *opaque)
4811 /* Define implementations of coprocessor registers.
4812 * We store these in a hashtable because typically
4813 * there are less than 150 registers in a space which
4814 * is 16*16*16*8*8 = 262144 in size.
4815 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4816 * If a register is defined twice then the second definition is
4817 * used, so this can be used to define some generic registers and
4818 * then override them with implementation specific variations.
4819 * At least one of the original and the second definition should
4820 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4821 * against accidental use.
4823 * The state field defines whether the register is to be
4824 * visible in the AArch32 or AArch64 execution state. If the
4825 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4826 * reginfo structure for the AArch32 view, which sees the lower
4827 * 32 bits of the 64 bit register.
4829 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4830 * be wildcarded. AArch64 registers are always considered to be 64
4831 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4832 * the register, if any.
4834 int crm, opc1, opc2, state;
4835 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
4836 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
4837 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
4838 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
4839 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
4840 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
4841 /* 64 bit registers have only CRm and Opc1 fields */
4842 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
4843 /* op0 only exists in the AArch64 encodings */
4844 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
4845 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4846 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
4847 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4848 * encodes a minimum access level for the register. We roll this
4849 * runtime check into our general permission check code, so check
4850 * here that the reginfo's specified permissions are strict enough
4851 * to encompass the generic architectural permission check.
4853 if (r->state != ARM_CP_STATE_AA32) {
4854 int mask = 0;
4855 switch (r->opc1) {
4856 case 0: case 1: case 2:
4857 /* min_EL EL1 */
4858 mask = PL1_RW;
4859 break;
4860 case 3:
4861 /* min_EL EL0 */
4862 mask = PL0_RW;
4863 break;
4864 case 4:
4865 /* min_EL EL2 */
4866 mask = PL2_RW;
4867 break;
4868 case 5:
4869 /* unallocated encoding, so not possible */
4870 assert(false);
4871 break;
4872 case 6:
4873 /* min_EL EL3 */
4874 mask = PL3_RW;
4875 break;
4876 case 7:
4877 /* min_EL EL1, secure mode only (we don't check the latter) */
4878 mask = PL1_RW;
4879 break;
4880 default:
4881 /* broken reginfo with out-of-range opc1 */
4882 assert(false);
4883 break;
4885 /* assert our permissions are not too lax (stricter is fine) */
4886 assert((r->access & ~mask) == 0);
4889 /* Check that the register definition has enough info to handle
4890 * reads and writes if they are permitted.
4892 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
4893 if (r->access & PL3_R) {
4894 assert((r->fieldoffset ||
4895 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4896 r->readfn);
4898 if (r->access & PL3_W) {
4899 assert((r->fieldoffset ||
4900 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4901 r->writefn);
4904 /* Bad type field probably means missing sentinel at end of reg list */
4905 assert(cptype_valid(r->type));
4906 for (crm = crmmin; crm <= crmmax; crm++) {
4907 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
4908 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
4909 for (state = ARM_CP_STATE_AA32;
4910 state <= ARM_CP_STATE_AA64; state++) {
4911 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4912 continue;
4914 if (state == ARM_CP_STATE_AA32) {
4915 /* Under AArch32 CP registers can be common
4916 * (same for secure and non-secure world) or banked.
4918 switch (r->secure) {
4919 case ARM_CP_SECSTATE_S:
4920 case ARM_CP_SECSTATE_NS:
4921 add_cpreg_to_hashtable(cpu, r, opaque, state,
4922 r->secure, crm, opc1, opc2);
4923 break;
4924 default:
4925 add_cpreg_to_hashtable(cpu, r, opaque, state,
4926 ARM_CP_SECSTATE_S,
4927 crm, opc1, opc2);
4928 add_cpreg_to_hashtable(cpu, r, opaque, state,
4929 ARM_CP_SECSTATE_NS,
4930 crm, opc1, opc2);
4931 break;
4933 } else {
4934 /* AArch64 registers get mapped to non-secure instance
4935 * of AArch32 */
4936 add_cpreg_to_hashtable(cpu, r, opaque, state,
4937 ARM_CP_SECSTATE_NS,
4938 crm, opc1, opc2);
4946 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4947 const ARMCPRegInfo *regs, void *opaque)
4949 /* Define a whole list of registers */
4950 const ARMCPRegInfo *r;
4951 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4952 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4956 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4958 return g_hash_table_lookup(cpregs, &encoded_cp);
4961 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4962 uint64_t value)
4964 /* Helper coprocessor write function for write-ignore registers */
4967 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4969 /* Helper coprocessor write function for read-as-zero registers */
4970 return 0;
4973 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4975 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4978 static int bad_mode_switch(CPUARMState *env, int mode)
4980 /* Return true if it is not valid for us to switch to
4981 * this CPU mode (ie all the UNPREDICTABLE cases in
4982 * the ARM ARM CPSRWriteByInstr pseudocode).
4984 switch (mode) {
4985 case ARM_CPU_MODE_USR:
4986 case ARM_CPU_MODE_SYS:
4987 case ARM_CPU_MODE_SVC:
4988 case ARM_CPU_MODE_ABT:
4989 case ARM_CPU_MODE_UND:
4990 case ARM_CPU_MODE_IRQ:
4991 case ARM_CPU_MODE_FIQ:
4992 return 0;
4993 case ARM_CPU_MODE_MON:
4994 return !arm_is_secure(env);
4995 default:
4996 return 1;
5000 uint32_t cpsr_read(CPUARMState *env)
5002 int ZF;
5003 ZF = (env->ZF == 0);
5004 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5005 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5006 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5007 | ((env->condexec_bits & 0xfc) << 8)
5008 | (env->GE << 16) | (env->daif & CPSR_AIF);
5011 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
5013 uint32_t changed_daif;
5015 if (mask & CPSR_NZCV) {
5016 env->ZF = (~val) & CPSR_Z;
5017 env->NF = val;
5018 env->CF = (val >> 29) & 1;
5019 env->VF = (val << 3) & 0x80000000;
5021 if (mask & CPSR_Q)
5022 env->QF = ((val & CPSR_Q) != 0);
5023 if (mask & CPSR_T)
5024 env->thumb = ((val & CPSR_T) != 0);
5025 if (mask & CPSR_IT_0_1) {
5026 env->condexec_bits &= ~3;
5027 env->condexec_bits |= (val >> 25) & 3;
5029 if (mask & CPSR_IT_2_7) {
5030 env->condexec_bits &= 3;
5031 env->condexec_bits |= (val >> 8) & 0xfc;
5033 if (mask & CPSR_GE) {
5034 env->GE = (val >> 16) & 0xf;
5037 /* In a V7 implementation that includes the security extensions but does
5038 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5039 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5040 * bits respectively.
5042 * In a V8 implementation, it is permitted for privileged software to
5043 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5045 if (!arm_feature(env, ARM_FEATURE_V8) &&
5046 arm_feature(env, ARM_FEATURE_EL3) &&
5047 !arm_feature(env, ARM_FEATURE_EL2) &&
5048 !arm_is_secure(env)) {
5050 changed_daif = (env->daif ^ val) & mask;
5052 if (changed_daif & CPSR_A) {
5053 /* Check to see if we are allowed to change the masking of async
5054 * abort exceptions from a non-secure state.
5056 if (!(env->cp15.scr_el3 & SCR_AW)) {
5057 qemu_log_mask(LOG_GUEST_ERROR,
5058 "Ignoring attempt to switch CPSR_A flag from "
5059 "non-secure world with SCR.AW bit clear\n");
5060 mask &= ~CPSR_A;
5064 if (changed_daif & CPSR_F) {
5065 /* Check to see if we are allowed to change the masking of FIQ
5066 * exceptions from a non-secure state.
5068 if (!(env->cp15.scr_el3 & SCR_FW)) {
5069 qemu_log_mask(LOG_GUEST_ERROR,
5070 "Ignoring attempt to switch CPSR_F flag from "
5071 "non-secure world with SCR.FW bit clear\n");
5072 mask &= ~CPSR_F;
5075 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5076 * If this bit is set software is not allowed to mask
5077 * FIQs, but is allowed to set CPSR_F to 0.
5079 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5080 (val & CPSR_F)) {
5081 qemu_log_mask(LOG_GUEST_ERROR,
5082 "Ignoring attempt to enable CPSR_F flag "
5083 "(non-maskable FIQ [NMFI] support enabled)\n");
5084 mask &= ~CPSR_F;
5089 env->daif &= ~(CPSR_AIF & mask);
5090 env->daif |= val & CPSR_AIF & mask;
5092 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
5093 if (bad_mode_switch(env, val & CPSR_M)) {
5094 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
5095 * We choose to ignore the attempt and leave the CPSR M field
5096 * untouched.
5098 mask &= ~CPSR_M;
5099 } else {
5100 switch_mode(env, val & CPSR_M);
5103 mask &= ~CACHED_CPSR_BITS;
5104 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5107 /* Sign/zero extend */
5108 uint32_t HELPER(sxtb16)(uint32_t x)
5110 uint32_t res;
5111 res = (uint16_t)(int8_t)x;
5112 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5113 return res;
5116 uint32_t HELPER(uxtb16)(uint32_t x)
5118 uint32_t res;
5119 res = (uint16_t)(uint8_t)x;
5120 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5121 return res;
5124 uint32_t HELPER(clz)(uint32_t x)
5126 return clz32(x);
5129 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5131 if (den == 0)
5132 return 0;
5133 if (num == INT_MIN && den == -1)
5134 return INT_MIN;
5135 return num / den;
5138 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5140 if (den == 0)
5141 return 0;
5142 return num / den;
5145 uint32_t HELPER(rbit)(uint32_t x)
5147 return revbit32(x);
5150 #if defined(CONFIG_USER_ONLY)
5152 /* These should probably raise undefined insn exceptions. */
5153 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5155 ARMCPU *cpu = arm_env_get_cpu(env);
5157 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5160 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5162 ARMCPU *cpu = arm_env_get_cpu(env);
5164 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5165 return 0;
5168 void switch_mode(CPUARMState *env, int mode)
5170 ARMCPU *cpu = arm_env_get_cpu(env);
5172 if (mode != ARM_CPU_MODE_USR) {
5173 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5177 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5179 ARMCPU *cpu = arm_env_get_cpu(env);
5181 cpu_abort(CPU(cpu), "banked r13 write\n");
5184 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5186 ARMCPU *cpu = arm_env_get_cpu(env);
5188 cpu_abort(CPU(cpu), "banked r13 read\n");
5189 return 0;
5192 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5193 uint32_t cur_el, bool secure)
5195 return 1;
5198 void aarch64_sync_64_to_32(CPUARMState *env)
5200 g_assert_not_reached();
5203 #else
5205 /* Map CPU modes onto saved register banks. */
5206 int bank_number(int mode)
5208 switch (mode) {
5209 case ARM_CPU_MODE_USR:
5210 case ARM_CPU_MODE_SYS:
5211 return BANK_USRSYS;
5212 case ARM_CPU_MODE_SVC:
5213 return BANK_SVC;
5214 case ARM_CPU_MODE_ABT:
5215 return BANK_ABT;
5216 case ARM_CPU_MODE_UND:
5217 return BANK_UND;
5218 case ARM_CPU_MODE_IRQ:
5219 return BANK_IRQ;
5220 case ARM_CPU_MODE_FIQ:
5221 return BANK_FIQ;
5222 case ARM_CPU_MODE_HYP:
5223 return BANK_HYP;
5224 case ARM_CPU_MODE_MON:
5225 return BANK_MON;
5227 g_assert_not_reached();
5230 void switch_mode(CPUARMState *env, int mode)
5232 int old_mode;
5233 int i;
5235 old_mode = env->uncached_cpsr & CPSR_M;
5236 if (mode == old_mode)
5237 return;
5239 if (old_mode == ARM_CPU_MODE_FIQ) {
5240 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5241 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5242 } else if (mode == ARM_CPU_MODE_FIQ) {
5243 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5244 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5247 i = bank_number(old_mode);
5248 env->banked_r13[i] = env->regs[13];
5249 env->banked_r14[i] = env->regs[14];
5250 env->banked_spsr[i] = env->spsr;
5252 i = bank_number(mode);
5253 env->regs[13] = env->banked_r13[i];
5254 env->regs[14] = env->banked_r14[i];
5255 env->spsr = env->banked_spsr[i];
5258 /* Physical Interrupt Target EL Lookup Table
5260 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5262 * The below multi-dimensional table is used for looking up the target
5263 * exception level given numerous condition criteria. Specifically, the
5264 * target EL is based on SCR and HCR routing controls as well as the
5265 * currently executing EL and secure state.
5267 * Dimensions:
5268 * target_el_table[2][2][2][2][2][4]
5269 * | | | | | +--- Current EL
5270 * | | | | +------ Non-secure(0)/Secure(1)
5271 * | | | +--------- HCR mask override
5272 * | | +------------ SCR exec state control
5273 * | +--------------- SCR mask override
5274 * +------------------ 32-bit(0)/64-bit(1) EL3
5276 * The table values are as such:
5277 * 0-3 = EL0-EL3
5278 * -1 = Cannot occur
5280 * The ARM ARM target EL table includes entries indicating that an "exception
5281 * is not taken". The two cases where this is applicable are:
5282 * 1) An exception is taken from EL3 but the SCR does not have the exception
5283 * routed to EL3.
5284 * 2) An exception is taken from EL2 but the HCR does not have the exception
5285 * routed to EL2.
5286 * In these two cases, the below table contain a target of EL1. This value is
5287 * returned as it is expected that the consumer of the table data will check
5288 * for "target EL >= current EL" to ensure the exception is not taken.
5290 * SCR HCR
5291 * 64 EA AMO From
5292 * BIT IRQ IMO Non-secure Secure
5293 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5295 static const int8_t target_el_table[2][2][2][2][2][4] = {
5296 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5297 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5298 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5299 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5300 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5301 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5302 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5303 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5304 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5305 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5306 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5307 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5308 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5309 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5310 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5311 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5315 * Determine the target EL for physical exceptions
5317 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5318 uint32_t cur_el, bool secure)
5320 CPUARMState *env = cs->env_ptr;
5321 int rw;
5322 int scr;
5323 int hcr;
5324 int target_el;
5325 /* Is the highest EL AArch64? */
5326 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5328 if (arm_feature(env, ARM_FEATURE_EL3)) {
5329 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5330 } else {
5331 /* Either EL2 is the highest EL (and so the EL2 register width
5332 * is given by is64); or there is no EL2 or EL3, in which case
5333 * the value of 'rw' does not affect the table lookup anyway.
