target/arm: Use tcg_gen_gvec_dup_i64 for LD[1-4]R
[qemu/ar7.git] / target / arm / translate-a64.c
blob8e8d3a8fe9f270dcff096da2034ef3bc205937e6
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
73 /* Function prototype for gen_ functions for calling Neon helpers */
74 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
75 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
77 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
78 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
79 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
80 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
81 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
82 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
83 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
84 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
85 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
86 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
87 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
93 int i;
95 cpu_pc = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
104 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
108 static inline int get_a64_user_mem_index(DisasContext *s)
110 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
111 * if EL1, access as if EL0; otherwise access at current EL
113 ARMMMUIdx useridx;
115 switch (s->mmu_idx) {
116 case ARMMMUIdx_S12NSE1:
117 useridx = ARMMMUIdx_S12NSE0;
118 break;
119 case ARMMMUIdx_S1SE1:
120 useridx = ARMMMUIdx_S1SE0;
121 break;
122 case ARMMMUIdx_S2NS:
123 g_assert_not_reached();
124 default:
125 useridx = s->mmu_idx;
126 break;
128 return arm_to_core_mmu_idx(useridx);
131 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
132 fprintf_function cpu_fprintf, int flags)
134 ARMCPU *cpu = ARM_CPU(cs);
135 CPUARMState *env = &cpu->env;
136 uint32_t psr = pstate_read(env);
137 int i;
138 int el = arm_current_el(env);
139 const char *ns_status;
141 cpu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
142 for (i = 0; i < 32; i++) {
143 if (i == 31) {
144 cpu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
145 } else {
146 cpu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
147 (i + 2) % 3 ? " " : "\n");
151 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
152 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
153 } else {
154 ns_status = "";
156 cpu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
157 psr,
158 psr & PSTATE_N ? 'N' : '-',
159 psr & PSTATE_Z ? 'Z' : '-',
160 psr & PSTATE_C ? 'C' : '-',
161 psr & PSTATE_V ? 'V' : '-',
162 ns_status,
164 psr & PSTATE_SP ? 'h' : 't');
166 if (!(flags & CPU_DUMP_FPU)) {
167 cpu_fprintf(f, "\n");
168 return;
170 if (fp_exception_el(env, el) != 0) {
171 cpu_fprintf(f, " FPU disabled\n");
172 return;
174 cpu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
175 vfp_get_fpcr(env), vfp_get_fpsr(env));
177 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
178 int j, zcr_len = sve_zcr_len_for_el(env, el);
180 for (i = 0; i <= FFR_PRED_NUM; i++) {
181 bool eol;
182 if (i == FFR_PRED_NUM) {
183 cpu_fprintf(f, "FFR=");
184 /* It's last, so end the line. */
185 eol = true;
186 } else {
187 cpu_fprintf(f, "P%02d=", i);
188 switch (zcr_len) {
189 case 0:
190 eol = i % 8 == 7;
191 break;
192 case 1:
193 eol = i % 6 == 5;
194 break;
195 case 2:
196 case 3:
197 eol = i % 3 == 2;
198 break;
199 default:
200 /* More than one quadword per predicate. */
201 eol = true;
202 break;
205 for (j = zcr_len / 4; j >= 0; j--) {
206 int digits;
207 if (j * 4 + 4 <= zcr_len + 1) {
208 digits = 16;
209 } else {
210 digits = (zcr_len % 4 + 1) * 4;
212 cpu_fprintf(f, "%0*" PRIx64 "%s", digits,
213 env->vfp.pregs[i].p[j],
214 j ? ":" : eol ? "\n" : " ");
218 for (i = 0; i < 32; i++) {
219 if (zcr_len == 0) {
220 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
221 i, env->vfp.zregs[i].d[1],
222 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
223 } else if (zcr_len == 1) {
224 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
225 ":%016" PRIx64 ":%016" PRIx64 "\n",
226 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
227 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
228 } else {
229 for (j = zcr_len; j >= 0; j--) {
230 bool odd = (zcr_len - j) % 2 != 0;
231 if (j == zcr_len) {
232 cpu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
233 } else if (!odd) {
234 if (j > 0) {
235 cpu_fprintf(f, " [%x-%x]=", j, j - 1);
236 } else {
237 cpu_fprintf(f, " [%x]=", j);
240 cpu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
241 env->vfp.zregs[i].d[j * 2 + 1],
242 env->vfp.zregs[i].d[j * 2],
243 odd || j == 0 ? "\n" : ":");
247 } else {
248 for (i = 0; i < 32; i++) {
249 uint64_t *q = aa64_vfp_qreg(env, i);
250 cpu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
251 i, q[1], q[0], (i & 1 ? "\n" : " "));
256 void gen_a64_set_pc_im(uint64_t val)
258 tcg_gen_movi_i64(cpu_pc, val);
261 /* Load the PC from a generic TCG variable.
263 * If address tagging is enabled via the TCR TBI bits, then loading
264 * an address into the PC will clear out any tag in the it:
265 * + for EL2 and EL3 there is only one TBI bit, and if it is set
266 * then the address is zero-extended, clearing bits [63:56]
267 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
268 * and TBI1 controls addressses with bit 55 == 1.
269 * If the appropriate TBI bit is set for the address then
270 * the address is sign-extended from bit 55 into bits [63:56]
272 * We can avoid doing this for relative-branches, because the
273 * PC + offset can never overflow into the tag bits (assuming
274 * that virtual addresses are less than 56 bits wide, as they
275 * are currently), but we must handle it for branch-to-register.
277 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
280 if (s->current_el <= 1) {
281 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
282 * examine bit 55 of address, can just generate code.
283 * If mixed, then test via generated code
285 if (s->tbi0 && s->tbi1) {
286 TCGv_i64 tmp_reg = tcg_temp_new_i64();
287 /* Both bits set, sign extension from bit 55 into [63:56] will
288 * cover both cases
290 tcg_gen_shli_i64(tmp_reg, src, 8);
291 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
292 tcg_temp_free_i64(tmp_reg);
293 } else if (!s->tbi0 && !s->tbi1) {
294 /* Neither bit set, just load it as-is */
295 tcg_gen_mov_i64(cpu_pc, src);
296 } else {
297 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
298 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
299 TCGv_i64 tcg_zero = tcg_const_i64(0);
301 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
303 if (s->tbi0) {
304 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
305 tcg_gen_andi_i64(tcg_tmpval, src,
306 0x00FFFFFFFFFFFFFFull);
307 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
308 tcg_tmpval, src);
309 } else {
310 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
311 tcg_gen_ori_i64(tcg_tmpval, src,
312 0xFF00000000000000ull);
313 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
314 tcg_tmpval, src);
316 tcg_temp_free_i64(tcg_zero);
317 tcg_temp_free_i64(tcg_bit55);
318 tcg_temp_free_i64(tcg_tmpval);
320 } else { /* EL > 1 */
321 if (s->tbi0) {
322 /* Force tag byte to all zero */
323 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
324 } else {
325 /* Load unmodified address */
326 tcg_gen_mov_i64(cpu_pc, src);
331 typedef struct DisasCompare64 {
332 TCGCond cond;
333 TCGv_i64 value;
334 } DisasCompare64;
336 static void a64_test_cc(DisasCompare64 *c64, int cc)
338 DisasCompare c32;
340 arm_test_cc(&c32, cc);
342 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
343 * properly. The NE/EQ comparisons are also fine with this choice. */
344 c64->cond = c32.cond;
345 c64->value = tcg_temp_new_i64();
346 tcg_gen_ext_i32_i64(c64->value, c32.value);
348 arm_free_cc(&c32);
351 static void a64_free_cc(DisasCompare64 *c64)
353 tcg_temp_free_i64(c64->value);
356 static void gen_exception_internal(int excp)
358 TCGv_i32 tcg_excp = tcg_const_i32(excp);
360 assert(excp_is_internal(excp));
361 gen_helper_exception_internal(cpu_env, tcg_excp);
362 tcg_temp_free_i32(tcg_excp);
365 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
367 TCGv_i32 tcg_excp = tcg_const_i32(excp);
368 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
369 TCGv_i32 tcg_el = tcg_const_i32(target_el);
371 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
372 tcg_syn, tcg_el);
373 tcg_temp_free_i32(tcg_el);
374 tcg_temp_free_i32(tcg_syn);
375 tcg_temp_free_i32(tcg_excp);
378 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
380 gen_a64_set_pc_im(s->pc - offset);
381 gen_exception_internal(excp);
382 s->base.is_jmp = DISAS_NORETURN;
385 static void gen_exception_insn(DisasContext *s, int offset, int excp,
386 uint32_t syndrome, uint32_t target_el)
388 gen_a64_set_pc_im(s->pc - offset);
389 gen_exception(excp, syndrome, target_el);
390 s->base.is_jmp = DISAS_NORETURN;
393 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
394 uint32_t syndrome)
396 TCGv_i32 tcg_syn;
398 gen_a64_set_pc_im(s->pc - offset);
399 tcg_syn = tcg_const_i32(syndrome);
400 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
401 tcg_temp_free_i32(tcg_syn);
402 s->base.is_jmp = DISAS_NORETURN;
405 static void gen_ss_advance(DisasContext *s)
407 /* If the singlestep state is Active-not-pending, advance to
408 * Active-pending.
410 if (s->ss_active) {
411 s->pstate_ss = 0;
412 gen_helper_clear_pstate_ss(cpu_env);
416 static void gen_step_complete_exception(DisasContext *s)
418 /* We just completed step of an insn. Move from Active-not-pending
419 * to Active-pending, and then also take the swstep exception.
420 * This corresponds to making the (IMPDEF) choice to prioritize
421 * swstep exceptions over asynchronous exceptions taken to an exception
422 * level where debug is disabled. This choice has the advantage that
423 * we do not need to maintain internal state corresponding to the
424 * ISV/EX syndrome bits between completion of the step and generation
425 * of the exception, and our syndrome information is always correct.
427 gen_ss_advance(s);
428 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
429 default_exception_el(s));
430 s->base.is_jmp = DISAS_NORETURN;
433 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
435 /* No direct tb linking with singlestep (either QEMU's or the ARM
436 * debug architecture kind) or deterministic io
438 if (s->base.singlestep_enabled || s->ss_active ||
439 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
440 return false;
443 #ifndef CONFIG_USER_ONLY
444 /* Only link tbs from inside the same guest page */
445 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
446 return false;
448 #endif
450 return true;
453 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
455 TranslationBlock *tb;
457 tb = s->base.tb;
458 if (use_goto_tb(s, n, dest)) {
459 tcg_gen_goto_tb(n);
460 gen_a64_set_pc_im(dest);
461 tcg_gen_exit_tb(tb, n);
462 s->base.is_jmp = DISAS_NORETURN;
463 } else {
464 gen_a64_set_pc_im(dest);
465 if (s->ss_active) {
466 gen_step_complete_exception(s);
467 } else if (s->base.singlestep_enabled) {
468 gen_exception_internal(EXCP_DEBUG);
469 } else {
470 tcg_gen_lookup_and_goto_ptr();
471 s->base.is_jmp = DISAS_NORETURN;
476 void unallocated_encoding(DisasContext *s)
478 /* Unallocated and reserved encodings are uncategorized */
479 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
480 default_exception_el(s));
483 static void init_tmp_a64_array(DisasContext *s)
485 #ifdef CONFIG_DEBUG_TCG
486 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
487 #endif
488 s->tmp_a64_count = 0;
491 static void free_tmp_a64(DisasContext *s)
493 int i;
494 for (i = 0; i < s->tmp_a64_count; i++) {
495 tcg_temp_free_i64(s->tmp_a64[i]);
497 init_tmp_a64_array(s);
500 TCGv_i64 new_tmp_a64(DisasContext *s)
502 assert(s->tmp_a64_count < TMP_A64_MAX);
503 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
506 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
508 TCGv_i64 t = new_tmp_a64(s);
509 tcg_gen_movi_i64(t, 0);
510 return t;
514 * Register access functions
516 * These functions are used for directly accessing a register in where
517 * changes to the final register value are likely to be made. If you
518 * need to use a register for temporary calculation (e.g. index type
519 * operations) use the read_* form.
521 * B1.2.1 Register mappings
523 * In instruction register encoding 31 can refer to ZR (zero register) or
524 * the SP (stack pointer) depending on context. In QEMU's case we map SP
525 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
526 * This is the point of the _sp forms.
528 TCGv_i64 cpu_reg(DisasContext *s, int reg)
530 if (reg == 31) {
531 return new_tmp_a64_zero(s);
532 } else {
533 return cpu_X[reg];
537 /* register access for when 31 == SP */
538 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
540 return cpu_X[reg];
543 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
544 * representing the register contents. This TCGv is an auto-freed
545 * temporary so it need not be explicitly freed, and may be modified.
547 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
549 TCGv_i64 v = new_tmp_a64(s);
550 if (reg != 31) {
551 if (sf) {
552 tcg_gen_mov_i64(v, cpu_X[reg]);
553 } else {
554 tcg_gen_ext32u_i64(v, cpu_X[reg]);
556 } else {
557 tcg_gen_movi_i64(v, 0);
559 return v;
562 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
564 TCGv_i64 v = new_tmp_a64(s);
565 if (sf) {
566 tcg_gen_mov_i64(v, cpu_X[reg]);
567 } else {
568 tcg_gen_ext32u_i64(v, cpu_X[reg]);
570 return v;
573 /* Return the offset into CPUARMState of a slice (from
574 * the least significant end) of FP register Qn (ie
575 * Dn, Sn, Hn or Bn).
576 * (Note that this is not the same mapping as for A32; see cpu.h)
578 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
580 return vec_reg_offset(s, regno, 0, size);
583 /* Offset of the high half of the 128 bit vector Qn */
584 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
586 return vec_reg_offset(s, regno, 1, MO_64);
589 /* Convenience accessors for reading and writing single and double
590 * FP registers. Writing clears the upper parts of the associated
591 * 128 bit vector register, as required by the architecture.
592 * Note that unlike the GP register accessors, the values returned
593 * by the read functions must be manually freed.
595 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
597 TCGv_i64 v = tcg_temp_new_i64();
599 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
600 return v;
603 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
605 TCGv_i32 v = tcg_temp_new_i32();
607 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
608 return v;
611 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
613 TCGv_i32 v = tcg_temp_new_i32();
615 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
616 return v;
619 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
620 * If SVE is not enabled, then there are only 128 bits in the vector.
622 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
624 unsigned ofs = fp_reg_offset(s, rd, MO_64);
625 unsigned vsz = vec_full_reg_size(s);
627 if (!is_q) {
628 TCGv_i64 tcg_zero = tcg_const_i64(0);
629 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
630 tcg_temp_free_i64(tcg_zero);
632 if (vsz > 16) {
633 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
637 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
639 unsigned ofs = fp_reg_offset(s, reg, MO_64);
641 tcg_gen_st_i64(v, cpu_env, ofs);
642 clear_vec_high(s, false, reg);
645 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
647 TCGv_i64 tmp = tcg_temp_new_i64();
649 tcg_gen_extu_i32_i64(tmp, v);
650 write_fp_dreg(s, reg, tmp);
651 tcg_temp_free_i64(tmp);
654 TCGv_ptr get_fpstatus_ptr(bool is_f16)
656 TCGv_ptr statusptr = tcg_temp_new_ptr();
657 int offset;
659 /* In A64 all instructions (both FP and Neon) use the FPCR; there
660 * is no equivalent of the A32 Neon "standard FPSCR value".
661 * However half-precision operations operate under a different
662 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
664 if (is_f16) {
665 offset = offsetof(CPUARMState, vfp.fp_status_f16);
666 } else {
667 offset = offsetof(CPUARMState, vfp.fp_status);
669 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
670 return statusptr;
673 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
674 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
675 GVecGen2Fn *gvec_fn, int vece)
677 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
678 is_q ? 16 : 8, vec_full_reg_size(s));
681 /* Expand a 2-operand + immediate AdvSIMD vector operation using
682 * an expander function.
684 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
685 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
687 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
688 imm, is_q ? 16 : 8, vec_full_reg_size(s));
691 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
692 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
693 GVecGen3Fn *gvec_fn, int vece)
695 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
696 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
699 /* Expand a 2-operand + immediate AdvSIMD vector operation using
700 * an op descriptor.
702 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
703 int rn, int64_t imm, const GVecGen2i *gvec_op)
705 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
706 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
709 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
710 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
711 int rn, int rm, const GVecGen3 *gvec_op)
713 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
714 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
715 vec_full_reg_size(s), gvec_op);
718 /* Expand a 3-operand operation using an out-of-line helper. */
719 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
720 int rn, int rm, int data, gen_helper_gvec_3 *fn)
722 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
723 vec_full_reg_offset(s, rn),
724 vec_full_reg_offset(s, rm),
725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
728 /* Expand a 3-operand + env pointer operation using
729 * an out-of-line helper.
731 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
732 int rn, int rm, gen_helper_gvec_3_ptr *fn)
734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735 vec_full_reg_offset(s, rn),
736 vec_full_reg_offset(s, rm), cpu_env,
737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
740 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
741 * an out-of-line helper.
743 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
744 int rm, bool is_fp16, int data,
745 gen_helper_gvec_3_ptr *fn)
747 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
748 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
749 vec_full_reg_offset(s, rn),
750 vec_full_reg_offset(s, rm), fpst,
751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 tcg_temp_free_ptr(fpst);
755 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
756 * than the 32 bit equivalent.
758 static inline void gen_set_NZ64(TCGv_i64 result)
760 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
761 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
764 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
765 static inline void gen_logic_CC(int sf, TCGv_i64 result)
767 if (sf) {
768 gen_set_NZ64(result);
769 } else {
770 tcg_gen_extrl_i64_i32(cpu_ZF, result);
771 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
773 tcg_gen_movi_i32(cpu_CF, 0);
774 tcg_gen_movi_i32(cpu_VF, 0);
777 /* dest = T0 + T1; compute C, N, V and Z flags */
778 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
780 if (sf) {
781 TCGv_i64 result, flag, tmp;
782 result = tcg_temp_new_i64();
783 flag = tcg_temp_new_i64();
784 tmp = tcg_temp_new_i64();
786 tcg_gen_movi_i64(tmp, 0);
787 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
789 tcg_gen_extrl_i64_i32(cpu_CF, flag);
791 gen_set_NZ64(result);
793 tcg_gen_xor_i64(flag, result, t0);
794 tcg_gen_xor_i64(tmp, t0, t1);
795 tcg_gen_andc_i64(flag, flag, tmp);
796 tcg_temp_free_i64(tmp);
797 tcg_gen_extrh_i64_i32(cpu_VF, flag);
799 tcg_gen_mov_i64(dest, result);
800 tcg_temp_free_i64(result);
801 tcg_temp_free_i64(flag);
802 } else {
803 /* 32 bit arithmetic */
804 TCGv_i32 t0_32 = tcg_temp_new_i32();
805 TCGv_i32 t1_32 = tcg_temp_new_i32();
806 TCGv_i32 tmp = tcg_temp_new_i32();
808 tcg_gen_movi_i32(tmp, 0);
809 tcg_gen_extrl_i64_i32(t0_32, t0);
810 tcg_gen_extrl_i64_i32(t1_32, t1);
811 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
812 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
813 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
814 tcg_gen_xor_i32(tmp, t0_32, t1_32);
815 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
816 tcg_gen_extu_i32_i64(dest, cpu_NF);
818 tcg_temp_free_i32(tmp);
819 tcg_temp_free_i32(t0_32);
820 tcg_temp_free_i32(t1_32);
824 /* dest = T0 - T1; compute C, N, V and Z flags */
825 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 if (sf) {
828 /* 64 bit arithmetic */
829 TCGv_i64 result, flag, tmp;
831 result = tcg_temp_new_i64();
832 flag = tcg_temp_new_i64();
833 tcg_gen_sub_i64(result, t0, t1);
835 gen_set_NZ64(result);
837 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838 tcg_gen_extrl_i64_i32(cpu_CF, flag);
840 tcg_gen_xor_i64(flag, result, t0);
841 tmp = tcg_temp_new_i64();
842 tcg_gen_xor_i64(tmp, t0, t1);
843 tcg_gen_and_i64(flag, flag, tmp);
844 tcg_temp_free_i64(tmp);
845 tcg_gen_extrh_i64_i32(cpu_VF, flag);
846 tcg_gen_mov_i64(dest, result);
847 tcg_temp_free_i64(flag);
848 tcg_temp_free_i64(result);
849 } else {
850 /* 32 bit arithmetic */
851 TCGv_i32 t0_32 = tcg_temp_new_i32();
852 TCGv_i32 t1_32 = tcg_temp_new_i32();
853 TCGv_i32 tmp;
855 tcg_gen_extrl_i64_i32(t0_32, t0);
856 tcg_gen_extrl_i64_i32(t1_32, t1);
857 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861 tmp = tcg_temp_new_i32();
862 tcg_gen_xor_i32(tmp, t0_32, t1_32);
863 tcg_temp_free_i32(t0_32);
864 tcg_temp_free_i32(t1_32);
865 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
866 tcg_temp_free_i32(tmp);
867 tcg_gen_extu_i32_i64(dest, cpu_NF);
871 /* dest = T0 + T1 + CF; do not compute flags. */
872 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
874 TCGv_i64 flag = tcg_temp_new_i64();
875 tcg_gen_extu_i32_i64(flag, cpu_CF);
876 tcg_gen_add_i64(dest, t0, t1);
877 tcg_gen_add_i64(dest, dest, flag);
878 tcg_temp_free_i64(flag);
880 if (!sf) {
881 tcg_gen_ext32u_i64(dest, dest);
885 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
886 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
888 if (sf) {
889 TCGv_i64 result, cf_64, vf_64, tmp;
890 result = tcg_temp_new_i64();
891 cf_64 = tcg_temp_new_i64();
892 vf_64 = tcg_temp_new_i64();
893 tmp = tcg_const_i64(0);
895 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
896 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
897 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
898 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
899 gen_set_NZ64(result);
901 tcg_gen_xor_i64(vf_64, result, t0);
902 tcg_gen_xor_i64(tmp, t0, t1);
903 tcg_gen_andc_i64(vf_64, vf_64, tmp);
904 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
906 tcg_gen_mov_i64(dest, result);
908 tcg_temp_free_i64(tmp);
909 tcg_temp_free_i64(vf_64);
910 tcg_temp_free_i64(cf_64);
911 tcg_temp_free_i64(result);
912 } else {
913 TCGv_i32 t0_32, t1_32, tmp;
914 t0_32 = tcg_temp_new_i32();
915 t1_32 = tcg_temp_new_i32();
916 tmp = tcg_const_i32(0);
918 tcg_gen_extrl_i64_i32(t0_32, t0);
919 tcg_gen_extrl_i64_i32(t1_32, t1);
920 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
921 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
923 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
924 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
925 tcg_gen_xor_i32(tmp, t0_32, t1_32);
926 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
927 tcg_gen_extu_i32_i64(dest, cpu_NF);
929 tcg_temp_free_i32(tmp);
930 tcg_temp_free_i32(t1_32);
931 tcg_temp_free_i32(t0_32);
936 * Load/Store generators
940 * Store from GPR register to memory.
942 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
943 TCGv_i64 tcg_addr, int size, int memidx,
944 bool iss_valid,
945 unsigned int iss_srt,
946 bool iss_sf, bool iss_ar)
948 g_assert(size <= 3);
949 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
951 if (iss_valid) {
952 uint32_t syn;
954 syn = syn_data_abort_with_iss(0,
955 size,
956 false,
957 iss_srt,
958 iss_sf,
959 iss_ar,
960 0, 0, 0, 0, 0, false);
961 disas_set_insn_syndrome(s, syn);
965 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
966 TCGv_i64 tcg_addr, int size,
967 bool iss_valid,
968 unsigned int iss_srt,
969 bool iss_sf, bool iss_ar)
971 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
972 iss_valid, iss_srt, iss_sf, iss_ar);
976 * Load from memory to GPR register
978 static void do_gpr_ld_memidx(DisasContext *s,
979 TCGv_i64 dest, TCGv_i64 tcg_addr,
980 int size, bool is_signed,
981 bool extend, int memidx,
982 bool iss_valid, unsigned int iss_srt,
983 bool iss_sf, bool iss_ar)
985 TCGMemOp memop = s->be_data + size;
987 g_assert(size <= 3);
989 if (is_signed) {
990 memop += MO_SIGN;
993 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
995 if (extend && is_signed) {
996 g_assert(size < 3);
997 tcg_gen_ext32u_i64(dest, dest);
1000 if (iss_valid) {
1001 uint32_t syn;
1003 syn = syn_data_abort_with_iss(0,
1004 size,
1005 is_signed,
1006 iss_srt,
1007 iss_sf,
1008 iss_ar,
1009 0, 0, 0, 0, 0, false);
1010 disas_set_insn_syndrome(s, syn);
1014 static void do_gpr_ld(DisasContext *s,
1015 TCGv_i64 dest, TCGv_i64 tcg_addr,
1016 int size, bool is_signed, bool extend,
1017 bool iss_valid, unsigned int iss_srt,
1018 bool iss_sf, bool iss_ar)
1020 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1021 get_mem_index(s),
1022 iss_valid, iss_srt, iss_sf, iss_ar);
1026 * Store from FP register to memory
1028 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1030 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1031 TCGv_i64 tmp = tcg_temp_new_i64();
1032 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1033 if (size < 4) {
1034 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1035 s->be_data + size);
1036 } else {
1037 bool be = s->be_data == MO_BE;
1038 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1040 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1041 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1042 s->be_data | MO_Q);
1043 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1044 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1045 s->be_data | MO_Q);
1046 tcg_temp_free_i64(tcg_hiaddr);
1049 tcg_temp_free_i64(tmp);
1053 * Load from memory to FP register
1055 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1057 /* This always zero-extends and writes to a full 128 bit wide vector */
1058 TCGv_i64 tmplo = tcg_temp_new_i64();
1059 TCGv_i64 tmphi;
1061 if (size < 4) {
1062 TCGMemOp memop = s->be_data + size;
1063 tmphi = tcg_const_i64(0);
1064 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1065 } else {
1066 bool be = s->be_data == MO_BE;
1067 TCGv_i64 tcg_hiaddr;
1069 tmphi = tcg_temp_new_i64();
1070 tcg_hiaddr = tcg_temp_new_i64();
1072 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1073 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1074 s->be_data | MO_Q);
1075 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1076 s->be_data | MO_Q);
1077 tcg_temp_free_i64(tcg_hiaddr);
1080 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1081 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1083 tcg_temp_free_i64(tmplo);
1084 tcg_temp_free_i64(tmphi);
1086 clear_vec_high(s, true, destidx);
1090 * Vector load/store helpers.
1092 * The principal difference between this and a FP load is that we don't
1093 * zero extend as we are filling a partial chunk of the vector register.
1094 * These functions don't support 128 bit loads/stores, which would be
1095 * normal load/store operations.
1097 * The _i32 versions are useful when operating on 32 bit quantities
1098 * (eg for floating point single or using Neon helper functions).
1101 /* Get value of an element within a vector register */
1102 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1103 int element, TCGMemOp memop)
1105 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1106 switch (memop) {
1107 case MO_8:
1108 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1109 break;
1110 case MO_16:
1111 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1112 break;
1113 case MO_32:
1114 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1115 break;
1116 case MO_8|MO_SIGN:
1117 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1118 break;
1119 case MO_16|MO_SIGN:
1120 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1121 break;
1122 case MO_32|MO_SIGN:
1123 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1124 break;
1125 case MO_64:
1126 case MO_64|MO_SIGN:
1127 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1128 break;
1129 default:
1130 g_assert_not_reached();
1134 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1135 int element, TCGMemOp memop)
1137 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1138 switch (memop) {
1139 case MO_8:
1140 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1141 break;
1142 case MO_16:
1143 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1144 break;
1145 case MO_8|MO_SIGN:
1146 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1147 break;
1148 case MO_16|MO_SIGN:
1149 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1150 break;
1151 case MO_32:
1152 case MO_32|MO_SIGN:
1153 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1154 break;
1155 default:
1156 g_assert_not_reached();
1160 /* Set value of an element within a vector register */
1161 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1162 int element, TCGMemOp memop)
1164 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1165 switch (memop) {
1166 case MO_8:
1167 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1168 break;
1169 case MO_16:
1170 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1171 break;
1172 case MO_32:
1173 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1174 break;
1175 case MO_64:
1176 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1177 break;
1178 default:
1179 g_assert_not_reached();
1183 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1184 int destidx, int element, TCGMemOp memop)
1186 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1187 switch (memop) {
1188 case MO_8:
1189 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1190 break;
1191 case MO_16:
1192 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1193 break;
1194 case MO_32:
1195 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1196 break;
1197 default:
1198 g_assert_not_reached();
1202 /* Store from vector register to memory */
1203 static void do_vec_st(DisasContext *s, int srcidx, int element,
1204 TCGv_i64 tcg_addr, int size)
1206 TCGMemOp memop = s->be_data + size;
1207 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1209 read_vec_element(s, tcg_tmp, srcidx, element, size);
1210 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1212 tcg_temp_free_i64(tcg_tmp);
1215 /* Load from memory to vector register */
1216 static void do_vec_ld(DisasContext *s, int destidx, int element,
1217 TCGv_i64 tcg_addr, int size)
1219 TCGMemOp memop = s->be_data + size;
1220 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1222 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1223 write_vec_element(s, tcg_tmp, destidx, element, size);
1225 tcg_temp_free_i64(tcg_tmp);
1228 /* Check that FP/Neon access is enabled. If it is, return
1229 * true. If not, emit code to generate an appropriate exception,
1230 * and return false; the caller should not emit any code for
1231 * the instruction. Note that this check must happen after all
1232 * unallocated-encoding checks (otherwise the syndrome information
1233 * for the resulting exception will be incorrect).
1235 static inline bool fp_access_check(DisasContext *s)
1237 assert(!s->fp_access_checked);
1238 s->fp_access_checked = true;
1240 if (!s->fp_excp_el) {
1241 return true;
1244 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1245 s->fp_excp_el);
1246 return false;
1249 /* Check that SVE access is enabled. If it is, return true.