5335 rw = is64;
5338 switch (excp_idx) {
5339 case EXCP_IRQ:
5340 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5341 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5342 break;
5343 case EXCP_FIQ:
5344 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5345 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5346 break;
5347 default:
5348 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5349 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5350 break;
5353 /* If HCR.TGE is set then HCR is treated as being 1 */
5354 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5356 /* Perform a table-lookup for the target EL given the current state */
5357 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5359 assert(target_el > 0);
5361 return target_el;
5364 static void v7m_push(CPUARMState *env, uint32_t val)
5366 CPUState *cs = CPU(arm_env_get_cpu(env));
5368 env->regs[13] -= 4;
5369 stl_phys(cs->as, env->regs[13], val);
5372 static uint32_t v7m_pop(CPUARMState *env)
5374 CPUState *cs = CPU(arm_env_get_cpu(env));
5375 uint32_t val;
5377 val = ldl_phys(cs->as, env->regs[13]);
5378 env->regs[13] += 4;
5379 return val;
5382 /* Switch to V7M main or process stack pointer. */
5383 static void switch_v7m_sp(CPUARMState *env, int process)
5385 uint32_t tmp;
5386 if (env->v7m.current_sp != process) {
5387 tmp = env->v7m.other_sp;
5388 env->v7m.other_sp = env->regs[13];
5389 env->regs[13] = tmp;
5390 env->v7m.current_sp = process;
5394 static void do_v7m_exception_exit(CPUARMState *env)
5396 uint32_t type;
5397 uint32_t xpsr;
5399 type = env->regs[15];
5400 if (env->v7m.exception != 0)
5401 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5403 /* Switch to the target stack. */
5404 switch_v7m_sp(env, (type & 4) != 0);
5405 /* Pop registers. */
5406 env->regs[0] = v7m_pop(env);
5407 env->regs[1] = v7m_pop(env);
5408 env->regs[2] = v7m_pop(env);
5409 env->regs[3] = v7m_pop(env);
5410 env->regs[12] = v7m_pop(env);
5411 env->regs[14] = v7m_pop(env);
5412 env->regs[15] = v7m_pop(env);
5413 if (env->regs[15] & 1) {
5414 qemu_log_mask(LOG_GUEST_ERROR,
5415 "M profile return from interrupt with misaligned "
5416 "PC is UNPREDICTABLE\n");
5417 /* Actual hardware seems to ignore the lsbit, and there are several
5418 * RTOSes out there which incorrectly assume the r15 in the stack
5419 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5421 env->regs[15] &= ~1U;
5423 xpsr = v7m_pop(env);
5424 xpsr_write(env, xpsr, 0xfffffdff);
5425 /* Undo stack alignment. */
5426 if (xpsr & 0x200)
5427 env->regs[13] |= 4;
5428 /* ??? The exception return type specifies Thread/Handler mode. However
5429 this is also implied by the xPSR value. Not sure what to do
5430 if there is a mismatch. */
5431 /* ??? Likewise for mismatches between the CONTROL register and the stack
5432 pointer. */
5435 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5437 ARMCPU *cpu = ARM_CPU(cs);
5438 CPUARMState *env = &cpu->env;
5439 uint32_t xpsr = xpsr_read(env);
5440 uint32_t lr;
5441 uint32_t addr;
5443 arm_log_exception(cs->exception_index);
5445 lr = 0xfffffff1;
5446 if (env->v7m.current_sp)
5447 lr |= 4;
5448 if (env->v7m.exception == 0)
5449 lr |= 8;
5451 /* For exceptions we just mark as pending on the NVIC, and let that
5452 handle it. */
5453 /* TODO: Need to escalate if the current priority is higher than the
5454 one we're raising. */
5455 switch (cs->exception_index) {
5456 case EXCP_UDEF:
5457 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
5458 return;
5459 case EXCP_SWI:
5460 /* The PC already points to the next instruction. */
5461 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
5462 return;
5463 case EXCP_PREFETCH_ABORT:
5464 case EXCP_DATA_ABORT:
5465 /* TODO: if we implemented the MPU registers, this is where we
5466 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5468 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
5469 return;
5470 case EXCP_BKPT:
5471 if (semihosting_enabled()) {
5472 int nr;
5473 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5474 if (nr == 0xab) {
5475 env->regs[15] += 2;
5476 qemu_log_mask(CPU_LOG_INT,
5477 "...handling as semihosting call 0x%x\n",
5478 env->regs[0]);
5479 env->regs[0] = do_arm_semihosting(env);
5480 return;
5483 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
5484 return;
5485 case EXCP_IRQ:
5486 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
5487 break;
5488 case EXCP_EXCEPTION_EXIT:
5489 do_v7m_exception_exit(env);
5490 return;
5491 default:
5492 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5493 return; /* Never happens. Keep compiler happy. */
5496 /* Align stack pointer. */
5497 /* ??? Should only do this if Configuration Control Register
5498 STACKALIGN bit is set. */
5499 if (env->regs[13] & 4) {
5500 env->regs[13] -= 4;
5501 xpsr |= 0x200;
5503 /* Switch to the handler mode. */
5504 v7m_push(env, xpsr);
5505 v7m_push(env, env->regs[15]);
5506 v7m_push(env, env->regs[14]);
5507 v7m_push(env, env->regs[12]);
5508 v7m_push(env, env->regs[3]);
5509 v7m_push(env, env->regs[2]);
5510 v7m_push(env, env->regs[1]);
5511 v7m_push(env, env->regs[0]);
5512 switch_v7m_sp(env, 0);
5513 /* Clear IT bits */
5514 env->condexec_bits = 0;
5515 env->regs[14] = lr;
5516 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
5517 env->regs[15] = addr & 0xfffffffe;
5518 env->thumb = addr & 1;
5521 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5522 * register set. This is necessary when switching between AArch32 and AArch64
5523 * execution state.
5525 void aarch64_sync_32_to_64(CPUARMState *env)
5527 int i;
5528 uint32_t mode = env->uncached_cpsr & CPSR_M;
5530 /* We can blanket copy R[0:7] to X[0:7] */
5531 for (i = 0; i < 8; i++) {
5532 env->xregs[i] = env->regs[i];
5535 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5536 * Otherwise, they come from the banked user regs.
5538 if (mode == ARM_CPU_MODE_FIQ) {
5539 for (i = 8; i < 13; i++) {
5540 env->xregs[i] = env->usr_regs[i - 8];
5542 } else {
5543 for (i = 8; i < 13; i++) {
5544 env->xregs[i] = env->regs[i];
5548 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5549 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5550 * from the mode banked register.
5552 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5553 env->xregs[13] = env->regs[13];
5554 env->xregs[14] = env->regs[14];
5555 } else {
5556 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5557 /* HYP is an exception in that it is copied from r14 */
5558 if (mode == ARM_CPU_MODE_HYP) {
5559 env->xregs[14] = env->regs[14];
5560 } else {
5561 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5565 if (mode == ARM_CPU_MODE_HYP) {
5566 env->xregs[15] = env->regs[13];
5567 } else {
5568 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5571 if (mode == ARM_CPU_MODE_IRQ) {
5572 env->xregs[16] = env->regs[14];
5573 env->xregs[17] = env->regs[13];
5574 } else {
5575 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5576 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5579 if (mode == ARM_CPU_MODE_SVC) {
5580 env->xregs[18] = env->regs[14];
5581 env->xregs[19] = env->regs[13];
5582 } else {
5583 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5584 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5587 if (mode == ARM_CPU_MODE_ABT) {
5588 env->xregs[20] = env->regs[14];
5589 env->xregs[21] = env->regs[13];
5590 } else {
5591 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5592 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5595 if (mode == ARM_CPU_MODE_UND) {
5596 env->xregs[22] = env->regs[14];
5597 env->xregs[23] = env->regs[13];
5598 } else {
5599 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5600 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5603 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5604 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5605 * FIQ bank for r8-r14.
5607 if (mode == ARM_CPU_MODE_FIQ) {
5608 for (i = 24; i < 31; i++) {
5609 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5611 } else {
5612 for (i = 24; i < 29; i++) {
5613 env->xregs[i] = env->fiq_regs[i - 24];
5615 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5616 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5619 env->pc = env->regs[15];
5622 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5623 * register set. This is necessary when switching between AArch32 and AArch64
5624 * execution state.
5626 void aarch64_sync_64_to_32(CPUARMState *env)
5628 int i;
5629 uint32_t mode = env->uncached_cpsr & CPSR_M;
5631 /* We can blanket copy X[0:7] to R[0:7] */
5632 for (i = 0; i < 8; i++) {
5633 env->regs[i] = env->xregs[i];
5636 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5637 * Otherwise, we copy x8-x12 into the banked user regs.
5639 if (mode == ARM_CPU_MODE_FIQ) {
5640 for (i = 8; i < 13; i++) {
5641 env->usr_regs[i - 8] = env->xregs[i];
5643 } else {
5644 for (i = 8; i < 13; i++) {
5645 env->regs[i] = env->xregs[i];
5649 /* Registers r13 & r14 depend on the current mode.
5650 * If we are in a given mode, we copy the corresponding x registers to r13
5651 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5652 * for the mode.
5654 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5655 env->regs[13] = env->xregs[13];
5656 env->regs[14] = env->xregs[14];
5657 } else {
5658 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5660 /* HYP is an exception in that it does not have its own banked r14 but
5661 * shares the USR r14
5663 if (mode == ARM_CPU_MODE_HYP) {
5664 env->regs[14] = env->xregs[14];
5665 } else {
5666 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5670 if (mode == ARM_CPU_MODE_HYP) {
5671 env->regs[13] = env->xregs[15];
5672 } else {
5673 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5676 if (mode == ARM_CPU_MODE_IRQ) {
5677 env->regs[14] = env->xregs[16];
5678 env->regs[13] = env->xregs[17];
5679 } else {
5680 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5681 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
5684 if (mode == ARM_CPU_MODE_SVC) {
5685 env->regs[14] = env->xregs[18];
5686 env->regs[13] = env->xregs[19];
5687 } else {
5688 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5689 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
5692 if (mode == ARM_CPU_MODE_ABT) {
5693 env->regs[14] = env->xregs[20];
5694 env->regs[13] = env->xregs[21];
5695 } else {
5696 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5697 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
5700 if (mode == ARM_CPU_MODE_UND) {
5701 env->regs[14] = env->xregs[22];
5702 env->regs[13] = env->xregs[23];
5703 } else {
5704 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5705 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
5708 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5709 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5710 * FIQ bank for r8-r14.
5712 if (mode == ARM_CPU_MODE_FIQ) {
5713 for (i = 24; i < 31; i++) {
5714 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5716 } else {
5717 for (i = 24; i < 29; i++) {
5718 env->fiq_regs[i - 24] = env->xregs[i];
5720 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5721 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5724 env->regs[15] = env->pc;
5727 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
5729 ARMCPU *cpu = ARM_CPU(cs);
5730 CPUARMState *env = &cpu->env;
5731 uint32_t addr;
5732 uint32_t mask;
5733 int new_mode;
5734 uint32_t offset;
5735 uint32_t moe;
5737 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5738 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5739 case EC_BREAKPOINT:
5740 case EC_BREAKPOINT_SAME_EL:
5741 moe = 1;
5742 break;
5743 case EC_WATCHPOINT:
5744 case EC_WATCHPOINT_SAME_EL:
5745 moe = 10;
5746 break;
5747 case EC_AA32_BKPT:
5748 moe = 3;
5749 break;
5750 case EC_VECTORCATCH:
5751 moe = 5;
5752 break;
5753 default:
5754 moe = 0;
5755 break;
5758 if (moe) {
5759 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5762 /* TODO: Vectored interrupt controller. */
5763 switch (cs->exception_index) {
5764 case EXCP_UDEF:
5765 new_mode = ARM_CPU_MODE_UND;
5766 addr = 0x04;
5767 mask = CPSR_I;
5768 if (env->thumb)
5769 offset = 2;
5770 else
5771 offset = 4;
5772 break;
5773 case EXCP_SWI:
5774 new_mode = ARM_CPU_MODE_SVC;
5775 addr = 0x08;
5776 mask = CPSR_I;
5777 /* The PC already points to the next instruction. */
5778 offset = 0;
5779 break;
5780 case EXCP_BKPT:
5781 env->exception.fsr = 2;
5782 /* Fall through to prefetch abort. */
5783 case EXCP_PREFETCH_ABORT:
5784 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
5785 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
5786 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
5787 env->exception.fsr, (uint32_t)env->exception.vaddress);
5788 new_mode = ARM_CPU_MODE_ABT;
5789 addr = 0x0c;
5790 mask = CPSR_A | CPSR_I;
5791 offset = 4;
5792 break;
5793 case EXCP_DATA_ABORT:
5794 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
5795 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
5796 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
5797 env->exception.fsr,
5798 (uint32_t)env->exception.vaddress);
5799 new_mode = ARM_CPU_MODE_ABT;
5800 addr = 0x10;
5801 mask = CPSR_A | CPSR_I;
5802 offset = 8;
5803 break;
5804 case EXCP_IRQ:
5805 new_mode = ARM_CPU_MODE_IRQ;
5806 addr = 0x18;
5807 /* Disable IRQ and imprecise data aborts. */
5808 mask = CPSR_A | CPSR_I;
5809 offset = 4;
5810 if (env->cp15.scr_el3 & SCR_IRQ) {
5811 /* IRQ routed to monitor mode */
5812 new_mode = ARM_CPU_MODE_MON;
5813 mask |= CPSR_F;
5815 break;
5816 case EXCP_FIQ:
5817 new_mode = ARM_CPU_MODE_FIQ;
5818 addr = 0x1c;
5819 /* Disable FIQ, IRQ and imprecise data aborts. */
5820 mask = CPSR_A | CPSR_I | CPSR_F;
5821 if (env->cp15.scr_el3 & SCR_FIQ) {
5822 /* FIQ routed to monitor mode */
5823 new_mode = ARM_CPU_MODE_MON;
5825 offset = 4;
5826 break;
5827 case EXCP_SMC:
5828 new_mode = ARM_CPU_MODE_MON;
5829 addr = 0x08;
5830 mask = CPSR_A | CPSR_I | CPSR_F;
5831 offset = 0;
5832 break;
5833 default:
5834 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5835 return; /* Never happens. Keep compiler happy. */
5838 if (new_mode == ARM_CPU_MODE_MON) {
5839 addr += env->cp15.mvbar;
5840 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
5841 /* High vectors. When enabled, base address cannot be remapped. */
5842 addr += 0xffff0000;
5843 } else {
5844 /* ARM v7 architectures provide a vector base address register to remap
5845 * the interrupt vector table.
5846 * This register is only followed in non-monitor mode, and is banked.