1250 * If not, emit code to generate an appropriate exception and return false.
1252 bool sve_access_check(DisasContext *s)
1254 if (s->sve_excp_el) {
1255 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1256 s->sve_excp_el);
1257 return false;
1259 return fp_access_check(s);
1263 * This utility function is for doing register extension with an
1264 * optional shift. You will likely want to pass a temporary for the
1265 * destination register. See DecodeRegExtend() in the ARM ARM.
1267 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1268 int option, unsigned int shift)
1270 int extsize = extract32(option, 0, 2);
1271 bool is_signed = extract32(option, 2, 1);
1273 if (is_signed) {
1274 switch (extsize) {
1275 case 0:
1276 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1277 break;
1278 case 1:
1279 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1280 break;
1281 case 2:
1282 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1283 break;
1284 case 3:
1285 tcg_gen_mov_i64(tcg_out, tcg_in);
1286 break;
1288 } else {
1289 switch (extsize) {
1290 case 0:
1291 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1292 break;
1293 case 1:
1294 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1295 break;
1296 case 2:
1297 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1298 break;
1299 case 3:
1300 tcg_gen_mov_i64(tcg_out, tcg_in);
1301 break;
1305 if (shift) {
1306 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1310 static inline void gen_check_sp_alignment(DisasContext *s)
1312 /* The AArch64 architecture mandates that (if enabled via PSTATE
1313 * or SCTLR bits) there is a check that SP is 16-aligned on every
1314 * SP-relative load or store (with an exception generated if it is not).
1315 * In line with general QEMU practice regarding misaligned accesses,
1316 * we omit these checks for the sake of guest program performance.
1317 * This function is provided as a hook so we can more easily add these
1318 * checks in future (possibly as a "favour catching guest program bugs
1319 * over speed" user selectable option).
1324 * This provides a simple table based table lookup decoder. It is
1325 * intended to be used when the relevant bits for decode are too
1326 * awkwardly placed and switch/if based logic would be confusing and
1327 * deeply nested. Since it's a linear search through the table, tables
1328 * should be kept small.
1330 * It returns the first handler where insn & mask == pattern, or
1331 * NULL if there is no match.
1332 * The table is terminated by an empty mask (i.e. 0)
1334 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1335 uint32_t insn)
1337 const AArch64DecodeTable *tptr = table;
1339 while (tptr->mask) {
1340 if ((insn & tptr->mask) == tptr->pattern) {
1341 return tptr->disas_fn;
1343 tptr++;
1345 return NULL;
1349 * The instruction disassembly implemented here matches
1350 * the instruction encoding classifications in chapter C4
1351 * of the ARM Architecture Reference Manual (DDI0487B_a);
1352 * classification names and decode diagrams here should generally
1353 * match up with those in the manual.
1356 /* Unconditional branch (immediate)
1357 * 31 30 26 25 0
1358 * +----+-----------+-------------------------------------+
1359 * | op | 0 0 1 0 1 | imm26 |
1360 * +----+-----------+-------------------------------------+
1362 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1364 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1366 if (insn & (1U << 31)) {
1367 /* BL Branch with link */
1368 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1371 /* B Branch / BL Branch with link */
1372 gen_goto_tb(s, 0, addr);
1375 /* Compare and branch (immediate)
1376 * 31 30 25 24 23 5 4 0
1377 * +----+-------------+----+---------------------+--------+
1378 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1379 * +----+-------------+----+---------------------+--------+
1381 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1383 unsigned int sf, op, rt;
1384 uint64_t addr;
1385 TCGLabel *label_match;
1386 TCGv_i64 tcg_cmp;
1388 sf = extract32(insn, 31, 1);
1389 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1390 rt = extract32(insn, 0, 5);
1391 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1393 tcg_cmp = read_cpu_reg(s, rt, sf);
1394 label_match = gen_new_label();
1396 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1397 tcg_cmp, 0, label_match);
1399 gen_goto_tb(s, 0, s->pc);
1400 gen_set_label(label_match);
1401 gen_goto_tb(s, 1, addr);
1404 /* Test and branch (immediate)
1405 * 31 30 25 24 23 19 18 5 4 0
1406 * +----+-------------+----+-------+-------------+------+
1407 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1408 * +----+-------------+----+-------+-------------+------+
1410 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1412 unsigned int bit_pos, op, rt;
1413 uint64_t addr;
1414 TCGLabel *label_match;
1415 TCGv_i64 tcg_cmp;
1417 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1418 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1419 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1420 rt = extract32(insn, 0, 5);
1422 tcg_cmp = tcg_temp_new_i64();
1423 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1424 label_match = gen_new_label();
1425 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1426 tcg_cmp, 0, label_match);
1427 tcg_temp_free_i64(tcg_cmp);
1428 gen_goto_tb(s, 0, s->pc);
1429 gen_set_label(label_match);
1430 gen_goto_tb(s, 1, addr);
1433 /* Conditional branch (immediate)
1434 * 31 25 24 23 5 4 3 0
1435 * +---------------+----+---------------------+----+------+
1436 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1437 * +---------------+----+---------------------+----+------+
1439 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1441 unsigned int cond;
1442 uint64_t addr;
1444 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1445 unallocated_encoding(s);
1446 return;
1448 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1449 cond = extract32(insn, 0, 4);
1451 if (cond < 0x0e) {
1452 /* genuinely conditional branches */
1453 TCGLabel *label_match = gen_new_label();
1454 arm_gen_test_cc(cond, label_match);
1455 gen_goto_tb(s, 0, s->pc);
1456 gen_set_label(label_match);
1457 gen_goto_tb(s, 1, addr);
1458 } else {
1459 /* 0xe and 0xf are both "always" conditions */
1460 gen_goto_tb(s, 0, addr);
1464 /* HINT instruction group, including various allocated HINTs */
1465 static void handle_hint(DisasContext *s, uint32_t insn,
1466 unsigned int op1, unsigned int op2, unsigned int crm)
1468 unsigned int selector = crm << 3 | op2;
1470 if (op1 != 3) {
1471 unallocated_encoding(s);
1472 return;
1475 switch (selector) {
1476 case 0: /* NOP */
1477 return;
1478 case 3: /* WFI */
1479 s->base.is_jmp = DISAS_WFI;
1480 return;
1481 /* When running in MTTCG we don't generate jumps to the yield and
1482 * WFE helpers as it won't affect the scheduling of other vCPUs.
1483 * If we wanted to more completely model WFE/SEV so we don't busy
1484 * spin unnecessarily we would need to do something more involved.
1486 case 1: /* YIELD */
1487 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1488 s->base.is_jmp = DISAS_YIELD;
1490 return;
1491 case 2: /* WFE */
1492 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1493 s->base.is_jmp = DISAS_WFE;
1495 return;
1496 case 4: /* SEV */
1497 case 5: /* SEVL */
1498 /* we treat all as NOP at least for now */
1499 return;
1500 default:
1501 /* default specified as NOP equivalent */
1502 return;
1506 static void gen_clrex(DisasContext *s, uint32_t insn)
1508 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1511 /* CLREX, DSB, DMB, ISB */
1512 static void handle_sync(DisasContext *s, uint32_t insn,
1513 unsigned int op1, unsigned int op2, unsigned int crm)
1515 TCGBar bar;
1517 if (op1 != 3) {
1518 unallocated_encoding(s);
1519 return;
1522 switch (op2) {
1523 case 2: /* CLREX */
1524 gen_clrex(s, insn);
1525 return;
1526 case 4: /* DSB */
1527 case 5: /* DMB */
1528 switch (crm & 3) {
1529 case 1: /* MBReqTypes_Reads */
1530 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1531 break;
1532 case 2: /* MBReqTypes_Writes */
1533 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1534 break;
1535 default: /* MBReqTypes_All */
1536 bar = TCG_BAR_SC | TCG_MO_ALL;
1537 break;
1539 tcg_gen_mb(bar);
1540 return;
1541 case 6: /* ISB */
1542 /* We need to break the TB after this insn to execute
1543 * a self-modified code correctly and also to take
1544 * any pending interrupts immediately.
1546 gen_goto_tb(s, 0, s->pc);
1547 return;
1548 default:
1549 unallocated_encoding(s);
1550 return;
1554 /* MSR (immediate) - move immediate to processor state field */
1555 static void handle_msr_i(DisasContext *s, uint32_t insn,
1556 unsigned int op1, unsigned int op2, unsigned int crm)
1558 int op = op1 << 3 | op2;
1559 switch (op) {
1560 case 0x05: /* SPSel */
1561 if (s->current_el == 0) {
1562 unallocated_encoding(s);
1563 return;
1565 /* fall through */
1566 case 0x1e: /* DAIFSet */
1567 case 0x1f: /* DAIFClear */
1569 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1570 TCGv_i32 tcg_op = tcg_const_i32(op);
1571 gen_a64_set_pc_im(s->pc - 4);
1572 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1573 tcg_temp_free_i32(tcg_imm);
1574 tcg_temp_free_i32(tcg_op);
1575 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1576 gen_a64_set_pc_im(s->pc);
1577 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1578 break;
1580 default:
1581 unallocated_encoding(s);
1582 return;
1586 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1588 TCGv_i32 tmp = tcg_temp_new_i32();
1589 TCGv_i32 nzcv = tcg_temp_new_i32();
1591 /* build bit 31, N */
1592 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1593 /* build bit 30, Z */
1594 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1595 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1596 /* build bit 29, C */
1597 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1598 /* build bit 28, V */
1599 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1600 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1601 /* generate result */
1602 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1604 tcg_temp_free_i32(nzcv);
1605 tcg_temp_free_i32(tmp);
1608 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1611 TCGv_i32 nzcv = tcg_temp_new_i32();
1613 /* take NZCV from R[t] */
1614 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1616 /* bit 31, N */
1617 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1618 /* bit 30, Z */
1619 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1620 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1621 /* bit 29, C */
1622 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1623 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1624 /* bit 28, V */
1625 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1626 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1627 tcg_temp_free_i32(nzcv);
1630 /* MRS - move from system register
1631 * MSR (register) - move to system register
1632 * SYS
1633 * SYSL
1634 * These are all essentially the same insn in 'read' and 'write'
1635 * versions, with varying op0 fields.
1637 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1638 unsigned int op0, unsigned int op1, unsigned int op2,
1639 unsigned int crn, unsigned int crm, unsigned int rt)
1641 const ARMCPRegInfo *ri;
1642 TCGv_i64 tcg_rt;
1644 ri = get_arm_cp_reginfo(s->cp_regs,
1645 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1646 crn, crm, op0, op1, op2));
1648 if (!ri) {
1649 /* Unknown register; this might be a guest error or a QEMU
1650 * unimplemented feature.
1652 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1653 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1654 isread ? "read" : "write", op0, op1, crn, crm, op2);
1655 unallocated_encoding(s);
1656 return;
1659 /* Check access permissions */
1660 if (!cp_access_ok(s->current_el, ri, isread)) {
1661 unallocated_encoding(s);
1662 return;
1665 if (ri->accessfn) {
1666 /* Emit code to perform further access permissions checks at
1667 * runtime; this may result in an exception.
1669 TCGv_ptr tmpptr;
1670 TCGv_i32 tcg_syn, tcg_isread;
1671 uint32_t syndrome;
1673 gen_a64_set_pc_im(s->pc - 4);
1674 tmpptr = tcg_const_ptr(ri);
1675 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1676 tcg_syn = tcg_const_i32(syndrome);
1677 tcg_isread = tcg_const_i32(isread);
1678 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1679 tcg_temp_free_ptr(tmpptr);
1680 tcg_temp_free_i32(tcg_syn);
1681 tcg_temp_free_i32(tcg_isread);
1684 /* Handle special cases first */
1685 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1686 case ARM_CP_NOP:
1687 return;
1688 case ARM_CP_NZCV:
1689 tcg_rt = cpu_reg(s, rt);
1690 if (isread) {
1691 gen_get_nzcv(tcg_rt);
1692 } else {
1693 gen_set_nzcv(tcg_rt);
1695 return;
1696 case ARM_CP_CURRENTEL:
1697 /* Reads as current EL value from pstate, which is
1698 * guaranteed to be constant by the tb flags.
1700 tcg_rt = cpu_reg(s, rt);
1701 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1702 return;
1703 case ARM_CP_DC_ZVA:
1704 /* Writes clear the aligned block of memory which rt points into. */
1705 tcg_rt = cpu_reg(s, rt);
1706 gen_helper_dc_zva(cpu_env, tcg_rt);
1707 return;
1708 default:
1709 break;
1711 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1712 return;
1713 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1714 return;
1717 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1718 gen_io_start();
1721 tcg_rt = cpu_reg(s, rt);
1723 if (isread) {
1724 if (ri->type & ARM_CP_CONST) {
1725 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1726 } else if (ri->readfn) {
1727 TCGv_ptr tmpptr;
1728 tmpptr = tcg_const_ptr(ri);
1729 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1730 tcg_temp_free_ptr(tmpptr);
1731 } else {
1732 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1734 } else {
1735 if (ri->type & ARM_CP_CONST) {
1736 /* If not forbidden by access permissions, treat as WI */
1737 return;
1738 } else if (ri->writefn) {
1739 TCGv_ptr tmpptr;
1740 tmpptr = tcg_const_ptr(ri);
1741 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1742 tcg_temp_free_ptr(tmpptr);
1743 } else {
1744 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1748 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1749 /* I/O operations must end the TB here (whether read or write) */
1750 gen_io_end();
1751 s->base.is_jmp = DISAS_UPDATE;
1752 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1753 /* We default to ending the TB on a coprocessor register write,
1754 * but allow this to be suppressed by the register definition
1755 * (usually only necessary to work around guest bugs).
1757 s->base.is_jmp = DISAS_UPDATE;
1761 /* System
1762 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1763 * +---------------------+---+-----+-----+-------+-------+-----+------+
1764 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1765 * +---------------------+---+-----+-----+-------+-------+-----+------+
1767 static void disas_system(DisasContext *s, uint32_t insn)
1769 unsigned int l, op0, op1, crn, crm, op2, rt;
1770 l = extract32(insn, 21, 1);
1771 op0 = extract32(insn, 19, 2);
1772 op1 = extract32(insn, 16, 3);
1773 crn = extract32(insn, 12, 4);
1774 crm = extract32(insn, 8, 4);
1775 op2 = extract32(insn, 5, 3);
1776 rt = extract32(insn, 0, 5);
1778 if (op0 == 0) {
1779 if (l || rt != 31) {
1780 unallocated_encoding(s);
1781 return;
1783 switch (crn) {
1784 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1785 handle_hint(s, insn, op1, op2, crm);
1786 break;
1787 case 3: /* CLREX, DSB, DMB, ISB */
1788 handle_sync(s, insn, op1, op2, crm);
1789 break;
1790 case 4: /* MSR (immediate) */
1791 handle_msr_i(s, insn, op1, op2, crm);
1792 break;
1793 default:
1794 unallocated_encoding(s);
1795 break;
1797 return;
1799 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1802 /* Exception generation
1804 * 31 24 23 21 20 5 4 2 1 0
1805 * +-----------------+-----+------------------------+-----+----+
1806 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1807 * +-----------------------+------------------------+----------+
1809 static void disas_exc(DisasContext *s, uint32_t insn)
1811 int opc = extract32(insn, 21, 3);
1812 int op2_ll = extract32(insn, 0, 5);
1813 int imm16 = extract32(insn, 5, 16);
1814 TCGv_i32 tmp;
1816 switch (opc) {
1817 case 0:
1818 /* For SVC, HVC and SMC we advance the single-step state
1819 * machine before taking the exception. This is architecturally
1820 * mandated, to ensure that single-stepping a system call
1821 * instruction works properly.
1823 switch (op2_ll) {
1824 case 1: /* SVC */
1825 gen_ss_advance(s);
1826 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1827 default_exception_el(s));
1828 break;
1829 case 2: /* HVC */
1830 if (s->current_el == 0) {
1831 unallocated_encoding(s);
1832 break;
1834 /* The pre HVC helper handles cases when HVC gets trapped
1835 * as an undefined insn by runtime configuration.
1837 gen_a64_set_pc_im(s->pc - 4);
1838 gen_helper_pre_hvc(cpu_env);
1839 gen_ss_advance(s);
1840 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1841 break;
1842 case 3: /* SMC */
1843 if (s->current_el == 0) {
1844 unallocated_encoding(s);
1845 break;
1847 gen_a64_set_pc_im(s->pc - 4);
1848 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1849 gen_helper_pre_smc(cpu_env, tmp);
1850 tcg_temp_free_i32(tmp);
1851 gen_ss_advance(s);
1852 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1853 break;
1854 default:
1855 unallocated_encoding(s);
1856 break;
1858 break;
1859 case 1:
1860 if (op2_ll != 0) {
1861 unallocated_encoding(s);
1862 break;
1864 /* BRK */
1865 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1866 break;
1867 case 2:
1868 if (op2_ll != 0) {
1869 unallocated_encoding(s);
1870 break;
1872 /* HLT. This has two purposes.
1873 * Architecturally, it is an external halting debug instruction.
1874 * Since QEMU doesn't implement external debug, we treat this as
1875 * it is required for halting debug disabled: it will UNDEF.
1876 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1878 if (semihosting_enabled() && imm16 == 0xf000) {
1879 #ifndef CONFIG_USER_ONLY
1880 /* In system mode, don't allow userspace access to semihosting,
1881 * to provide some semblance of security (and for consistency
1882 * with our 32-bit semihosting).
1884 if (s->current_el == 0) {
1885 unsupported_encoding(s, insn);
1886 break;
1888 #endif
1889 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1890 } else {
1891 unsupported_encoding(s, insn);
1893 break;
1894 case 5:
1895 if (op2_ll < 1 || op2_ll > 3) {
1896 unallocated_encoding(s);
1897 break;
1899 /* DCPS1, DCPS2, DCPS3 */
1900 unsupported_encoding(s, insn);
1901 break;
1902 default:
1903 unallocated_encoding(s);
1904 break;
1908 /* Unconditional branch (register)
1909 * 31 25 24 21 20 16 15 10 9 5 4 0
1910 * +---------------+-------+-------+-------+------+-------+
1911 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1912 * +---------------+-------+-------+-------+------+-------+
1914 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1916 unsigned int opc, op2, op3, rn, op4;
1918 opc = extract32(insn, 21, 4);
1919 op2 = extract32(insn, 16, 5);
1920 op3 = extract32(insn, 10, 6);
1921 rn = extract32(insn, 5, 5);
1922 op4 = extract32(insn, 0, 5);
1924 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1925 unallocated_encoding(s);
1926 return;
1929 switch (opc) {
1930 case 0: /* BR */
1931 case 1: /* BLR */
1932 case 2: /* RET */
1933 gen_a64_set_pc(s, cpu_reg(s, rn));
1934 /* BLR also needs to load return address */
1935 if (opc == 1) {
1936 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1938 break;
1939 case 4: /* ERET */
1940 if (s->current_el == 0) {
1941 unallocated_encoding(s);
1942 return;
1944 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
1945 gen_io_start();
1947 gen_helper_exception_return(cpu_env);
1948 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
1949 gen_io_end();
1951 /* Must exit loop to check un-masked IRQs */
1952 s->base.is_jmp = DISAS_EXIT;
1953 return;
1954 case 5: /* DRPS */
1955 if (rn != 0x1f) {
1956 unallocated_encoding(s);
1957 } else {
1958 unsupported_encoding(s, insn);
1960 return;
1961 default:
1962 unallocated_encoding(s);
1963 return;
1966 s->base.is_jmp = DISAS_JUMP;
1969 /* Branches, exception generating and system instructions */
1970 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1972 switch (extract32(insn, 25, 7)) {
1973 case 0x0a: case 0x0b:
1974 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1975 disas_uncond_b_imm(s, insn);
1976 break;
1977 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1978 disas_comp_b_imm(s, insn);
1979 break;
1980 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1981 disas_test_b_imm(s, insn);
1982 break;
1983 case 0x2a: /* Conditional branch (immediate) */
1984 disas_cond_b_imm(s, insn);
1985 break;
1986 case 0x6a: /* Exception generation / System */
1987 if (insn & (1 << 24)) {
1988 disas_system(s, insn);
1989 } else {
1990 disas_exc(s, insn);
1992 break;
1993 case 0x6b: /* Unconditional branch (register) */
1994 disas_uncond_b_reg(s, insn);
1995 break;
1996 default:
1997 unallocated_encoding(s);
1998 break;
2003 * Load/Store exclusive instructions are implemented by remembering
2004 * the value/address loaded, and seeing if these are the same
2005 * when the store is performed. This is not actually the architecturally
2006 * mandated semantics, but it works for typical guest code sequences
2007 * and avoids having to monitor regular stores.
2009 * The store exclusive uses the atomic cmpxchg primitives to avoid
2010 * races in multi-threaded linux-user and when MTTCG softmmu is
2011 * enabled.
2013 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2014 TCGv_i64 addr, int size, bool is_pair)
2016 int idx = get_mem_index(s);
2017 TCGMemOp memop = s->be_data;
2019 g_assert(size <= 3);
2020 if (is_pair) {
2021 g_assert(size >= 2);
2022 if (size == 2) {
2023 /* The pair must be single-copy atomic for the doubleword. */
2024 memop |= MO_64 | MO_ALIGN;
2025 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2026 if (s->be_data == MO_LE) {
2027 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2028 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2029 } else {
2030 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2031 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2033 } else {
2034 /* The pair must be single-copy atomic for *each* doubleword, not
2035 the entire quadword, however it must be quadword aligned. */
2036 memop |= MO_64;
2037 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2038 memop | MO_ALIGN_16);
2040 TCGv_i64 addr2 = tcg_temp_new_i64();
2041 tcg_gen_addi_i64(addr2, addr, 8);
2042 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2043 tcg_temp_free_i64(addr2);
2045 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2046 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2048 } else {
2049 memop |= size | MO_ALIGN;
2050 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2051 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2053 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2056 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2057 TCGv_i64 addr, int size, int is_pair)
2059 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2060 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2061 * [addr] = {Rt};
2062 * if (is_pair) {
2063 * [addr + datasize] = {Rt2};
2065 * {Rd} = 0;
2066 * } else {
2067 * {Rd} = 1;
2069 * env->exclusive_addr = -1;
2071 TCGLabel *fail_label = gen_new_label();
2072 TCGLabel *done_label = gen_new_label();
2073 TCGv_i64 tmp;
2075 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2077 tmp = tcg_temp_new_i64();
2078 if (is_pair) {
2079 if (size == 2) {
2080 if (s->be_data == MO_LE) {
2081 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2082 } else {
2083 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2085 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2086 cpu_exclusive_val, tmp,
2087 get_mem_index(s),
2088 MO_64 | MO_ALIGN | s->be_data);
2089 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2090 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2091 if (!HAVE_CMPXCHG128) {
2092 gen_helper_exit_atomic(cpu_env);
2093 s->base.is_jmp = DISAS_NORETURN;
2094 } else if (s->be_data == MO_LE) {
2095 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2096 cpu_exclusive_addr,
2097 cpu_reg(s, rt),
2098 cpu_reg(s, rt2));
2099 } else {
2100 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2101 cpu_exclusive_addr,
2102 cpu_reg(s, rt),
2103 cpu_reg(s, rt2));
2105 } else if (s->be_data == MO_LE) {
2106 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2107 cpu_reg(s, rt), cpu_reg(s, rt2));
2108 } else {
2109 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2110 cpu_reg(s, rt), cpu_reg(s, rt2));
2112 } else {
2113 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2114 cpu_reg(s, rt), get_mem_index(s),
2115 size | MO_ALIGN | s->be_data);
2116 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2118 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2119 tcg_temp_free_i64(tmp);
2120 tcg_gen_br(done_label);
2122 gen_set_label(fail_label);
2123 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2124 gen_set_label(done_label);
2125 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2128 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2129 int rn, int size)
2131 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2132 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2133 int memidx = get_mem_index(s);
2134 TCGv_i64 addr = cpu_reg_sp(s, rn);
2136 if (rn == 31) {
2137 gen_check_sp_alignment(s);
2139 tcg_gen_atomic_cmpxchg_i64(tcg_rs, addr, tcg_rs, tcg_rt, memidx,
2140 size | MO_ALIGN | s->be_data);
2143 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2144 int rn, int size)
2146 TCGv_i64 s1 = cpu_reg(s, rs);
2147 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2148 TCGv_i64 t1 = cpu_reg(s, rt);
2149 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2150 TCGv_i64 addr = cpu_reg_sp(s, rn);
2151 int memidx = get_mem_index(s);
2153 if (rn == 31) {
2154 gen_check_sp_alignment(s);
2157 if (size == 2) {
2158 TCGv_i64 cmp = tcg_temp_new_i64();
2159 TCGv_i64 val = tcg_temp_new_i64();
2161 if (s->be_data == MO_LE) {
2162 tcg_gen_concat32_i64(val, t1, t2);
2163 tcg_gen_concat32_i64(cmp, s1, s2);
2164 } else {
2165 tcg_gen_concat32_i64(val, t2, t1);
2166 tcg_gen_concat32_i64(cmp, s2, s1);
2169 tcg_gen_atomic_cmpxchg_i64(cmp, addr, cmp, val, memidx,
2170 MO_64 | MO_ALIGN | s->be_data);
2171 tcg_temp_free_i64(val);
2173 if (s->be_data == MO_LE) {
2174 tcg_gen_extr32_i64(s1, s2, cmp);
2175 } else {
2176 tcg_gen_extr32_i64(s2, s1, cmp);
2178 tcg_temp_free_i64(cmp);
2179 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2180 if (HAVE_CMPXCHG128) {
2181 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2182 if (s->be_data == MO_LE) {
2183 gen_helper_casp_le_parallel(cpu_env, tcg_rs, addr, t1, t2);
2184 } else {
2185 gen_helper_casp_be_parallel(cpu_env, tcg_rs, addr, t1, t2);
2187 tcg_temp_free_i32(tcg_rs);
2188 } else {
2189 gen_helper_exit_atomic(cpu_env);
2190 s->base.is_jmp = DISAS_NORETURN;
2192 } else {
2193 TCGv_i64 d1 = tcg_temp_new_i64();
2194 TCGv_i64 d2 = tcg_temp_new_i64();
2195 TCGv_i64 a2 = tcg_temp_new_i64();
2196 TCGv_i64 c1 = tcg_temp_new_i64();
2197 TCGv_i64 c2 = tcg_temp_new_i64();
2198 TCGv_i64 zero = tcg_const_i64(0);
2200 /* Load the two words, in memory order. */
2201 tcg_gen_qemu_ld_i64(d1, addr, memidx,
2202 MO_64 | MO_ALIGN_16 | s->be_data);
2203 tcg_gen_addi_i64(a2, addr, 8);
2204 tcg_gen_qemu_ld_i64(d2, addr, memidx, MO_64 | s->be_data);
2206 /* Compare the two words, also in memory order. */
2207 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2208 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2209 tcg_gen_and_i64(c2, c2, c1);
2211 /* If compare equal, write back new data, else write back old data. */
2212 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2213 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2214 tcg_gen_qemu_st_i64(c1, addr, memidx, MO_64 | s->be_data);
2215 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2216 tcg_temp_free_i64(a2);
2217 tcg_temp_free_i64(c1);
2218 tcg_temp_free_i64(c2);
2219 tcg_temp_free_i64(zero);
2221 /* Write back the data from memory to Rs. */
2222 tcg_gen_mov_i64(s1, d1);
2223 tcg_gen_mov_i64(s2, d2);
2224 tcg_temp_free_i64(d1);
2225 tcg_temp_free_i64(d2);
2229 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2230 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2232 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2234 int opc0 = extract32(opc, 0, 1);
2235 int regsize;
2237 if (is_signed) {
2238 regsize = opc0 ? 32 : 64;
2239 } else {
2240 regsize = size == 3 ? 64 : 32;
2242 return regsize == 64;
2245 /* Load/store exclusive
2247 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2248 * +-----+-------------+----+---+----+------+----+-------+------+------+
2249 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2250 * +-----+-------------+----+---+----+------+----+-------+------+------+
2252 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2253 * L: 0 -> store, 1 -> load
2254 * o2: 0 -> exclusive, 1 -> not
2255 * o1: 0 -> single register, 1 -> register pair
2256 * o0: 1 -> load-acquire/store-release, 0 -> not
2258 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2260 int rt = extract32(insn, 0, 5);
2261 int rn = extract32(insn, 5, 5);
2262 int rt2 = extract32(insn, 10, 5);
2263 int rs = extract32(insn, 16, 5);
2264 int is_lasr = extract32(insn, 15, 1);
2265 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2266 int size = extract32(insn, 30, 2);
2267 TCGv_i64 tcg_addr;
2269 switch (o2_L_o1_o0) {
2270 case 0x0: /* STXR */
2271 case 0x1: /* STLXR */
2272 if (rn == 31) {
2273 gen_check_sp_alignment(s);
2275 if (is_lasr) {
2276 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2278 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2279 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, false);
2280 return;
2282 case 0x4: /* LDXR */
2283 case 0x5: /* LDAXR */
2284 if (rn == 31) {
2285 gen_check_sp_alignment(s);
2287 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2288 s->is_ldex = true;
2289 gen_load_exclusive(s, rt, rt2, tcg_addr, size, false);
2290 if (is_lasr) {
2291 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2293 return;
2295 case 0x9: /* STLR */
2296 /* Generate ISS for non-exclusive accesses including LASR. */
2297 if (rn == 31) {
2298 gen_check_sp_alignment(s);
2300 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2301 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2302 do_gpr_st(s, cpu_reg(s, rt), tcg_addr, size, true, rt,
2303 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2304 return;
2306 case 0xd: /* LDAR */
2307 /* Generate ISS for non-exclusive accesses including LASR. */
2308 if (rn == 31) {
2309 gen_check_sp_alignment(s);
2311 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2312 do_gpr_ld(s, cpu_reg(s, rt), tcg_addr, size, false, false, true, rt,
2313 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2314 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2315 return;
2317 case 0x2: case 0x3: /* CASP / STXP */
2318 if (size & 2) { /* STXP / STLXP */
2319 if (rn == 31) {
2320 gen_check_sp_alignment(s);
2322 if (is_lasr) {
2323 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2325 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2326 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, true);
2327 return;
2329 if (rt2 == 31
2330 && ((rt | rs) & 1) == 0
2331 && dc_isar_feature(aa64_atomics, s)) {
2332 /* CASP / CASPL */
2333 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2334 return;
2336 break;
2338 case 0x6: case 0x7: /* CASPA / LDXP */
2339 if (size & 2) { /* LDXP / LDAXP */
2340 if (rn == 31) {
2341 gen_check_sp_alignment(s);
2343 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2344 s->is_ldex = true;
2345 gen_load_exclusive(s, rt, rt2, tcg_addr, size, true);
2346 if (is_lasr) {
2347 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2349 return;
2351 if (rt2 == 31
2352 && ((rt | rs) & 1) == 0
2353 && dc_isar_feature(aa64_atomics, s)) {
2354 /* CASPA / CASPAL */
2355 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2356 return;
2358 break;
2360 case 0xa: /* CAS */
2361 case 0xb: /* CASL */
2362 case 0xe: /* CASA */
2363 case 0xf: /* CASAL */
2364 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2365 gen_compare_and_swap(s, rs, rt, rn, size);
2366 return;
2368 break;
2370 unallocated_encoding(s);
2374 * Load register (literal)
2376 * 31 30 29 27 26 25 24 23 5 4 0
2377 * +-----+-------+---+-----+-------------------+-------+
2378 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2379 * +-----+-------+---+-----+-------------------+-------+
2381 * V: 1 -> vector (simd/fp)
2382 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2383 * 10-> 32 bit signed, 11 -> prefetch
2384 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2386 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2388 int rt = extract32(insn, 0, 5);
2389 int64_t imm = sextract32(insn, 5, 19) << 2;
2390 bool is_vector = extract32(insn, 26, 1);
2391 int opc = extract32(insn, 30, 2);
2392 bool is_signed = false;
2393 int size = 2;
2394 TCGv_i64 tcg_rt, tcg_addr;
2396 if (is_vector) {
2397 if (opc == 3) {
2398 unallocated_encoding(s);
2399 return;
2401 size = 2 + opc;
2402 if (!fp_access_check(s)) {
2403 return;
2405 } else {
2406 if (opc == 3) {
2407 /* PRFM (literal) : prefetch */
2408 return;
2410 size = 2 + extract32(opc, 0, 1);
2411 is_signed = extract32(opc, 1, 1);
2414 tcg_rt = cpu_reg(s, rt);
2416 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2417 if (is_vector) {
2418 do_fp_ld(s, rt, tcg_addr, size);
2419 } else {
2420 /* Only unsigned 32bit loads target 32bit registers. */
2421 bool iss_sf = opc != 0;
2423 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2424 true, rt, iss_sf, false);
2426 tcg_temp_free_i64(tcg_addr);
2430 * LDNP (Load Pair - non-temporal hint)
2431 * LDP (Load Pair - non vector)
2432 * LDPSW (Load Pair Signed Word - non vector)
2433 * STNP (Store Pair - non-temporal hint)
2434 * STP (Store Pair - non vector)
2435 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2436 * LDP (Load Pair of SIMD&FP)
2437 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2438 * STP (Store Pair of SIMD&FP)
2440 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2441 * +-----+-------+---+---+-------+---+-----------------------------+
2442 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2443 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2445 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2446 * LDPSW 01
2447 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2448 * V: 0 -> GPR, 1 -> Vector
2449 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2450 * 10 -> signed offset, 11 -> pre-index
2451 * L: 0 -> Store 1 -> Load
2453 * Rt, Rt2 = GPR or SIMD registers to be stored
2454 * Rn = general purpose register containing address
2455 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2457 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2459 int rt = extract32(insn, 0, 5);
2460 int rn = extract32(insn, 5, 5);
2461 int rt2 = extract32(insn, 10, 5);
2462 uint64_t offset = sextract64(insn, 15, 7);
2463 int index = extract32(insn, 23, 2);
2464 bool is_vector = extract32(insn, 26, 1);
2465 bool is_load = extract32(insn, 22, 1);
2466 int opc = extract32(insn, 30, 2);
2468 bool is_signed = false;
2469 bool postindex = false;
2470 bool wback = false;
2472 TCGv_i64 tcg_addr; /* calculated address */
2473 int size;
2475 if (opc == 3) {
2476 unallocated_encoding(s);
2477 return;
2480 if (is_vector) {
2481 size = 2 + opc;
2482 } else {
2483 size = 2 + extract32(opc, 1, 1);
2484 is_signed = extract32(opc, 0, 1);
2485 if (!is_load && is_signed) {
2486 unallocated_encoding(s);
2487 return;
2491 switch (index) {
2492 case 1: /* post-index */
2493 postindex = true;
2494 wback = true;
2495 break;
2496 case 0:
2497 /* signed offset with "non-temporal" hint. Since we don't emulate
2498 * caches we don't care about hints to the cache system about
2499 * data access patterns, and handle this identically to plain
2500 * signed offset.
2502 if (is_signed) {
2503 /* There is no non-temporal-hint version of LDPSW */
2504 unallocated_encoding(s);
2505 return;
2507 postindex = false;
2508 break;
2509 case 2: /* signed offset, rn not updated */
2510 postindex = false;
2511 break;
2512 case 3: /* pre-index */
2513 postindex = false;
2514 wback = true;
2515 break;
2518 if (is_vector && !fp_access_check(s)) {
2519 return;
2522 offset <<= size;
2524 if (rn == 31) {
2525 gen_check_sp_alignment(s);
2528 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2530 if (!postindex) {
2531 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2534 if (is_vector) {
2535 if (is_load) {
2536 do_fp_ld(s, rt, tcg_addr, size);
2537 } else {
2538 do_fp_st(s, rt, tcg_addr, size);
2540 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2541 if (is_load) {
2542 do_fp_ld(s, rt2, tcg_addr, size);
2543 } else {
2544 do_fp_st(s, rt2, tcg_addr, size);
2546 } else {
2547 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2548 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2550 if (is_load) {
2551 TCGv_i64 tmp = tcg_temp_new_i64();
2553 /* Do not modify tcg_rt before recognizing any exception
2554 * from the second load.
2556 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2557 false, 0, false, false);
2558 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2559 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2560 false, 0, false, false);
2562 tcg_gen_mov_i64(tcg_rt, tmp);
2563 tcg_temp_free_i64(tmp);
2564 } else {
2565 do_gpr_st(s, tcg_rt, tcg_addr, size,
2566 false, 0, false, false);
2567 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2568 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2569 false, 0, false, false);
2573 if (wback) {
2574 if (postindex) {
2575 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2576 } else {
2577 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2579 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2584 * Load/store (immediate post-indexed)
2585 * Load/store (immediate pre-indexed)
2586 * Load/store (unscaled immediate)
2588 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2589 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2590 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2591 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2593 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2594 10 -> unprivileged
2595 * V = 0 -> non-vector
2596 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2597 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2599 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2600 int opc,
2601 int size,
2602 int rt,
2603 bool is_vector)
2605 int rn = extract32(insn, 5, 5);
2606 int imm9 = sextract32(insn, 12, 9);
2607 int idx = extract32(insn, 10, 2);
2608 bool is_signed = false;
2609 bool is_store = false;
2610 bool is_extended = false;
2611 bool is_unpriv = (idx == 2);
2612 bool iss_valid = !is_vector;
2613 bool post_index;
2614 bool writeback;
2616 TCGv_i64 tcg_addr;
2618 if (is_vector) {
2619 size |= (opc & 2) << 1;
2620 if (size > 4 || is_unpriv) {
2621 unallocated_encoding(s);
2622 return;
2624 is_store = ((opc & 1) == 0);
2625 if (!fp_access_check(s)) {
2626 return;
2628 } else {
2629 if (size == 3 && opc == 2) {
2630 /* PRFM - prefetch */
2631 if (is_unpriv) {
2632 unallocated_encoding(s);
2633 return;
2635 return;
2637 if (opc == 3 && size > 1) {
2638 unallocated_encoding(s);
2639 return;
2641 is_store = (opc == 0);
2642 is_signed = extract32(opc, 1, 1);
2643 is_extended = (size < 3) && extract32(opc, 0, 1);
2646 switch (idx) {
2647 case 0:
2648 case 2:
2649 post_index = false;
2650 writeback = false;
2651 break;
2652 case 1:
2653 post_index = true;
2654 writeback = true;
2655 break;
2656 case 3:
2657 post_index = false;
2658 writeback = true;
2659 break;
2660 default:
2661 g_assert_not_reached();
2664 if (rn == 31) {
2665 gen_check_sp_alignment(s);
2667 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2669 if (!post_index) {
2670 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2673 if (is_vector) {
2674 if (is_store) {
2675 do_fp_st(s, rt, tcg_addr, size);
2676 } else {
2677 do_fp_ld(s, rt, tcg_addr, size);
2679 } else {
2680 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2681 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2682 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2684 if (is_store) {
2685 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2686 iss_valid, rt, iss_sf, false);
2687 } else {
2688 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2689 is_signed, is_extended, memidx,
2690 iss_valid, rt, iss_sf, false);
2694 if (writeback) {
2695 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2696 if (post_index) {
2697 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2699 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2704 * Load/store (register offset)
2706 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2707 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2708 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2709 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2711 * For non-vector:
2712 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2713 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2714 * For vector:
2715 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2716 * opc<0>: 0 -> store, 1 -> load
2717 * V: 1 -> vector/simd
2718 * opt: extend encoding (see DecodeRegExtend)
2719 * S: if S=1 then scale (essentially index by sizeof(size))
2720 * Rt: register to transfer into/out of
2721 * Rn: address register or SP for base
2722 * Rm: offset register or ZR for offset
2724 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2725 int opc,
2726 int size,
2727 int rt,
2728 bool is_vector)
2730 int rn = extract32(insn, 5, 5);
2731 int shift = extract32(insn, 12, 1);
2732 int rm = extract32(insn, 16, 5);
2733 int opt = extract32(insn, 13, 3);
2734 bool is_signed = false;
2735 bool is_store = false;
2736 bool is_extended = false;
2738 TCGv_i64 tcg_rm;
2739 TCGv_i64 tcg_addr;
2741 if (extract32(opt, 1, 1) == 0) {
2742 unallocated_encoding(s);
2743 return;
2746 if (is_vector) {
2747 size |= (opc & 2) << 1;
2748 if (size > 4) {
2749 unallocated_encoding(s);
2750 return;
2752 is_store = !extract32(opc, 0, 1);
2753 if (!fp_access_check(s)) {
2754 return;
2756 } else {
2757 if (size == 3 && opc == 2) {
2758 /* PRFM - prefetch */
2759 return;
2761 if (opc == 3 && size > 1) {
2762 unallocated_encoding(s);
2763 return;
2765 is_store = (opc == 0);
2766 is_signed = extract32(opc, 1, 1);
2767 is_extended = (size < 3) && extract32(opc, 0, 1);
2770 if (rn == 31) {
2771 gen_check_sp_alignment(s);
2773 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2775 tcg_rm = read_cpu_reg(s, rm, 1);
2776 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2778 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2780 if (is_vector) {
2781 if (is_store) {
2782 do_fp_st(s, rt, tcg_addr, size);
2783 } else {
2784 do_fp_ld(s, rt, tcg_addr, size);
2786 } else {
2787 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2788 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2789 if (is_store) {
2790 do_gpr_st(s, tcg_rt, tcg_addr, size,
2791 true, rt, iss_sf, false);
2792 } else {
2793 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2794 is_signed, is_extended,
2795 true, rt, iss_sf, false);
2801 * Load/store (unsigned immediate)
2803 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2804 * +----+-------+---+-----+-----+------------+-------+------+
2805 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2806 * +----+-------+---+-----+-----+------------+-------+------+
2808 * For non-vector:
2809 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2810 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2811 * For vector:
2812 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2813 * opc<0>: 0 -> store, 1 -> load
2814 * Rn: base address register (inc SP)
2815 * Rt: target register
2817 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2818 int opc,
2819 int size,
2820 int rt,
2821 bool is_vector)
2823 int rn = extract32(insn, 5, 5);
2824 unsigned int imm12 = extract32(insn, 10, 12);
2825 unsigned int offset;
2827 TCGv_i64 tcg_addr;
2829 bool is_store;
2830 bool is_signed = false;
2831 bool is_extended = false;
2833 if (is_vector) {
2834 size |= (opc & 2) << 1;
2835 if (size > 4) {
2836 unallocated_encoding(s);
2837 return;
2839 is_store = !extract32(opc, 0, 1);
2840 if (!fp_access_check(s)) {
2841 return;
2843 } else {
2844 if (size == 3 && opc == 2) {
2845 /* PRFM - prefetch */
2846 return;
2848 if (opc == 3 && size > 1) {
2849 unallocated_encoding(s);
2850 return;
2852 is_store = (opc == 0);
2853 is_signed = extract32(opc, 1, 1);
2854 is_extended = (size < 3) && extract32(opc, 0, 1);
2857 if (rn == 31) {
2858 gen_check_sp_alignment(s);
2860 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2861 offset = imm12 << size;
2862 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2864 if (is_vector) {
2865 if (is_store) {
2866 do_fp_st(s, rt, tcg_addr, size);
2867 } else {
2868 do_fp_ld(s, rt, tcg_addr, size);
2870 } else {
2871 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2872 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2873 if (is_store) {
2874 do_gpr_st(s, tcg_rt, tcg_addr, size,
2875 true, rt, iss_sf, false);
2876 } else {
2877 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2878 true, rt, iss_sf, false);
2883 /* Atomic memory operations
2885 * 31 30 27 26 24 22 21 16 15 12 10 5 0
2886 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
2887 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
2888 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
2890 * Rt: the result register
2891 * Rn: base address or SP
2892 * Rs: the source register for the operation
2893 * V: vector flag (always 0 as of v8.3)
2894 * A: acquire flag
2895 * R: release flag
2897 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
2898 int size, int rt, bool is_vector)
2900 int rs = extract32(insn, 16, 5);
2901 int rn = extract32(insn, 5, 5);
2902 int o3_opc = extract32(insn, 12, 4);
2903 TCGv_i64 tcg_rn, tcg_rs;
2904 AtomicThreeOpFn *fn;
2906 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
2907 unallocated_encoding(s);
2908 return;
2910 switch (o3_opc) {
2911 case 000: /* LDADD */
2912 fn = tcg_gen_atomic_fetch_add_i64;
2913 break;
2914 case 001: /* LDCLR */
2915 fn = tcg_gen_atomic_fetch_and_i64;
2916 break;
2917 case 002: /* LDEOR */
2918 fn = tcg_gen_atomic_fetch_xor_i64;
2919 break;
2920 case 003: /* LDSET */
2921 fn = tcg_gen_atomic_fetch_or_i64;
2922 break;
2923 case 004: /* LDSMAX */
2924 fn = tcg_gen_atomic_fetch_smax_i64;
2925 break;
2926 case 005: /* LDSMIN */
2927 fn = tcg_gen_atomic_fetch_smin_i64;
2928 break;
2929 case 006: /* LDUMAX */
2930 fn = tcg_gen_atomic_fetch_umax_i64;
2931 break;
2932 case 007: /* LDUMIN */
2933 fn = tcg_gen_atomic_fetch_umin_i64;
2934 break;
2935 case 010: /* SWP */
2936 fn = tcg_gen_atomic_xchg_i64;
2937 break;
2938 default:
2939 unallocated_encoding(s);
2940 return;
2943 if (rn == 31) {
2944 gen_check_sp_alignment(s);
2946 tcg_rn = cpu_reg_sp(s, rn);
2947 tcg_rs = read_cpu_reg(s, rs, true);
2949 if (o3_opc == 1) { /* LDCLR */
2950 tcg_gen_not_i64(tcg_rs, tcg_rs);
2953 /* The tcg atomic primitives are all full barriers. Therefore we
2954 * can ignore the Acquire and Release bits of this instruction.
2956 fn(cpu_reg(s, rt), tcg_rn, tcg_rs, get_mem_index(s),
2957 s->be_data | size | MO_ALIGN);
2960 /* Load/store register (all forms) */
2961 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2963 int rt = extract32(insn, 0, 5);
2964 int opc = extract32(insn, 22, 2);
2965 bool is_vector = extract32(insn, 26, 1);
2966 int size = extract32(insn, 30, 2);
2968 switch (extract32(insn, 24, 2)) {
2969 case 0:
2970 if (extract32(insn, 21, 1) == 0) {
2971 /* Load/store register (unscaled immediate)
2972 * Load/store immediate pre/post-indexed
2973 * Load/store register unprivileged
2975 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2976 return;
2978 switch (extract32(insn, 10, 2)) {
2979 case 0:
2980 disas_ldst_atomic(s, insn, size, rt, is_vector);
2981 return;
2982 case 2:
2983 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2984 return;
2986 break;
2987 case 1:
2988 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2989 return;
2991 unallocated_encoding(s);
2994 /* AdvSIMD load/store multiple structures
2996 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2997 * +---+---+---------------+---+-------------+--------+------+------+------+
2998 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2999 * +---+---+---------------+---+-------------+--------+------+------+------+
3001 * AdvSIMD load/store multiple structures (post-indexed)
3003 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3004 * +---+---+---------------+---+---+---------+--------+------+------+------+
3005 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3006 * +---+---+---------------+---+---+---------+--------+------+------+------+
3008 * Rt: first (or only) SIMD&FP register to be transferred
3009 * Rn: base address or SP
3010 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3012 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3014 int rt = extract32(insn, 0, 5);
3015 int rn = extract32(insn, 5, 5);
3016 int size = extract32(insn, 10, 2);
3017 int opcode = extract32(insn, 12, 4);
3018 bool is_store = !extract32(insn, 22, 1);
3019 bool is_postidx = extract32(insn, 23, 1);
3020 bool is_q = extract32(insn, 30, 1);
3021 TCGv_i64 tcg_addr, tcg_rn, tcg_ebytes;
3023 int ebytes = 1 << size;
3024 int elements = (is_q ? 128 : 64) / (8 << size);
3025 int rpt; /* num iterations */
3026 int selem; /* structure elements */
3027 int r;
3029 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3030 unallocated_encoding(s);
3031 return;
3034 /* From the shared decode logic */
3035 switch (opcode) {
3036 case 0x0:
3037 rpt = 1;
3038 selem = 4;
3039 break;
3040 case 0x2:
3041 rpt = 4;
3042 selem = 1;
3043 break;
3044 case 0x4:
3045 rpt = 1;
3046 selem = 3;
3047 break;
3048 case 0x6:
3049 rpt = 3;
3050 selem = 1;
3051 break;
3052 case 0x7:
3053 rpt = 1;
3054 selem = 1;
3055 break;
3056 case 0x8:
3057 rpt = 1;
3058 selem = 2;
3059 break;
3060 case 0xa:
3061 rpt = 2;
3062 selem = 1;
3063 break;
3064 default:
3065 unallocated_encoding(s);
3066 return;
3069 if (size == 3 && !is_q && selem != 1) {
3070 /* reserved */
3071 unallocated_encoding(s);
3072 return;
3075 if (!fp_access_check(s)) {
3076 return;
3079 if (rn == 31) {
3080 gen_check_sp_alignment(s);
3083 tcg_rn = cpu_reg_sp(s, rn);
3084 tcg_addr = tcg_temp_new_i64();
3085 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3086 tcg_ebytes = tcg_const_i64(ebytes);
3088 for (r = 0; r < rpt; r++) {
3089 int e;
3090 for (e = 0; e < elements; e++) {
3091 int tt = (rt + r) % 32;
3092 int xs;
3093 for (xs = 0; xs < selem; xs++) {
3094 if (is_store) {
3095 do_vec_st(s, tt, e, tcg_addr, size);
3096 } else {
3097 do_vec_ld(s, tt, e, tcg_addr, size);
3099 /* For non-quad operations, setting a slice of the low
3100 * 64 bits of the register clears the high 64 bits (in
3101 * the ARM ARM pseudocode this is implicit in the fact
3102 * that 'rval' is a 64 bit wide variable).
3103 * For quad operations, we might still need to zero the
3104 * high bits of SVE. We optimize by noticing that we only
3105 * need to do this the first time we touch a register.
3107 if (e == 0 && (r == 0 || xs == selem - 1)) {
3108 clear_vec_high(s, is_q, tt);
3111 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_ebytes);
3112 tt = (tt + 1) % 32;
3117 if (is_postidx) {
3118 int rm = extract32(insn, 16, 5);
3119 if (rm == 31) {
3120 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3121 } else {
3122 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3125 tcg_temp_free_i64(tcg_ebytes);
3126 tcg_temp_free_i64(tcg_addr);
3129 /* AdvSIMD load/store single structure
3131 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3132 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3133 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3134 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3136 * AdvSIMD load/store single structure (post-indexed)
3138 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3139 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3140 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3141 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3143 * Rt: first (or only) SIMD&FP register to be transferred
3144 * Rn: base address or SP
3145 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3146 * index = encoded in Q:S:size dependent on size
3148 * lane_size = encoded in R, opc
3149 * transfer width = encoded in opc, S, size
3151 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3153 int rt = extract32(insn, 0, 5);
3154 int rn = extract32(insn, 5, 5);
3155 int size = extract32(insn, 10, 2);
3156 int S = extract32(insn, 12, 1);
3157 int opc = extract32(insn, 13, 3);
3158 int R = extract32(insn, 21, 1);
3159 int is_load = extract32(insn, 22, 1);
3160 int is_postidx = extract32(insn, 23, 1);
3161 int is_q = extract32(insn, 30, 1);
3163 int scale = extract32(opc, 1, 2);
3164 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3165 bool replicate = false;
3166 int index = is_q << 3 | S << 2 | size;
3167 int ebytes, xs;
3168 TCGv_i64 tcg_addr, tcg_rn, tcg_ebytes;
3170 switch (scale) {
3171 case 3:
3172 if (!is_load || S) {
3173 unallocated_encoding(s);
3174 return;
3176 scale = size;
3177 replicate = true;
3178 break;
3179 case 0:
3180 break;
3181 case 1:
3182 if (extract32(size, 0, 1)) {
3183 unallocated_encoding(s);
3184 return;
3186 index >>= 1;
3187 break;
3188 case 2:
3189 if (extract32(size, 1, 1)) {
3190 unallocated_encoding(s);
3191 return;
3193 if (!extract32(size, 0, 1)) {
3194 index >>= 2;
3195 } else {
3196 if (S) {
3197 unallocated_encoding(s);
3198 return;
3200 index >>= 3;
3201 scale = 3;
3203 break;
3204 default:
3205 g_assert_not_reached();
3208 if (!fp_access_check(s)) {
3209 return;
3212 ebytes = 1 << scale;
3214 if (rn == 31) {
3215 gen_check_sp_alignment(s);
3218 tcg_rn = cpu_reg_sp(s, rn);
3219 tcg_addr = tcg_temp_new_i64();
3220 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3221 tcg_ebytes = tcg_const_i64(ebytes);
3223 for (xs = 0; xs < selem; xs++) {
3224 if (replicate) {
3225 /* Load and replicate to all elements */
3226 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3228 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
3229 get_mem_index(s), s->be_data + scale);
3230 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3231 (is_q + 1) * 8, vec_full_reg_size(s),
3232 tcg_tmp);
3233 tcg_temp_free_i64(tcg_tmp);
3234 } else {
3235 /* Load/store one element per register */
3236 if (is_load) {
3237 do_vec_ld(s, rt, index, tcg_addr, scale);
3238 } else {
3239 do_vec_st(s, rt, index, tcg_addr, scale);
3242 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_ebytes);
3243 rt = (rt + 1) % 32;
3246 if (is_postidx) {
3247 int rm = extract32(insn, 16, 5);
3248 if (rm == 31) {
3249 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3250 } else {
3251 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3254 tcg_temp_free_i64(tcg_ebytes);
3255 tcg_temp_free_i64(tcg_addr);
3258 /* Loads and stores */
3259 static void disas_ldst(DisasContext *s, uint32_t insn)
3261 switch (extract32(insn, 24, 6)) {
3262 case 0x08: /* Load/store exclusive */
3263 disas_ldst_excl(s, insn);
3264 break;
3265 case 0x18: case 0x1c: /* Load register (literal) */
3266 disas_ld_lit(s, insn);
3267 break;
3268 case 0x28: case 0x29:
3269 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3270 disas_ldst_pair(s, insn);
3271 break;
3272 case 0x38: case 0x39:
3273 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3274 disas_ldst_reg(s, insn);
3275 break;
3276 case 0x0c: /* AdvSIMD load/store multiple structures */
3277 disas_ldst_multiple_struct(s, insn);
3278 break;
3279 case 0x0d: /* AdvSIMD load/store single structure */
3280 disas_ldst_single_struct(s, insn);
3281 break;
3282 default:
3283 unallocated_encoding(s);
3284 break;
3288 /* PC-rel. addressing
3289 * 31 30 29 28 24 23 5 4 0
3290 * +----+-------+-----------+-------------------+------+
3291 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3292 * +----+-------+-----------+-------------------+------+
3294 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3296 unsigned int page, rd;
3297 uint64_t base;
3298 uint64_t offset;
3300 page = extract32(insn, 31, 1);
3301 /* SignExtend(immhi:immlo) -> offset */
3302 offset = sextract64(insn, 5, 19);
3303 offset = offset << 2 | extract32(insn, 29, 2);
3304 rd = extract32(insn, 0, 5);
3305 base = s->pc - 4;
3307 if (page) {
3308 /* ADRP (page based) */
3309 base &= ~0xfff;
3310 offset <<= 12;
3313 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3317 * Add/subtract (immediate)
3319 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3320 * +--+--+--+-----------+-----+-------------+-----+-----+
3321 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3322 * +--+--+--+-----------+-----+-------------+-----+-----+
3324 * sf: 0 -> 32bit, 1 -> 64bit
3325 * op: 0 -> add , 1 -> sub
3326 * S: 1 -> set flags
3327 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3329 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3331 int rd = extract32(insn, 0, 5);
3332 int rn = extract32(insn, 5, 5);
3333 uint64_t imm = extract32(insn, 10, 12);
3334 int shift = extract32(insn, 22, 2);
3335 bool setflags = extract32(insn, 29, 1);
3336 bool sub_op = extract32(insn, 30, 1);
3337 bool is_64bit = extract32(insn, 31, 1);
3339 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3340 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3341 TCGv_i64 tcg_result;
3343 switch (shift) {
3344 case 0x0:
3345 break;
3346 case 0x1:
3347 imm <<= 12;
3348 break;
3349 default:
3350 unallocated_encoding(s);
3351 return;
3354 tcg_result = tcg_temp_new_i64();
3355 if (!setflags) {
3356 if (sub_op) {
3357 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3358 } else {
3359 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3361 } else {
3362 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3363 if (sub_op) {
3364 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3365 } else {
3366 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3368 tcg_temp_free_i64(tcg_imm);
3371 if (is_64bit) {
3372 tcg_gen_mov_i64(tcg_rd, tcg_result);
3373 } else {
3374 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3377 tcg_temp_free_i64(tcg_result);
3380 /* The input should be a value in the bottom e bits (with higher
3381 * bits zero); returns that value replicated into every element
3382 * of size e in a 64 bit integer.
3384 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3386 assert(e != 0);
3387 while (e < 64) {
3388 mask |= mask << e;
3389 e *= 2;
3391 return mask;
3394 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3395 static inline uint64_t bitmask64(unsigned int length)
3397 assert(length > 0 && length <= 64);
3398 return ~0ULL >> (64 - length);
3401 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3402 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3403 * value (ie should cause a guest UNDEF exception), and true if they are
3404 * valid, in which case the decoded bit pattern is written to result.
3406 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3407 unsigned int imms, unsigned int immr)
3409 uint64_t mask;
3410 unsigned e, levels, s, r;
3411 int len;
3413 assert(immn < 2 && imms < 64 && immr < 64);
3415 /* The bit patterns we create here are 64 bit patterns which
3416 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3417 * 64 bits each. Each element contains the same value: a run
3418 * of between 1 and e-1 non-zero bits, rotated within the
3419 * element by between 0 and e-1 bits.
3421 * The element size and run length are encoded into immn (1 bit)
3422 * and imms (6 bits) as follows:
3423 * 64 bit elements: immn = 1, imms = <length of run - 1>
3424 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3425 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3426 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3427 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3428 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3429 * Notice that immn = 0, imms = 11111x is the only combination
3430 * not covered by one of the above options; this is reserved.
3431 * Further, <length of run - 1> all-ones is a reserved pattern.
3433 * In all cases the rotation is by immr % e (and immr is 6 bits).
3436 /* First determine the element size */
3437 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3438 if (len < 1) {
3439 /* This is the immn == 0, imms == 0x11111x case */
3440 return false;
3442 e = 1 << len;
3444 levels = e - 1;
3445 s = imms & levels;
3446 r = immr & levels;
3448 if (s == levels) {
3449 /* <length of run - 1> mustn't be all-ones. */
3450 return false;
3453 /* Create the value of one element: s+1 set bits rotated
3454 * by r within the element (which is e bits wide)...