5847 * Note: only bits 31:5 are valid.
5849 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
5852 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
5853 env->cp15.scr_el3 &= ~SCR_NS;
5856 switch_mode (env, new_mode);
5857 /* For exceptions taken to AArch32 we must clear the SS bit in both
5858 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5860 env->uncached_cpsr &= ~PSTATE_SS;
5861 env->spsr = cpsr_read(env);
5862 /* Clear IT bits. */
5863 env->condexec_bits = 0;
5864 /* Switch to the new mode, and to the correct instruction set. */
5865 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
5866 env->daif |= mask;
5867 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5868 * and we should just guard the thumb mode on V4 */
5869 if (arm_feature(env, ARM_FEATURE_V4T)) {
5870 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
5872 env->regs[14] = env->regs[15] + offset;
5873 env->regs[15] = addr;
5876 /* Handle exception entry to a target EL which is using AArch64 */
5877 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
5879 ARMCPU *cpu = ARM_CPU(cs);
5880 CPUARMState *env = &cpu->env;
5881 unsigned int new_el = env->exception.target_el;
5882 target_ulong addr = env->cp15.vbar_el[new_el];
5883 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
5885 if (arm_current_el(env) < new_el) {
5886 /* Entry vector offset depends on whether the implemented EL
5887 * immediately lower than the target level is using AArch32 or AArch64
5889 bool is_aa64;
5891 switch (new_el) {
5892 case 3:
5893 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
5894 break;
5895 case 2:
5896 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
5897 break;
5898 case 1:
5899 is_aa64 = is_a64(env);
5900 break;
5901 default:
5902 g_assert_not_reached();
5905 if (is_aa64) {
5906 addr += 0x400;
5907 } else {
5908 addr += 0x600;
5910 } else if (pstate_read(env) & PSTATE_SP) {
5911 addr += 0x200;
5914 switch (cs->exception_index) {
5915 case EXCP_PREFETCH_ABORT:
5916 case EXCP_DATA_ABORT:
5917 env->cp15.far_el[new_el] = env->exception.vaddress;
5918 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
5919 env->cp15.far_el[new_el]);
5920 /* fall through */
5921 case EXCP_BKPT:
5922 case EXCP_UDEF:
5923 case EXCP_SWI:
5924 case EXCP_HVC:
5925 case EXCP_HYP_TRAP:
5926 case EXCP_SMC:
5927 env->cp15.esr_el[new_el] = env->exception.syndrome;
5928 break;
5929 case EXCP_IRQ:
5930 case EXCP_VIRQ:
5931 addr += 0x80;
5932 break;
5933 case EXCP_FIQ:
5934 case EXCP_VFIQ:
5935 addr += 0x100;
5936 break;
5937 case EXCP_SEMIHOST:
5938 qemu_log_mask(CPU_LOG_INT,
5939 "...handling as semihosting call 0x%" PRIx64 "\n",
5940 env->xregs[0]);
5941 env->xregs[0] = do_arm_semihosting(env);
5942 return;
5943 default:
5944 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5947 if (is_a64(env)) {
5948 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
5949 aarch64_save_sp(env, arm_current_el(env));
5950 env->elr_el[new_el] = env->pc;
5951 } else {
5952 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
5953 if (!env->thumb) {
5954 env->cp15.esr_el[new_el] |= 1 << 25;
5956 env->elr_el[new_el] = env->regs[15];
5958 aarch64_sync_32_to_64(env);
5960 env->condexec_bits = 0;
5962 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
5963 env->elr_el[new_el]);
5965 pstate_write(env, PSTATE_DAIF | new_mode);
5966 env->aarch64 = 1;
5967 aarch64_restore_sp(env, new_el);
5969 env->pc = addr;
5971 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
5972 new_el, env->pc, pstate_read(env));
5975 static inline bool check_for_semihosting(CPUState *cs)
5977 /* Check whether this exception is a semihosting call; if so
5978 * then handle it and return true; otherwise return false.
5980 ARMCPU *cpu = ARM_CPU(cs);
5981 CPUARMState *env = &cpu->env;
5983 if (is_a64(env)) {
5984 if (cs->exception_index == EXCP_SEMIHOST) {
5985 /* This is always the 64-bit semihosting exception.
5986 * The "is this usermode" and "is semihosting enabled"
5987 * checks have been done at translate time.
5989 qemu_log_mask(CPU_LOG_INT,
5990 "...handling as semihosting call 0x%" PRIx64 "\n",
5991 env->xregs[0]);
5992 env->xregs[0] = do_arm_semihosting(env);
5993 return true;
5995 return false;
5996 } else {
5997 uint32_t imm;
5999 /* Only intercept calls from privileged modes, to provide some
6000 * semblance of security.
6002 if (!semihosting_enabled() ||
6003 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
6004 return false;
6007 switch (cs->exception_index) {
6008 case EXCP_SWI:
6009 /* Check for semihosting interrupt. */
6010 if (env->thumb) {
6011 imm = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
6012 & 0xff;
6013 if (imm == 0xab) {
6014 break;
6016 } else {
6017 imm = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
6018 & 0xffffff;
6019 if (imm == 0x123456) {
6020 break;
6023 return false;
6024 case EXCP_BKPT:
6025 /* See if this is a semihosting syscall. */
6026 if (env->thumb) {
6027 imm = arm_lduw_code(env, env->regs[15], env->bswap_code)
6028 & 0xff;
6029 if (imm == 0xab) {
6030 env->regs[15] += 2;
6031 break;
6034 return false;
6035 default:
6036 return false;
6039 qemu_log_mask(CPU_LOG_INT,
6040 "...handling as semihosting call 0x%x\n",
6041 env->regs[0]);
6042 env->regs[0] = do_arm_semihosting(env);
6043 return true;
6047 /* Handle a CPU exception for A and R profile CPUs.
6048 * Do any appropriate logging, handle PSCI calls, and then hand off
6049 * to the AArch64-entry or AArch32-entry function depending on the
6050 * target exception level's register width.
6052 void arm_cpu_do_interrupt(CPUState *cs)
6054 ARMCPU *cpu = ARM_CPU(cs);
6055 CPUARMState *env = &cpu->env;
6056 unsigned int new_el = env->exception.target_el;
6058 assert(!IS_M(env));
6060 arm_log_exception(cs->exception_index);
6061 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6062 new_el);
6063 if (qemu_loglevel_mask(CPU_LOG_INT)
6064 && !excp_is_internal(cs->exception_index)) {
6065 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6066 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6067 env->exception.syndrome);
6070 if (arm_is_psci_call(cpu, cs->exception_index)) {
6071 arm_handle_psci_call(cpu);
6072 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6073 return;
6076 /* Semihosting semantics depend on the register width of the
6077 * code that caused the exception, not the target exception level,
6078 * so must be handled here.
6080 if (check_for_semihosting(cs)) {
6081 return;
6084 assert(!excp_is_internal(cs->exception_index));
6085 if (arm_el_is_aa64(env, new_el)) {
6086 arm_cpu_do_interrupt_aarch64(cs);
6087 } else {
6088 arm_cpu_do_interrupt_aarch32(cs);
6091 if (!kvm_enabled()) {
6092 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6096 /* Return the exception level which controls this address translation regime */
6097 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6099 switch (mmu_idx) {
6100 case ARMMMUIdx_S2NS:
6101 case ARMMMUIdx_S1E2:
6102 return 2;
6103 case ARMMMUIdx_S1E3:
6104 return 3;
6105 case ARMMMUIdx_S1SE0:
6106 return arm_el_is_aa64(env, 3) ? 1 : 3;
6107 case ARMMMUIdx_S1SE1:
6108 case ARMMMUIdx_S1NSE0:
6109 case ARMMMUIdx_S1NSE1:
6110 return 1;
6111 default:
6112 g_assert_not_reached();
6116 /* Return true if this address translation regime is secure */
6117 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6119 switch (mmu_idx) {
6120 case ARMMMUIdx_S12NSE0:
6121 case ARMMMUIdx_S12NSE1:
6122 case ARMMMUIdx_S1NSE0:
6123 case ARMMMUIdx_S1NSE1:
6124 case ARMMMUIdx_S1E2:
6125 case ARMMMUIdx_S2NS:
6126 return false;
6127 case ARMMMUIdx_S1E3:
6128 case ARMMMUIdx_S1SE0:
6129 case ARMMMUIdx_S1SE1:
6130 return true;
6131 default:
6132 g_assert_not_reached();
6136 /* Return the SCTLR value which controls this address translation regime */
6137 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6139 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6142 /* Return true if the specified stage of address translation is disabled */
6143 static inline bool regime_translation_disabled(CPUARMState *env,
6144 ARMMMUIdx mmu_idx)
6146 if (mmu_idx == ARMMMUIdx_S2NS) {
6147 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6149 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6152 /* Return the TCR controlling this translation regime */
6153 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6155 if (mmu_idx == ARMMMUIdx_S2NS) {
6156 return &env->cp15.vtcr_el2;
6158 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6161 /* Return the TTBR associated with this translation regime */
6162 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6163 int ttbrn)
6165 if (mmu_idx == ARMMMUIdx_S2NS) {
6166 return env->cp15.vttbr_el2;
6168 if (ttbrn == 0) {
6169 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6170 } else {
6171 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6175 /* Return true if the translation regime is using LPAE format page tables */
6176 static inline bool regime_using_lpae_format(CPUARMState *env,
6177 ARMMMUIdx mmu_idx)
6179 int el = regime_el(env, mmu_idx);
6180 if (el == 2 || arm_el_is_aa64(env, el)) {
6181 return true;
6183 if (arm_feature(env, ARM_FEATURE_LPAE)
6184 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6185 return true;
6187 return false;
6190 /* Returns true if the stage 1 translation regime is using LPAE format page
6191 * tables. Used when raising alignment exceptions, whose FSR changes depending
6192 * on whether the long or short descriptor format is in use. */
6193 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6195 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6196 mmu_idx += ARMMMUIdx_S1NSE0;
6199 return regime_using_lpae_format(env, mmu_idx);
6202 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6204 switch (mmu_idx) {
6205 case ARMMMUIdx_S1SE0:
6206 case ARMMMUIdx_S1NSE0:
6207 return true;
6208 default:
6209 return false;
6210 case ARMMMUIdx_S12NSE0:
6211 case ARMMMUIdx_S12NSE1:
6212 g_assert_not_reached();
6216 /* Translate section/page access permissions to page
6217 * R/W protection flags
6219 * @env: CPUARMState
6220 * @mmu_idx: MMU index indicating required translation regime
6221 * @ap: The 3-bit access permissions (AP[2:0])
6222 * @domain_prot: The 2-bit domain access permissions
6224 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6225 int ap, int domain_prot)
6227 bool is_user = regime_is_user(env, mmu_idx);
6229 if (domain_prot == 3) {
6230 return PAGE_READ | PAGE_WRITE;
6233 switch (ap) {
6234 case 0:
6235 if (arm_feature(env, ARM_FEATURE_V7)) {
6236 return 0;
6238 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6239 case SCTLR_S:
6240 return is_user ? 0 : PAGE_READ;
6241 case SCTLR_R:
6242 return PAGE_READ;
6243 default:
6244 return 0;
6246 case 1:
6247 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6248 case 2:
6249 if (is_user) {
6250 return PAGE_READ;
6251 } else {
6252 return PAGE_READ | PAGE_WRITE;
6254 case 3:
6255 return PAGE_READ | PAGE_WRITE;
6256 case 4: /* Reserved. */
6257 return 0;
6258 case 5:
6259 return is_user ? 0 : PAGE_READ;
6260 case 6:
6261 return PAGE_READ;
6262 case 7:
6263 if (!arm_feature(env, ARM_FEATURE_V6K)) {
6264 return 0;
6266 return PAGE_READ;
6267 default:
6268 g_assert_not_reached();
6272 /* Translate section/page access permissions to page
6273 * R/W protection flags.
6275 * @ap: The 2-bit simple AP (AP[2:1])
6276 * @is_user: TRUE if accessing from PL0
6278 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6280 switch (ap) {
6281 case 0:
6282 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6283 case 1:
6284 return PAGE_READ | PAGE_WRITE;
6285 case 2:
6286 return is_user ? 0 : PAGE_READ;
6287 case 3:
6288 return PAGE_READ;
6289 default:
6290 g_assert_not_reached();
6294 static inline int
6295 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6297 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6300 /* Translate S2 section/page access permissions to protection flags
6302 * @env: CPUARMState
6303 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6304 * @xn: XN (execute-never) bit
6306 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6308 int prot = 0;
6310 if (s2ap & 1) {
6311 prot |= PAGE_READ;
6313 if (s2ap & 2) {
6314 prot |= PAGE_WRITE;
6316 if (!xn) {
6317 prot |= PAGE_EXEC;
6319 return prot;
6322 /* Translate section/page access permissions to protection flags
6324 * @env: CPUARMState
6325 * @mmu_idx: MMU index indicating required translation regime
6326 * @is_aa64: TRUE if AArch64
6327 * @ap: The 2-bit simple AP (AP[2:1])
6328 * @ns: NS (non-secure) bit
6329 * @xn: XN (execute-never) bit
6330 * @pxn: PXN (privileged execute-never) bit
6332 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6333 int ap, int ns, int xn, int pxn)
6335 bool is_user = regime_is_user(env, mmu_idx);
6336 int prot_rw, user_rw;
6337 bool have_wxn;
6338 int wxn = 0;
6340 assert(mmu_idx != ARMMMUIdx_S2NS);
6342 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6343 if (is_user) {
6344 prot_rw = user_rw;
6345 } else {
6346 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6349 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6350 return prot_rw;
6353 /* TODO have_wxn should be replaced with
6354 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6355 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6356 * compatible processors have EL2, which is required for [U]WXN.
6358 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6360 if (have_wxn) {
6361 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6364 if (is_aa64) {
6365 switch (regime_el(env, mmu_idx)) {
6366 case 1:
6367 if (!is_user) {
6368 xn = pxn || (user_rw & PAGE_WRITE);
6370 break;
6371 case 2:
6372 case 3:
6373 break;
6375 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6376 switch (regime_el(env, mmu_idx)) {
6377 case 1:
6378 case 3:
6379 if (is_user) {
6380 xn = xn || !(user_rw & PAGE_READ);
6381 } else {
6382 int uwxn = 0;
6383 if (have_wxn) {
6384 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6386 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6387 (uwxn && (user_rw & PAGE_WRITE));
6389 break;
6390 case 2:
6391 break;
6393 } else {
6394 xn = wxn = 0;
6397 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6398 return prot_rw;
6400 return prot_rw | PAGE_EXEC;
6403 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6404 uint32_t *table, uint32_t address)
6406 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6407 TCR *tcr = regime_tcr(env, mmu_idx);
6409 if (address & tcr->mask) {
6410 if (tcr->raw_tcr & TTBCR_PD1) {
6411 /* Translation table walk disabled for TTBR1 */
6412 return false;
6414 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6415 } else {
6416 if (tcr->raw_tcr & TTBCR_PD0) {
6417 /* Translation table walk disabled for TTBR0 */
6418 return false;
6420 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6422 *table |= (address >> 18) & 0x3ffc;
6423 return true;
6426 /* Translate a S1 pagetable walk through S2 if needed. */
6427 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6428 hwaddr addr, MemTxAttrs txattrs,
6429 uint32_t *fsr,
6430 ARMMMUFaultInfo *fi)
6432 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6433 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6434 target_ulong s2size;
6435 hwaddr s2pa;
6436 int s2prot;
6437 int ret;
6439 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
6440 &txattrs, &s2prot, &s2size, fsr, fi);
6441 if (ret) {
6442 fi->s2addr = addr;
6443 fi->stage2 = true;
6444 fi->s1ptw = true;
6445 return ~0;
6447 addr = s2pa;
6449 return addr;
6452 /* All loads done in the course of a page table walk go through here.
6453 * TODO: rather than ignoring errors from physical memory reads (which
6454 * are external aborts in ARM terminology) we should propagate this
6455 * error out so that we can turn it into a Data Abort if this walk
6456 * was being done for a CPU load/store or an address translation instruction
6457 * (but not if it was for a debug access).
6459 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6460 ARMMMUIdx mmu_idx, uint32_t *fsr,
6461 ARMMMUFaultInfo *fi)
6463 ARMCPU *cpu = ARM_CPU(cs);
6464 CPUARMState *env = &cpu->env;
6465 MemTxAttrs attrs = {};
6466 AddressSpace *as;
6468 attrs.secure = is_secure;
6469 as = arm_addressspace(cs, attrs);
6470 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6471 if (fi->s1ptw) {
6472 return 0;
6474 return address_space_ldl(as, addr, attrs, NULL);
6477 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6478 ARMMMUIdx mmu_idx, uint32_t *fsr,
6479 ARMMMUFaultInfo *fi)
6481 ARMCPU *cpu = ARM_CPU(cs);
6482 CPUARMState *env = &cpu->env;
6483 MemTxAttrs attrs = {};
6484 AddressSpace *as;
6486 attrs.secure = is_secure;
6487 as = arm_addressspace(cs, attrs);
6488 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6489 if (fi->s1ptw) {
6490 return 0;
6492 return address_space_ldq(as, addr, attrs, NULL);
6495 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6496 int access_type, ARMMMUIdx mmu_idx,
6497 hwaddr *phys_ptr, int *prot,
6498 target_ulong *page_size, uint32_t *fsr,
6499 ARMMMUFaultInfo *fi)
6501 CPUState *cs = CPU(arm_env_get_cpu(env));
6502 int code;
6503 uint32_t table;
6504 uint32_t desc;
6505 int type;
6506 int ap;
6507 int domain = 0;
6508 int domain_prot;
6509 hwaddr phys_addr;
6510 uint32_t dacr;
6512 /* Pagetable walk. */
6513 /* Lookup l1 descriptor. */
6514 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6515 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6516 code = 5;
6517 goto do_fault;
6519 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6520 mmu_idx, fsr, fi);
6521 type = (desc & 3);
6522 domain = (desc >> 5) & 0x0f;
6523 if (regime_el(env, mmu_idx) == 1) {
6524 dacr = env->cp15.dacr_ns;
6525 } else {
6526 dacr = env->cp15.dacr_s;
6528 domain_prot = (dacr >> (domain * 2)) & 3;
6529 if (type == 0) {
6530 /* Section translation fault. */
6531 code = 5;
6532 goto do_fault;
6534 if (domain_prot == 0 || domain_prot == 2) {
6535 if (type == 2)
6536 code = 9; /* Section domain fault. */
6537 else
6538 code = 11; /* Page domain fault. */
6539 goto do_fault;
6541 if (type == 2) {
6542 /* 1Mb section. */
6543 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6544 ap = (desc >> 10) & 3;
6545 code = 13;
6546 *page_size = 1024 * 1024;
6547 } else {
6548 /* Lookup l2 entry. */
6549 if (type == 1) {
6550 /* Coarse pagetable. */
6551 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6552 } else {
6553 /* Fine pagetable. */
6554 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6556 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6557 mmu_idx, fsr, fi);
6558 switch (desc & 3) {
6559 case 0: /* Page translation fault. */
6560 code = 7;
6561 goto do_fault;
6562 case 1: /* 64k page. */
6563 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6564 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
6565 *page_size = 0x10000;
6566 break;
6567 case 2: /* 4k page. */
6568 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6569 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
6570 *page_size = 0x1000;
6571 break;
6572 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6573 if (type == 1) {
6574 /* ARMv6/XScale extended small page format */
6575 if (arm_feature(env, ARM_FEATURE_XSCALE)
6576 || arm_feature(env, ARM_FEATURE_V6)) {
6577 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6578 *page_size = 0x1000;
6579 } else {
6580 /* UNPREDICTABLE in ARMv5; we choose to take a
6581 * page translation fault.
6583 code = 7;
6584 goto do_fault;
6586 } else {
6587 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
6588 *page_size = 0x400;
6590 ap = (desc >> 4) & 3;
6591 break;
6592 default:
6593 /* Never happens, but compiler isn't smart enough to tell. */
6594 abort();
6596 code = 15;
6598 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6599 *prot |= *prot ? PAGE_EXEC : 0;
6600 if (!(*prot & (1 << access_type))) {
6601 /* Access permission fault. */
6602 goto do_fault;
6604 *phys_ptr = phys_addr;
6605 return false;
6606 do_fault:
6607 *fsr = code | (domain << 4);
6608 return true;
6611 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
6612 int access_type, ARMMMUIdx mmu_idx,
6613 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6614 target_ulong *page_size, uint32_t *fsr,
6615 ARMMMUFaultInfo *fi)
6617 CPUState *cs = CPU(arm_env_get_cpu(env));
6618 int code;
6619 uint32_t table;
6620 uint32_t desc;
6621 uint32_t xn;
6622 uint32_t pxn = 0;
6623 int type;
6624 int ap;
6625 int domain = 0;
6626 int domain_prot;
6627 hwaddr phys_addr;
6628 uint32_t dacr;
6629 bool ns;
6631 /* Pagetable walk. */
6632 /* Lookup l1 descriptor. */
6633 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6634 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6635 code = 5;
6636 goto do_fault;
6638 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6639 mmu_idx, fsr, fi);
6640 type = (desc & 3);
6641 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
6642 /* Section translation fault, or attempt to use the encoding
6643 * which is Reserved on implementations without PXN.
6645 code = 5;
6646 goto do_fault;
6648 if ((type == 1) || !(desc & (1 << 18))) {
6649 /* Page or Section. */
6650 domain = (desc >> 5) & 0x0f;
6652 if (regime_el(env, mmu_idx) == 1) {
6653 dacr = env->cp15.dacr_ns;
6654 } else {
6655 dacr = env->cp15.dacr_s;
6657 domain_prot = (dacr >> (domain * 2)) & 3;
6658 if (domain_prot == 0 || domain_prot == 2) {
6659 if (type != 1) {
6660 code = 9; /* Section domain fault. */
6661 } else {
6662 code = 11; /* Page domain fault. */
6664 goto do_fault;
6666 if (type != 1) {
6667 if (desc & (1 << 18)) {
6668 /* Supersection. */
6669 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
6670 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
6671 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
6672 *page_size = 0x1000000;
6673 } else {
6674 /* Section. */
6675 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6676 *page_size = 0x100000;
6678 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
6679 xn = desc & (1 << 4);
6680 pxn = desc & 1;
6681 code = 13;
6682 ns = extract32(desc, 19, 1);
6683 } else {
6684 if (arm_feature(env, ARM_FEATURE_PXN)) {
6685 pxn = (desc >> 2) & 1;
6687 ns = extract32(desc, 3, 1);
6688 /* Lookup l2 entry. */
6689 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6690 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6691 mmu_idx, fsr, fi);
6692 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
6693 switch (desc & 3) {
6694 case 0: /* Page translation fault. */
6695 code = 7;
6696 goto do_fault;
6697 case 1: /* 64k page. */
6698 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6699 xn = desc & (1 << 15);
6700 *page_size = 0x10000;
6701 break;
6702 case 2: case 3: /* 4k page. */
6703 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6704 xn = desc & 1;
6705 *page_size = 0x1000;
6706 break;
6707 default:
6708 /* Never happens, but compiler isn't smart enough to tell. */
6709 abort();
6711 code = 15;
6713 if (domain_prot == 3) {
6714 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6715 } else {
6716 if (pxn && !regime_is_user(env, mmu_idx)) {
6717 xn = 1;
6719 if (xn && access_type == 2)
6720 goto do_fault;
6722 if (arm_feature(env, ARM_FEATURE_V6K) &&
6723 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
6724 /* The simplified model uses AP[0] as an access control bit. */
6725 if ((ap & 1) == 0) {
6726 /* Access flag fault. */
6727 code = (code == 15) ? 6 : 3;
6728 goto do_fault;
6730 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6731 } else {
6732 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6734 if (*prot && !xn) {
6735 *prot |= PAGE_EXEC;
6737 if (!(*prot & (1 << access_type))) {
6738 /* Access permission fault. */
6739 goto do_fault;
6742 if (ns) {
6743 /* The NS bit will (as required by the architecture) have no effect if
6744 * the CPU doesn't support TZ or this is a non-secure translation
6745 * regime, because the attribute will already be non-secure.
6747 attrs->secure = false;
6749 *phys_ptr = phys_addr;
6750 return false;
6751 do_fault:
6752 *fsr = code | (domain << 4);
6753 return true;
6756 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6757 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6759 typedef enum {
6760 translation_fault = 1,
6761 access_fault = 2,
6762 permission_fault = 3,
6763 } MMUFaultType;
6766 * check_s2_startlevel
6767 * @cpu: ARMCPU
6768 * @is_aa64: True if the translation regime is in AArch64 state
6769 * @startlevel: Suggested starting level
6770 * @inputsize: Bitsize of IPAs
6771 * @stride: Page-table stride (See the ARM ARM)
6773 * Returns true if the suggested starting level is OK and false otherwise.
6775 static bool check_s2_startlevel(ARMCPU *cpu, bool is_aa64, int level,
6776 int inputsize, int stride)
6778 /* Negative levels are never allowed. */
6779 if (level < 0) {
6780 return false;
6783 if (is_aa64) {
6784 unsigned int pamax = arm_pamax(cpu);
6786 switch (stride) {
6787 case 13: /* 64KB Pages. */
6788 if (level == 0 || (level == 1 && pamax <= 42)) {
6789 return false;
6791 break;
6792 case 11: /* 16KB Pages. */
6793 if (level == 0 || (level == 1 && pamax <= 40)) {
6794 return false;
6796 break;
6797 case 9: /* 4KB Pages. */
6798 if (level == 0 && pamax <= 42) {
6799 return false;
6801 break;
6802 default:
6803 g_assert_not_reached();
6805 } else {
6806 const int grainsize = stride + 3;
6807 int startsizecheck;
6809 /* AArch32 only supports 4KB pages. Assert on that. */
6810 assert(stride == 9);
6812 if (level == 0) {
6813 return false;
6816 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
6817 if (startsizecheck < 1 || startsizecheck > stride + 4) {
6818 return false;
6821 return true;
6824 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
6825 int access_type, ARMMMUIdx mmu_idx,
6826 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
6827 target_ulong *page_size_ptr, uint32_t *fsr,
6828 ARMMMUFaultInfo *fi)
6830 ARMCPU *cpu = arm_env_get_cpu(env);
6831 CPUState *cs = CPU(cpu);
6832 /* Read an LPAE long-descriptor translation table. */
6833 MMUFaultType fault_type = translation_fault;
6834 uint32_t level = 1;
6835 uint32_t epd = 0;
6836 int32_t t0sz, t1sz;
6837 uint32_t tg;
6838 uint64_t ttbr;
6839 int ttbr_select;
6840 hwaddr descaddr, descmask;
6841 uint32_t tableattrs;
6842 target_ulong page_size;
6843 uint32_t attrs;
6844 int32_t stride = 9;
6845 int32_t va_size = 32;
6846 int inputsize;
6847 int32_t tbi = 0;
6848 TCR *tcr = regime_tcr(env, mmu_idx);
6849 int ap, ns, xn, pxn;
6850 uint32_t el = regime_el(env, mmu_idx);
6851 bool ttbr1_valid = true;
6852 uint64_t descaddrmask;
6854 /* TODO:
6855 * This code does not handle the different format TCR for VTCR_EL2.
6856 * This code also does not support shareability levels.
6857 * Attribute and permission bit handling should also be checked when adding
6858 * support for those page table walks.
6860 if (arm_el_is_aa64(env, el)) {
6861 va_size = 64;
6862 if (el > 1) {
6863 if (mmu_idx != ARMMMUIdx_S2NS) {
6864 tbi = extract64(tcr->raw_tcr, 20, 1);
6866 } else {
6867 if (extract64(address, 55, 1)) {
6868 tbi = extract64(tcr->raw_tcr, 38, 1);
6869 } else {
6870 tbi = extract64(tcr->raw_tcr, 37, 1);
6873 tbi *= 8;
6875 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6876 * invalid.