3456 mask = bitmask64(s + 1);
3457 if (r) {
3458 mask = (mask >> r) | (mask << (e - r));
3459 mask &= bitmask64(e);
3461 /* ...then replicate the element over the whole 64 bit value */
3462 mask = bitfield_replicate(mask, e);
3463 *result = mask;
3464 return true;
3467 /* Logical (immediate)
3468 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3469 * +----+-----+-------------+---+------+------+------+------+
3470 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3471 * +----+-----+-------------+---+------+------+------+------+
3473 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3475 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3476 TCGv_i64 tcg_rd, tcg_rn;
3477 uint64_t wmask;
3478 bool is_and = false;
3480 sf = extract32(insn, 31, 1);
3481 opc = extract32(insn, 29, 2);
3482 is_n = extract32(insn, 22, 1);
3483 immr = extract32(insn, 16, 6);
3484 imms = extract32(insn, 10, 6);
3485 rn = extract32(insn, 5, 5);
3486 rd = extract32(insn, 0, 5);
3488 if (!sf && is_n) {
3489 unallocated_encoding(s);
3490 return;
3493 if (opc == 0x3) { /* ANDS */
3494 tcg_rd = cpu_reg(s, rd);
3495 } else {
3496 tcg_rd = cpu_reg_sp(s, rd);
3498 tcg_rn = cpu_reg(s, rn);
3500 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3501 /* some immediate field values are reserved */
3502 unallocated_encoding(s);
3503 return;
3506 if (!sf) {
3507 wmask &= 0xffffffff;
3510 switch (opc) {
3511 case 0x3: /* ANDS */
3512 case 0x0: /* AND */
3513 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3514 is_and = true;
3515 break;
3516 case 0x1: /* ORR */
3517 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3518 break;
3519 case 0x2: /* EOR */
3520 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3521 break;
3522 default:
3523 assert(FALSE); /* must handle all above */
3524 break;
3527 if (!sf && !is_and) {
3528 /* zero extend final result; we know we can skip this for AND
3529 * since the immediate had the high 32 bits clear.
3531 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3534 if (opc == 3) { /* ANDS */
3535 gen_logic_CC(sf, tcg_rd);
3540 * Move wide (immediate)
3542 * 31 30 29 28 23 22 21 20 5 4 0
3543 * +--+-----+-------------+-----+----------------+------+
3544 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3545 * +--+-----+-------------+-----+----------------+------+
3547 * sf: 0 -> 32 bit, 1 -> 64 bit
3548 * opc: 00 -> N, 10 -> Z, 11 -> K
3549 * hw: shift/16 (0,16, and sf only 32, 48)
3551 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3553 int rd = extract32(insn, 0, 5);
3554 uint64_t imm = extract32(insn, 5, 16);
3555 int sf = extract32(insn, 31, 1);
3556 int opc = extract32(insn, 29, 2);
3557 int pos = extract32(insn, 21, 2) << 4;
3558 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3559 TCGv_i64 tcg_imm;
3561 if (!sf && (pos >= 32)) {
3562 unallocated_encoding(s);
3563 return;
3566 switch (opc) {
3567 case 0: /* MOVN */
3568 case 2: /* MOVZ */
3569 imm <<= pos;
3570 if (opc == 0) {
3571 imm = ~imm;
3573 if (!sf) {
3574 imm &= 0xffffffffu;
3576 tcg_gen_movi_i64(tcg_rd, imm);
3577 break;
3578 case 3: /* MOVK */
3579 tcg_imm = tcg_const_i64(imm);
3580 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3581 tcg_temp_free_i64(tcg_imm);
3582 if (!sf) {
3583 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3585 break;
3586 default:
3587 unallocated_encoding(s);
3588 break;
3592 /* Bitfield
3593 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3594 * +----+-----+-------------+---+------+------+------+------+
3595 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3596 * +----+-----+-------------+---+------+------+------+------+
3598 static void disas_bitfield(DisasContext *s, uint32_t insn)
3600 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3601 TCGv_i64 tcg_rd, tcg_tmp;
3603 sf = extract32(insn, 31, 1);
3604 opc = extract32(insn, 29, 2);
3605 n = extract32(insn, 22, 1);
3606 ri = extract32(insn, 16, 6);
3607 si = extract32(insn, 10, 6);
3608 rn = extract32(insn, 5, 5);
3609 rd = extract32(insn, 0, 5);
3610 bitsize = sf ? 64 : 32;
3612 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3613 unallocated_encoding(s);
3614 return;
3617 tcg_rd = cpu_reg(s, rd);
3619 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3620 to be smaller than bitsize, we'll never reference data outside the
3621 low 32-bits anyway. */
3622 tcg_tmp = read_cpu_reg(s, rn, 1);
3624 /* Recognize simple(r) extractions. */
3625 if (si >= ri) {
3626 /* Wd<s-r:0> = Wn<s:r> */
3627 len = (si - ri) + 1;
3628 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3629 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3630 goto done;
3631 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3632 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3633 return;
3635 /* opc == 1, BXFIL fall through to deposit */
3636 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3637 pos = 0;
3638 } else {
3639 /* Handle the ri > si case with a deposit
3640 * Wd<32+s-r,32-r> = Wn<s:0>
3642 len = si + 1;
3643 pos = (bitsize - ri) & (bitsize - 1);
3646 if (opc == 0 && len < ri) {
3647 /* SBFM: sign extend the destination field from len to fill
3648 the balance of the word. Let the deposit below insert all
3649 of those sign bits. */
3650 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3651 len = ri;
3654 if (opc == 1) { /* BFM, BXFIL */
3655 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3656 } else {
3657 /* SBFM or UBFM: We start with zero, and we haven't modified
3658 any bits outside bitsize, therefore the zero-extension
3659 below is unneeded. */
3660 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3661 return;
3664 done:
3665 if (!sf) { /* zero extend final result */
3666 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3670 /* Extract
3671 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3672 * +----+------+-------------+---+----+------+--------+------+------+
3673 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3674 * +----+------+-------------+---+----+------+--------+------+------+
3676 static void disas_extract(DisasContext *s, uint32_t insn)
3678 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3680 sf = extract32(insn, 31, 1);
3681 n = extract32(insn, 22, 1);
3682 rm = extract32(insn, 16, 5);
3683 imm = extract32(insn, 10, 6);
3684 rn = extract32(insn, 5, 5);
3685 rd = extract32(insn, 0, 5);
3686 op21 = extract32(insn, 29, 2);
3687 op0 = extract32(insn, 21, 1);
3688 bitsize = sf ? 64 : 32;
3690 if (sf != n || op21 || op0 || imm >= bitsize) {
3691 unallocated_encoding(s);
3692 } else {
3693 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3695 tcg_rd = cpu_reg(s, rd);
3697 if (unlikely(imm == 0)) {
3698 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3699 * so an extract from bit 0 is a special case.
3701 if (sf) {
3702 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3703 } else {
3704 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3706 } else if (rm == rn) { /* ROR */
3707 tcg_rm = cpu_reg(s, rm);
3708 if (sf) {
3709 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3710 } else {
3711 TCGv_i32 tmp = tcg_temp_new_i32();
3712 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3713 tcg_gen_rotri_i32(tmp, tmp, imm);
3714 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3715 tcg_temp_free_i32(tmp);
3717 } else {
3718 tcg_rm = read_cpu_reg(s, rm, sf);
3719 tcg_rn = read_cpu_reg(s, rn, sf);
3720 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3721 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3722 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3723 if (!sf) {
3724 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3730 /* Data processing - immediate */
3731 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3733 switch (extract32(insn, 23, 6)) {
3734 case 0x20: case 0x21: /* PC-rel. addressing */
3735 disas_pc_rel_adr(s, insn);
3736 break;
3737 case 0x22: case 0x23: /* Add/subtract (immediate) */
3738 disas_add_sub_imm(s, insn);
3739 break;
3740 case 0x24: /* Logical (immediate) */
3741 disas_logic_imm(s, insn);
3742 break;
3743 case 0x25: /* Move wide (immediate) */
3744 disas_movw_imm(s, insn);
3745 break;
3746 case 0x26: /* Bitfield */
3747 disas_bitfield(s, insn);
3748 break;
3749 case 0x27: /* Extract */
3750 disas_extract(s, insn);
3751 break;
3752 default:
3753 unallocated_encoding(s);
3754 break;
3758 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3759 * Note that it is the caller's responsibility to ensure that the
3760 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3761 * mandated semantics for out of range shifts.
3763 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3764 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3766 switch (shift_type) {
3767 case A64_SHIFT_TYPE_LSL:
3768 tcg_gen_shl_i64(dst, src, shift_amount);
3769 break;
3770 case A64_SHIFT_TYPE_LSR:
3771 tcg_gen_shr_i64(dst, src, shift_amount);
3772 break;
3773 case A64_SHIFT_TYPE_ASR:
3774 if (!sf) {
3775 tcg_gen_ext32s_i64(dst, src);
3777 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3778 break;
3779 case A64_SHIFT_TYPE_ROR:
3780 if (sf) {
3781 tcg_gen_rotr_i64(dst, src, shift_amount);
3782 } else {
3783 TCGv_i32 t0, t1;
3784 t0 = tcg_temp_new_i32();
3785 t1 = tcg_temp_new_i32();
3786 tcg_gen_extrl_i64_i32(t0, src);
3787 tcg_gen_extrl_i64_i32(t1, shift_amount);
3788 tcg_gen_rotr_i32(t0, t0, t1);
3789 tcg_gen_extu_i32_i64(dst, t0);
3790 tcg_temp_free_i32(t0);
3791 tcg_temp_free_i32(t1);
3793 break;
3794 default:
3795 assert(FALSE); /* all shift types should be handled */
3796 break;
3799 if (!sf) { /* zero extend final result */
3800 tcg_gen_ext32u_i64(dst, dst);
3804 /* Shift a TCGv src by immediate, put result in dst.
3805 * The shift amount must be in range (this should always be true as the
3806 * relevant instructions will UNDEF on bad shift immediates).
3808 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3809 enum a64_shift_type shift_type, unsigned int shift_i)
3811 assert(shift_i < (sf ? 64 : 32));
3813 if (shift_i == 0) {
3814 tcg_gen_mov_i64(dst, src);
3815 } else {
3816 TCGv_i64 shift_const;
3818 shift_const = tcg_const_i64(shift_i);
3819 shift_reg(dst, src, sf, shift_type, shift_const);
3820 tcg_temp_free_i64(shift_const);
3824 /* Logical (shifted register)
3825 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3826 * +----+-----+-----------+-------+---+------+--------+------+------+
3827 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3828 * +----+-----+-----------+-------+---+------+--------+------+------+
3830 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3832 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3833 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3835 sf = extract32(insn, 31, 1);
3836 opc = extract32(insn, 29, 2);
3837 shift_type = extract32(insn, 22, 2);
3838 invert = extract32(insn, 21, 1);
3839 rm = extract32(insn, 16, 5);
3840 shift_amount = extract32(insn, 10, 6);
3841 rn = extract32(insn, 5, 5);
3842 rd = extract32(insn, 0, 5);
3844 if (!sf && (shift_amount & (1 << 5))) {
3845 unallocated_encoding(s);
3846 return;
3849 tcg_rd = cpu_reg(s, rd);
3851 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3852 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3853 * register-register MOV and MVN, so it is worth special casing.
3855 tcg_rm = cpu_reg(s, rm);
3856 if (invert) {
3857 tcg_gen_not_i64(tcg_rd, tcg_rm);
3858 if (!sf) {
3859 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3861 } else {
3862 if (sf) {
3863 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3864 } else {
3865 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3868 return;
3871 tcg_rm = read_cpu_reg(s, rm, sf);
3873 if (shift_amount) {
3874 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3877 tcg_rn = cpu_reg(s, rn);
3879 switch (opc | (invert << 2)) {
3880 case 0: /* AND */
3881 case 3: /* ANDS */
3882 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3883 break;
3884 case 1: /* ORR */
3885 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3886 break;
3887 case 2: /* EOR */
3888 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3889 break;
3890 case 4: /* BIC */
3891 case 7: /* BICS */
3892 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3893 break;
3894 case 5: /* ORN */
3895 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3896 break;
3897 case 6: /* EON */
3898 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3899 break;
3900 default:
3901 assert(FALSE);
3902 break;
3905 if (!sf) {
3906 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3909 if (opc == 3) {
3910 gen_logic_CC(sf, tcg_rd);
3915 * Add/subtract (extended register)
3917 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3918 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3919 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3920 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3922 * sf: 0 -> 32bit, 1 -> 64bit
3923 * op: 0 -> add , 1 -> sub
3924 * S: 1 -> set flags
3925 * opt: 00
3926 * option: extension type (see DecodeRegExtend)
3927 * imm3: optional shift to Rm
3929 * Rd = Rn + LSL(extend(Rm), amount)
3931 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3933 int rd = extract32(insn, 0, 5);
3934 int rn = extract32(insn, 5, 5);
3935 int imm3 = extract32(insn, 10, 3);
3936 int option = extract32(insn, 13, 3);
3937 int rm = extract32(insn, 16, 5);
3938 bool setflags = extract32(insn, 29, 1);
3939 bool sub_op = extract32(insn, 30, 1);
3940 bool sf = extract32(insn, 31, 1);
3942 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3943 TCGv_i64 tcg_rd;
3944 TCGv_i64 tcg_result;
3946 if (imm3 > 4) {
3947 unallocated_encoding(s);
3948 return;
3951 /* non-flag setting ops may use SP */
3952 if (!setflags) {
3953 tcg_rd = cpu_reg_sp(s, rd);
3954 } else {
3955 tcg_rd = cpu_reg(s, rd);
3957 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3959 tcg_rm = read_cpu_reg(s, rm, sf);
3960 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3962 tcg_result = tcg_temp_new_i64();
3964 if (!setflags) {
3965 if (sub_op) {
3966 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3967 } else {
3968 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3970 } else {
3971 if (sub_op) {
3972 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3973 } else {
3974 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3978 if (sf) {
3979 tcg_gen_mov_i64(tcg_rd, tcg_result);
3980 } else {
3981 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3984 tcg_temp_free_i64(tcg_result);
3988 * Add/subtract (shifted register)
3990 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3991 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3992 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3993 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3995 * sf: 0 -> 32bit, 1 -> 64bit
3996 * op: 0 -> add , 1 -> sub
3997 * S: 1 -> set flags
3998 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3999 * imm6: Shift amount to apply to Rm before the add/sub
4001 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4003 int rd = extract32(insn, 0, 5);
4004 int rn = extract32(insn, 5, 5);
4005 int imm6 = extract32(insn, 10, 6);
4006 int rm = extract32(insn, 16, 5);
4007 int shift_type = extract32(insn, 22, 2);
4008 bool setflags = extract32(insn, 29, 1);
4009 bool sub_op = extract32(insn, 30, 1);
4010 bool sf = extract32(insn, 31, 1);
4012 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4013 TCGv_i64 tcg_rn, tcg_rm;
4014 TCGv_i64 tcg_result;
4016 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4017 unallocated_encoding(s);
4018 return;
4021 tcg_rn = read_cpu_reg(s, rn, sf);
4022 tcg_rm = read_cpu_reg(s, rm, sf);
4024 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4026 tcg_result = tcg_temp_new_i64();
4028 if (!setflags) {
4029 if (sub_op) {
4030 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4031 } else {
4032 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4034 } else {
4035 if (sub_op) {
4036 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4037 } else {
4038 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4042 if (sf) {
4043 tcg_gen_mov_i64(tcg_rd, tcg_result);
4044 } else {
4045 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4048 tcg_temp_free_i64(tcg_result);
4051 /* Data-processing (3 source)
4053 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4054 * +--+------+-----------+------+------+----+------+------+------+
4055 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4056 * +--+------+-----------+------+------+----+------+------+------+
4058 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4060 int rd = extract32(insn, 0, 5);
4061 int rn = extract32(insn, 5, 5);
4062 int ra = extract32(insn, 10, 5);
4063 int rm = extract32(insn, 16, 5);
4064 int op_id = (extract32(insn, 29, 3) << 4) |
4065 (extract32(insn, 21, 3) << 1) |
4066 extract32(insn, 15, 1);
4067 bool sf = extract32(insn, 31, 1);
4068 bool is_sub = extract32(op_id, 0, 1);
4069 bool is_high = extract32(op_id, 2, 1);
4070 bool is_signed = false;
4071 TCGv_i64 tcg_op1;
4072 TCGv_i64 tcg_op2;
4073 TCGv_i64 tcg_tmp;
4075 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4076 switch (op_id) {
4077 case 0x42: /* SMADDL */
4078 case 0x43: /* SMSUBL */
4079 case 0x44: /* SMULH */
4080 is_signed = true;
4081 break;
4082 case 0x0: /* MADD (32bit) */
4083 case 0x1: /* MSUB (32bit) */
4084 case 0x40: /* MADD (64bit) */
4085 case 0x41: /* MSUB (64bit) */
4086 case 0x4a: /* UMADDL */
4087 case 0x4b: /* UMSUBL */
4088 case 0x4c: /* UMULH */
4089 break;
4090 default:
4091 unallocated_encoding(s);
4092 return;
4095 if (is_high) {
4096 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4097 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4098 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4099 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4101 if (is_signed) {
4102 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4103 } else {
4104 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4107 tcg_temp_free_i64(low_bits);
4108 return;
4111 tcg_op1 = tcg_temp_new_i64();
4112 tcg_op2 = tcg_temp_new_i64();
4113 tcg_tmp = tcg_temp_new_i64();
4115 if (op_id < 0x42) {
4116 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4117 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4118 } else {
4119 if (is_signed) {
4120 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4121 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4122 } else {
4123 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4124 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4128 if (ra == 31 && !is_sub) {
4129 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4130 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4131 } else {
4132 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4133 if (is_sub) {
4134 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4135 } else {
4136 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4140 if (!sf) {
4141 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4144 tcg_temp_free_i64(tcg_op1);
4145 tcg_temp_free_i64(tcg_op2);
4146 tcg_temp_free_i64(tcg_tmp);
4149 /* Add/subtract (with carry)
4150 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4151 * +--+--+--+------------------------+------+---------+------+-----+
4152 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
4153 * +--+--+--+------------------------+------+---------+------+-----+
4154 * [000000]
4157 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4159 unsigned int sf, op, setflags, rm, rn, rd;
4160 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4162 if (extract32(insn, 10, 6) != 0) {
4163 unallocated_encoding(s);
4164 return;
4167 sf = extract32(insn, 31, 1);
4168 op = extract32(insn, 30, 1);
4169 setflags = extract32(insn, 29, 1);
4170 rm = extract32(insn, 16, 5);
4171 rn = extract32(insn, 5, 5);
4172 rd = extract32(insn, 0, 5);
4174 tcg_rd = cpu_reg(s, rd);
4175 tcg_rn = cpu_reg(s, rn);
4177 if (op) {
4178 tcg_y = new_tmp_a64(s);
4179 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4180 } else {
4181 tcg_y = cpu_reg(s, rm);
4184 if (setflags) {
4185 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4186 } else {
4187 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4191 /* Conditional compare (immediate / register)
4192 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4193 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4194 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4195 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4196 * [1] y [0] [0]
4198 static void disas_cc(DisasContext *s, uint32_t insn)
4200 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4201 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4202 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4203 DisasCompare c;
4205 if (!extract32(insn, 29, 1)) {
4206 unallocated_encoding(s);
4207 return;
4209 if (insn & (1 << 10 | 1 << 4)) {
4210 unallocated_encoding(s);
4211 return;
4213 sf = extract32(insn, 31, 1);
4214 op = extract32(insn, 30, 1);
4215 is_imm = extract32(insn, 11, 1);
4216 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4217 cond = extract32(insn, 12, 4);
4218 rn = extract32(insn, 5, 5);
4219 nzcv = extract32(insn, 0, 4);
4221 /* Set T0 = !COND. */
4222 tcg_t0 = tcg_temp_new_i32();
4223 arm_test_cc(&c, cond);
4224 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4225 arm_free_cc(&c);
4227 /* Load the arguments for the new comparison. */
4228 if (is_imm) {
4229 tcg_y = new_tmp_a64(s);
4230 tcg_gen_movi_i64(tcg_y, y);
4231 } else {
4232 tcg_y = cpu_reg(s, y);
4234 tcg_rn = cpu_reg(s, rn);
4236 /* Set the flags for the new comparison. */
4237 tcg_tmp = tcg_temp_new_i64();
4238 if (op) {
4239 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4240 } else {
4241 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4243 tcg_temp_free_i64(tcg_tmp);
4245 /* If COND was false, force the flags to #nzcv. Compute two masks
4246 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4247 * For tcg hosts that support ANDC, we can make do with just T1.
4248 * In either case, allow the tcg optimizer to delete any unused mask.
4250 tcg_t1 = tcg_temp_new_i32();
4251 tcg_t2 = tcg_temp_new_i32();
4252 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4253 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4255 if (nzcv & 8) { /* N */
4256 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4257 } else {
4258 if (TCG_TARGET_HAS_andc_i32) {
4259 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4260 } else {
4261 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4264 if (nzcv & 4) { /* Z */
4265 if (TCG_TARGET_HAS_andc_i32) {
4266 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4267 } else {
4268 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4270 } else {
4271 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4273 if (nzcv & 2) { /* C */
4274 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4275 } else {
4276 if (TCG_TARGET_HAS_andc_i32) {
4277 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4278 } else {
4279 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4282 if (nzcv & 1) { /* V */
4283 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4284 } else {
4285 if (TCG_TARGET_HAS_andc_i32) {
4286 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4287 } else {
4288 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4291 tcg_temp_free_i32(tcg_t0);
4292 tcg_temp_free_i32(tcg_t1);
4293 tcg_temp_free_i32(tcg_t2);
4296 /* Conditional select
4297 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4298 * +----+----+---+-----------------+------+------+-----+------+------+
4299 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4300 * +----+----+---+-----------------+------+------+-----+------+------+
4302 static void disas_cond_select(DisasContext *s, uint32_t insn)
4304 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4305 TCGv_i64 tcg_rd, zero;
4306 DisasCompare64 c;
4308 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4309 /* S == 1 or op2<1> == 1 */
4310 unallocated_encoding(s);
4311 return;
4313 sf = extract32(insn, 31, 1);
4314 else_inv = extract32(insn, 30, 1);
4315 rm = extract32(insn, 16, 5);
4316 cond = extract32(insn, 12, 4);
4317 else_inc = extract32(insn, 10, 1);
4318 rn = extract32(insn, 5, 5);
4319 rd = extract32(insn, 0, 5);
4321 tcg_rd = cpu_reg(s, rd);
4323 a64_test_cc(&c, cond);
4324 zero = tcg_const_i64(0);
4326 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4327 /* CSET & CSETM. */
4328 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4329 if (else_inv) {
4330 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4332 } else {
4333 TCGv_i64 t_true = cpu_reg(s, rn);
4334 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4335 if (else_inv && else_inc) {
4336 tcg_gen_neg_i64(t_false, t_false);
4337 } else if (else_inv) {
4338 tcg_gen_not_i64(t_false, t_false);
4339 } else if (else_inc) {
4340 tcg_gen_addi_i64(t_false, t_false, 1);
4342 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4345 tcg_temp_free_i64(zero);
4346 a64_free_cc(&c);
4348 if (!sf) {
4349 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4353 static void handle_clz(DisasContext *s, unsigned int sf,
4354 unsigned int rn, unsigned int rd)
4356 TCGv_i64 tcg_rd, tcg_rn;
4357 tcg_rd = cpu_reg(s, rd);
4358 tcg_rn = cpu_reg(s, rn);
4360 if (sf) {
4361 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4362 } else {
4363 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4364 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4365 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4366 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4367 tcg_temp_free_i32(tcg_tmp32);
4371 static void handle_cls(DisasContext *s, unsigned int sf,
4372 unsigned int rn, unsigned int rd)
4374 TCGv_i64 tcg_rd, tcg_rn;
4375 tcg_rd = cpu_reg(s, rd);
4376 tcg_rn = cpu_reg(s, rn);
4378 if (sf) {
4379 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4380 } else {
4381 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4382 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4383 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4384 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4385 tcg_temp_free_i32(tcg_tmp32);
4389 static void handle_rbit(DisasContext *s, unsigned int sf,
4390 unsigned int rn, unsigned int rd)
4392 TCGv_i64 tcg_rd, tcg_rn;
4393 tcg_rd = cpu_reg(s, rd);
4394 tcg_rn = cpu_reg(s, rn);
4396 if (sf) {
4397 gen_helper_rbit64(tcg_rd, tcg_rn);
4398 } else {
4399 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4400 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4401 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4402 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4403 tcg_temp_free_i32(tcg_tmp32);
4407 /* REV with sf==1, opcode==3 ("REV64") */
4408 static void handle_rev64(DisasContext *s, unsigned int sf,
4409 unsigned int rn, unsigned int rd)
4411 if (!sf) {
4412 unallocated_encoding(s);
4413 return;
4415 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4418 /* REV with sf==0, opcode==2
4419 * REV32 (sf==1, opcode==2)
4421 static void handle_rev32(DisasContext *s, unsigned int sf,
4422 unsigned int rn, unsigned int rd)
4424 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4426 if (sf) {
4427 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4428 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4430 /* bswap32_i64 requires zero high word */
4431 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4432 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4433 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4434 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4435 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4437 tcg_temp_free_i64(tcg_tmp);
4438 } else {
4439 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4440 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4444 /* REV16 (opcode==1) */
4445 static void handle_rev16(DisasContext *s, unsigned int sf,
4446 unsigned int rn, unsigned int rd)
4448 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4449 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4450 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4451 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4453 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4454 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4455 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4456 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4457 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4459 tcg_temp_free_i64(mask);
4460 tcg_temp_free_i64(tcg_tmp);
4463 /* Data-processing (1 source)
4464 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4465 * +----+---+---+-----------------+---------+--------+------+------+
4466 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4467 * +----+---+---+-----------------+---------+--------+------+------+
4469 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4471 unsigned int sf, opcode, rn, rd;
4473 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4474 unallocated_encoding(s);
4475 return;
4478 sf = extract32(insn, 31, 1);
4479 opcode = extract32(insn, 10, 6);
4480 rn = extract32(insn, 5, 5);
4481 rd = extract32(insn, 0, 5);
4483 switch (opcode) {
4484 case 0: /* RBIT */
4485 handle_rbit(s, sf, rn, rd);
4486 break;
4487 case 1: /* REV16 */
4488 handle_rev16(s, sf, rn, rd);
4489 break;
4490 case 2: /* REV32 */
4491 handle_rev32(s, sf, rn, rd);
4492 break;
4493 case 3: /* REV64 */
4494 handle_rev64(s, sf, rn, rd);
4495 break;
4496 case 4: /* CLZ */
4497 handle_clz(s, sf, rn, rd);
4498 break;
4499 case 5: /* CLS */
4500 handle_cls(s, sf, rn, rd);
4501 break;
4505 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4506 unsigned int rm, unsigned int rn, unsigned int rd)
4508 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4509 tcg_rd = cpu_reg(s, rd);
4511 if (!sf && is_signed) {
4512 tcg_n = new_tmp_a64(s);
4513 tcg_m = new_tmp_a64(s);
4514 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4515 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4516 } else {
4517 tcg_n = read_cpu_reg(s, rn, sf);
4518 tcg_m = read_cpu_reg(s, rm, sf);
4521 if (is_signed) {
4522 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4523 } else {
4524 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4527 if (!sf) { /* zero extend final result */
4528 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4532 /* LSLV, LSRV, ASRV, RORV */
4533 static void handle_shift_reg(DisasContext *s,
4534 enum a64_shift_type shift_type, unsigned int sf,
4535 unsigned int rm, unsigned int rn, unsigned int rd)
4537 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4538 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4539 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4541 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4542 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4543 tcg_temp_free_i64(tcg_shift);
4546 /* CRC32[BHWX], CRC32C[BHWX] */
4547 static void handle_crc32(DisasContext *s,
4548 unsigned int sf, unsigned int sz, bool crc32c,
4549 unsigned int rm, unsigned int rn, unsigned int rd)
4551 TCGv_i64 tcg_acc, tcg_val;
4552 TCGv_i32 tcg_bytes;
4554 if (!dc_isar_feature(aa64_crc32, s)
4555 || (sf == 1 && sz != 3)
4556 || (sf == 0 && sz == 3)) {
4557 unallocated_encoding(s);
4558 return;
4561 if (sz == 3) {
4562 tcg_val = cpu_reg(s, rm);
4563 } else {
4564 uint64_t mask;
4565 switch (sz) {
4566 case 0:
4567 mask = 0xFF;
4568 break;
4569 case 1:
4570 mask = 0xFFFF;
4571 break;
4572 case 2:
4573 mask = 0xFFFFFFFF;
4574 break;
4575 default:
4576 g_assert_not_reached();
4578 tcg_val = new_tmp_a64(s);
4579 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4582 tcg_acc = cpu_reg(s, rn);