6878 if (el > 1) {
6879 ttbr1_valid = false;
6881 } else {
6882 /* There is no TTBR1 for EL2 */
6883 if (el == 2) {
6884 ttbr1_valid = false;
6888 /* Determine whether this address is in the region controlled by
6889 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6890 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6891 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6893 if (va_size == 64) {
6894 /* AArch64 translation. */
6895 t0sz = extract32(tcr->raw_tcr, 0, 6);
6896 t0sz = MIN(t0sz, 39);
6897 t0sz = MAX(t0sz, 16);
6898 } else if (mmu_idx != ARMMMUIdx_S2NS) {
6899 /* AArch32 stage 1 translation. */
6900 t0sz = extract32(tcr->raw_tcr, 0, 3);
6901 } else {
6902 /* AArch32 stage 2 translation. */
6903 bool sext = extract32(tcr->raw_tcr, 4, 1);
6904 bool sign = extract32(tcr->raw_tcr, 3, 1);
6905 t0sz = sextract32(tcr->raw_tcr, 0, 4);
6907 /* If the sign-extend bit is not the same as t0sz[3], the result
6908 * is unpredictable. Flag this as a guest error. */
6909 if (sign != sext) {
6910 qemu_log_mask(LOG_GUEST_ERROR,
6911 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
6914 t1sz = extract32(tcr->raw_tcr, 16, 6);
6915 if (va_size == 64) {
6916 t1sz = MIN(t1sz, 39);
6917 t1sz = MAX(t1sz, 16);
6919 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
6920 /* there is a ttbr0 region and we are in it (high bits all zero) */
6921 ttbr_select = 0;
6922 } else if (ttbr1_valid && t1sz &&
6923 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
6924 /* there is a ttbr1 region and we are in it (high bits all one) */
6925 ttbr_select = 1;
6926 } else if (!t0sz) {
6927 /* ttbr0 region is "everything not in the ttbr1 region" */
6928 ttbr_select = 0;
6929 } else if (!t1sz && ttbr1_valid) {
6930 /* ttbr1 region is "everything not in the ttbr0 region" */
6931 ttbr_select = 1;
6932 } else {
6933 /* in the gap between the two regions, this is a Translation fault */
6934 fault_type = translation_fault;
6935 goto do_fault;
6938 /* Note that QEMU ignores shareability and cacheability attributes,
6939 * so we don't need to do anything with the SH, ORGN, IRGN fields
6940 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6941 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6942 * implement any ASID-like capability so we can ignore it (instead
6943 * we will always flush the TLB any time the ASID is changed).
6945 if (ttbr_select == 0) {
6946 ttbr = regime_ttbr(env, mmu_idx, 0);
6947 if (el < 2) {
6948 epd = extract32(tcr->raw_tcr, 7, 1);
6950 inputsize = va_size - t0sz;
6952 tg = extract32(tcr->raw_tcr, 14, 2);
6953 if (tg == 1) { /* 64KB pages */
6954 stride = 13;
6956 if (tg == 2) { /* 16KB pages */
6957 stride = 11;
6959 } else {
6960 /* We should only be here if TTBR1 is valid */
6961 assert(ttbr1_valid);
6963 ttbr = regime_ttbr(env, mmu_idx, 1);
6964 epd = extract32(tcr->raw_tcr, 23, 1);
6965 inputsize = va_size - t1sz;
6967 tg = extract32(tcr->raw_tcr, 30, 2);
6968 if (tg == 3) { /* 64KB pages */
6969 stride = 13;
6971 if (tg == 1) { /* 16KB pages */
6972 stride = 11;
6976 /* Here we should have set up all the parameters for the translation:
6977 * va_size, inputsize, ttbr, epd, stride, tbi
6980 if (epd) {
6981 /* Translation table walk disabled => Translation fault on TLB miss
6982 * Note: This is always 0 on 64-bit EL2 and EL3.
6984 goto do_fault;
6987 if (mmu_idx != ARMMMUIdx_S2NS) {
6988 /* The starting level depends on the virtual address size (which can
6989 * be up to 48 bits) and the translation granule size. It indicates
6990 * the number of strides (stride bits at a time) needed to
6991 * consume the bits of the input address. In the pseudocode this is:
6992 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6993 * where their 'inputsize' is our 'inputsize', 'grainsize' is
6994 * our 'stride + 3' and 'stride' is our 'stride'.
6995 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6996 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
6997 * = 4 - (inputsize - 4) / stride;
6999 level = 4 - (inputsize - 4) / stride;
7000 } else {
7001 /* For stage 2 translations the starting level is specified by the
7002 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7004 int startlevel = extract32(tcr->raw_tcr, 6, 2);
7005 bool ok;
7007 if (va_size == 32 || stride == 9) {
7008 /* AArch32 or 4KB pages */
7009 level = 2 - startlevel;
7010 } else {
7011 /* 16KB or 64KB pages */
7012 level = 3 - startlevel;
7015 /* Check that the starting level is valid. */
7016 ok = check_s2_startlevel(cpu, va_size == 64, level,
7017 inputsize, stride);
7018 if (!ok) {
7019 /* AArch64 reports these as level 0 faults.
7020 * AArch32 reports these as level 1 faults.
7022 level = va_size == 64 ? 0 : 1;
7023 fault_type = translation_fault;
7024 goto do_fault;
7028 /* Clear the vaddr bits which aren't part of the within-region address,
7029 * so that we don't have to special case things when calculating the
7030 * first descriptor address.
7032 if (va_size != inputsize) {
7033 address &= (1ULL << inputsize) - 1;
7036 descmask = (1ULL << (stride + 3)) - 1;
7038 /* Now we can extract the actual base address from the TTBR */
7039 descaddr = extract64(ttbr, 0, 48);
7040 descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1);
7042 /* The address field in the descriptor goes up to bit 39 for ARMv7
7043 * but up to bit 47 for ARMv8.
7045 if (arm_feature(env, ARM_FEATURE_V8)) {
7046 descaddrmask = 0xfffffffff000ULL;
7047 } else {
7048 descaddrmask = 0xfffffff000ULL;
7051 /* Secure accesses start with the page table in secure memory and
7052 * can be downgraded to non-secure at any step. Non-secure accesses
7053 * remain non-secure. We implement this by just ORing in the NSTable/NS
7054 * bits at each step.
7056 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7057 for (;;) {
7058 uint64_t descriptor;
7059 bool nstable;
7061 descaddr |= (address >> (stride * (4 - level))) & descmask;
7062 descaddr &= ~7ULL;
7063 nstable = extract32(tableattrs, 4, 1);
7064 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7065 if (fi->s1ptw) {
7066 goto do_fault;
7069 if (!(descriptor & 1) ||
7070 (!(descriptor & 2) && (level == 3))) {
7071 /* Invalid, or the Reserved level 3 encoding */
7072 goto do_fault;
7074 descaddr = descriptor & descaddrmask;
7076 if ((descriptor & 2) && (level < 3)) {
7077 /* Table entry. The top five bits are attributes which may
7078 * propagate down through lower levels of the table (and
7079 * which are all arranged so that 0 means "no effect", so
7080 * we can gather them up by ORing in the bits at each level).
7082 tableattrs |= extract64(descriptor, 59, 5);
7083 level++;
7084 continue;
7086 /* Block entry at level 1 or 2, or page entry at level 3.
7087 * These are basically the same thing, although the number
7088 * of bits we pull in from the vaddr varies.
7090 page_size = (1ULL << ((stride * (4 - level)) + 3));
7091 descaddr |= (address & (page_size - 1));
7092 /* Extract attributes from the descriptor */
7093 attrs = extract64(descriptor, 2, 10)
7094 | (extract64(descriptor, 52, 12) << 10);
7096 if (mmu_idx == ARMMMUIdx_S2NS) {
7097 /* Stage 2 table descriptors do not include any attribute fields */
7098 break;
7100 /* Merge in attributes from table descriptors */
7101 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7102 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7103 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7104 * means "force PL1 access only", which means forcing AP[1] to 0.
7106 if (extract32(tableattrs, 2, 1)) {
7107 attrs &= ~(1 << 4);
7109 attrs |= nstable << 3; /* NS */
7110 break;
7112 /* Here descaddr is the final physical address, and attributes
7113 * are all in attrs.
7115 fault_type = access_fault;
7116 if ((attrs & (1 << 8)) == 0) {
7117 /* Access flag */
7118 goto do_fault;
7121 ap = extract32(attrs, 4, 2);
7122 xn = extract32(attrs, 12, 1);
7124 if (mmu_idx == ARMMMUIdx_S2NS) {
7125 ns = true;
7126 *prot = get_S2prot(env, ap, xn);
7127 } else {
7128 ns = extract32(attrs, 3, 1);
7129 pxn = extract32(attrs, 11, 1);
7130 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
7133 fault_type = permission_fault;
7134 if (!(*prot & (1 << access_type))) {
7135 goto do_fault;
7138 if (ns) {
7139 /* The NS bit will (as required by the architecture) have no effect if
7140 * the CPU doesn't support TZ or this is a non-secure translation
7141 * regime, because the attribute will already be non-secure.
7143 txattrs->secure = false;
7145 *phys_ptr = descaddr;
7146 *page_size_ptr = page_size;
7147 return false;
7149 do_fault:
7150 /* Long-descriptor format IFSR/DFSR value */
7151 *fsr = (1 << 9) | (fault_type << 2) | level;
7152 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7153 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7154 return true;
7157 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7158 ARMMMUIdx mmu_idx,
7159 int32_t address, int *prot)
7161 *prot = PAGE_READ | PAGE_WRITE;
7162 switch (address) {
7163 case 0xF0000000 ... 0xFFFFFFFF:
7164 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7165 *prot |= PAGE_EXEC;
7167 break;
7168 case 0x00000000 ... 0x7FFFFFFF:
7169 *prot |= PAGE_EXEC;
7170 break;
7175 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7176 int access_type, ARMMMUIdx mmu_idx,
7177 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7179 ARMCPU *cpu = arm_env_get_cpu(env);
7180 int n;
7181 bool is_user = regime_is_user(env, mmu_idx);
7183 *phys_ptr = address;
7184 *prot = 0;
7186 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7187 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7188 } else { /* MPU enabled */
7189 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7190 /* region search */
7191 uint32_t base = env->pmsav7.drbar[n];
7192 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7193 uint32_t rmask;
7194 bool srdis = false;
7196 if (!(env->pmsav7.drsr[n] & 0x1)) {
7197 continue;
7200 if (!rsize) {
7201 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7202 continue;
7204 rsize++;
7205 rmask = (1ull << rsize) - 1;
7207 if (base & rmask) {
7208 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7209 "to DRSR region size, mask = %" PRIx32,
7210 base, rmask);
7211 continue;
7214 if (address < base || address > base + rmask) {
7215 continue;
7218 /* Region matched */
7220 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7221 int i, snd;
7222 uint32_t srdis_mask;
7224 rsize -= 3; /* sub region size (power of 2) */
7225 snd = ((address - base) >> rsize) & 0x7;
7226 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7228 srdis_mask = srdis ? 0x3 : 0x0;
7229 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7230 /* This will check in groups of 2, 4 and then 8, whether
7231 * the subregion bits are consistent. rsize is incremented
7232 * back up to give the region size, considering consistent
7233 * adjacent subregions as one region. Stop testing if rsize
7234 * is already big enough for an entire QEMU page.
7236 int snd_rounded = snd & ~(i - 1);
7237 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7238 snd_rounded + 8, i);
7239 if (srdis_mask ^ srdis_multi) {
7240 break;
7242 srdis_mask = (srdis_mask << i) | srdis_mask;
7243 rsize++;
7246 if (rsize < TARGET_PAGE_BITS) {
7247 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7248 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7249 rsize, TARGET_PAGE_BITS);
7250 continue;
7252 if (srdis) {
7253 continue;
7255 break;
7258 if (n == -1) { /* no hits */
7259 if (cpu->pmsav7_dregion &&
7260 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7261 /* background fault */
7262 *fsr = 0;
7263 return true;
7265 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7266 } else { /* a MPU hit! */
7267 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7269 if (is_user) { /* User mode AP bit decoding */
7270 switch (ap) {
7271 case 0:
7272 case 1:
7273 case 5:
7274 break; /* no access */
7275 case 3:
7276 *prot |= PAGE_WRITE;
7277 /* fall through */
7278 case 2:
7279 case 6:
7280 *prot |= PAGE_READ | PAGE_EXEC;
7281 break;
7282 default:
7283 qemu_log_mask(LOG_GUEST_ERROR,
7284 "Bad value for AP bits in DRACR %"
7285 PRIx32 "\n", ap);
7287 } else { /* Priv. mode AP bits decoding */
7288 switch (ap) {
7289 case 0:
7290 break; /* no access */
7291 case 1:
7292 case 2:
7293 case 3:
7294 *prot |= PAGE_WRITE;
7295 /* fall through */
7296 case 5:
7297 case 6:
7298 *prot |= PAGE_READ | PAGE_EXEC;
7299 break;
7300 default:
7301 qemu_log_mask(LOG_GUEST_ERROR,
7302 "Bad value for AP bits in DRACR %"
7303 PRIx32 "\n", ap);
7307 /* execute never */
7308 if (env->pmsav7.dracr[n] & (1 << 12)) {
7309 *prot &= ~PAGE_EXEC;
7314 *fsr = 0x00d; /* Permission fault */
7315 return !(*prot & (1 << access_type));
7318 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7319 int access_type, ARMMMUIdx mmu_idx,
7320 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7322 int n;
7323 uint32_t mask;
7324 uint32_t base;
7325 bool is_user = regime_is_user(env, mmu_idx);
7327 *phys_ptr = address;
7328 for (n = 7; n >= 0; n--) {
7329 base = env->cp15.c6_region[n];
7330 if ((base & 1) == 0) {
7331 continue;
7333 mask = 1 << ((base >> 1) & 0x1f);
7334 /* Keep this shift separate from the above to avoid an
7335 (undefined) << 32. */
7336 mask = (mask << 1) - 1;
7337 if (((base ^ address) & ~mask) == 0) {
7338 break;
7341 if (n < 0) {
7342 *fsr = 2;
7343 return true;
7346 if (access_type == 2) {
7347 mask = env->cp15.pmsav5_insn_ap;
7348 } else {
7349 mask = env->cp15.pmsav5_data_ap;
7351 mask = (mask >> (n * 4)) & 0xf;
7352 switch (mask) {
7353 case 0:
7354 *fsr = 1;
7355 return true;
7356 case 1:
7357 if (is_user) {
7358 *fsr = 1;
7359 return true;
7361 *prot = PAGE_READ | PAGE_WRITE;
7362 break;
7363 case 2:
7364 *prot = PAGE_READ;
7365 if (!is_user) {
7366 *prot |= PAGE_WRITE;
7368 break;
7369 case 3:
7370 *prot = PAGE_READ | PAGE_WRITE;
7371 break;
7372 case 5:
7373 if (is_user) {
7374 *fsr = 1;
7375 return true;
7377 *prot = PAGE_READ;
7378 break;
7379 case 6:
7380 *prot = PAGE_READ;
7381 break;
7382 default:
7383 /* Bad permission. */
7384 *fsr = 1;
7385 return true;
7387 *prot |= PAGE_EXEC;
7388 return false;
7391 /* get_phys_addr - get the physical address for this virtual address
7393 * Find the physical address corresponding to the given virtual address,
7394 * by doing a translation table walk on MMU based systems or using the
7395 * MPU state on MPU based systems.
7397 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7398 * prot and page_size may not be filled in, and the populated fsr value provides
7399 * information on why the translation aborted, in the format of a
7400 * DFSR/IFSR fault register, with the following caveats:
7401 * * we honour the short vs long DFSR format differences.