4583 tcg_bytes = tcg_const_i32(1 << sz);
4585 if (crc32c) {
4586 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4587 } else {
4588 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4591 tcg_temp_free_i32(tcg_bytes);
4594 /* Data-processing (2 source)
4595 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4596 * +----+---+---+-----------------+------+--------+------+------+
4597 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4598 * +----+---+---+-----------------+------+--------+------+------+
4600 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4602 unsigned int sf, rm, opcode, rn, rd;
4603 sf = extract32(insn, 31, 1);
4604 rm = extract32(insn, 16, 5);
4605 opcode = extract32(insn, 10, 6);
4606 rn = extract32(insn, 5, 5);
4607 rd = extract32(insn, 0, 5);
4609 if (extract32(insn, 29, 1)) {
4610 unallocated_encoding(s);
4611 return;
4614 switch (opcode) {
4615 case 2: /* UDIV */
4616 handle_div(s, false, sf, rm, rn, rd);
4617 break;
4618 case 3: /* SDIV */
4619 handle_div(s, true, sf, rm, rn, rd);
4620 break;
4621 case 8: /* LSLV */
4622 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4623 break;
4624 case 9: /* LSRV */
4625 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4626 break;
4627 case 10: /* ASRV */
4628 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4629 break;
4630 case 11: /* RORV */
4631 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4632 break;
4633 case 16:
4634 case 17:
4635 case 18:
4636 case 19:
4637 case 20:
4638 case 21:
4639 case 22:
4640 case 23: /* CRC32 */
4642 int sz = extract32(opcode, 0, 2);
4643 bool crc32c = extract32(opcode, 2, 1);
4644 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4645 break;
4647 default:
4648 unallocated_encoding(s);
4649 break;
4653 /* Data processing - register */
4654 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4656 switch (extract32(insn, 24, 5)) {
4657 case 0x0a: /* Logical (shifted register) */
4658 disas_logic_reg(s, insn);
4659 break;
4660 case 0x0b: /* Add/subtract */
4661 if (insn & (1 << 21)) { /* (extended register) */
4662 disas_add_sub_ext_reg(s, insn);
4663 } else {
4664 disas_add_sub_reg(s, insn);
4666 break;
4667 case 0x1b: /* Data-processing (3 source) */
4668 disas_data_proc_3src(s, insn);
4669 break;
4670 case 0x1a:
4671 switch (extract32(insn, 21, 3)) {
4672 case 0x0: /* Add/subtract (with carry) */
4673 disas_adc_sbc(s, insn);
4674 break;
4675 case 0x2: /* Conditional compare */
4676 disas_cc(s, insn); /* both imm and reg forms */
4677 break;
4678 case 0x4: /* Conditional select */
4679 disas_cond_select(s, insn);
4680 break;
4681 case 0x6: /* Data-processing */
4682 if (insn & (1 << 30)) { /* (1 source) */
4683 disas_data_proc_1src(s, insn);
4684 } else { /* (2 source) */
4685 disas_data_proc_2src(s, insn);
4687 break;
4688 default:
4689 unallocated_encoding(s);
4690 break;
4692 break;
4693 default:
4694 unallocated_encoding(s);
4695 break;
4699 static void handle_fp_compare(DisasContext *s, int size,
4700 unsigned int rn, unsigned int rm,
4701 bool cmp_with_zero, bool signal_all_nans)
4703 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4704 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
4706 if (size == MO_64) {
4707 TCGv_i64 tcg_vn, tcg_vm;
4709 tcg_vn = read_fp_dreg(s, rn);
4710 if (cmp_with_zero) {
4711 tcg_vm = tcg_const_i64(0);
4712 } else {
4713 tcg_vm = read_fp_dreg(s, rm);
4715 if (signal_all_nans) {
4716 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4717 } else {
4718 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4720 tcg_temp_free_i64(tcg_vn);
4721 tcg_temp_free_i64(tcg_vm);
4722 } else {
4723 TCGv_i32 tcg_vn = tcg_temp_new_i32();
4724 TCGv_i32 tcg_vm = tcg_temp_new_i32();
4726 read_vec_element_i32(s, tcg_vn, rn, 0, size);
4727 if (cmp_with_zero) {
4728 tcg_gen_movi_i32(tcg_vm, 0);
4729 } else {
4730 read_vec_element_i32(s, tcg_vm, rm, 0, size);
4733 switch (size) {
4734 case MO_32:
4735 if (signal_all_nans) {
4736 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4737 } else {
4738 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4740 break;
4741 case MO_16:
4742 if (signal_all_nans) {
4743 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4744 } else {
4745 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4747 break;
4748 default:
4749 g_assert_not_reached();
4752 tcg_temp_free_i32(tcg_vn);
4753 tcg_temp_free_i32(tcg_vm);
4756 tcg_temp_free_ptr(fpst);
4758 gen_set_nzcv(tcg_flags);
4760 tcg_temp_free_i64(tcg_flags);
4763 /* Floating point compare
4764 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4765 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4766 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4767 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4769 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4771 unsigned int mos, type, rm, op, rn, opc, op2r;
4772 int size;
4774 mos = extract32(insn, 29, 3);
4775 type = extract32(insn, 22, 2);
4776 rm = extract32(insn, 16, 5);
4777 op = extract32(insn, 14, 2);
4778 rn = extract32(insn, 5, 5);
4779 opc = extract32(insn, 3, 2);
4780 op2r = extract32(insn, 0, 3);
4782 if (mos || op || op2r) {
4783 unallocated_encoding(s);
4784 return;
4787 switch (type) {
4788 case 0:
4789 size = MO_32;
4790 break;
4791 case 1:
4792 size = MO_64;
4793 break;
4794 case 3:
4795 size = MO_16;
4796 if (dc_isar_feature(aa64_fp16, s)) {
4797 break;
4799 /* fallthru */
4800 default:
4801 unallocated_encoding(s);
4802 return;
4805 if (!fp_access_check(s)) {
4806 return;
4809 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
4812 /* Floating point conditional compare
4813 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4814 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4815 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4816 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4818 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4820 unsigned int mos, type, rm, cond, rn, op, nzcv;
4821 TCGv_i64 tcg_flags;
4822 TCGLabel *label_continue = NULL;
4823 int size;
4825 mos = extract32(insn, 29, 3);
4826 type = extract32(insn, 22, 2);
4827 rm = extract32(insn, 16, 5);
4828 cond = extract32(insn, 12, 4);
4829 rn = extract32(insn, 5, 5);
4830 op = extract32(insn, 4, 1);
4831 nzcv = extract32(insn, 0, 4);
4833 if (mos) {
4834 unallocated_encoding(s);
4835 return;
4838 switch (type) {
4839 case 0:
4840 size = MO_32;
4841 break;
4842 case 1:
4843 size = MO_64;
4844 break;
4845 case 3:
4846 size = MO_16;
4847 if (dc_isar_feature(aa64_fp16, s)) {
4848 break;
4850 /* fallthru */
4851 default:
4852 unallocated_encoding(s);
4853 return;
4856 if (!fp_access_check(s)) {
4857 return;
4860 if (cond < 0x0e) { /* not always */
4861 TCGLabel *label_match = gen_new_label();
4862 label_continue = gen_new_label();
4863 arm_gen_test_cc(cond, label_match);
4864 /* nomatch: */
4865 tcg_flags = tcg_const_i64(nzcv << 28);
4866 gen_set_nzcv(tcg_flags);
4867 tcg_temp_free_i64(tcg_flags);
4868 tcg_gen_br(label_continue);
4869 gen_set_label(label_match);
4872 handle_fp_compare(s, size, rn, rm, false, op);
4874 if (cond < 0x0e) {
4875 gen_set_label(label_continue);
4879 /* Floating point conditional select
4880 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4881 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4882 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4883 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4885 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4887 unsigned int mos, type, rm, cond, rn, rd;
4888 TCGv_i64 t_true, t_false, t_zero;
4889 DisasCompare64 c;
4890 TCGMemOp sz;
4892 mos = extract32(insn, 29, 3);
4893 type = extract32(insn, 22, 2);
4894 rm = extract32(insn, 16, 5);
4895 cond = extract32(insn, 12, 4);
4896 rn = extract32(insn, 5, 5);
4897 rd = extract32(insn, 0, 5);
4899 if (mos) {
4900 unallocated_encoding(s);
4901 return;
4904 switch (type) {
4905 case 0:
4906 sz = MO_32;
4907 break;
4908 case 1:
4909 sz = MO_64;
4910 break;
4911 case 3:
4912 sz = MO_16;
4913 if (dc_isar_feature(aa64_fp16, s)) {
4914 break;
4916 /* fallthru */
4917 default:
4918 unallocated_encoding(s);
4919 return;
4922 if (!fp_access_check(s)) {
4923 return;
4926 /* Zero extend sreg & hreg inputs to 64 bits now. */
4927 t_true = tcg_temp_new_i64();
4928 t_false = tcg_temp_new_i64();
4929 read_vec_element(s, t_true, rn, 0, sz);
4930 read_vec_element(s, t_false, rm, 0, sz);
4932 a64_test_cc(&c, cond);
4933 t_zero = tcg_const_i64(0);
4934 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4935 tcg_temp_free_i64(t_zero);
4936 tcg_temp_free_i64(t_false);
4937 a64_free_cc(&c);
4939 /* Note that sregs & hregs write back zeros to the high bits,
4940 and we've already done the zero-extension. */
4941 write_fp_dreg(s, rd, t_true);
4942 tcg_temp_free_i64(t_true);
4945 /* Floating-point data-processing (1 source) - half precision */
4946 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
4948 TCGv_ptr fpst = NULL;
4949 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
4950 TCGv_i32 tcg_res = tcg_temp_new_i32();
4952 switch (opcode) {
4953 case 0x0: /* FMOV */
4954 tcg_gen_mov_i32(tcg_res, tcg_op);
4955 break;
4956 case 0x1: /* FABS */
4957 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
4958 break;
4959 case 0x2: /* FNEG */
4960 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
4961 break;
4962 case 0x3: /* FSQRT */
4963 fpst = get_fpstatus_ptr(true);
4964 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
4965 break;
4966 case 0x8: /* FRINTN */
4967 case 0x9: /* FRINTP */
4968 case 0xa: /* FRINTM */
4969 case 0xb: /* FRINTZ */
4970 case 0xc: /* FRINTA */
4972 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4973 fpst = get_fpstatus_ptr(true);
4975 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4976 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4978 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4979 tcg_temp_free_i32(tcg_rmode);
4980 break;
4982 case 0xe: /* FRINTX */
4983 fpst = get_fpstatus_ptr(true);
4984 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
4985 break;
4986 case 0xf: /* FRINTI */
4987 fpst = get_fpstatus_ptr(true);
4988 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4989 break;
4990 default:
4991 abort();
4994 write_fp_sreg(s, rd, tcg_res);
4996 if (fpst) {
4997 tcg_temp_free_ptr(fpst);
4999 tcg_temp_free_i32(tcg_op);
5000 tcg_temp_free_i32(tcg_res);
5003 /* Floating-point data-processing (1 source) - single precision */
5004 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5006 TCGv_ptr fpst;
5007 TCGv_i32 tcg_op;
5008 TCGv_i32 tcg_res;
5010 fpst = get_fpstatus_ptr(false);
5011 tcg_op = read_fp_sreg(s, rn);
5012 tcg_res = tcg_temp_new_i32();
5014 switch (opcode) {
5015 case 0x0: /* FMOV */
5016 tcg_gen_mov_i32(tcg_res, tcg_op);
5017 break;
5018 case 0x1: /* FABS */
5019 gen_helper_vfp_abss(tcg_res, tcg_op);
5020 break;
5021 case 0x2: /* FNEG */
5022 gen_helper_vfp_negs(tcg_res, tcg_op);
5023 break;
5024 case 0x3: /* FSQRT */
5025 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5026 break;
5027 case 0x8: /* FRINTN */
5028 case 0x9: /* FRINTP */
5029 case 0xa: /* FRINTM */
5030 case 0xb: /* FRINTZ */
5031 case 0xc: /* FRINTA */
5033 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5035 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5036 gen_helper_rints(tcg_res, tcg_op, fpst);
5038 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5039 tcg_temp_free_i32(tcg_rmode);
5040 break;
5042 case 0xe: /* FRINTX */
5043 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
5044 break;
5045 case 0xf: /* FRINTI */
5046 gen_helper_rints(tcg_res, tcg_op, fpst);
5047 break;
5048 default:
5049 abort();
5052 write_fp_sreg(s, rd, tcg_res);
5054 tcg_temp_free_ptr(fpst);
5055 tcg_temp_free_i32(tcg_op);
5056 tcg_temp_free_i32(tcg_res);
5059 /* Floating-point data-processing (1 source) - double precision */
5060 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5062 TCGv_ptr fpst;
5063 TCGv_i64 tcg_op;
5064 TCGv_i64 tcg_res;
5066 switch (opcode) {
5067 case 0x0: /* FMOV */
5068 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5069 return;
5072 fpst = get_fpstatus_ptr(false);
5073 tcg_op = read_fp_dreg(s, rn);
5074 tcg_res = tcg_temp_new_i64();
5076 switch (opcode) {
5077 case 0x1: /* FABS */
5078 gen_helper_vfp_absd(tcg_res, tcg_op);
5079 break;
5080 case 0x2: /* FNEG */
5081 gen_helper_vfp_negd(tcg_res, tcg_op);
5082 break;
5083 case 0x3: /* FSQRT */
5084 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5085 break;
5086 case 0x8: /* FRINTN */
5087 case 0x9: /* FRINTP */
5088 case 0xa: /* FRINTM */
5089 case 0xb: /* FRINTZ */
5090 case 0xc: /* FRINTA */
5092 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5094 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5095 gen_helper_rintd(tcg_res, tcg_op, fpst);
5097 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5098 tcg_temp_free_i32(tcg_rmode);
5099 break;
5101 case 0xe: /* FRINTX */
5102 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
5103 break;
5104 case 0xf: /* FRINTI */
5105 gen_helper_rintd(tcg_res, tcg_op, fpst);
5106 break;
5107 default:
5108 abort();
5111 write_fp_dreg(s, rd, tcg_res);
5113 tcg_temp_free_ptr(fpst);
5114 tcg_temp_free_i64(tcg_op);
5115 tcg_temp_free_i64(tcg_res);
5118 static void handle_fp_fcvt(DisasContext *s, int opcode,
5119 int rd, int rn, int dtype, int ntype)
5121 switch (ntype) {
5122 case 0x0:
5124 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5125 if (dtype == 1) {
5126 /* Single to double */
5127 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5128 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5129 write_fp_dreg(s, rd, tcg_rd);
5130 tcg_temp_free_i64(tcg_rd);
5131 } else {
5132 /* Single to half */
5133 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5134 TCGv_i32 ahp = get_ahp_flag();
5135 TCGv_ptr fpst = get_fpstatus_ptr(false);
5137 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5138 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5139 write_fp_sreg(s, rd, tcg_rd);
5140 tcg_temp_free_i32(tcg_rd);
5141 tcg_temp_free_i32(ahp);
5142 tcg_temp_free_ptr(fpst);
5144 tcg_temp_free_i32(tcg_rn);
5145 break;
5147 case 0x1:
5149 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5150 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5151 if (dtype == 0) {
5152 /* Double to single */
5153 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5154 } else {
5155 TCGv_ptr fpst = get_fpstatus_ptr(false);
5156 TCGv_i32 ahp = get_ahp_flag();
5157 /* Double to half */
5158 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5159 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5160 tcg_temp_free_ptr(fpst);
5161 tcg_temp_free_i32(ahp);
5163 write_fp_sreg(s, rd, tcg_rd);
5164 tcg_temp_free_i32(tcg_rd);
5165 tcg_temp_free_i64(tcg_rn);
5166 break;
5168 case 0x3:
5170 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5171 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5172 TCGv_i32 tcg_ahp = get_ahp_flag();
5173 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5174 if (dtype == 0) {
5175 /* Half to single */
5176 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5177 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5178 write_fp_sreg(s, rd, tcg_rd);
5179 tcg_temp_free_ptr(tcg_fpst);
5180 tcg_temp_free_i32(tcg_ahp);
5181 tcg_temp_free_i32(tcg_rd);
5182 } else {
5183 /* Half to double */
5184 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5185 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5186 write_fp_dreg(s, rd, tcg_rd);
5187 tcg_temp_free_i64(tcg_rd);
5189 tcg_temp_free_i32(tcg_rn);
5190 break;
5192 default:
5193 abort();
5197 /* Floating point data-processing (1 source)
5198 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5199 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5200 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5201 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5203 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5205 int type = extract32(insn, 22, 2);
5206 int opcode = extract32(insn, 15, 6);
5207 int rn = extract32(insn, 5, 5);
5208 int rd = extract32(insn, 0, 5);
5210 switch (opcode) {
5211 case 0x4: case 0x5: case 0x7:
5213 /* FCVT between half, single and double precision */
5214 int dtype = extract32(opcode, 0, 2);
5215 if (type == 2 || dtype == type) {
5216 unallocated_encoding(s);
5217 return;
5219 if (!fp_access_check(s)) {
5220 return;
5223 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5224 break;
5226 case 0x0 ... 0x3:
5227 case 0x8 ... 0xc:
5228 case 0xe ... 0xf:
5229 /* 32-to-32 and 64-to-64 ops */
5230 switch (type) {
5231 case 0:
5232 if (!fp_access_check(s)) {
5233 return;
5236 handle_fp_1src_single(s, opcode, rd, rn);
5237 break;
5238 case 1:
5239 if (!fp_access_check(s)) {
5240 return;
5243 handle_fp_1src_double(s, opcode, rd, rn);
5244 break;
5245 case 3:
5246 if (!dc_isar_feature(aa64_fp16, s)) {
5247 unallocated_encoding(s);
5248 return;
5251 if (!fp_access_check(s)) {
5252 return;
5255 handle_fp_1src_half(s, opcode, rd, rn);
5256 break;
5257 default:
5258 unallocated_encoding(s);
5260 break;
5261 default:
5262 unallocated_encoding(s);
5263 break;
5267 /* Floating-point data-processing (2 source) - single precision */
5268 static void handle_fp_2src_single(DisasContext *s, int opcode,
5269 int rd, int rn, int rm)
5271 TCGv_i32 tcg_op1;
5272 TCGv_i32 tcg_op2;
5273 TCGv_i32 tcg_res;
5274 TCGv_ptr fpst;
5276 tcg_res = tcg_temp_new_i32();
5277 fpst = get_fpstatus_ptr(false);
5278 tcg_op1 = read_fp_sreg(s, rn);
5279 tcg_op2 = read_fp_sreg(s, rm);
5281 switch (opcode) {
5282 case 0x0: /* FMUL */
5283 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5284 break;
5285 case 0x1: /* FDIV */
5286 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
5287 break;
5288 case 0x2: /* FADD */
5289 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
5290 break;
5291 case 0x3: /* FSUB */
5292 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
5293 break;
5294 case 0x4: /* FMAX */
5295 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
5296 break;
5297 case 0x5: /* FMIN */
5298 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
5299 break;
5300 case 0x6: /* FMAXNM */
5301 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
5302 break;
5303 case 0x7: /* FMINNM */
5304 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
5305 break;
5306 case 0x8: /* FNMUL */
5307 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5308 gen_helper_vfp_negs(tcg_res, tcg_res);
5309 break;
5312 write_fp_sreg(s, rd, tcg_res);
5314 tcg_temp_free_ptr(fpst);
5315 tcg_temp_free_i32(tcg_op1);
5316 tcg_temp_free_i32(tcg_op2);
5317 tcg_temp_free_i32(tcg_res);
5320 /* Floating-point data-processing (2 source) - double precision */
5321 static void handle_fp_2src_double(DisasContext *s, int opcode,
5322 int rd, int rn, int rm)
5324 TCGv_i64 tcg_op1;
5325 TCGv_i64 tcg_op2;
5326 TCGv_i64 tcg_res;
5327 TCGv_ptr fpst;
5329 tcg_res = tcg_temp_new_i64();
5330 fpst = get_fpstatus_ptr(false);
5331 tcg_op1 = read_fp_dreg(s, rn);
5332 tcg_op2 = read_fp_dreg(s, rm);
5334 switch (opcode) {
5335 case 0x0: /* FMUL */
5336 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5337 break;
5338 case 0x1: /* FDIV */
5339 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5340 break;
5341 case 0x2: /* FADD */
5342 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5343 break;
5344 case 0x3: /* FSUB */
5345 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5346 break;
5347 case 0x4: /* FMAX */
5348 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5349 break;
5350 case 0x5: /* FMIN */
5351 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5352 break;
5353 case 0x6: /* FMAXNM */
5354 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5355 break;
5356 case 0x7: /* FMINNM */
5357 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5358 break;
5359 case 0x8: /* FNMUL */
5360 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5361 gen_helper_vfp_negd(tcg_res, tcg_res);
5362 break;
5365 write_fp_dreg(s, rd, tcg_res);
5367 tcg_temp_free_ptr(fpst);
5368 tcg_temp_free_i64(tcg_op1);
5369 tcg_temp_free_i64(tcg_op2);
5370 tcg_temp_free_i64(tcg_res);
5373 /* Floating-point data-processing (2 source) - half precision */
5374 static void handle_fp_2src_half(DisasContext *s, int opcode,
5375 int rd, int rn, int rm)
5377 TCGv_i32 tcg_op1;
5378 TCGv_i32 tcg_op2;
5379 TCGv_i32 tcg_res;
5380 TCGv_ptr fpst;
5382 tcg_res = tcg_temp_new_i32();
5383 fpst = get_fpstatus_ptr(true);
5384 tcg_op1 = read_fp_hreg(s, rn);
5385 tcg_op2 = read_fp_hreg(s, rm);
5387 switch (opcode) {
5388 case 0x0: /* FMUL */
5389 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5390 break;
5391 case 0x1: /* FDIV */
5392 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
5393 break;
5394 case 0x2: /* FADD */
5395 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
5396 break;
5397 case 0x3: /* FSUB */
5398 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
5399 break;
5400 case 0x4: /* FMAX */
5401 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
5402 break;
5403 case 0x5: /* FMIN */
5404 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
5405 break;
5406 case 0x6: /* FMAXNM */
5407 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5408 break;
5409 case 0x7: /* FMINNM */
5410 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5411 break;
5412 case 0x8: /* FNMUL */
5413 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5414 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
5415 break;
5416 default:
5417 g_assert_not_reached();
5420 write_fp_sreg(s, rd, tcg_res);
5422 tcg_temp_free_ptr(fpst);
5423 tcg_temp_free_i32(tcg_op1);
5424 tcg_temp_free_i32(tcg_op2);
5425 tcg_temp_free_i32(tcg_res);
5428 /* Floating point data-processing (2 source)
5429 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5430 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5431 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5432 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5434 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5436 int type = extract32(insn, 22, 2);
5437 int rd = extract32(insn, 0, 5);
5438 int rn = extract32(insn, 5, 5);
5439 int rm = extract32(insn, 16, 5);
5440 int opcode = extract32(insn, 12, 4);
5442 if (opcode > 8) {
5443 unallocated_encoding(s);
5444 return;
5447 switch (type) {
5448 case 0:
5449 if (!fp_access_check(s)) {
5450 return;
5452 handle_fp_2src_single(s, opcode, rd, rn, rm);
5453 break;
5454 case 1:
5455 if (!fp_access_check(s)) {
5456 return;
5458 handle_fp_2src_double(s, opcode, rd, rn, rm);
5459 break;
5460 case 3:
5461 if (!dc_isar_feature(aa64_fp16, s)) {
5462 unallocated_encoding(s);
5463 return;
5465 if (!fp_access_check(s)) {
5466 return;
5468 handle_fp_2src_half(s, opcode, rd, rn, rm);
5469 break;
5470 default:
5471 unallocated_encoding(s);
5475 /* Floating-point data-processing (3 source) - single precision */
5476 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5477 int rd, int rn, int rm, int ra)
5479 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5480 TCGv_i32 tcg_res = tcg_temp_new_i32();
5481 TCGv_ptr fpst = get_fpstatus_ptr(false);
5483 tcg_op1 = read_fp_sreg(s, rn);
5484 tcg_op2 = read_fp_sreg(s, rm);
5485 tcg_op3 = read_fp_sreg(s, ra);
5487 /* These are fused multiply-add, and must be done as one
5488 * floating point operation with no rounding between the
5489 * multiplication and addition steps.
5490 * NB that doing the negations here as separate steps is
5491 * correct : an input NaN should come out with its sign bit
5492 * flipped if it is a negated-input.
5494 if (o1 == true) {
5495 gen_helper_vfp_negs(tcg_op3, tcg_op3);
5498 if (o0 != o1) {
5499 gen_helper_vfp_negs(tcg_op1, tcg_op1);
5502 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5504 write_fp_sreg(s, rd, tcg_res);
5506 tcg_temp_free_ptr(fpst);
5507 tcg_temp_free_i32(tcg_op1);
5508 tcg_temp_free_i32(tcg_op2);
5509 tcg_temp_free_i32(tcg_op3);
5510 tcg_temp_free_i32(tcg_res);
5513 /* Floating-point data-processing (3 source) - double precision */
5514 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
5515 int rd, int rn, int rm, int ra)
5517 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
5518 TCGv_i64 tcg_res = tcg_temp_new_i64();
5519 TCGv_ptr fpst = get_fpstatus_ptr(false);
5521 tcg_op1 = read_fp_dreg(s, rn);
5522 tcg_op2 = read_fp_dreg(s, rm);
5523 tcg_op3 = read_fp_dreg(s, ra);
5525 /* These are fused multiply-add, and must be done as one
5526 * floating point operation with no rounding between the
5527 * multiplication and addition steps.
5528 * NB that doing the negations here as separate steps is
5529 * correct : an input NaN should come out with its sign bit
5530 * flipped if it is a negated-input.
5532 if (o1 == true) {
5533 gen_helper_vfp_negd(tcg_op3, tcg_op3);
5536 if (o0 != o1) {
5537 gen_helper_vfp_negd(tcg_op1, tcg_op1);
5540 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5542 write_fp_dreg(s, rd, tcg_res);
5544 tcg_temp_free_ptr(fpst);
5545 tcg_temp_free_i64(tcg_op1);
5546 tcg_temp_free_i64(tcg_op2);
5547 tcg_temp_free_i64(tcg_op3);
5548 tcg_temp_free_i64(tcg_res);
5551 /* Floating-point data-processing (3 source) - half precision */
5552 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
5553 int rd, int rn, int rm, int ra)
5555 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5556 TCGv_i32 tcg_res = tcg_temp_new_i32();
5557 TCGv_ptr fpst = get_fpstatus_ptr(true);
5559 tcg_op1 = read_fp_hreg(s, rn);
5560 tcg_op2 = read_fp_hreg(s, rm);
5561 tcg_op3 = read_fp_hreg(s, ra);
5563 /* These are fused multiply-add, and must be done as one
5564 * floating point operation with no rounding between the
5565 * multiplication and addition steps.
5566 * NB that doing the negations here as separate steps is
5567 * correct : an input NaN should come out with its sign bit
5568 * flipped if it is a negated-input.
5570 if (o1 == true) {
5571 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
5574 if (o0 != o1) {
5575 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
5578 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5580 write_fp_sreg(s, rd, tcg_res);
5582 tcg_temp_free_ptr(fpst);
5583 tcg_temp_free_i32(tcg_op1);
5584 tcg_temp_free_i32(tcg_op2);
5585 tcg_temp_free_i32(tcg_op3);
5586 tcg_temp_free_i32(tcg_res);
5589 /* Floating point data-processing (3 source)
5590 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
5591 * +---+---+---+-----------+------+----+------+----+------+------+------+
5592 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
5593 * +---+---+---+-----------+------+----+------+----+------+------+------+
5595 static void disas_fp_3src(DisasContext *s, uint32_t insn)
5597 int type = extract32(insn, 22, 2);
5598 int rd = extract32(insn, 0, 5);
5599 int rn = extract32(insn, 5, 5);
5600 int ra = extract32(insn, 10, 5);
5601 int rm = extract32(insn, 16, 5);
5602 bool o0 = extract32(insn, 15, 1);
5603 bool o1 = extract32(insn, 21, 1);
5605 switch (type) {
5606 case 0:
5607 if (!fp_access_check(s)) {
5608 return;
5610 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
5611 break;
5612 case 1:
5613 if (!fp_access_check(s)) {
5614 return;
5616 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
5617 break;
5618 case 3:
5619 if (!dc_isar_feature(aa64_fp16, s)) {
5620 unallocated_encoding(s);
5621 return;
5623 if (!fp_access_check(s)) {
5624 return;
5626 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
5627 break;
5628 default:
5629 unallocated_encoding(s);
5633 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
5634 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
5635 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
5637 uint64_t vfp_expand_imm(int size, uint8_t imm8)
5639 uint64_t imm;
5641 switch (size) {
5642 case MO_64:
5643 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5644 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5645 extract32(imm8, 0, 6);
5646 imm <<= 48;
5647 break;
5648 case MO_32:
5649 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5650 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5651 (extract32(imm8, 0, 6) << 3);
5652 imm <<= 16;
5653 break;
5654 case MO_16:
5655 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5656 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
5657 (extract32(imm8, 0, 6) << 6);
5658 break;
5659 default:
5660 g_assert_not_reached();
5662 return imm;
5665 /* Floating point immediate
5666 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
5667 * +---+---+---+-----------+------+---+------------+-------+------+------+
5668 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
5669 * +---+---+---+-----------+------+---+------------+-------+------+------+
5671 static void disas_fp_imm(DisasContext *s, uint32_t insn)
5673 int rd = extract32(insn, 0, 5);
5674 int imm8 = extract32(insn, 13, 8);
5675 int type = extract32(insn, 22, 2);
5676 uint64_t imm;
5677 TCGv_i64 tcg_res;
5678 TCGMemOp sz;
5680 switch (type) {
5681 case 0:
5682 sz = MO_32;
5683 break;
5684 case 1:
5685 sz = MO_64;
5686 break;
5687 case 3:
5688 sz = MO_16;
5689 if (dc_isar_feature(aa64_fp16, s)) {
5690 break;
5692 /* fallthru */
5693 default:
5694 unallocated_encoding(s);
5695 return;
5698 if (!fp_access_check(s)) {
5699 return;
5702 imm = vfp_expand_imm(sz, imm8);
5704 tcg_res = tcg_const_i64(imm);
5705 write_fp_dreg(s, rd, tcg_res);
5706 tcg_temp_free_i64(tcg_res);
5709 /* Handle floating point <=> fixed point conversions. Note that we can
5710 * also deal with fp <=> integer conversions as a special case (scale == 64)
5711 * OPTME: consider handling that special case specially or at least skipping
5712 * the call to scalbn in the helpers for zero shifts.
5714 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5715 bool itof, int rmode, int scale, int sf, int type)
5717 bool is_signed = !(opcode & 1);
5718 TCGv_ptr tcg_fpstatus;
5719 TCGv_i32 tcg_shift, tcg_single;
5720 TCGv_i64 tcg_double;
5722 tcg_fpstatus = get_fpstatus_ptr(type == 3);
5724 tcg_shift = tcg_const_i32(64 - scale);
5726 if (itof) {
5727 TCGv_i64 tcg_int = cpu_reg(s, rn);
5728 if (!sf) {
5729 TCGv_i64 tcg_extend = new_tmp_a64(s);
5731 if (is_signed) {
5732 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5733 } else {
5734 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5737 tcg_int = tcg_extend;
5740 switch (type) {
5741 case 1: /* float64 */
5742 tcg_double = tcg_temp_new_i64();
5743 if (is_signed) {
5744 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5745 tcg_shift, tcg_fpstatus);
5746 } else {
5747 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5748 tcg_shift, tcg_fpstatus);
5750 write_fp_dreg(s, rd, tcg_double);
5751 tcg_temp_free_i64(tcg_double);
5752 break;
5754 case 0: /* float32 */
5755 tcg_single = tcg_temp_new_i32();
5756 if (is_signed) {
5757 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5758 tcg_shift, tcg_fpstatus);
5759 } else {
5760 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5761 tcg_shift, tcg_fpstatus);
5763 write_fp_sreg(s, rd, tcg_single);
5764 tcg_temp_free_i32(tcg_single);
5765 break;
5767 case 3: /* float16 */
5768 tcg_single = tcg_temp_new_i32();
5769 if (is_signed) {
5770 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
5771 tcg_shift, tcg_fpstatus);
5772 } else {
5773 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
5774 tcg_shift, tcg_fpstatus);
5776 write_fp_sreg(s, rd, tcg_single);
5777 tcg_temp_free_i32(tcg_single);
5778 break;
5780 default:
5781 g_assert_not_reached();
5783 } else {
5784 TCGv_i64 tcg_int = cpu_reg(s, rd);
5785 TCGv_i32 tcg_rmode;
5787 if (extract32(opcode, 2, 1)) {
5788 /* There are too many rounding modes to all fit into rmode,
5789 * so FCVTA[US] is a special case.