7402 * * the WnR bit is never set (the caller must do this).
7403 * * for PSMAv5 based systems we don't bother to return a full FSR format
7404 * value.
7406 * @env: CPUARMState
7407 * @address: virtual address to get physical address for
7408 * @access_type: 0 for read, 1 for write, 2 for execute
7409 * @mmu_idx: MMU index indicating required translation regime
7410 * @phys_ptr: set to the physical address corresponding to the virtual address
7411 * @attrs: set to the memory transaction attributes to use
7412 * @prot: set to the permissions for the page containing phys_ptr
7413 * @page_size: set to the size of the page containing phys_ptr
7414 * @fsr: set to the DFSR/IFSR value on failure
7416 static bool get_phys_addr(CPUARMState *env, target_ulong address,
7417 int access_type, ARMMMUIdx mmu_idx,
7418 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7419 target_ulong *page_size, uint32_t *fsr,
7420 ARMMMUFaultInfo *fi)
7422 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7423 /* Call ourselves recursively to do the stage 1 and then stage 2
7424 * translations.
7426 if (arm_feature(env, ARM_FEATURE_EL2)) {
7427 hwaddr ipa;
7428 int s2_prot;
7429 int ret;
7431 ret = get_phys_addr(env, address, access_type,
7432 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
7433 prot, page_size, fsr, fi);
7435 /* If S1 fails or S2 is disabled, return early. */
7436 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7437 *phys_ptr = ipa;
7438 return ret;
7441 /* S1 is done. Now do S2 translation. */
7442 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
7443 phys_ptr, attrs, &s2_prot,
7444 page_size, fsr, fi);
7445 fi->s2addr = ipa;
7446 /* Combine the S1 and S2 perms. */
7447 *prot &= s2_prot;
7448 return ret;
7449 } else {
7451 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7453 mmu_idx += ARMMMUIdx_S1NSE0;
7457 /* The page table entries may downgrade secure to non-secure, but
7458 * cannot upgrade an non-secure translation regime's attributes
7459 * to secure.
7461 attrs->secure = regime_is_secure(env, mmu_idx);
7462 attrs->user = regime_is_user(env, mmu_idx);
7464 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7465 * In v7 and earlier it affects all stage 1 translations.
7467 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
7468 && !arm_feature(env, ARM_FEATURE_V8)) {
7469 if (regime_el(env, mmu_idx) == 3) {
7470 address += env->cp15.fcseidr_s;
7471 } else {
7472 address += env->cp15.fcseidr_ns;
7476 /* pmsav7 has special handling for when MPU is disabled so call it before
7477 * the common MMU/MPU disabled check below.
7479 if (arm_feature(env, ARM_FEATURE_MPU) &&
7480 arm_feature(env, ARM_FEATURE_V7)) {
7481 *page_size = TARGET_PAGE_SIZE;
7482 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
7483 phys_ptr, prot, fsr);
7486 if (regime_translation_disabled(env, mmu_idx)) {
7487 /* MMU/MPU disabled. */
7488 *phys_ptr = address;
7489 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7490 *page_size = TARGET_PAGE_SIZE;
7491 return 0;
7494 if (arm_feature(env, ARM_FEATURE_MPU)) {
7495 /* Pre-v7 MPU */
7496 *page_size = TARGET_PAGE_SIZE;
7497 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
7498 phys_ptr, prot, fsr);
7501 if (regime_using_lpae_format(env, mmu_idx)) {
7502 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
7503 attrs, prot, page_size, fsr, fi);
7504 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
7505 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
7506 attrs, prot, page_size, fsr, fi);
7507 } else {
7508 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
7509 prot, page_size, fsr, fi);
7513 /* Walk the page table and (if the mapping exists) add the page
7514 * to the TLB. Return false on success, or true on failure. Populate
7515 * fsr with ARM DFSR/IFSR fault register format value on failure.
7517 bool arm_tlb_fill(CPUState *cs, vaddr address,
7518 int access_type, int mmu_idx, uint32_t *fsr,
7519 ARMMMUFaultInfo *fi)
7521 ARMCPU *cpu = ARM_CPU(cs);
7522 CPUARMState *env = &cpu->env;
7523 hwaddr phys_addr;
7524 target_ulong page_size;
7525 int prot;
7526 int ret;
7527 MemTxAttrs attrs = {};
7529 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
7530 &attrs, &prot, &page_size, fsr, fi);
7531 if (!ret) {
7532 /* Map a single [sub]page. */
7533 phys_addr &= TARGET_PAGE_MASK;
7534 address &= TARGET_PAGE_MASK;
7535 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
7536 prot, mmu_idx, page_size);
7537 return 0;
7540 return ret;
7543 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
7544 MemTxAttrs *attrs)
7546 ARMCPU *cpu = ARM_CPU(cs);
7547 CPUARMState *env = &cpu->env;
7548 hwaddr phys_addr;
7549 target_ulong page_size;
7550 int prot;
7551 bool ret;
7552 uint32_t fsr;
7553 ARMMMUFaultInfo fi = {};
7555 *attrs = (MemTxAttrs) {};
7557 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
7558 attrs, &prot, &page_size, &fsr, &fi);
7560 if (ret) {
7561 return -1;
7563 return phys_addr;
7566 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
7568 if ((env->uncached_cpsr & CPSR_M) == mode) {
7569 env->regs[13] = val;
7570 } else {
7571 env->banked_r13[bank_number(mode)] = val;
7575 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
7577 if ((env->uncached_cpsr & CPSR_M) == mode) {
7578 return env->regs[13];
7579 } else {
7580 return env->banked_r13[bank_number(mode)];
7584 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7586 ARMCPU *cpu = arm_env_get_cpu(env);
7588 switch (reg) {
7589 case 0: /* APSR */
7590 return xpsr_read(env) & 0xf8000000;
7591 case 1: /* IAPSR */
7592 return xpsr_read(env) & 0xf80001ff;
7593 case 2: /* EAPSR */
7594 return xpsr_read(env) & 0xff00fc00;
7595 case 3: /* xPSR */
7596 return xpsr_read(env) & 0xff00fdff;
7597 case 5: /* IPSR */
7598 return xpsr_read(env) & 0x000001ff;
7599 case 6: /* EPSR */
7600 return xpsr_read(env) & 0x0700fc00;
7601 case 7: /* IEPSR */
7602 return xpsr_read(env) & 0x0700edff;
7603 case 8: /* MSP */
7604 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7605 case 9: /* PSP */
7606 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
7607 case 16: /* PRIMASK */
7608 return (env->daif & PSTATE_I) != 0;
7609 case 17: /* BASEPRI */
7610 case 18: /* BASEPRI_MAX */
7611 return env->v7m.basepri;
7612 case 19: /* FAULTMASK */
7613 return (env->daif & PSTATE_F) != 0;
7614 case 20: /* CONTROL */
7615 return env->v7m.control;
7616 default:
7617 /* ??? For debugging only. */
7618 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
7619 return 0;
7623 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7625 ARMCPU *cpu = arm_env_get_cpu(env);
7627 switch (reg) {
7628 case 0: /* APSR */
7629 xpsr_write(env, val, 0xf8000000);
7630 break;
7631 case 1: /* IAPSR */
7632 xpsr_write(env, val, 0xf8000000);
7633 break;
7634 case 2: /* EAPSR */
7635 xpsr_write(env, val, 0xfe00fc00);
7636 break;
7637 case 3: /* xPSR */
7638 xpsr_write(env, val, 0xfe00fc00);
7639 break;
7640 case 5: /* IPSR */
7641 /* IPSR bits are readonly. */
7642 break;
7643 case 6: /* EPSR */
7644 xpsr_write(env, val, 0x0600fc00);
7645 break;
7646 case 7: /* IEPSR */
7647 xpsr_write(env, val, 0x0600fc00);
7648 break;
7649 case 8: /* MSP */
7650 if (env->v7m.current_sp)
7651 env->v7m.other_sp = val;
7652 else
7653 env->regs[13] = val;
7654 break;
7655 case 9: /* PSP */
7656 if (env->v7m.current_sp)
7657 env->regs[13] = val;
7658 else
7659 env->v7m.other_sp = val;
7660 break;
7661 case 16: /* PRIMASK */
7662 if (val & 1) {
7663 env->daif |= PSTATE_I;
7664 } else {
7665 env->daif &= ~PSTATE_I;
7667 break;
7668 case 17: /* BASEPRI */
7669 env->v7m.basepri = val & 0xff;
7670 break;
7671 case 18: /* BASEPRI_MAX */
7672 val &= 0xff;
7673 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
7674 env->v7m.basepri = val;
7675 break;
7676 case 19: /* FAULTMASK */
7677 if (val & 1) {
7678 env->daif |= PSTATE_F;
7679 } else {
7680 env->daif &= ~PSTATE_F;
7682 break;
7683 case 20: /* CONTROL */
7684 env->v7m.control = val & 3;
7685 switch_v7m_sp(env, (val & 2) != 0);
7686 break;
7687 default:
7688 /* ??? For debugging only. */
7689 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
7690 return;
7694 #endif
7696 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
7698 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7699 * Note that we do not implement the (architecturally mandated)
7700 * alignment fault for attempts to use this on Device memory
7701 * (which matches the usual QEMU behaviour of not implementing either
7702 * alignment faults or any memory attribute handling).
7705 ARMCPU *cpu = arm_env_get_cpu(env);
7706 uint64_t blocklen = 4 << cpu->dcz_blocksize;
7707 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
7709 #ifndef CONFIG_USER_ONLY
7711 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7712 * the block size so we might have to do more than one TLB lookup.
7713 * We know that in fact for any v8 CPU the page size is at least 4K
7714 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7715 * 1K as an artefact of legacy v5 subpage support being present in the
7716 * same QEMU executable.
7718 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
7719 void *hostaddr[maxidx];
7720 int try, i;
7721 unsigned mmu_idx = cpu_mmu_index(env, false);
7722 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
7724 for (try = 0; try < 2; try++) {
7726 for (i = 0; i < maxidx; i++) {
7727 hostaddr[i] = tlb_vaddr_to_host(env,
7728 vaddr + TARGET_PAGE_SIZE * i,
7729 1, mmu_idx);
7730 if (!hostaddr[i]) {
7731 break;
7734 if (i == maxidx) {
7735 /* If it's all in the TLB it's fair game for just writing to;
7736 * we know we don't need to update dirty status, etc.
7738 for (i = 0; i < maxidx - 1; i++) {
7739 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
7741 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
7742 return;
7744 /* OK, try a store and see if we can populate the tlb. This
7745 * might cause an exception if the memory isn't writable,
7746 * in which case we will longjmp out of here. We must for
7747 * this purpose use the actual register value passed to us
7748 * so that we get the fault address right.
7750 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
7751 /* Now we can populate the other TLB entries, if any */
7752 for (i = 0; i < maxidx; i++) {
7753 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
7754 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
7755 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
7760 /* Slow path (probably attempt to do this to an I/O device or
7761 * similar, or clearing of a block of code we have translations
7762 * cached for). Just do a series of byte writes as the architecture
7763 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7764 * memset(), unmap() sequence here because:
7765 * + we'd need to account for the blocksize being larger than a page
7766 * + the direct-RAM access case is almost always going to be dealt
7767 * with in the fastpath code above, so there's no speed benefit
7768 * + we would have to deal with the map returning NULL because the
7769 * bounce buffer was in use
7771 for (i = 0; i < blocklen; i++) {
7772 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
7775 #else
7776 memset(g2h(vaddr), 0, blocklen);
7777 #endif
7780 /* Note that signed overflow is undefined in C. The following routines are
7781 careful to use unsigned types where modulo arithmetic is required.