5791 rmode = FPROUNDING_TIEAWAY;
5794 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5796 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5798 switch (type) {
5799 case 1: /* float64 */
5800 tcg_double = read_fp_dreg(s, rn);
5801 if (is_signed) {
5802 if (!sf) {
5803 gen_helper_vfp_tosld(tcg_int, tcg_double,
5804 tcg_shift, tcg_fpstatus);
5805 } else {
5806 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5807 tcg_shift, tcg_fpstatus);
5809 } else {
5810 if (!sf) {
5811 gen_helper_vfp_tould(tcg_int, tcg_double,
5812 tcg_shift, tcg_fpstatus);
5813 } else {
5814 gen_helper_vfp_touqd(tcg_int, tcg_double,
5815 tcg_shift, tcg_fpstatus);
5818 if (!sf) {
5819 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5821 tcg_temp_free_i64(tcg_double);
5822 break;
5824 case 0: /* float32 */
5825 tcg_single = read_fp_sreg(s, rn);
5826 if (sf) {
5827 if (is_signed) {
5828 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5829 tcg_shift, tcg_fpstatus);
5830 } else {
5831 gen_helper_vfp_touqs(tcg_int, tcg_single,
5832 tcg_shift, tcg_fpstatus);
5834 } else {
5835 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5836 if (is_signed) {
5837 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5838 tcg_shift, tcg_fpstatus);
5839 } else {
5840 gen_helper_vfp_touls(tcg_dest, tcg_single,
5841 tcg_shift, tcg_fpstatus);
5843 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5844 tcg_temp_free_i32(tcg_dest);
5846 tcg_temp_free_i32(tcg_single);
5847 break;
5849 case 3: /* float16 */
5850 tcg_single = read_fp_sreg(s, rn);
5851 if (sf) {
5852 if (is_signed) {
5853 gen_helper_vfp_tosqh(tcg_int, tcg_single,
5854 tcg_shift, tcg_fpstatus);
5855 } else {
5856 gen_helper_vfp_touqh(tcg_int, tcg_single,
5857 tcg_shift, tcg_fpstatus);
5859 } else {
5860 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5861 if (is_signed) {
5862 gen_helper_vfp_toslh(tcg_dest, tcg_single,
5863 tcg_shift, tcg_fpstatus);
5864 } else {
5865 gen_helper_vfp_toulh(tcg_dest, tcg_single,
5866 tcg_shift, tcg_fpstatus);
5868 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5869 tcg_temp_free_i32(tcg_dest);
5871 tcg_temp_free_i32(tcg_single);
5872 break;
5874 default:
5875 g_assert_not_reached();
5878 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5879 tcg_temp_free_i32(tcg_rmode);
5882 tcg_temp_free_ptr(tcg_fpstatus);
5883 tcg_temp_free_i32(tcg_shift);
5886 /* Floating point <-> fixed point conversions
5887 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5888 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5889 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5890 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5892 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5894 int rd = extract32(insn, 0, 5);
5895 int rn = extract32(insn, 5, 5);
5896 int scale = extract32(insn, 10, 6);
5897 int opcode = extract32(insn, 16, 3);
5898 int rmode = extract32(insn, 19, 2);
5899 int type = extract32(insn, 22, 2);
5900 bool sbit = extract32(insn, 29, 1);
5901 bool sf = extract32(insn, 31, 1);
5902 bool itof;
5904 if (sbit || (!sf && scale < 32)) {
5905 unallocated_encoding(s);
5906 return;
5909 switch (type) {
5910 case 0: /* float32 */
5911 case 1: /* float64 */
5912 break;
5913 case 3: /* float16 */
5914 if (dc_isar_feature(aa64_fp16, s)) {
5915 break;
5917 /* fallthru */
5918 default:
5919 unallocated_encoding(s);
5920 return;
5923 switch ((rmode << 3) | opcode) {
5924 case 0x2: /* SCVTF */
5925 case 0x3: /* UCVTF */
5926 itof = true;
5927 break;
5928 case 0x18: /* FCVTZS */
5929 case 0x19: /* FCVTZU */
5930 itof = false;
5931 break;
5932 default:
5933 unallocated_encoding(s);
5934 return;
5937 if (!fp_access_check(s)) {
5938 return;
5941 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5944 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5946 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5947 * without conversion.
5950 if (itof) {
5951 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5952 TCGv_i64 tmp;
5954 switch (type) {
5955 case 0:
5956 /* 32 bit */
5957 tmp = tcg_temp_new_i64();
5958 tcg_gen_ext32u_i64(tmp, tcg_rn);
5959 write_fp_dreg(s, rd, tmp);
5960 tcg_temp_free_i64(tmp);
5961 break;
5962 case 1:
5963 /* 64 bit */
5964 write_fp_dreg(s, rd, tcg_rn);
5965 break;
5966 case 2:
5967 /* 64 bit to top half. */
5968 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5969 clear_vec_high(s, true, rd);
5970 break;
5971 case 3:
5972 /* 16 bit */
5973 tmp = tcg_temp_new_i64();
5974 tcg_gen_ext16u_i64(tmp, tcg_rn);
5975 write_fp_dreg(s, rd, tmp);
5976 tcg_temp_free_i64(tmp);
5977 break;
5978 default:
5979 g_assert_not_reached();
5981 } else {
5982 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5984 switch (type) {
5985 case 0:
5986 /* 32 bit */
5987 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5988 break;
5989 case 1:
5990 /* 64 bit */
5991 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5992 break;
5993 case 2:
5994 /* 64 bits from top half */
5995 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5996 break;
5997 case 3:
5998 /* 16 bit */
5999 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6000 break;
6001 default:
6002 g_assert_not_reached();
6007 /* Floating point <-> integer conversions
6008 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6009 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6010 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6011 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6013 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6015 int rd = extract32(insn, 0, 5);
6016 int rn = extract32(insn, 5, 5);
6017 int opcode = extract32(insn, 16, 3);
6018 int rmode = extract32(insn, 19, 2);
6019 int type = extract32(insn, 22, 2);
6020 bool sbit = extract32(insn, 29, 1);
6021 bool sf = extract32(insn, 31, 1);
6023 if (sbit) {
6024 unallocated_encoding(s);
6025 return;
6028 if (opcode > 5) {
6029 /* FMOV */
6030 bool itof = opcode & 1;
6032 if (rmode >= 2) {
6033 unallocated_encoding(s);
6034 return;
6037 switch (sf << 3 | type << 1 | rmode) {
6038 case 0x0: /* 32 bit */
6039 case 0xa: /* 64 bit */
6040 case 0xd: /* 64 bit to top half of quad */
6041 break;
6042 case 0x6: /* 16-bit float, 32-bit int */
6043 case 0xe: /* 16-bit float, 64-bit int */
6044 if (dc_isar_feature(aa64_fp16, s)) {
6045 break;
6047 /* fallthru */
6048 default:
6049 /* all other sf/type/rmode combinations are invalid */
6050 unallocated_encoding(s);
6051 return;
6054 if (!fp_access_check(s)) {
6055 return;
6057 handle_fmov(s, rd, rn, type, itof);
6058 } else {
6059 /* actual FP conversions */
6060 bool itof = extract32(opcode, 1, 1);
6062 if (rmode != 0 && opcode > 1) {
6063 unallocated_encoding(s);
6064 return;
6066 switch (type) {
6067 case 0: /* float32 */
6068 case 1: /* float64 */
6069 break;
6070 case 3: /* float16 */
6071 if (dc_isar_feature(aa64_fp16, s)) {
6072 break;
6074 /* fallthru */
6075 default:
6076 unallocated_encoding(s);
6077 return;
6080 if (!fp_access_check(s)) {
6081 return;
6083 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6087 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6088 * 31 30 29 28 25 24 0
6089 * +---+---+---+---------+-----------------------------+
6090 * | | 0 | | 1 1 1 1 | |
6091 * +---+---+---+---------+-----------------------------+
6093 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6095 if (extract32(insn, 24, 1)) {
6096 /* Floating point data-processing (3 source) */
6097 disas_fp_3src(s, insn);
6098 } else if (extract32(insn, 21, 1) == 0) {
6099 /* Floating point to fixed point conversions */
6100 disas_fp_fixed_conv(s, insn);
6101 } else {
6102 switch (extract32(insn, 10, 2)) {
6103 case 1:
6104 /* Floating point conditional compare */
6105 disas_fp_ccomp(s, insn);
6106 break;
6107 case 2:
6108 /* Floating point data-processing (2 source) */
6109 disas_fp_2src(s, insn);
6110 break;
6111 case 3:
6112 /* Floating point conditional select */
6113 disas_fp_csel(s, insn);
6114 break;
6115 case 0:
6116 switch (ctz32(extract32(insn, 12, 4))) {
6117 case 0: /* [15:12] == xxx1 */
6118 /* Floating point immediate */
6119 disas_fp_imm(s, insn);
6120 break;
6121 case 1: /* [15:12] == xx10 */
6122 /* Floating point compare */
6123 disas_fp_compare(s, insn);
6124 break;
6125 case 2: /* [15:12] == x100 */
6126 /* Floating point data-processing (1 source) */
6127 disas_fp_1src(s, insn);
6128 break;
6129 case 3: /* [15:12] == 1000 */
6130 unallocated_encoding(s);
6131 break;
6132 default: /* [15:12] == 0000 */
6133 /* Floating point <-> integer conversions */
6134 disas_fp_int_conv(s, insn);
6135 break;
6137 break;
6142 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6143 int pos)
6145 /* Extract 64 bits from the middle of two concatenated 64 bit
6146 * vector register slices left:right. The extracted bits start
6147 * at 'pos' bits into the right (least significant) side.
6148 * We return the result in tcg_right, and guarantee not to
6149 * trash tcg_left.
6151 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6152 assert(pos > 0 && pos < 64);
6154 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6155 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6156 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6158 tcg_temp_free_i64(tcg_tmp);
6161 /* EXT
6162 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6163 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6164 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6165 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6167 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6169 int is_q = extract32(insn, 30, 1);
6170 int op2 = extract32(insn, 22, 2);
6171 int imm4 = extract32(insn, 11, 4);
6172 int rm = extract32(insn, 16, 5);
6173 int rn = extract32(insn, 5, 5);
6174 int rd = extract32(insn, 0, 5);
6175 int pos = imm4 << 3;
6176 TCGv_i64 tcg_resl, tcg_resh;
6178 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6179 unallocated_encoding(s);
6180 return;
6183 if (!fp_access_check(s)) {
6184 return;
6187 tcg_resh = tcg_temp_new_i64();
6188 tcg_resl = tcg_temp_new_i64();
6190 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6191 * either extracting 128 bits from a 128:128 concatenation, or
6192 * extracting 64 bits from a 64:64 concatenation.
6194 if (!is_q) {
6195 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6196 if (pos != 0) {
6197 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6198 do_ext64(s, tcg_resh, tcg_resl, pos);
6200 tcg_gen_movi_i64(tcg_resh, 0);
6201 } else {
6202 TCGv_i64 tcg_hh;
6203 typedef struct {
6204 int reg;
6205 int elt;
6206 } EltPosns;
6207 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6208 EltPosns *elt = eltposns;
6210 if (pos >= 64) {
6211 elt++;
6212 pos -= 64;
6215 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6216 elt++;
6217 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6218 elt++;
6219 if (pos != 0) {
6220 do_ext64(s, tcg_resh, tcg_resl, pos);
6221 tcg_hh = tcg_temp_new_i64();
6222 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6223 do_ext64(s, tcg_hh, tcg_resh, pos);
6224 tcg_temp_free_i64(tcg_hh);
6228 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6229 tcg_temp_free_i64(tcg_resl);
6230 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6231 tcg_temp_free_i64(tcg_resh);
6234 /* TBL/TBX
6235 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
6236 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6237 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
6238 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6240 static void disas_simd_tb(DisasContext *s, uint32_t insn)
6242 int op2 = extract32(insn, 22, 2);
6243 int is_q = extract32(insn, 30, 1);
6244 int rm = extract32(insn, 16, 5);
6245 int rn = extract32(insn, 5, 5);
6246 int rd = extract32(insn, 0, 5);
6247 int is_tblx = extract32(insn, 12, 1);
6248 int len = extract32(insn, 13, 2);
6249 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
6250 TCGv_i32 tcg_regno, tcg_numregs;
6252 if (op2 != 0) {
6253 unallocated_encoding(s);
6254 return;
6257 if (!fp_access_check(s)) {
6258 return;
6261 /* This does a table lookup: for every byte element in the input
6262 * we index into a table formed from up to four vector registers,
6263 * and then the output is the result of the lookups. Our helper
6264 * function does the lookup operation for a single 64 bit part of
6265 * the input.
6267 tcg_resl = tcg_temp_new_i64();
6268 tcg_resh = tcg_temp_new_i64();
6270 if (is_tblx) {
6271 read_vec_element(s, tcg_resl, rd, 0, MO_64);
6272 } else {
6273 tcg_gen_movi_i64(tcg_resl, 0);
6275 if (is_tblx && is_q) {
6276 read_vec_element(s, tcg_resh, rd, 1, MO_64);
6277 } else {
6278 tcg_gen_movi_i64(tcg_resh, 0);
6281 tcg_idx = tcg_temp_new_i64();
6282 tcg_regno = tcg_const_i32(rn);
6283 tcg_numregs = tcg_const_i32(len + 1);
6284 read_vec_element(s, tcg_idx, rm, 0, MO_64);
6285 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
6286 tcg_regno, tcg_numregs);
6287 if (is_q) {
6288 read_vec_element(s, tcg_idx, rm, 1, MO_64);
6289 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
6290 tcg_regno, tcg_numregs);
6292 tcg_temp_free_i64(tcg_idx);
6293 tcg_temp_free_i32(tcg_regno);
6294 tcg_temp_free_i32(tcg_numregs);
6296 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6297 tcg_temp_free_i64(tcg_resl);
6298 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6299 tcg_temp_free_i64(tcg_resh);
6302 /* ZIP/UZP/TRN
6303 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
6304 * +---+---+-------------+------+---+------+---+------------------+------+
6305 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
6306 * +---+---+-------------+------+---+------+---+------------------+------+
6308 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
6310 int rd = extract32(insn, 0, 5);
6311 int rn = extract32(insn, 5, 5);
6312 int rm = extract32(insn, 16, 5);
6313 int size = extract32(insn, 22, 2);
6314 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
6315 * bit 2 indicates 1 vs 2 variant of the insn.
6317 int opcode = extract32(insn, 12, 2);
6318 bool part = extract32(insn, 14, 1);
6319 bool is_q = extract32(insn, 30, 1);
6320 int esize = 8 << size;
6321 int i, ofs;
6322 int datasize = is_q ? 128 : 64;
6323 int elements = datasize / esize;
6324 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
6326 if (opcode == 0 || (size == 3 && !is_q)) {
6327 unallocated_encoding(s);
6328 return;
6331 if (!fp_access_check(s)) {
6332 return;
6335 tcg_resl = tcg_const_i64(0);
6336 tcg_resh = tcg_const_i64(0);
6337 tcg_res = tcg_temp_new_i64();
6339 for (i = 0; i < elements; i++) {
6340 switch (opcode) {
6341 case 1: /* UZP1/2 */
6343 int midpoint = elements / 2;
6344 if (i < midpoint) {
6345 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
6346 } else {
6347 read_vec_element(s, tcg_res, rm,
6348 2 * (i - midpoint) + part, size);
6350 break;
6352 case 2: /* TRN1/2 */
6353 if (i & 1) {
6354 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
6355 } else {
6356 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
6358 break;
6359 case 3: /* ZIP1/2 */
6361 int base = part * elements / 2;
6362 if (i & 1) {
6363 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
6364 } else {
6365 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
6367 break;
6369 default:
6370 g_assert_not_reached();
6373 ofs = i * esize;
6374 if (ofs < 64) {
6375 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
6376 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
6377 } else {
6378 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
6379 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
6383 tcg_temp_free_i64(tcg_res);
6385 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6386 tcg_temp_free_i64(tcg_resl);
6387 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6388 tcg_temp_free_i64(tcg_resh);
6392 * do_reduction_op helper
6394 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
6395 * important for correct NaN propagation that we do these
6396 * operations in exactly the order specified by the pseudocode.
6398 * This is a recursive function, TCG temps should be freed by the
6399 * calling function once it is done with the values.
6401 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
6402 int esize, int size, int vmap, TCGv_ptr fpst)
6404 if (esize == size) {
6405 int element;
6406 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
6407 TCGv_i32 tcg_elem;
6409 /* We should have one register left here */
6410 assert(ctpop8(vmap) == 1);
6411 element = ctz32(vmap);
6412 assert(element < 8);
6414 tcg_elem = tcg_temp_new_i32();
6415 read_vec_element_i32(s, tcg_elem, rn, element, msize);
6416 return tcg_elem;
6417 } else {
6418 int bits = size / 2;
6419 int shift = ctpop8(vmap) / 2;
6420 int vmap_lo = (vmap >> shift) & vmap;
6421 int vmap_hi = (vmap & ~vmap_lo);
6422 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
6424 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
6425 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
6426 tcg_res = tcg_temp_new_i32();
6428 switch (fpopcode) {
6429 case 0x0c: /* fmaxnmv half-precision */
6430 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6431 break;
6432 case 0x0f: /* fmaxv half-precision */
6433 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
6434 break;
6435 case 0x1c: /* fminnmv half-precision */
6436 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6437 break;
6438 case 0x1f: /* fminv half-precision */
6439 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
6440 break;
6441 case 0x2c: /* fmaxnmv */
6442 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
6443 break;
6444 case 0x2f: /* fmaxv */
6445 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
6446 break;
6447 case 0x3c: /* fminnmv */
6448 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
6449 break;
6450 case 0x3f: /* fminv */
6451 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
6452 break;
6453 default:
6454 g_assert_not_reached();
6457 tcg_temp_free_i32(tcg_hi);
6458 tcg_temp_free_i32(tcg_lo);
6459 return tcg_res;
6463 /* AdvSIMD across lanes
6464 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6465 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6466 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6467 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6469 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
6471 int rd = extract32(insn, 0, 5);
6472 int rn = extract32(insn, 5, 5);
6473 int size = extract32(insn, 22, 2);
6474 int opcode = extract32(insn, 12, 5);
6475 bool is_q = extract32(insn, 30, 1);
6476 bool is_u = extract32(insn, 29, 1);
6477 bool is_fp = false;
6478 bool is_min = false;
6479 int esize;
6480 int elements;
6481 int i;
6482 TCGv_i64 tcg_res, tcg_elt;
6484 switch (opcode) {
6485 case 0x1b: /* ADDV */
6486 if (is_u) {
6487 unallocated_encoding(s);
6488 return;
6490 /* fall through */
6491 case 0x3: /* SADDLV, UADDLV */
6492 case 0xa: /* SMAXV, UMAXV */
6493 case 0x1a: /* SMINV, UMINV */
6494 if (size == 3 || (size == 2 && !is_q)) {
6495 unallocated_encoding(s);
6496 return;
6498 break;
6499 case 0xc: /* FMAXNMV, FMINNMV */
6500 case 0xf: /* FMAXV, FMINV */
6501 /* Bit 1 of size field encodes min vs max and the actual size
6502 * depends on the encoding of the U bit. If not set (and FP16
6503 * enabled) then we do half-precision float instead of single
6504 * precision.
6506 is_min = extract32(size, 1, 1);
6507 is_fp = true;
6508 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
6509 size = 1;
6510 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
6511 unallocated_encoding(s);
6512 return;
6513 } else {
6514 size = 2;
6516 break;
6517 default:
6518 unallocated_encoding(s);
6519 return;
6522 if (!fp_access_check(s)) {
6523 return;
6526 esize = 8 << size;
6527 elements = (is_q ? 128 : 64) / esize;
6529 tcg_res = tcg_temp_new_i64();
6530 tcg_elt = tcg_temp_new_i64();
6532 /* These instructions operate across all lanes of a vector
6533 * to produce a single result. We can guarantee that a 64
6534 * bit intermediate is sufficient:
6535 * + for [US]ADDLV the maximum element size is 32 bits, and
6536 * the result type is 64 bits
6537 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
6538 * same as the element size, which is 32 bits at most
6539 * For the integer operations we can choose to work at 64
6540 * or 32 bits and truncate at the end; for simplicity
6541 * we use 64 bits always. The floating point
6542 * ops do require 32 bit intermediates, though.
6544 if (!is_fp) {
6545 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
6547 for (i = 1; i < elements; i++) {
6548 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
6550 switch (opcode) {
6551 case 0x03: /* SADDLV / UADDLV */
6552 case 0x1b: /* ADDV */
6553 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
6554 break;
6555 case 0x0a: /* SMAXV / UMAXV */
6556 if (is_u) {
6557 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
6558 } else {
6559 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
6561 break;
6562 case 0x1a: /* SMINV / UMINV */
6563 if (is_u) {
6564 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
6565 } else {
6566 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
6568 break;
6569 default:
6570 g_assert_not_reached();
6574 } else {
6575 /* Floating point vector reduction ops which work across 32
6576 * bit (single) or 16 bit (half-precision) intermediates.
6577 * Note that correct NaN propagation requires that we do these
6578 * operations in exactly the order specified by the pseudocode.
6580 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
6581 int fpopcode = opcode | is_min << 4 | is_u << 5;
6582 int vmap = (1 << elements) - 1;
6583 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
6584 (is_q ? 128 : 64), vmap, fpst);
6585 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
6586 tcg_temp_free_i32(tcg_res32);
6587 tcg_temp_free_ptr(fpst);
6590 tcg_temp_free_i64(tcg_elt);
6592 /* Now truncate the result to the width required for the final output */
6593 if (opcode == 0x03) {
6594 /* SADDLV, UADDLV: result is 2*esize */
6595 size++;
6598 switch (size) {
6599 case 0:
6600 tcg_gen_ext8u_i64(tcg_res, tcg_res);
6601 break;
6602 case 1:
6603 tcg_gen_ext16u_i64(tcg_res, tcg_res);
6604 break;
6605 case 2:
6606 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6607 break;
6608 case 3:
6609 break;
6610 default:
6611 g_assert_not_reached();
6614 write_fp_dreg(s, rd, tcg_res);
6615 tcg_temp_free_i64(tcg_res);
6618 /* DUP (Element, Vector)
6620 * 31 30 29 21 20 16 15 10 9 5 4 0
6621 * +---+---+-------------------+--------+-------------+------+------+
6622 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6623 * +---+---+-------------------+--------+-------------+------+------+
6625 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6627 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
6628 int imm5)
6630 int size = ctz32(imm5);
6631 int index = imm5 >> (size + 1);
6633 if (size > 3 || (size == 3 && !is_q)) {
6634 unallocated_encoding(s);
6635 return;
6638 if (!fp_access_check(s)) {
6639 return;
6642 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
6643 vec_reg_offset(s, rn, index, size),
6644 is_q ? 16 : 8, vec_full_reg_size(s));
6647 /* DUP (element, scalar)
6648 * 31 21 20 16 15 10 9 5 4 0
6649 * +-----------------------+--------+-------------+------+------+
6650 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6651 * +-----------------------+--------+-------------+------+------+
6653 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
6654 int imm5)
6656 int size = ctz32(imm5);
6657 int index;
6658 TCGv_i64 tmp;
6660 if (size > 3) {
6661 unallocated_encoding(s);
6662 return;
6665 if (!fp_access_check(s)) {
6666 return;
6669 index = imm5 >> (size + 1);
6671 /* This instruction just extracts the specified element and
6672 * zero-extends it into the bottom of the destination register.
6674 tmp = tcg_temp_new_i64();
6675 read_vec_element(s, tmp, rn, index, size);
6676 write_fp_dreg(s, rd, tmp);
6677 tcg_temp_free_i64(tmp);
6680 /* DUP (General)
6682 * 31 30 29 21 20 16 15 10 9 5 4 0
6683 * +---+---+-------------------+--------+-------------+------+------+
6684 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
6685 * +---+---+-------------------+--------+-------------+------+------+
6687 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6689 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
6690 int imm5)
6692 int size = ctz32(imm5);
6693 uint32_t dofs, oprsz, maxsz;
6695 if (size > 3 || ((size == 3) && !is_q)) {
6696 unallocated_encoding(s);
6697 return;
6700 if (!fp_access_check(s)) {
6701 return;
6704 dofs = vec_full_reg_offset(s, rd);
6705 oprsz = is_q ? 16 : 8;
6706 maxsz = vec_full_reg_size(s);
6708 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
6711 /* INS (Element)
6713 * 31 21 20 16 15 14 11 10 9 5 4 0
6714 * +-----------------------+--------+------------+---+------+------+
6715 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6716 * +-----------------------+--------+------------+---+------+------+
6718 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6719 * index: encoded in imm5<4:size+1>
6721 static void handle_simd_inse(DisasContext *s, int rd, int rn,
6722 int imm4, int imm5)
6724 int size = ctz32(imm5);
6725 int src_index, dst_index;
6726 TCGv_i64 tmp;
6728 if (size > 3) {
6729 unallocated_encoding(s);
6730 return;
6733 if (!fp_access_check(s)) {
6734 return;
6737 dst_index = extract32(imm5, 1+size, 5);
6738 src_index = extract32(imm4, size, 4);
6740 tmp = tcg_temp_new_i64();
6742 read_vec_element(s, tmp, rn, src_index, size);
6743 write_vec_element(s, tmp, rd, dst_index, size);
6745 tcg_temp_free_i64(tmp);
6749 /* INS (General)
6751 * 31 21 20 16 15 10 9 5 4 0
6752 * +-----------------------+--------+-------------+------+------+
6753 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
6754 * +-----------------------+--------+-------------+------+------+
6756 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6757 * index: encoded in imm5<4:size+1>
6759 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
6761 int size = ctz32(imm5);
6762 int idx;
6764 if (size > 3) {
6765 unallocated_encoding(s);
6766 return;
6769 if (!fp_access_check(s)) {
6770 return;
6773 idx = extract32(imm5, 1 + size, 4 - size);
6774 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
6778 * UMOV (General)
6779 * SMOV (General)
6781 * 31 30 29 21 20 16 15 12 10 9 5 4 0
6782 * +---+---+-------------------+--------+-------------+------+------+
6783 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
6784 * +---+---+-------------------+--------+-------------+------+------+
6786 * U: unsigned when set
6787 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6789 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
6790 int rn, int rd, int imm5)
6792 int size = ctz32(imm5);
6793 int element;
6794 TCGv_i64 tcg_rd;
6796 /* Check for UnallocatedEncodings */
6797 if (is_signed) {
6798 if (size > 2 || (size == 2 && !is_q)) {
6799 unallocated_encoding(s);
6800 return;
6802 } else {
6803 if (size > 3
6804 || (size < 3 && is_q)
6805 || (size == 3 && !is_q)) {
6806 unallocated_encoding(s);
6807 return;
6811 if (!fp_access_check(s)) {
6812 return;
6815 element = extract32(imm5, 1+size, 4);
6817 tcg_rd = cpu_reg(s, rd);
6818 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6819 if (is_signed && !is_q) {
6820 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6824 /* AdvSIMD copy
6825 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6826 * +---+---+----+-----------------+------+---+------+---+------+------+
6827 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6828 * +---+---+----+-----------------+------+---+------+---+------+------+
6830 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6832 int rd = extract32(insn, 0, 5);
6833 int rn = extract32(insn, 5, 5);
6834 int imm4 = extract32(insn, 11, 4);
6835 int op = extract32(insn, 29, 1);
6836 int is_q = extract32(insn, 30, 1);
6837 int imm5 = extract32(insn, 16, 5);
6839 if (op) {
6840 if (is_q) {
6841 /* INS (element) */
6842 handle_simd_inse(s, rd, rn, imm4, imm5);
6843 } else {
6844 unallocated_encoding(s);
6846 } else {
6847 switch (imm4) {
6848 case 0:
6849 /* DUP (element - vector) */
6850 handle_simd_dupe(s, is_q, rd, rn, imm5);
6851 break;
6852 case 1:
6853 /* DUP (general) */
6854 handle_simd_dupg(s, is_q, rd, rn, imm5);
6855 break;
6856 case 3:
6857 if (is_q) {
6858 /* INS (general) */
6859 handle_simd_insg(s, rd, rn, imm5);
6860 } else {
6861 unallocated_encoding(s);
6863 break;
6864 case 5:
6865 case 7:
6866 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6867 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6868 break;
6869 default:
6870 unallocated_encoding(s);
6871 break;
6876 /* AdvSIMD modified immediate
6877 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6878 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6879 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6880 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6882 * There are a number of operations that can be carried out here:
6883 * MOVI - move (shifted) imm into register
6884 * MVNI - move inverted (shifted) imm into register
6885 * ORR - bitwise OR of (shifted) imm with register
6886 * BIC - bitwise clear of (shifted) imm with register
6887 * With ARMv8.2 we also have:
6888 * FMOV half-precision
6890 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6892 int rd = extract32(insn, 0, 5);
6893 int cmode = extract32(insn, 12, 4);
6894 int cmode_3_1 = extract32(cmode, 1, 3);
6895 int cmode_0 = extract32(cmode, 0, 1);
6896 int o2 = extract32(insn, 11, 1);
6897 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6898 bool is_neg = extract32(insn, 29, 1);
6899 bool is_q = extract32(insn, 30, 1);
6900 uint64_t imm = 0;
6902 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6903 /* Check for FMOV (vector, immediate) - half-precision */
6904 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
6905 unallocated_encoding(s);
6906 return;
6910 if (!fp_access_check(s)) {
6911 return;
6914 /* See AdvSIMDExpandImm() in ARM ARM */
6915 switch (cmode_3_1) {
6916 case 0: /* Replicate(Zeros(24):imm8, 2) */
6917 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6918 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6919 case 3: /* Replicate(imm8:Zeros(24), 2) */
6921 int shift = cmode_3_1 * 8;
6922 imm = bitfield_replicate(abcdefgh << shift, 32);
6923 break;
6925 case 4: /* Replicate(Zeros(8):imm8, 4) */
6926 case 5: /* Replicate(imm8:Zeros(8), 4) */
6928 int shift = (cmode_3_1 & 0x1) * 8;
6929 imm = bitfield_replicate(abcdefgh << shift, 16);
6930 break;
6932 case 6:
6933 if (cmode_0) {
6934 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6935 imm = (abcdefgh << 16) | 0xffff;
6936 } else {
6937 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6938 imm = (abcdefgh << 8) | 0xff;
6940 imm = bitfield_replicate(imm, 32);
6941 break;
6942 case 7:
6943 if (!cmode_0 && !is_neg) {
6944 imm = bitfield_replicate(abcdefgh, 8);
6945 } else if (!cmode_0 && is_neg) {
6946 int i;
6947 imm = 0;
6948 for (i = 0; i < 8; i++) {
6949 if ((abcdefgh) & (1 << i)) {
6950 imm |= 0xffULL << (i * 8);
6953 } else if (cmode_0) {
6954 if (is_neg) {
6955 imm = (abcdefgh & 0x3f) << 48;
6956 if (abcdefgh & 0x80) {
6957 imm |= 0x8000000000000000ULL;
6959 if (abcdefgh & 0x40) {
6960 imm |= 0x3fc0000000000000ULL;
6961 } else {
6962 imm |= 0x4000000000000000ULL;
6964 } else {
6965 if (o2) {
6966 /* FMOV (vector, immediate) - half-precision */
6967 imm = vfp_expand_imm(MO_16, abcdefgh);
6968 /* now duplicate across the lanes */
6969 imm = bitfield_replicate(imm, 16);
6970 } else {
6971 imm = (abcdefgh & 0x3f) << 19;
6972 if (abcdefgh & 0x80) {
6973 imm |= 0x80000000;
6975 if (abcdefgh & 0x40) {
6976 imm |= 0x3e000000;
6977 } else {
6978 imm |= 0x40000000;
6980 imm |= (imm << 32);
6984 break;
6985 default:
6986 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
6987 g_assert_not_reached();
6990 if (cmode_3_1 != 7 && is_neg) {
6991 imm = ~imm;
6994 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
6995 /* MOVI or MVNI, with MVNI negation handled above. */
6996 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
6997 vec_full_reg_size(s), imm);
6998 } else {
6999 /* ORR or BIC, with BIC negation to AND handled above. */
7000 if (is_neg) {
7001 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7002 } else {
7003 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7008 /* AdvSIMD scalar copy
7009 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7010 * +-----+----+-----------------+------+---+------+---+------+------+
7011 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7012 * +-----+----+-----------------+------+---+------+---+------+------+
7014 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7016 int rd = extract32(insn, 0, 5);
7017 int rn = extract32(insn, 5, 5);
7018 int imm4 = extract32(insn, 11, 4);
7019 int imm5 = extract32(insn, 16, 5);
7020 int op = extract32(insn, 29, 1);
7022 if (op != 0 || imm4 != 0) {
7023 unallocated_encoding(s);
7024 return;
7027 /* DUP (element, scalar) */
7028 handle_simd_dupes(s, rd, rn, imm5);
7031 /* AdvSIMD scalar pairwise
7032 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7033 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7034 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7035 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7037 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7039 int u = extract32(insn, 29, 1);
7040 int size = extract32(insn, 22, 2);
7041 int opcode = extract32(insn, 12, 5);
7042 int rn = extract32(insn, 5, 5);
7043 int rd = extract32(insn, 0, 5);
7044 TCGv_ptr fpst;
7046 /* For some ops (the FP ones), size[1] is part of the encoding.