7782 Failure to do so _will_ break on newer gcc. */
7784 /* Signed saturating arithmetic. */
7786 /* Perform 16-bit signed saturating addition. */
7787 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
7789 uint16_t res;
7791 res = a + b;
7792 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
7793 if (a & 0x8000)
7794 res = 0x8000;
7795 else
7796 res = 0x7fff;
7798 return res;
7801 /* Perform 8-bit signed saturating addition. */
7802 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
7804 uint8_t res;
7806 res = a + b;
7807 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
7808 if (a & 0x80)
7809 res = 0x80;
7810 else
7811 res = 0x7f;
7813 return res;
7816 /* Perform 16-bit signed saturating subtraction. */
7817 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
7819 uint16_t res;
7821 res = a - b;
7822 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
7823 if (a & 0x8000)
7824 res = 0x8000;
7825 else
7826 res = 0x7fff;
7828 return res;
7831 /* Perform 8-bit signed saturating subtraction. */
7832 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
7834 uint8_t res;
7836 res = a - b;
7837 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
7838 if (a & 0x80)
7839 res = 0x80;
7840 else
7841 res = 0x7f;
7843 return res;
7846 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7847 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7848 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7849 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7850 #define PFX q
7852 #include "op_addsub.h"
7854 /* Unsigned saturating arithmetic. */
7855 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
7857 uint16_t res;
7858 res = a + b;
7859 if (res < a)
7860 res = 0xffff;
7861 return res;
7864 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
7866 if (a > b)
7867 return a - b;
7868 else
7869 return 0;
7872 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
7874 uint8_t res;
7875 res = a + b;
7876 if (res < a)
7877 res = 0xff;
7878 return res;
7881 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
7883 if (a > b)
7884 return a - b;
7885 else
7886 return 0;
7889 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7890 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7891 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7892 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7893 #define PFX uq
7895 #include "op_addsub.h"
7897 /* Signed modulo arithmetic. */
7898 #define SARITH16(a, b, n, op) do { \
7899 int32_t sum; \
7900 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7901 RESULT(sum, n, 16); \
7902 if (sum >= 0) \
7903 ge |= 3 << (n * 2); \
7904 } while(0)
7906 #define SARITH8(a, b, n, op) do { \
7907 int32_t sum; \
7908 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7909 RESULT(sum, n, 8); \
7910 if (sum >= 0) \
7911 ge |= 1 << n; \
7912 } while(0)
7915 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7916 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7917 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7918 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7919 #define PFX s
7920 #define ARITH_GE
7922 #include "op_addsub.h"
7924 /* Unsigned modulo arithmetic. */
7925 #define ADD16(a, b, n) do { \
7926 uint32_t sum; \
7927 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7928 RESULT(sum, n, 16); \
7929 if ((sum >> 16) == 1) \
7930 ge |= 3 << (n * 2); \
7931 } while(0)
7933 #define ADD8(a, b, n) do { \
7934 uint32_t sum; \
7935 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7936 RESULT(sum, n, 8); \
7937 if ((sum >> 8) == 1) \
7938 ge |= 1 << n; \
7939 } while(0)
7941 #define SUB16(a, b, n) do { \
7942 uint32_t sum; \
7943 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7944 RESULT(sum, n, 16); \
7945 if ((sum >> 16) == 0) \
7946 ge |= 3 << (n * 2); \
7947 } while(0)
7949 #define SUB8(a, b, n) do { \
7950 uint32_t sum; \
7951 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7952 RESULT(sum, n, 8); \
7953 if ((sum >> 8) == 0) \
7954 ge |= 1 << n; \
7955 } while(0)
7957 #define PFX u
7958 #define ARITH_GE
7960 #include "op_addsub.h"
7962 /* Halved signed arithmetic. */
7963 #define ADD16(a, b, n) \
7964 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7965 #define SUB16(a, b, n) \
7966 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7967 #define ADD8(a, b, n) \
7968 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7969 #define SUB8(a, b, n) \
7970 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7971 #define PFX sh
7973 #include "op_addsub.h"
7975 /* Halved unsigned arithmetic. */
7976 #define ADD16(a, b, n) \
7977 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7978 #define SUB16(a, b, n) \
7979 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7980 #define ADD8(a, b, n) \
7981 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7982 #define SUB8(a, b, n) \
7983 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7984 #define PFX uh
7986 #include "op_addsub.h"
7988 static inline uint8_t do_usad(uint8_t a, uint8_t b)
7990 if (a > b)
7991 return a - b;
7992 else
7993 return b - a;
7996 /* Unsigned sum of absolute byte differences. */
7997 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
7999 uint32_t sum;
8000 sum = do_usad(a, b);
8001 sum += do_usad(a >> 8, b >> 8);
8002 sum += do_usad(a >> 16, b >>16);
8003 sum += do_usad(a >> 24, b >> 24);
8004 return sum;
8007 /* For ARMv6 SEL instruction. */
8008 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8010 uint32_t mask;
8012 mask = 0;
8013 if (flags & 1)
8014 mask |= 0xff;
8015 if (flags & 2)
8016 mask |= 0xff00;
8017 if (flags & 4)
8018 mask |= 0xff0000;
8019 if (flags & 8)
8020 mask |= 0xff000000;
8021 return (a & mask) | (b & ~mask);
8024 /* VFP support. We follow the convention used for VFP instructions:
8025 Single precision routines have a "s" suffix, double precision a
8026 "d" suffix. */
8028 /* Convert host exception flags to vfp form. */
8029 static inline int vfp_exceptbits_from_host(int host_bits)
8031 int target_bits = 0;
8033 if (host_bits & float_flag_invalid)
8034 target_bits |= 1;
8035 if (host_bits & float_flag_divbyzero)
8036 target_bits |= 2;
8037 if (host_bits & float_flag_overflow)
8038 target_bits |= 4;
8039 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8040 target_bits |= 8;
8041 if (host_bits & float_flag_inexact)
8042 target_bits |= 0x10;
8043 if (host_bits & float_flag_input_denormal)
8044 target_bits |= 0x80;
8045 return target_bits;
8048 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8050 int i;
8051 uint32_t fpscr;
8053 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8054 | (env->vfp.vec_len << 16)
8055 | (env->vfp.vec_stride << 20);
8056 i = get_float_exception_flags(&env->vfp.fp_status);
8057 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8058 fpscr |= vfp_exceptbits_from_host(i);
8059 return fpscr;
8062 uint32_t vfp_get_fpscr(CPUARMState *env)
8064 return HELPER(vfp_get_fpscr)(env);
8067 /* Convert vfp exception flags to target form. */
8068 static inline int vfp_exceptbits_to_host(int target_bits)
8070 int host_bits = 0;
8072 if (target_bits & 1)
8073 host_bits |= float_flag_invalid;
8074 if (target_bits & 2)
8075 host_bits |= float_flag_divbyzero;
8076 if (target_bits & 4)
8077 host_bits |= float_flag_overflow;
8078 if (target_bits & 8)
8079 host_bits |= float_flag_underflow;
8080 if (target_bits & 0x10)
8081 host_bits |= float_flag_inexact;
8082 if (target_bits & 0x80)
8083 host_bits |= float_flag_input_denormal;
8084 return host_bits;
8087 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8089 int i;
8090 uint32_t changed;
8092 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8093 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8094 env->vfp.vec_len = (val >> 16) & 7;
8095 env->vfp.vec_stride = (val >> 20) & 3;
8097 changed ^= val;
8098 if (changed & (3 << 22)) {
8099 i = (val >> 22) & 3;
8100 switch (i) {
8101 case FPROUNDING_TIEEVEN:
8102 i = float_round_nearest_even;
8103 break;
8104 case FPROUNDING_POSINF:
8105 i = float_round_up;
8106 break;
8107 case FPROUNDING_NEGINF:
8108 i = float_round_down;
8109 break;
8110 case FPROUNDING_ZERO:
8111 i = float_round_to_zero;
8112 break;
8114 set_float_rounding_mode(i, &env->vfp.fp_status);
8116 if (changed & (1 << 24)) {
8117 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8118 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8120 if (changed & (1 << 25))
8121 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8123 i = vfp_exceptbits_to_host(val);
8124 set_float_exception_flags(i, &env->vfp.fp_status);
8125 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8128 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8130 HELPER(vfp_set_fpscr)(env, val);
8133 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8135 #define VFP_BINOP(name) \
8136 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8138 float_status *fpst = fpstp; \
8139 return float32_ ## name(a, b, fpst); \
8141 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8143 float_status *fpst = fpstp; \
8144 return float64_ ## name(a, b, fpst); \
8146 VFP_BINOP(add)
8147 VFP_BINOP(sub)
8148 VFP_BINOP(mul)
8149 VFP_BINOP(div)
8150 VFP_BINOP(min)
8151 VFP_BINOP(max)
8152 VFP_BINOP(minnum)
8153 VFP_BINOP(maxnum)
8154 #undef VFP_BINOP
8156 float32 VFP_HELPER(neg, s)(float32 a)
8158 return float32_chs(a);
8161 float64 VFP_HELPER(neg, d)(float64 a)
8163 return float64_chs(a);
8166 float32 VFP_HELPER(abs, s)(float32 a)
8168 return float32_abs(a);
8171 float64 VFP_HELPER(abs, d)(float64 a)
8173 return float64_abs(a);
8176 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8178 return float32_sqrt(a, &env->vfp.fp_status);
8181 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8183 return float64_sqrt(a, &env->vfp.fp_status);
8186 /* XXX: check quiet/signaling case */
8187 #define DO_VFP_cmp(p, type) \
8188 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8190 uint32_t flags; \
8191 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8192 case 0: flags = 0x6; break; \
8193 case -1: flags = 0x8; break; \
8194 case 1: flags = 0x2; break; \
8195 default: case 2: flags = 0x3; break; \
8197 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8198 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8200 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8202 uint32_t flags; \
8203 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8204 case 0: flags = 0x6; break; \
8205 case -1: flags = 0x8; break; \
8206 case 1: flags = 0x2; break; \
8207 default: case 2: flags = 0x3; break; \
8209 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8210 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8212 DO_VFP_cmp(s, float32)
8213 DO_VFP_cmp(d, float64)
8214 #undef DO_VFP_cmp
8216 /* Integer to float and float to integer conversions */
8218 #define CONV_ITOF(name, fsz, sign) \
8219 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8221 float_status *fpst = fpstp; \
8222 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8225 #define CONV_FTOI(name, fsz, sign, round) \
8226 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8228 float_status *fpst = fpstp; \
8229 if (float##fsz##_is_any_nan(x)) { \
8230 float_raise(float_flag_invalid, fpst); \
8231 return 0; \
8233 return float##fsz##_to_##sign##int32##round(x, fpst); \
8236 #define FLOAT_CONVS(name, p, fsz, sign) \
8237 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8238 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8239 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8241 FLOAT_CONVS(si, s, 32, )
8242 FLOAT_CONVS(si, d, 64, )
8243 FLOAT_CONVS(ui, s, 32, u)
8244 FLOAT_CONVS(ui, d, 64, u)
8246 #undef CONV_ITOF
8247 #undef CONV_FTOI
8248 #undef FLOAT_CONVS
8250 /* floating point conversion */
8251 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8253 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8254 /* ARM requires that S<->D conversion of any kind of NaN generates
8255 * a quiet NaN by forcing the most significant frac bit to 1.
8257 return float64_maybe_silence_nan(r);
8260 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8262 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8263 /* ARM requires that S<->D conversion of any kind of NaN generates
8264 * a quiet NaN by forcing the most significant frac bit to 1.
8266 return float32_maybe_silence_nan(r);
8269 /* VFP3 fixed point conversion. */
8270 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8271 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8272 void *fpstp) \
8274 float_status *fpst = fpstp; \
8275 float##fsz tmp; \
8276 tmp = itype##_to_##float##fsz(x, fpst); \
8277 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8280 /* Notice that we want only input-denormal exception flags from the
8281 * scalbn operation: the other possible flags (overflow+inexact if
8282 * we overflow to infinity, output-denormal) aren't correct for the
8283 * complete scale-and-convert operation.
8285 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8286 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8287 uint32_t shift, \
8288 void *fpstp) \
8290 float_status *fpst = fpstp; \
8291 int old_exc_flags = get_float_exception_flags(fpst); \
8292 float##fsz tmp; \
8293 if (float##fsz##_is_any_nan(x)) { \
8294 float_raise(float_flag_invalid, fpst); \
8295 return 0; \
8297 tmp = float##fsz##_scalbn(x, shift, fpst); \
8298 old_exc_flags |= get_float_exception_flags(fpst) \
8299 & float_flag_input_denormal; \
8300 set_float_exception_flags(old_exc_flags, fpst); \
8301 return float##fsz##_to_##itype##round(tmp, fpst); \
8304 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8305 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8306 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8307 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8309 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8310 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8311 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8313 VFP_CONV_FIX(sh, d, 64, 64, int16)
8314 VFP_CONV_FIX(sl, d, 64, 64, int32)
8315 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8316 VFP_CONV_FIX(uh, d, 64, 64, uint16)
8317 VFP_CONV_FIX(ul, d, 64, 64, uint32)
8318 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8319 VFP_CONV_FIX(sh, s, 32, 32, int16)
8320 VFP_CONV_FIX(sl, s, 32, 32, int32)
8321 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8322 VFP_CONV_FIX(uh, s, 32, 32, uint16)
8323 VFP_CONV_FIX(ul, s, 32, 32, uint32)
8324 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
8325 #undef VFP_CONV_FIX
8326 #undef VFP_CONV_FIX_FLOAT
8327 #undef VFP_CONV_FLOAT_FIX_ROUND
8329 /* Set the current fp rounding mode and return the old one.
8330 * The argument is a softfloat float_round_ value.
8332 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8334 float_status *fp_status = &env->vfp.fp_status;
8336 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8337 set_float_rounding_mode(rmode, fp_status);
8339 return prev_rmode;
8342 /* Set the current fp rounding mode in the standard fp status and return
8343 * the old one. This is for NEON instructions that need to change the
8344 * rounding mode but wish to use the standard FPSCR values for everything
8345 * else. Always set the rounding mode back to the correct value after
8346 * modifying it.
8347 * The argument is a softfloat float_round_ value.
8349 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8351 float_status *fp_status = &env->vfp.standard_fp_status;
8353 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8354 set_float_rounding_mode(rmode, fp_status);
8356 return prev_rmode;
8359 /* Half precision conversions. */
8360 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
8362 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8363 float32 r = float16_to_float32(make_float16(a), ieee, s);
8364 if (ieee) {
8365 return float32_maybe_silence_nan(r);
8367 return r;
8370 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
8372 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8373 float16 r = float32_to_float16(a, ieee, s);
8374 if (ieee) {
8375 r = float16_maybe_silence_nan(r);
8377 return float16_val(r);
8380 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8382 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8385 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8387 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8390 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8392 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8395 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8397 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8400 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8402 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8403 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8404 if (ieee) {
8405 return float64_maybe_silence_nan(r);
8407 return r;
8410 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8412 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8413 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8414 if (ieee) {
8415 r = float16_maybe_silence_nan(r);
8417 return float16_val(r);
8420 #define float32_two make_float32(0x40000000)
8421 #define float32_three make_float32(0x40400000)
8422 #define float32_one_point_five make_float32(0x3fc00000)
8424 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
8426 float_status *s = &env->vfp.standard_fp_status;
8427 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8428 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8429 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8430 float_raise(float_flag_input_denormal, s);
8432 return float32_two;
8434 return float32_sub(float32_two, float32_mul(a, b, s), s);
8437 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
8439 float_status *s = &env->vfp.standard_fp_status;
8440 float32 product;
8441 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8442 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8443 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8444 float_raise(float_flag_input_denormal, s);
8446 return float32_one_point_five;
8448 product = float32_mul(a, b, s);
8449 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
8452 /* NEON helpers. */
8454 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8455 * int->float conversions at run-time. */
8456 #define float64_256 make_float64(0x4070000000000000LL)
8457 #define float64_512 make_float64(0x4080000000000000LL)
8458 #define float32_maxnorm make_float32(0x7f7fffff)
8459 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8461 /* Reciprocal functions
8463 * The algorithm that must be used to calculate the estimate
8464 * is specified by the ARM ARM, see FPRecipEstimate()
8467 static float64 recip_estimate(float64 a, float_status *real_fp_status)
8469 /* These calculations mustn't set any fp exception flags,
8470 * so we use a local copy of the fp_status.
8472 float_status dummy_status = *real_fp_status;
8473 float_status *s = &dummy_status;
8474 /* q = (int)(a * 512.0) */
8475 float64 q = float64_mul(float64_512, a, s);
8476 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8478 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8479 q = int64_to_float64(q_int, s);
8480 q = float64_add(q, float64_half, s);
8481 q = float64_div(q, float64_512, s);
8482 q = float64_div(float64_one, q, s);
8484 /* s = (int)(256.0 * r + 0.5) */
8485 q = float64_mul(q, float64_256, s);
8486 q = float64_add(q, float64_half, s);
8487 q_int = float64_to_int64_round_to_zero(q, s);
8489 /* return (double)s / 256.0 */
8490 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8493 /* Common wrapper to call recip_estimate */
8494 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
8496 uint64_t val64 = float64_val(num);
8497 uint64_t frac = extract64(val64, 0, 52);
8498 int64_t exp = extract64(val64, 52, 11);
8499 uint64_t sbit;
8500 float64 scaled, estimate;
8502 /* Generate the scaled number for the estimate function */
8503 if (exp == 0) {
8504 if (extract64(frac, 51, 1) == 0) {
8505 exp = -1;
8506 frac = extract64(frac, 0, 50) << 2;
8507 } else {
8508 frac = extract64(frac, 0, 51) << 1;
8512 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8513 scaled = make_float64((0x3feULL << 52)
8514 | extract64(frac, 44, 8) << 44);
8516 estimate = recip_estimate(scaled, fpst);
8518 /* Build new result */
8519 val64 = float64_val(estimate);
8520 sbit = 0x8000000000000000ULL & val64;
8521 exp = off - exp;
8522 frac = extract64(val64, 0, 52);
8524 if (exp == 0) {
8525 frac = 1ULL << 51 | extract64(frac, 1, 51);
8526 } else if (exp == -1) {
8527 frac = 1ULL << 50 | extract64(frac, 2, 50);
8528 exp = 0;
8531 return make_float64(sbit | (exp << 52) | frac);
8534 static bool round_to_inf(float_status *fpst, bool sign_bit)
8536 switch (fpst->float_rounding_mode) {
8537 case float_round_nearest_even: /* Round to Nearest */
8538 return true;
8539 case float_round_up: /* Round to +Inf */
8540 return !sign_bit;
8541 case float_round_down: /* Round to -Inf */
8542 return sign_bit;
8543 case float_round_to_zero: /* Round to Zero */
8544 return false;
8547 g_assert_not_reached();
8550 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8552 float_status *fpst = fpstp;
8553 float32 f32 = float32_squash_input_denormal(input, fpst);
8554 uint32_t f32_val = float32_val(f32);
8555 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8556 int32_t f32_exp = extract32(f32_val, 23, 8);
8557 uint32_t f32_frac = extract32(f32_val, 0, 23);
8558 float64 f64, r64;
8559 uint64_t r64_val;
8560 int64_t r64_exp;
8561 uint64_t r64_frac;
8563 if (float32_is_any_nan(f32)) {
8564 float32 nan = f32;
8565 if (float32_is_signaling_nan(f32)) {
8566 float_raise(float_flag_invalid, fpst);
8567 nan = float32_maybe_silence_nan(f32);
8569 if (fpst->default_nan_mode) {
8570 nan = float32_default_nan;
8572 return nan;
8573 } else if (float32_is_infinity(f32)) {
8574 return float32_set_sign(float32_zero, float32_is_neg(f32));
8575 } else if (float32_is_zero(f32)) {
8576 float_raise(float_flag_divbyzero, fpst);
8577 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8578 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
8579 /* Abs(value) < 2.0^-128 */
8580 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8581 if (round_to_inf(fpst, f32_sbit)) {
8582 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8583 } else {
8584 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
8586 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
8587 float_raise(float_flag_underflow, fpst);
8588 return float32_set_sign(float32_zero, float32_is_neg(f32));
8592 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8593 r64 = call_recip_estimate(f64, 253, fpst);
8594 r64_val = float64_val(r64);
8595 r64_exp = extract64(r64_val, 52, 11);
8596 r64_frac = extract64(r64_val, 0, 52);
8598 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8599 return make_float32(f32_sbit |
8600 (r64_exp & 0xff) << 23 |
8601 extract64(r64_frac, 29, 24));
8604 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8606 float_status *fpst = fpstp;
8607 float64 f64 = float64_squash_input_denormal(input, fpst);
8608 uint64_t f64_val = float64_val(f64);
8609 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
8610 int64_t f64_exp = extract64(f64_val, 52, 11);
8611 float64 r64;
8612 uint64_t r64_val;
8613 int64_t r64_exp;
8614 uint64_t r64_frac;
8616 /* Deal with any special cases */
8617 if (float64_is_any_nan(f64)) {
8618 float64 nan = f64;
8619 if (float64_is_signaling_nan(f64)) {
8620 float_raise(float_flag_invalid, fpst);
8621 nan = float64_maybe_silence_nan(f64);
8623 if (fpst->default_nan_mode) {
8624 nan = float64_default_nan;
8626 return nan;
8627 } else if (float64_is_infinity(f64)) {
8628 return float64_set_sign(float64_zero, float64_is_neg(f64));
8629 } else if (float64_is_zero(f64)) {
8630 float_raise(float_flag_divbyzero, fpst);
8631 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8632 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
8633 /* Abs(value) < 2.0^-1024 */
8634 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8635 if (round_to_inf(fpst, f64_sbit)) {
8636 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8637 } else {
8638 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
8640 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
8641 float_raise(float_flag_underflow, fpst);
8642 return float64_set_sign(float64_zero, float64_is_neg(f64));
8645 r64 = call_recip_estimate(f64, 2045, fpst);
8646 r64_val = float64_val(r64);
8647 r64_exp = extract64(r64_val, 52, 11);
8648 r64_frac = extract64(r64_val, 0, 52);
8650 /* result = sign : result_exp<10:0> : fraction<51:0> */
8651 return make_float64(f64_sbit |
8652 ((r64_exp & 0x7ff) << 52) |
8653 r64_frac);
8656 /* The algorithm that must be used to calculate the estimate
8657 * is specified by the ARM ARM.
8659 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
8661 /* These calculations mustn't set any fp exception flags,
8662 * so we use a local copy of the fp_status.
8664 float_status dummy_status = *real_fp_status;
8665 float_status *s = &dummy_status;
8666 float64 q;
8667 int64_t q_int;
8669 if (float64_lt(a, float64_half, s)) {
8670 /* range 0.25 <= a < 0.5 */
8672 /* a in units of 1/512 rounded down */
8673 /* q0 = (int)(a * 512.0); */
8674 q = float64_mul(float64_512, a, s);
8675 q_int = float64_to_int64_round_to_zero(q, s);
8677 /* reciprocal root r */
8678 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8679 q = int64_to_float64(q_int, s);
8680 q = float64_add(q, float64_half, s);
8681 q = float64_div(q, float64_512, s);
8682 q = float64_sqrt(q, s);
8683 q = float64_div(float64_one, q, s);
8684 } else {
8685 /* range 0.5 <= a < 1.0 */
8687 /* a in units of 1/256 rounded down */
8688 /* q1 = (int)(a * 256.0); */
8689 q = float64_mul(float64_256, a, s);
8690 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8692 /* reciprocal root r */
8693 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8694 q = int64_to_float64(q_int, s);
8695 q = float64_add(q, float64_half, s);
8696 q = float64_div(q, float64_256, s);
8697 q = float64_sqrt(q, s);
8698 q = float64_div(float64_one, q, s);
8700 /* r in units of 1/256 rounded to nearest */
8701 /* s = (int)(256.0 * r + 0.5); */
8703 q = float64_mul(q, float64_256,s );
8704 q = float64_add(q, float64_half, s);
8705 q_int = float64_to_int64_round_to_zero(q, s);
8707 /* return (double)s / 256.0;*/
8708 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8711 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
8713 float_status *s = fpstp;
8714 float32 f32 = float32_squash_input_denormal(input, s);
8715 uint32_t val = float32_val(f32);
8716 uint32_t f32_sbit = 0x80000000 & val;
8717 int32_t f32_exp = extract32(val, 23, 8);
8718 uint32_t f32_frac = extract32(val, 0, 23);
8719 uint64_t f64_frac;
8720 uint64_t val64;
8721 int result_exp;
8722 float64 f64;
8724 if (float32_is_any_nan(f32)) {
8725 float32 nan = f32;
8726 if (float32_is_signaling_nan(f32)) {
8727 float_raise(float_flag_invalid, s);
8728 nan = float32_maybe_silence_nan(f32);
8730 if (s->default_nan_mode) {
8731 nan = float32_default_nan;
8733 return nan;
8734 } else if (float32_is_zero(f32)) {
8735 float_raise(float_flag_divbyzero, s);
8736 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8737 } else if (float32_is_neg(f32)) {
8738 float_raise(float_flag_invalid, s);
8739 return float32_default_nan;
8740 } else if (float32_is_infinity(f32)) {
8741 return float32_zero;
8744 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8745 * preserving the parity of the exponent. */
8747 f64_frac = ((uint64_t) f32_frac) << 29;
8748 if (f32_exp == 0) {
8749 while (extract64(f64_frac, 51, 1) == 0) {
8750 f64_frac = f64_frac << 1;
8751 f32_exp = f32_exp-1;
8753 f64_frac = extract64(f64_frac, 0, 51) << 1;
8756 if (extract64(f32_exp, 0, 1) == 0) {
8757 f64 = make_float64(((uint64_t) f32_sbit) << 32
8758 | (0x3feULL << 52)
8759 | f64_frac);
8760 } else {
8761 f64 = make_float64(((uint64_t) f32_sbit) << 32
8762 | (0x3fdULL << 52)
8763 | f64_frac);
8766 result_exp = (380 - f32_exp) / 2;
8768 f64 = recip_sqrt_estimate(f64, s);
8770 val64 = float64_val(f64);
8772 val = ((result_exp & 0xff) << 23)
8773 | ((val64 >> 29) & 0x7fffff);
8774 return make_float32(val);
8777 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
8779 float_status *s = fpstp;
8780 float64 f64 = float64_squash_input_denormal(input, s);
8781 uint64_t val = float64_val(f64);
8782 uint64_t f64_sbit = 0x8000000000000000ULL & val;
8783 int64_t f64_exp = extract64(val, 52, 11);
8784 uint64_t f64_frac = extract64(val, 0, 52);
8785 int64_t result_exp;
8786 uint64_t result_frac;
8788 if (float64_is_any_nan(f64)) {
8789 float64 nan = f64;
8790 if (float64_is_signaling_nan(f64)) {
8791 float_raise(float_flag_invalid, s);
8792 nan = float64_maybe_silence_nan(f64);
8794 if (s->default_nan_mode) {
8795 nan = float64_default_nan;
8797 return nan;
8798 } else if (float64_is_zero(f64)) {
8799 float_raise(float_flag_divbyzero, s);
8800 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8801 } else if (float64_is_neg(f64)) {
8802 float_raise(float_flag_invalid, s);
8803 return float64_default_nan;
8804 } else if (float64_is_infinity(f64)) {
8805 return float64_zero;
8808 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8809 * preserving the parity of the exponent. */
8811 if (f64_exp == 0) {
8812 while (extract64(f64_frac, 51, 1) == 0) {
8813 f64_frac = f64_frac << 1;
8814 f64_exp = f64_exp - 1;
8816 f64_frac = extract64(f64_frac, 0, 51) << 1;
8819 if (extract64(f64_exp, 0, 1) == 0) {
8820 f64 = make_float64(f64_sbit
8821 | (0x3feULL << 52)
8822 | f64_frac);
8823 } else {
8824 f64 = make_float64(f64_sbit
8825 | (0x3fdULL << 52)
8826 | f64_frac);
8829 result_exp = (3068 - f64_exp) / 2;
8831 f64 = recip_sqrt_estimate(f64, s);
8833 result_frac = extract64(float64_val(f64), 0, 52);
8835 return make_float64(f64_sbit |
8836 ((result_exp & 0x7ff) << 52) |
8837 result_frac);
8840 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
8842 float_status *s = fpstp;
8843 float64 f64;
8845 if ((a & 0x80000000) == 0) {
8846 return 0xffffffff;
8849 f64 = make_float64((0x3feULL << 52)
8850 | ((int64_t)(a & 0x7fffffff) << 21));
8852 f64 = recip_estimate(f64, s);
8854 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8857 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
8859 float_status *fpst = fpstp;
8860 float64 f64;
8862 if ((a & 0xc0000000) == 0) {
8863 return 0xffffffff;
8866 if (a & 0x80000000) {
8867 f64 = make_float64((0x3feULL << 52)
8868 | ((uint64_t)(a & 0x7fffffff) << 21));
8869 } else { /* bits 31-30 == '01' */
8870 f64 = make_float64((0x3fdULL << 52)
8871 | ((uint64_t)(a & 0x3fffffff) << 22));
8874 f64 = recip_sqrt_estimate(f64, fpst);
8876 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8879 /* VFPv4 fused multiply-accumulate */
8880 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
8882 float_status *fpst = fpstp;
8883 return float32_muladd(a, b, c, 0, fpst);
8886 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
8888 float_status *fpst = fpstp;
8889 return float64_muladd(a, b, c, 0, fpst);
8892 /* ARMv8 round to integral */
8893 float32 HELPER(rints_exact)(float32 x, void *fp_status)
8895 return float32_round_to_int(x, fp_status);
8898 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
8900 return float64_round_to_int(x, fp_status);
8903 float32 HELPER(rints)(float32 x, void *fp_status)
8905 int old_flags = get_float_exception_flags(fp_status), new_flags;
8906 float32 ret;
8908 ret = float32_round_to_int(x, fp_status);
8910 /* Suppress any inexact exceptions the conversion produced */
8911 if (!(old_flags & float_flag_inexact)) {
8912 new_flags = get_float_exception_flags(fp_status);
8913 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8916 return ret;
8919 float64 HELPER(rintd)(float64 x, void *fp_status)
8921 int old_flags = get_float_exception_flags(fp_status), new_flags;
8922 float64 ret;
8924 ret = float64_round_to_int(x, fp_status);
8926 new_flags = get_float_exception_flags(fp_status);
8928 /* Suppress any inexact exceptions the conversion produced */
8929 if (!(old_flags & float_flag_inexact)) {
8930 new_flags = get_float_exception_flags(fp_status);
8931 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8934 return ret;
8937 /* Convert ARM rounding mode to softfloat */
8938 int arm_rmode_to_sf(int rmode)
8940 switch (rmode) {
8941 case FPROUNDING_TIEAWAY:
8942 rmode = float_round_ties_away;
8943 break;
8944 case FPROUNDING_ODD:
8945 /* FIXME: add support for TIEAWAY and ODD */
8946 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
8947 rmode);
8948 case FPROUNDING_TIEEVEN:
8949 default:
8950 rmode = float_round_nearest_even;
8951 break;
8952 case FPROUNDING_POSINF:
8953 rmode = float_round_up;
8954 break;
8955 case FPROUNDING_NEGINF:
8956 rmode = float_round_down;
8957 break;
8958 case FPROUNDING_ZERO:
8959 rmode = float_round_to_zero;
8960 break;
8962 return rmode;
8965 /* CRC helpers.
8966 * The upper bytes of val (above the number specified by 'bytes') must have
8967 * been zeroed out by the caller.
8969 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
8971 uint8_t buf[4];
8973 stl_le_p(buf, val);
8975 /* zlib crc32 converts the accumulator and output to one's complement. */
8976 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
8979 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
8981 uint8_t buf[4];
8983 stl_le_p(buf, val);
8985 /* Linux crc32c converts the output to one's complement. */
8986 return crc32c(acc, buf, bytes) ^ 0xffffffff;