7047 * For ADDP strictly it is not but size[1] is always 1 for valid
7048 * encodings.
7050 opcode |= (extract32(size, 1, 1) << 5);
7052 switch (opcode) {
7053 case 0x3b: /* ADDP */
7054 if (u || size != 3) {
7055 unallocated_encoding(s);
7056 return;
7058 if (!fp_access_check(s)) {
7059 return;
7062 fpst = NULL;
7063 break;
7064 case 0xc: /* FMAXNMP */
7065 case 0xd: /* FADDP */
7066 case 0xf: /* FMAXP */
7067 case 0x2c: /* FMINNMP */
7068 case 0x2f: /* FMINP */
7069 /* FP op, size[0] is 32 or 64 bit*/
7070 if (!u) {
7071 if (!dc_isar_feature(aa64_fp16, s)) {
7072 unallocated_encoding(s);
7073 return;
7074 } else {
7075 size = MO_16;
7077 } else {
7078 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7081 if (!fp_access_check(s)) {
7082 return;
7085 fpst = get_fpstatus_ptr(size == MO_16);
7086 break;
7087 default:
7088 unallocated_encoding(s);
7089 return;
7092 if (size == MO_64) {
7093 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7094 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7095 TCGv_i64 tcg_res = tcg_temp_new_i64();
7097 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7098 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7100 switch (opcode) {
7101 case 0x3b: /* ADDP */
7102 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7103 break;
7104 case 0xc: /* FMAXNMP */
7105 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7106 break;
7107 case 0xd: /* FADDP */
7108 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7109 break;
7110 case 0xf: /* FMAXP */
7111 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7112 break;
7113 case 0x2c: /* FMINNMP */
7114 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7115 break;
7116 case 0x2f: /* FMINP */
7117 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7118 break;
7119 default:
7120 g_assert_not_reached();
7123 write_fp_dreg(s, rd, tcg_res);
7125 tcg_temp_free_i64(tcg_op1);
7126 tcg_temp_free_i64(tcg_op2);
7127 tcg_temp_free_i64(tcg_res);
7128 } else {
7129 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7130 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7131 TCGv_i32 tcg_res = tcg_temp_new_i32();
7133 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7134 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7136 if (size == MO_16) {
7137 switch (opcode) {
7138 case 0xc: /* FMAXNMP */
7139 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7140 break;
7141 case 0xd: /* FADDP */
7142 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7143 break;
7144 case 0xf: /* FMAXP */
7145 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7146 break;
7147 case 0x2c: /* FMINNMP */
7148 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7149 break;
7150 case 0x2f: /* FMINP */
7151 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7152 break;
7153 default:
7154 g_assert_not_reached();
7156 } else {
7157 switch (opcode) {
7158 case 0xc: /* FMAXNMP */
7159 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7160 break;
7161 case 0xd: /* FADDP */
7162 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7163 break;
7164 case 0xf: /* FMAXP */
7165 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7166 break;
7167 case 0x2c: /* FMINNMP */
7168 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7169 break;
7170 case 0x2f: /* FMINP */
7171 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7172 break;
7173 default:
7174 g_assert_not_reached();
7178 write_fp_sreg(s, rd, tcg_res);
7180 tcg_temp_free_i32(tcg_op1);
7181 tcg_temp_free_i32(tcg_op2);
7182 tcg_temp_free_i32(tcg_res);
7185 if (fpst) {
7186 tcg_temp_free_ptr(fpst);
7191 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7193 * This code is handles the common shifting code and is used by both
7194 * the vector and scalar code.
7196 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7197 TCGv_i64 tcg_rnd, bool accumulate,
7198 bool is_u, int size, int shift)
7200 bool extended_result = false;
7201 bool round = tcg_rnd != NULL;
7202 int ext_lshift = 0;
7203 TCGv_i64 tcg_src_hi;
7205 if (round && size == 3) {
7206 extended_result = true;
7207 ext_lshift = 64 - shift;
7208 tcg_src_hi = tcg_temp_new_i64();
7209 } else if (shift == 64) {
7210 if (!accumulate && is_u) {
7211 /* result is zero */
7212 tcg_gen_movi_i64(tcg_res, 0);
7213 return;
7217 /* Deal with the rounding step */
7218 if (round) {
7219 if (extended_result) {
7220 TCGv_i64 tcg_zero = tcg_const_i64(0);
7221 if (!is_u) {
7222 /* take care of sign extending tcg_res */
7223 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7224 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7225 tcg_src, tcg_src_hi,
7226 tcg_rnd, tcg_zero);
7227 } else {
7228 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7229 tcg_src, tcg_zero,
7230 tcg_rnd, tcg_zero);
7232 tcg_temp_free_i64(tcg_zero);
7233 } else {
7234 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7238 /* Now do the shift right */
7239 if (round && extended_result) {
7240 /* extended case, >64 bit precision required */
7241 if (ext_lshift == 0) {
7242 /* special case, only high bits matter */
7243 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7244 } else {
7245 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7246 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7247 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7249 } else {
7250 if (is_u) {
7251 if (shift == 64) {
7252 /* essentially shifting in 64 zeros */
7253 tcg_gen_movi_i64(tcg_src, 0);
7254 } else {
7255 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7257 } else {
7258 if (shift == 64) {
7259 /* effectively extending the sign-bit */
7260 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7261 } else {
7262 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7267 if (accumulate) {
7268 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7269 } else {
7270 tcg_gen_mov_i64(tcg_res, tcg_src);
7273 if (extended_result) {
7274 tcg_temp_free_i64(tcg_src_hi);
7278 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7279 static void handle_scalar_simd_shri(DisasContext *s,
7280 bool is_u, int immh, int immb,
7281 int opcode, int rn, int rd)
7283 const int size = 3;
7284 int immhb = immh << 3 | immb;
7285 int shift = 2 * (8 << size) - immhb;
7286 bool accumulate = false;
7287 bool round = false;
7288 bool insert = false;
7289 TCGv_i64 tcg_rn;
7290 TCGv_i64 tcg_rd;
7291 TCGv_i64 tcg_round;
7293 if (!extract32(immh, 3, 1)) {
7294 unallocated_encoding(s);
7295 return;
7298 if (!fp_access_check(s)) {
7299 return;
7302 switch (opcode) {
7303 case 0x02: /* SSRA / USRA (accumulate) */
7304 accumulate = true;
7305 break;
7306 case 0x04: /* SRSHR / URSHR (rounding) */
7307 round = true;
7308 break;
7309 case 0x06: /* SRSRA / URSRA (accum + rounding) */
7310 accumulate = round = true;
7311 break;
7312 case 0x08: /* SRI */
7313 insert = true;
7314 break;
7317 if (round) {
7318 uint64_t round_const = 1ULL << (shift - 1);
7319 tcg_round = tcg_const_i64(round_const);
7320 } else {
7321 tcg_round = NULL;
7324 tcg_rn = read_fp_dreg(s, rn);
7325 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7327 if (insert) {
7328 /* shift count same as element size is valid but does nothing;
7329 * special case to avoid potential shift by 64.
7331 int esize = 8 << size;
7332 if (shift != esize) {
7333 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
7334 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
7336 } else {
7337 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7338 accumulate, is_u, size, shift);
7341 write_fp_dreg(s, rd, tcg_rd);
7343 tcg_temp_free_i64(tcg_rn);
7344 tcg_temp_free_i64(tcg_rd);
7345 if (round) {
7346 tcg_temp_free_i64(tcg_round);
7350 /* SHL/SLI - Scalar shift left */
7351 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
7352 int immh, int immb, int opcode,
7353 int rn, int rd)
7355 int size = 32 - clz32(immh) - 1;
7356 int immhb = immh << 3 | immb;
7357 int shift = immhb - (8 << size);
7358 TCGv_i64 tcg_rn = new_tmp_a64(s);
7359 TCGv_i64 tcg_rd = new_tmp_a64(s);
7361 if (!extract32(immh, 3, 1)) {
7362 unallocated_encoding(s);
7363 return;
7366 if (!fp_access_check(s)) {
7367 return;
7370 tcg_rn = read_fp_dreg(s, rn);
7371 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7373 if (insert) {
7374 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
7375 } else {
7376 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
7379 write_fp_dreg(s, rd, tcg_rd);
7381 tcg_temp_free_i64(tcg_rn);
7382 tcg_temp_free_i64(tcg_rd);
7385 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
7386 * (signed/unsigned) narrowing */
7387 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
7388 bool is_u_shift, bool is_u_narrow,
7389 int immh, int immb, int opcode,
7390 int rn, int rd)
7392 int immhb = immh << 3 | immb;
7393 int size = 32 - clz32(immh) - 1;
7394 int esize = 8 << size;
7395 int shift = (2 * esize) - immhb;
7396 int elements = is_scalar ? 1 : (64 / esize);
7397 bool round = extract32(opcode, 0, 1);
7398 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
7399 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
7400 TCGv_i32 tcg_rd_narrowed;
7401 TCGv_i64 tcg_final;
7403 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
7404 { gen_helper_neon_narrow_sat_s8,
7405 gen_helper_neon_unarrow_sat8 },
7406 { gen_helper_neon_narrow_sat_s16,
7407 gen_helper_neon_unarrow_sat16 },
7408 { gen_helper_neon_narrow_sat_s32,
7409 gen_helper_neon_unarrow_sat32 },
7410 { NULL, NULL },
7412 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
7413 gen_helper_neon_narrow_sat_u8,
7414 gen_helper_neon_narrow_sat_u16,
7415 gen_helper_neon_narrow_sat_u32,
7416 NULL
7418 NeonGenNarrowEnvFn *narrowfn;
7420 int i;
7422 assert(size < 4);
7424 if (extract32(immh, 3, 1)) {
7425 unallocated_encoding(s);
7426 return;
7429 if (!fp_access_check(s)) {
7430 return;
7433 if (is_u_shift) {
7434 narrowfn = unsigned_narrow_fns[size];
7435 } else {
7436 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
7439 tcg_rn = tcg_temp_new_i64();
7440 tcg_rd = tcg_temp_new_i64();
7441 tcg_rd_narrowed = tcg_temp_new_i32();
7442 tcg_final = tcg_const_i64(0);
7444 if (round) {
7445 uint64_t round_const = 1ULL << (shift - 1);
7446 tcg_round = tcg_const_i64(round_const);
7447 } else {
7448 tcg_round = NULL;
7451 for (i = 0; i < elements; i++) {
7452 read_vec_element(s, tcg_rn, rn, i, ldop);
7453 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7454 false, is_u_shift, size+1, shift);
7455 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
7456 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
7457 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
7460 if (!is_q) {
7461 write_vec_element(s, tcg_final, rd, 0, MO_64);
7462 } else {
7463 write_vec_element(s, tcg_final, rd, 1, MO_64);
7466 if (round) {
7467 tcg_temp_free_i64(tcg_round);
7469 tcg_temp_free_i64(tcg_rn);
7470 tcg_temp_free_i64(tcg_rd);
7471 tcg_temp_free_i32(tcg_rd_narrowed);
7472 tcg_temp_free_i64(tcg_final);
7474 clear_vec_high(s, is_q, rd);
7477 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
7478 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
7479 bool src_unsigned, bool dst_unsigned,
7480 int immh, int immb, int rn, int rd)
7482 int immhb = immh << 3 | immb;
7483 int size = 32 - clz32(immh) - 1;
7484 int shift = immhb - (8 << size);
7485 int pass;
7487 assert(immh != 0);
7488 assert(!(scalar && is_q));
7490 if (!scalar) {
7491 if (!is_q && extract32(immh, 3, 1)) {
7492 unallocated_encoding(s);
7493 return;
7496 /* Since we use the variable-shift helpers we must
7497 * replicate the shift count into each element of
7498 * the tcg_shift value.
7500 switch (size) {
7501 case 0:
7502 shift |= shift << 8;
7503 /* fall through */
7504 case 1:
7505 shift |= shift << 16;
7506 break;
7507 case 2:
7508 case 3:
7509 break;
7510 default:
7511 g_assert_not_reached();
7515 if (!fp_access_check(s)) {
7516 return;
7519 if (size == 3) {
7520 TCGv_i64 tcg_shift = tcg_const_i64(shift);
7521 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
7522 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
7523 { NULL, gen_helper_neon_qshl_u64 },
7525 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
7526 int maxpass = is_q ? 2 : 1;
7528 for (pass = 0; pass < maxpass; pass++) {
7529 TCGv_i64 tcg_op = tcg_temp_new_i64();
7531 read_vec_element(s, tcg_op, rn, pass, MO_64);
7532 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7533 write_vec_element(s, tcg_op, rd, pass, MO_64);
7535 tcg_temp_free_i64(tcg_op);
7537 tcg_temp_free_i64(tcg_shift);
7538 clear_vec_high(s, is_q, rd);
7539 } else {
7540 TCGv_i32 tcg_shift = tcg_const_i32(shift);
7541 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
7543 { gen_helper_neon_qshl_s8,
7544 gen_helper_neon_qshl_s16,
7545 gen_helper_neon_qshl_s32 },
7546 { gen_helper_neon_qshlu_s8,
7547 gen_helper_neon_qshlu_s16,
7548 gen_helper_neon_qshlu_s32 }
7549 }, {
7550 { NULL, NULL, NULL },
7551 { gen_helper_neon_qshl_u8,
7552 gen_helper_neon_qshl_u16,
7553 gen_helper_neon_qshl_u32 }
7556 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
7557 TCGMemOp memop = scalar ? size : MO_32;
7558 int maxpass = scalar ? 1 : is_q ? 4 : 2;
7560 for (pass = 0; pass < maxpass; pass++) {
7561 TCGv_i32 tcg_op = tcg_temp_new_i32();
7563 read_vec_element_i32(s, tcg_op, rn, pass, memop);
7564 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7565 if (scalar) {
7566 switch (size) {
7567 case 0:
7568 tcg_gen_ext8u_i32(tcg_op, tcg_op);
7569 break;
7570 case 1:
7571 tcg_gen_ext16u_i32(tcg_op, tcg_op);
7572 break;
7573 case 2:
7574 break;
7575 default:
7576 g_assert_not_reached();
7578 write_fp_sreg(s, rd, tcg_op);
7579 } else {
7580 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7583 tcg_temp_free_i32(tcg_op);
7585 tcg_temp_free_i32(tcg_shift);
7587 if (!scalar) {
7588 clear_vec_high(s, is_q, rd);
7593 /* Common vector code for handling integer to FP conversion */
7594 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
7595 int elements, int is_signed,
7596 int fracbits, int size)
7598 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
7599 TCGv_i32 tcg_shift = NULL;
7601 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
7602 int pass;
7604 if (fracbits || size == MO_64) {
7605 tcg_shift = tcg_const_i32(fracbits);
7608 if (size == MO_64) {
7609 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
7610 TCGv_i64 tcg_double = tcg_temp_new_i64();
7612 for (pass = 0; pass < elements; pass++) {
7613 read_vec_element(s, tcg_int64, rn, pass, mop);
7615 if (is_signed) {
7616 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
7617 tcg_shift, tcg_fpst);
7618 } else {
7619 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
7620 tcg_shift, tcg_fpst);
7622 if (elements == 1) {
7623 write_fp_dreg(s, rd, tcg_double);
7624 } else {
7625 write_vec_element(s, tcg_double, rd, pass, MO_64);
7629 tcg_temp_free_i64(tcg_int64);
7630 tcg_temp_free_i64(tcg_double);
7632 } else {
7633 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
7634 TCGv_i32 tcg_float = tcg_temp_new_i32();
7636 for (pass = 0; pass < elements; pass++) {
7637 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
7639 switch (size) {
7640 case MO_32:
7641 if (fracbits) {
7642 if (is_signed) {
7643 gen_helper_vfp_sltos(tcg_float, tcg_int32,
7644 tcg_shift, tcg_fpst);
7645 } else {
7646 gen_helper_vfp_ultos(tcg_float, tcg_int32,
7647 tcg_shift, tcg_fpst);
7649 } else {
7650 if (is_signed) {
7651 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
7652 } else {
7653 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
7656 break;
7657 case MO_16:
7658 if (fracbits) {
7659 if (is_signed) {
7660 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
7661 tcg_shift, tcg_fpst);
7662 } else {
7663 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
7664 tcg_shift, tcg_fpst);
7666 } else {
7667 if (is_signed) {
7668 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
7669 } else {
7670 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
7673 break;
7674 default:
7675 g_assert_not_reached();
7678 if (elements == 1) {
7679 write_fp_sreg(s, rd, tcg_float);
7680 } else {
7681 write_vec_element_i32(s, tcg_float, rd, pass, size);
7685 tcg_temp_free_i32(tcg_int32);
7686 tcg_temp_free_i32(tcg_float);
7689 tcg_temp_free_ptr(tcg_fpst);
7690 if (tcg_shift) {
7691 tcg_temp_free_i32(tcg_shift);
7694 clear_vec_high(s, elements << size == 16, rd);
7697 /* UCVTF/SCVTF - Integer to FP conversion */
7698 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
7699 bool is_q, bool is_u,
7700 int immh, int immb, int opcode,
7701 int rn, int rd)
7703 int size, elements, fracbits;
7704 int immhb = immh << 3 | immb;
7706 if (immh & 8) {
7707 size = MO_64;
7708 if (!is_scalar && !is_q) {
7709 unallocated_encoding(s);
7710 return;
7712 } else if (immh & 4) {
7713 size = MO_32;
7714 } else if (immh & 2) {
7715 size = MO_16;
7716 if (!dc_isar_feature(aa64_fp16, s)) {
7717 unallocated_encoding(s);
7718 return;
7720 } else {
7721 /* immh == 0 would be a failure of the decode logic */
7722 g_assert(immh == 1);
7723 unallocated_encoding(s);
7724 return;
7727 if (is_scalar) {
7728 elements = 1;
7729 } else {
7730 elements = (8 << is_q) >> size;
7732 fracbits = (16 << size) - immhb;
7734 if (!fp_access_check(s)) {
7735 return;
7738 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
7741 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
7742 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
7743 bool is_q, bool is_u,
7744 int immh, int immb, int rn, int rd)
7746 int immhb = immh << 3 | immb;
7747 int pass, size, fracbits;
7748 TCGv_ptr tcg_fpstatus;
7749 TCGv_i32 tcg_rmode, tcg_shift;
7751 if (immh & 0x8) {
7752 size = MO_64;
7753 if (!is_scalar && !is_q) {
7754 unallocated_encoding(s);
7755 return;
7757 } else if (immh & 0x4) {
7758 size = MO_32;
7759 } else if (immh & 0x2) {
7760 size = MO_16;
7761 if (!dc_isar_feature(aa64_fp16, s)) {
7762 unallocated_encoding(s);
7763 return;
7765 } else {
7766 /* Should have split out AdvSIMD modified immediate earlier. */
7767 assert(immh == 1);
7768 unallocated_encoding(s);
7769 return;
7772 if (!fp_access_check(s)) {
7773 return;
7776 assert(!(is_scalar && is_q));
7778 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
7779 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
7780 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7781 fracbits = (16 << size) - immhb;
7782 tcg_shift = tcg_const_i32(fracbits);
7784 if (size == MO_64) {
7785 int maxpass = is_scalar ? 1 : 2;
7787 for (pass = 0; pass < maxpass; pass++) {
7788 TCGv_i64 tcg_op = tcg_temp_new_i64();
7790 read_vec_element(s, tcg_op, rn, pass, MO_64);
7791 if (is_u) {
7792 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7793 } else {
7794 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7796 write_vec_element(s, tcg_op, rd, pass, MO_64);
7797 tcg_temp_free_i64(tcg_op);
7799 clear_vec_high(s, is_q, rd);
7800 } else {
7801 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
7802 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
7804 switch (size) {
7805 case MO_16:
7806 if (is_u) {
7807 fn = gen_helper_vfp_touhh;
7808 } else {
7809 fn = gen_helper_vfp_toshh;
7811 break;
7812 case MO_32:
7813 if (is_u) {
7814 fn = gen_helper_vfp_touls;
7815 } else {
7816 fn = gen_helper_vfp_tosls;
7818 break;
7819 default:
7820 g_assert_not_reached();
7823 for (pass = 0; pass < maxpass; pass++) {
7824 TCGv_i32 tcg_op = tcg_temp_new_i32();
7826 read_vec_element_i32(s, tcg_op, rn, pass, size);
7827 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7828 if (is_scalar) {
7829 write_fp_sreg(s, rd, tcg_op);
7830 } else {
7831 write_vec_element_i32(s, tcg_op, rd, pass, size);
7833 tcg_temp_free_i32(tcg_op);
7835 if (!is_scalar) {
7836 clear_vec_high(s, is_q, rd);
7840 tcg_temp_free_ptr(tcg_fpstatus);
7841 tcg_temp_free_i32(tcg_shift);
7842 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7843 tcg_temp_free_i32(tcg_rmode);
7846 /* AdvSIMD scalar shift by immediate
7847 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
7848 * +-----+---+-------------+------+------+--------+---+------+------+
7849 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
7850 * +-----+---+-------------+------+------+--------+---+------+------+
7852 * This is the scalar version so it works on a fixed sized registers
7854 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
7856 int rd = extract32(insn, 0, 5);
7857 int rn = extract32(insn, 5, 5);
7858 int opcode = extract32(insn, 11, 5);
7859 int immb = extract32(insn, 16, 3);
7860 int immh = extract32(insn, 19, 4);
7861 bool is_u = extract32(insn, 29, 1);
7863 if (immh == 0) {
7864 unallocated_encoding(s);
7865 return;
7868 switch (opcode) {
7869 case 0x08: /* SRI */
7870 if (!is_u) {
7871 unallocated_encoding(s);
7872 return;
7874 /* fall through */
7875 case 0x00: /* SSHR / USHR */
7876 case 0x02: /* SSRA / USRA */
7877 case 0x04: /* SRSHR / URSHR */
7878 case 0x06: /* SRSRA / URSRA */
7879 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
7880 break;
7881 case 0x0a: /* SHL / SLI */
7882 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
7883 break;
7884 case 0x1c: /* SCVTF, UCVTF */
7885 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
7886 opcode, rn, rd);
7887 break;
7888 case 0x10: /* SQSHRUN, SQSHRUN2 */
7889 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7890 if (!is_u) {
7891 unallocated_encoding(s);
7892 return;
7894 handle_vec_simd_sqshrn(s, true, false, false, true,
7895 immh, immb, opcode, rn, rd);
7896 break;
7897 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7898 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7899 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7900 immh, immb, opcode, rn, rd);
7901 break;
7902 case 0xc: /* SQSHLU */
7903 if (!is_u) {
7904 unallocated_encoding(s);
7905 return;
7907 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7908 break;
7909 case 0xe: /* SQSHL, UQSHL */
7910 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7911 break;
7912 case 0x1f: /* FCVTZS, FCVTZU */
7913 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7914 break;
7915 default:
7916 unallocated_encoding(s);
7917 break;
7921 /* AdvSIMD scalar three different
7922 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7923 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7924 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7925 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7927 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7929 bool is_u = extract32(insn, 29, 1);
7930 int size = extract32(insn, 22, 2);
7931 int opcode = extract32(insn, 12, 4);
7932 int rm = extract32(insn, 16, 5);
7933 int rn = extract32(insn, 5, 5);
7934 int rd = extract32(insn, 0, 5);
7936 if (is_u) {
7937 unallocated_encoding(s);
7938 return;
7941 switch (opcode) {
7942 case 0x9: /* SQDMLAL, SQDMLAL2 */
7943 case 0xb: /* SQDMLSL, SQDMLSL2 */
7944 case 0xd: /* SQDMULL, SQDMULL2 */
7945 if (size == 0 || size == 3) {
7946 unallocated_encoding(s);
7947 return;
7949 break;
7950 default:
7951 unallocated_encoding(s);
7952 return;
7955 if (!fp_access_check(s)) {
7956 return;
7959 if (size == 2) {
7960 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7961 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7962 TCGv_i64 tcg_res = tcg_temp_new_i64();
7964 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7965 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7967 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7968 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7970 switch (opcode) {
7971 case 0xd: /* SQDMULL, SQDMULL2 */
7972 break;
7973 case 0xb: /* SQDMLSL, SQDMLSL2 */
7974 tcg_gen_neg_i64(tcg_res, tcg_res);
7975 /* fall through */
7976 case 0x9: /* SQDMLAL, SQDMLAL2 */
7977 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7978 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7979 tcg_res, tcg_op1);
7980 break;
7981 default:
7982 g_assert_not_reached();
7985 write_fp_dreg(s, rd, tcg_res);
7987 tcg_temp_free_i64(tcg_op1);
7988 tcg_temp_free_i64(tcg_op2);
7989 tcg_temp_free_i64(tcg_res);
7990 } else {
7991 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
7992 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
7993 TCGv_i64 tcg_res = tcg_temp_new_i64();
7995 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7996 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7998 switch (opcode) {
7999 case 0xd: /* SQDMULL, SQDMULL2 */
8000 break;
8001 case 0xb: /* SQDMLSL, SQDMLSL2 */
8002 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8003 /* fall through */
8004 case 0x9: /* SQDMLAL, SQDMLAL2 */
8006 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8007 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8008 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8009 tcg_res, tcg_op3);
8010 tcg_temp_free_i64(tcg_op3);
8011 break;
8013 default:
8014 g_assert_not_reached();
8017 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8018 write_fp_dreg(s, rd, tcg_res);
8020 tcg_temp_free_i32(tcg_op1);
8021 tcg_temp_free_i32(tcg_op2);
8022 tcg_temp_free_i64(tcg_res);
8026 /* CMTST : test is "if (X & Y != 0)". */
8027 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
8029 tcg_gen_and_i32(d, a, b);
8030 tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0);
8031 tcg_gen_neg_i32(d, d);
8034 static void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
8036 tcg_gen_and_i64(d, a, b);
8037 tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0);
8038 tcg_gen_neg_i64(d, d);
8041 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
8043 tcg_gen_and_vec(vece, d, a, b);
8044 tcg_gen_dupi_vec(vece, a, 0);
8045 tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
8048 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8049 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8051 /* Handle 64x64->64 opcodes which are shared between the scalar
8052 * and vector 3-same groups. We cover every opcode where size == 3
8053 * is valid in either the three-reg-same (integer, not pairwise)
8054 * or scalar-three-reg-same groups.
8056 TCGCond cond;
8058 switch (opcode) {
8059 case 0x1: /* SQADD */
8060 if (u) {
8061 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8062 } else {
8063 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8065 break;
8066 case 0x5: /* SQSUB */
8067 if (u) {
8068 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8069 } else {
8070 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8072 break;
8073 case 0x6: /* CMGT, CMHI */
8074 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8075 * We implement this using setcond (test) and then negating.
8077 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8078 do_cmop:
8079 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8080 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8081 break;
8082 case 0x7: /* CMGE, CMHS */
8083 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8084 goto do_cmop;
8085 case 0x11: /* CMTST, CMEQ */
8086 if (u) {
8087 cond = TCG_COND_EQ;
8088 goto do_cmop;
8090 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8091 break;
8092 case 0x8: /* SSHL, USHL */
8093 if (u) {
8094 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8095 } else {
8096 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8098 break;
8099 case 0x9: /* SQSHL, UQSHL */
8100 if (u) {
8101 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8102 } else {
8103 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8105 break;
8106 case 0xa: /* SRSHL, URSHL */
8107 if (u) {
8108 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8109 } else {
8110 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8112 break;
8113 case 0xb: /* SQRSHL, UQRSHL */
8114 if (u) {
8115 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8116 } else {
8117 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8119 break;
8120 case 0x10: /* ADD, SUB */
8121 if (u) {
8122 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8123 } else {
8124 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8126 break;
8127 default:
8128 g_assert_not_reached();
8132 /* Handle the 3-same-operands float operations; shared by the scalar
8133 * and vector encodings. The caller must filter out any encodings
8134 * not allocated for the encoding it is dealing with.
8136 static void handle_3same_float(DisasContext *s, int size, int elements,
8137 int fpopcode, int rd, int rn, int rm)
8139 int pass;
8140 TCGv_ptr fpst = get_fpstatus_ptr(false);
8142 for (pass = 0; pass < elements; pass++) {
8143 if (size) {
8144 /* Double */
8145 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8146 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8147 TCGv_i64 tcg_res = tcg_temp_new_i64();
8149 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8150 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8152 switch (fpopcode) {
8153 case 0x39: /* FMLS */
8154 /* As usual for ARM, separate negation for fused multiply-add */
8155 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8156 /* fall through */
8157 case 0x19: /* FMLA */
8158 read_vec_element(s, tcg_res, rd, pass, MO_64);
8159 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8160 tcg_res, fpst);
8161 break;
8162 case 0x18: /* FMAXNM */
8163 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8164 break;
8165 case 0x1a: /* FADD */
8166 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8167 break;
8168 case 0x1b: /* FMULX */
8169 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8170 break;
8171 case 0x1c: /* FCMEQ */
8172 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8173 break;
8174 case 0x1e: /* FMAX */
8175 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8176 break;
8177 case 0x1f: /* FRECPS */
8178 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8179 break;
8180 case 0x38: /* FMINNM */
8181 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8182 break;
8183 case 0x3a: /* FSUB */
8184 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8185 break;
8186 case 0x3e: /* FMIN */
8187 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8188 break;
8189 case 0x3f: /* FRSQRTS */
8190 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8191 break;
8192 case 0x5b: /* FMUL */
8193 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8194 break;
8195 case 0x5c: /* FCMGE */
8196 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8197 break;
8198 case 0x5d: /* FACGE */
8199 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8200 break;
8201 case 0x5f: /* FDIV */
8202 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8203 break;
8204 case 0x7a: /* FABD */
8205 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8206 gen_helper_vfp_absd(tcg_res, tcg_res);
8207 break;
8208 case 0x7c: /* FCMGT */
8209 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8210 break;
8211 case 0x7d: /* FACGT */
8212 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8213 break;
8214 default:
8215 g_assert_not_reached();
8218 write_vec_element(s, tcg_res, rd, pass, MO_64);
8220 tcg_temp_free_i64(tcg_res);
8221 tcg_temp_free_i64(tcg_op1);
8222 tcg_temp_free_i64(tcg_op2);
8223 } else {
8224 /* Single */
8225 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8226 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8227 TCGv_i32 tcg_res = tcg_temp_new_i32();
8229 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8230 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8232 switch (fpopcode) {
8233 case 0x39: /* FMLS */
8234 /* As usual for ARM, separate negation for fused multiply-add */
8235 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8236 /* fall through */
8237 case 0x19: /* FMLA */
8238 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8239 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8240 tcg_res, fpst);
8241 break;
8242 case 0x1a: /* FADD */
8243 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8244 break;
8245 case 0x1b: /* FMULX */
8246 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8247 break;
8248 case 0x1c: /* FCMEQ */
8249 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8250 break;
8251 case 0x1e: /* FMAX */
8252 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8253 break;
8254 case 0x1f: /* FRECPS */
8255 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8256 break;
8257 case 0x18: /* FMAXNM */
8258 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8259 break;
8260 case 0x38: /* FMINNM */
8261 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8262 break;
8263 case 0x3a: /* FSUB */
8264 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8265 break;
8266 case 0x3e: /* FMIN */
8267 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8268 break;
8269 case 0x3f: /* FRSQRTS */
8270 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8271 break;
8272 case 0x5b: /* FMUL */
8273 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8274 break;
8275 case 0x5c: /* FCMGE */
8276 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8277 break;
8278 case 0x5d: /* FACGE */
8279 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8280 break;
8281 case 0x5f: /* FDIV */
8282 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8283 break;
8284 case 0x7a: /* FABD */
8285 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8286 gen_helper_vfp_abss(tcg_res, tcg_res);
8287 break;
8288 case 0x7c: /* FCMGT */
8289 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8290 break;
8291 case 0x7d: /* FACGT */
8292 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8293 break;
8294 default:
8295 g_assert_not_reached();
8298 if (elements == 1) {
8299 /* scalar single so clear high part */
8300 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8302 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8303 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8304 tcg_temp_free_i64(tcg_tmp);
8305 } else {
8306 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8309 tcg_temp_free_i32(tcg_res);
8310 tcg_temp_free_i32(tcg_op1);
8311 tcg_temp_free_i32(tcg_op2);
8315 tcg_temp_free_ptr(fpst);
8317 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8320 /* AdvSIMD scalar three same
8321 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
8322 * +-----+---+-----------+------+---+------+--------+---+------+------+
8323 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
8324 * +-----+---+-----------+------+---+------+--------+---+------+------+
8326 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8328 int rd = extract32(insn, 0, 5);
8329 int rn = extract32(insn, 5, 5);
8330 int opcode = extract32(insn, 11, 5);
8331 int rm = extract32(insn, 16, 5);
8332 int size = extract32(insn, 22, 2);
8333 bool u = extract32(insn, 29, 1);
8334 TCGv_i64 tcg_rd;
8336 if (opcode >= 0x18) {
8337 /* Floating point: U, size[1] and opcode indicate operation */
8338 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8339 switch (fpopcode) {
8340 case 0x1b: /* FMULX */
8341 case 0x1f: /* FRECPS */
8342 case 0x3f: /* FRSQRTS */
8343 case 0x5d: /* FACGE */
8344 case 0x7d: /* FACGT */
8345 case 0x1c: /* FCMEQ */
8346 case 0x5c: /* FCMGE */
8347 case 0x7c: /* FCMGT */
8348 case 0x7a: /* FABD */
8349 break;
8350 default:
8351 unallocated_encoding(s);
8352 return;
8355 if (!fp_access_check(s)) {
8356 return;
8359 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8360 return;
8363 switch (opcode) {
8364 case 0x1: /* SQADD, UQADD */
8365 case 0x5: /* SQSUB, UQSUB */
8366 case 0x9: /* SQSHL, UQSHL */
8367 case 0xb: /* SQRSHL, UQRSHL */
8368 break;
8369 case 0x8: /* SSHL, USHL */
8370 case 0xa: /* SRSHL, URSHL */
8371 case 0x6: /* CMGT, CMHI */
8372 case 0x7: /* CMGE, CMHS */
8373 case 0x11: /* CMTST, CMEQ */
8374 case 0x10: /* ADD, SUB (vector) */
8375 if (size != 3) {
8376 unallocated_encoding(s);
8377 return;
8379 break;
8380 case 0x16: /* SQDMULH, SQRDMULH (vector) */
8381 if (size != 1 && size != 2) {
8382 unallocated_encoding(s);
8383 return;
8385 break;
8386 default:
8387 unallocated_encoding(s);
8388 return;
8391 if (!fp_access_check(s)) {
8392 return;
8395 tcg_rd = tcg_temp_new_i64();
8397 if (size == 3) {
8398 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8399 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8401 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8402 tcg_temp_free_i64(tcg_rn);
8403 tcg_temp_free_i64(tcg_rm);
8404 } else {
8405 /* Do a single operation on the lowest element in the vector.
8406 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8407 * no side effects for all these operations.
8408 * OPTME: special-purpose helpers would avoid doing some
8409 * unnecessary work in the helper for the 8 and 16 bit cases.
8411 NeonGenTwoOpEnvFn *genenvfn;
8412 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8413 TCGv_i32 tcg_rm = tcg_temp_new_i32();
8414 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
8416 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8417 read_vec_element_i32(s, tcg_rm, rm, 0, size);
8419 switch (opcode) {
8420 case 0x1: /* SQADD, UQADD */
8422 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8423 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
8424 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
8425 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
8427 genenvfn = fns[size][u];
8428 break;
8430 case 0x5: /* SQSUB, UQSUB */
8432 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8433 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
8434 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
8435 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
8437 genenvfn = fns[size][u];
8438 break;
8440 case 0x9: /* SQSHL, UQSHL */
8442 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8443 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
8444 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
8445 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
8447 genenvfn = fns[size][u];
8448 break;
8450 case 0xb: /* SQRSHL, UQRSHL */
8452 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8453 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
8454 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
8455 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
8457 genenvfn = fns[size][u];
8458 break;
8460 case 0x16: /* SQDMULH, SQRDMULH */
8462 static NeonGenTwoOpEnvFn * const fns[2][2] = {
8463 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
8464 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
8466 assert(size == 1 || size == 2);
8467 genenvfn = fns[size - 1][u];
8468 break;
8470 default:
8471 g_assert_not_reached();
8474 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
8475 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
8476 tcg_temp_free_i32(tcg_rd32);
8477 tcg_temp_free_i32(tcg_rn);
8478 tcg_temp_free_i32(tcg_rm);
8481 write_fp_dreg(s, rd, tcg_rd);
8483 tcg_temp_free_i64(tcg_rd);
8486 /* AdvSIMD scalar three same FP16
8487 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
8488 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8489 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
8490 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8491 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
8492 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
8494 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
8495 uint32_t insn)
8497 int rd = extract32(insn, 0, 5);
8498 int rn = extract32(insn, 5, 5);
8499 int opcode = extract32(insn, 11, 3);
8500 int rm = extract32(insn, 16, 5);
8501 bool u = extract32(insn, 29, 1);
8502 bool a = extract32(insn, 23, 1);
8503 int fpopcode = opcode | (a << 3) | (u << 4);
8504 TCGv_ptr fpst;
8505 TCGv_i32 tcg_op1;
8506 TCGv_i32 tcg_op2;
8507 TCGv_i32 tcg_res;
8509 switch (fpopcode) {
8510 case 0x03: /* FMULX */
8511 case 0x04: /* FCMEQ (reg) */
8512 case 0x07: /* FRECPS */
8513 case 0x0f: /* FRSQRTS */
8514 case 0x14: /* FCMGE (reg) */
8515 case 0x15: /* FACGE */
8516 case 0x1a: /* FABD */
8517 case 0x1c: /* FCMGT (reg) */
8518 case 0x1d: /* FACGT */
8519 break;
8520 default:
8521 unallocated_encoding(s);
8522 return;
8525 if (!dc_isar_feature(aa64_fp16, s)) {
8526 unallocated_encoding(s);
8529 if (!fp_access_check(s)) {
8530 return;
8533 fpst = get_fpstatus_ptr(true);
8535 tcg_op1 = read_fp_hreg(s, rn);
8536 tcg_op2 = read_fp_hreg(s, rm);
8537 tcg_res = tcg_temp_new_i32();
8539 switch (fpopcode) {
8540 case 0x03: /* FMULX */
8541 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
8542 break;
8543 case 0x04: /* FCMEQ (reg) */
8544 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8545 break;
8546 case 0x07: /* FRECPS */
8547 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8548 break;
8549 case 0x0f: /* FRSQRTS */
8550 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8551 break;
8552 case 0x14: /* FCMGE (reg) */
8553 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8554 break;
8555 case 0x15: /* FACGE */
8556 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8557 break;
8558 case 0x1a: /* FABD */
8559 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
8560 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
8561 break;
8562 case 0x1c: /* FCMGT (reg) */
8563 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8564 break;
8565 case 0x1d: /* FACGT */
8566 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8567 break;
8568 default:
8569 g_assert_not_reached();
8572 write_fp_sreg(s, rd, tcg_res);
8575 tcg_temp_free_i32(tcg_res);
8576 tcg_temp_free_i32(tcg_op1);
8577 tcg_temp_free_i32(tcg_op2);
8578 tcg_temp_free_ptr(fpst);
8581 /* AdvSIMD scalar three same extra
8582 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8583 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8584 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
8585 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8587 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
8588 uint32_t insn)
8590 int rd = extract32(insn, 0, 5);
8591 int rn = extract32(insn, 5, 5);
8592 int opcode = extract32(insn, 11, 4);
8593 int rm = extract32(insn, 16, 5);
8594 int size = extract32(insn, 22, 2);
8595 bool u = extract32(insn, 29, 1);
8596 TCGv_i32 ele1, ele2, ele3;
8597 TCGv_i64 res;
8598 bool feature;
8600 switch (u * 16 + opcode) {
8601 case 0x10: /* SQRDMLAH (vector) */
8602 case 0x11: /* SQRDMLSH (vector) */
8603 if (size != 1 && size != 2) {
8604 unallocated_encoding(s);
8605 return;
8607 feature = dc_isar_feature(aa64_rdm, s);
8608 break;
8609 default:
8610 unallocated_encoding(s);
8611 return;
8613 if (!feature) {
8614 unallocated_encoding(s);
8615 return;
8617 if (!fp_access_check(s)) {
8618 return;
8621 /* Do a single operation on the lowest element in the vector.
8622 * We use the standard Neon helpers and rely on 0 OP 0 == 0
8623 * with no side effects for all these operations.
8624 * OPTME: special-purpose helpers would avoid doing some
8625 * unnecessary work in the helper for the 16 bit cases.
8627 ele1 = tcg_temp_new_i32();
8628 ele2 = tcg_temp_new_i32();
8629 ele3 = tcg_temp_new_i32();
8631 read_vec_element_i32(s, ele1, rn, 0, size);
8632 read_vec_element_i32(s, ele2, rm, 0, size);
8633 read_vec_element_i32(s, ele3, rd, 0, size);
8635 switch (opcode) {
8636 case 0x0: /* SQRDMLAH */
8637 if (size == 1) {
8638 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
8639 } else {
8640 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
8642 break;
8643 case 0x1: /* SQRDMLSH */
8644 if (size == 1) {
8645 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
8646 } else {
8647 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
8649 break;
8650 default:
8651 g_assert_not_reached();
8653 tcg_temp_free_i32(ele1);
8654 tcg_temp_free_i32(ele2);
8656 res = tcg_temp_new_i64();
8657 tcg_gen_extu_i32_i64(res, ele3);
8658 tcg_temp_free_i32(ele3);
8660 write_fp_dreg(s, rd, res);
8661 tcg_temp_free_i64(res);
8664 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
8665 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
8666 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
8668 /* Handle 64->64 opcodes which are shared between the scalar and
8669 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
8670 * is valid in either group and also the double-precision fp ops.
8671 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
8672 * requires them.
8674 TCGCond cond;
8676 switch (opcode) {
8677 case 0x4: /* CLS, CLZ */
8678 if (u) {
8679 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8680 } else {
8681 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
8683 break;
8684 case 0x5: /* NOT */
8685 /* This opcode is shared with CNT and RBIT but we have earlier
8686 * enforced that size == 3 if and only if this is the NOT insn.
8688 tcg_gen_not_i64(tcg_rd, tcg_rn);
8689 break;
8690 case 0x7: /* SQABS, SQNEG */
8691 if (u) {
8692 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
8693 } else {
8694 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
8696 break;
8697 case 0xa: /* CMLT */
8698 /* 64 bit integer comparison against zero, result is
8699 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
8700 * subtracting 1.
8702 cond = TCG_COND_LT;
8703 do_cmop:
8704 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
8705 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8706 break;
8707 case 0x8: /* CMGT, CMGE */
8708 cond = u ? TCG_COND_GE : TCG_COND_GT;
8709 goto do_cmop;
8710 case 0x9: /* CMEQ, CMLE */
8711 cond = u ? TCG_COND_LE : TCG_COND_EQ;
8712 goto do_cmop;
8713 case 0xb: /* ABS, NEG */
8714 if (u) {
8715 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8716 } else {
8717 TCGv_i64 tcg_zero = tcg_const_i64(0);
8718 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8719 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
8720 tcg_rn, tcg_rd);
8721 tcg_temp_free_i64(tcg_zero);
8723 break;
8724 case 0x2f: /* FABS */
8725 gen_helper_vfp_absd(tcg_rd, tcg_rn);
8726 break;
8727 case 0x6f: /* FNEG */
8728 gen_helper_vfp_negd(tcg_rd, tcg_rn);
8729 break;
8730 case 0x7f: /* FSQRT */
8731 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
8732 break;
8733 case 0x1a: /* FCVTNS */
8734 case 0x1b: /* FCVTMS */
8735 case 0x1c: /* FCVTAS */
8736 case 0x3a: /* FCVTPS */
8737 case 0x3b: /* FCVTZS */
8739 TCGv_i32 tcg_shift = tcg_const_i32(0);
8740 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8741 tcg_temp_free_i32(tcg_shift);
8742 break;
8744 case 0x5a: /* FCVTNU */
8745 case 0x5b: /* FCVTMU */
8746 case 0x5c: /* FCVTAU */
8747 case 0x7a: /* FCVTPU */
8748 case 0x7b: /* FCVTZU */
8750 TCGv_i32 tcg_shift = tcg_const_i32(0);
8751 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8752 tcg_temp_free_i32(tcg_shift);
8753 break;
8755 case 0x18: /* FRINTN */
8756 case 0x19: /* FRINTM */
8757 case 0x38: /* FRINTP */
8758 case 0x39: /* FRINTZ */
8759 case 0x58: /* FRINTA */
8760 case 0x79: /* FRINTI */
8761 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
8762 break;
8763 case 0x59: /* FRINTX */
8764 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
8765 break;
8766 default:
8767 g_assert_not_reached();
8771 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
8772 bool is_scalar, bool is_u, bool is_q,
8773 int size, int rn, int rd)
8775 bool is_double = (size == MO_64);
8776 TCGv_ptr fpst;
8778 if (!fp_access_check(s)) {
8779 return;
8782 fpst = get_fpstatus_ptr(size == MO_16);
8784 if (is_double) {
8785 TCGv_i64 tcg_op = tcg_temp_new_i64();
8786 TCGv_i64 tcg_zero = tcg_const_i64(0);
8787 TCGv_i64 tcg_res = tcg_temp_new_i64();
8788 NeonGenTwoDoubleOPFn *genfn;
8789 bool swap = false;
8790 int pass;
8792 switch (opcode) {
8793 case 0x2e: /* FCMLT (zero) */
8794 swap = true;
8795 /* fallthrough */
8796 case 0x2c: /* FCMGT (zero) */
8797 genfn = gen_helper_neon_cgt_f64;
8798 break;
8799 case 0x2d: /* FCMEQ (zero) */
8800 genfn = gen_helper_neon_ceq_f64;
8801 break;
8802 case 0x6d: /* FCMLE (zero) */
8803 swap = true;
8804 /* fall through */
8805 case 0x6c: /* FCMGE (zero) */
8806 genfn = gen_helper_neon_cge_f64;
8807 break;
8808 default:
8809 g_assert_not_reached();
8812 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8813 read_vec_element(s, tcg_op, rn, pass, MO_64);
8814 if (swap) {
8815 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8816 } else {
8817 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8819 write_vec_element(s, tcg_res, rd, pass, MO_64);
8821 tcg_temp_free_i64(tcg_res);
8822 tcg_temp_free_i64(tcg_zero);
8823 tcg_temp_free_i64(tcg_op);
8825 clear_vec_high(s, !is_scalar, rd);
8826 } else {
8827 TCGv_i32 tcg_op = tcg_temp_new_i32();
8828 TCGv_i32 tcg_zero = tcg_const_i32(0);
8829 TCGv_i32 tcg_res = tcg_temp_new_i32();
8830 NeonGenTwoSingleOPFn *genfn;
8831 bool swap = false;
8832 int pass, maxpasses;
8834 if (size == MO_16) {
8835 switch (opcode) {
8836 case 0x2e: /* FCMLT (zero) */
8837 swap = true;
8838 /* fall through */
8839 case 0x2c: /* FCMGT (zero) */
8840 genfn = gen_helper_advsimd_cgt_f16;
8841 break;
8842 case 0x2d: /* FCMEQ (zero) */
8843 genfn = gen_helper_advsimd_ceq_f16;
8844 break;
8845 case 0x6d: /* FCMLE (zero) */
8846 swap = true;
8847 /* fall through */
8848 case 0x6c: /* FCMGE (zero) */
8849 genfn = gen_helper_advsimd_cge_f16;
8850 break;
8851 default:
8852 g_assert_not_reached();
8854 } else {
8855 switch (opcode) {
8856 case 0x2e: /* FCMLT (zero) */
8857 swap = true;
8858 /* fall through */
8859 case 0x2c: /* FCMGT (zero) */
8860 genfn = gen_helper_neon_cgt_f32;
8861 break;
8862 case 0x2d: /* FCMEQ (zero) */
8863 genfn = gen_helper_neon_ceq_f32;
8864 break;
8865 case 0x6d: /* FCMLE (zero) */
8866 swap = true;
8867 /* fall through */
8868 case 0x6c: /* FCMGE (zero) */
8869 genfn = gen_helper_neon_cge_f32;
8870 break;
8871 default:
8872 g_assert_not_reached();
8876 if (is_scalar) {
8877 maxpasses = 1;
8878 } else {
8879 int vector_size = 8 << is_q;
8880 maxpasses = vector_size >> size;
8883 for (pass = 0; pass < maxpasses; pass++) {
8884 read_vec_element_i32(s, tcg_op, rn, pass, size);
8885 if (swap) {
8886 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8887 } else {
8888 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8890 if (is_scalar) {
8891 write_fp_sreg(s, rd, tcg_res);
8892 } else {
8893 write_vec_element_i32(s, tcg_res, rd, pass, size);
8896 tcg_temp_free_i32(tcg_res);
8897 tcg_temp_free_i32(tcg_zero);
8898 tcg_temp_free_i32(tcg_op);
8899 if (!is_scalar) {
8900 clear_vec_high(s, is_q, rd);
8904 tcg_temp_free_ptr(fpst);
8907 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
8908 bool is_scalar, bool is_u, bool is_q,
8909 int size, int rn, int rd)
8911 bool is_double = (size == 3);
8912 TCGv_ptr fpst = get_fpstatus_ptr(false);
8914 if (is_double) {
8915 TCGv_i64 tcg_op = tcg_temp_new_i64();
8916 TCGv_i64 tcg_res = tcg_temp_new_i64();
8917 int pass;
8919 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8920 read_vec_element(s, tcg_op, rn, pass, MO_64);
8921 switch (opcode) {
8922 case 0x3d: /* FRECPE */
8923 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
8924 break;
8925 case 0x3f: /* FRECPX */
8926 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
8927 break;
8928 case 0x7d: /* FRSQRTE */
8929 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
8930 break;
8931 default:
8932 g_assert_not_reached();
8934 write_vec_element(s, tcg_res, rd, pass, MO_64);
8936 tcg_temp_free_i64(tcg_res);
8937 tcg_temp_free_i64(tcg_op);
8938 clear_vec_high(s, !is_scalar, rd);
8939 } else {
8940 TCGv_i32 tcg_op = tcg_temp_new_i32();
8941 TCGv_i32 tcg_res = tcg_temp_new_i32();
8942 int pass, maxpasses;
8944 if (is_scalar) {
8945 maxpasses = 1;
8946 } else {
8947 maxpasses = is_q ? 4 : 2;
8950 for (pass = 0; pass < maxpasses; pass++) {
8951 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
8953 switch (opcode) {
8954 case 0x3c: /* URECPE */
8955 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
8956 break;
8957 case 0x3d: /* FRECPE */
8958 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
8959 break;
8960 case 0x3f: /* FRECPX */
8961 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
8962 break;
8963 case 0x7d: /* FRSQRTE */
8964 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
8965 break;
8966 default:
8967 g_assert_not_reached();
8970 if (is_scalar) {
8971 write_fp_sreg(s, rd, tcg_res);
8972 } else {
8973 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8976 tcg_temp_free_i32(tcg_res);
8977 tcg_temp_free_i32(tcg_op);
8978 if (!is_scalar) {
8979 clear_vec_high(s, is_q, rd);
8982 tcg_temp_free_ptr(fpst);
8985 static void handle_2misc_narrow(DisasContext *s, bool scalar,
8986 int opcode, bool u, bool is_q,
8987 int size, int rn, int rd)
8989 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
8990 * in the source becomes a size element in the destination).
8992 int pass;
8993 TCGv_i32 tcg_res[2];
8994 int destelt = is_q ? 2 : 0;
8995 int passes = scalar ? 1 : 2;
8997 if (scalar) {
8998 tcg_res[1] = tcg_const_i32(0);
9001 for (pass = 0; pass < passes; pass++) {
9002 TCGv_i64 tcg_op = tcg_temp_new_i64();
9003 NeonGenNarrowFn *genfn = NULL;
9004 NeonGenNarrowEnvFn *genenvfn = NULL;
9006 if (scalar) {
9007 read_vec_element(s, tcg_op, rn, pass, size + 1);
9008 } else {
9009 read_vec_element(s, tcg_op, rn, pass, MO_64);
9011 tcg_res[pass] = tcg_temp_new_i32();
9013 switch (opcode) {
9014 case 0x12: /* XTN, SQXTUN */
9016 static NeonGenNarrowFn * const xtnfns[3] = {
9017 gen_helper_neon_narrow_u8,
9018 gen_helper_neon_narrow_u16,
9019 tcg_gen_extrl_i64_i32,
9021 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9022 gen_helper_neon_unarrow_sat8,
9023 gen_helper_neon_unarrow_sat16,
9024 gen_helper_neon_unarrow_sat32,
9026 if (u) {
9027 genenvfn = sqxtunfns[size];
9028 } else {
9029 genfn = xtnfns[size];
9031 break;
9033 case 0x14: /* SQXTN, UQXTN */
9035 static NeonGenNarrowEnvFn * const fns[3][2] = {
9036 { gen_helper_neon_narrow_sat_s8,
9037 gen_helper_neon_narrow_sat_u8 },
9038 { gen_helper_neon_narrow_sat_s16,
9039 gen_helper_neon_narrow_sat_u16 },
9040 { gen_helper_neon_narrow_sat_s32,
9041 gen_helper_neon_narrow_sat_u32 },
9043 genenvfn = fns[size][u];
9044 break;
9046 case 0x16: /* FCVTN, FCVTN2 */
9047 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9048 if (size == 2) {
9049 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9050 } else {
9051 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9052 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9053 TCGv_ptr fpst = get_fpstatus_ptr(false);
9054 TCGv_i32 ahp = get_ahp_flag();
9056 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9057 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9058 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9059 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9060 tcg_temp_free_i32(tcg_lo);
9061 tcg_temp_free_i32(tcg_hi);
9062 tcg_temp_free_ptr(fpst);
9063 tcg_temp_free_i32(ahp);
9065 break;
9066 case 0x56: /* FCVTXN, FCVTXN2 */
9067 /* 64 bit to 32 bit float conversion
9068 * with von Neumann rounding (round to odd)
9070 assert(size == 2);
9071 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9072 break;
9073 default:
9074 g_assert_not_reached();
9077 if (genfn) {
9078 genfn(tcg_res[pass], tcg_op);
9079 } else if (genenvfn) {
9080 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9083 tcg_temp_free_i64(tcg_op);
9086 for (pass = 0; pass < 2; pass++) {
9087 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9088 tcg_temp_free_i32(tcg_res[pass]);
9090 clear_vec_high(s, is_q, rd);
9093 /* Remaining saturating accumulating ops */
9094 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9095 bool is_q, int size, int rn, int rd)
9097 bool is_double = (size == 3);
9099 if (is_double) {
9100 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9101 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9102 int pass;
9104 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9105 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9106 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9108 if (is_u) { /* USQADD */
9109 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9110 } else { /* SUQADD */
9111 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9113 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9115 tcg_temp_free_i64(tcg_rd);
9116 tcg_temp_free_i64(tcg_rn);
9117 clear_vec_high(s, !is_scalar, rd);
9118 } else {
9119 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9120 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9121 int pass, maxpasses;
9123 if (is_scalar) {
9124 maxpasses = 1;
9125 } else {
9126 maxpasses = is_q ? 4 : 2;
9129 for (pass = 0; pass < maxpasses; pass++) {
9130 if (is_scalar) {
9131 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9132 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9133 } else {
9134 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9135 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9138 if (is_u) { /* USQADD */
9139 switch (size) {
9140 case 0:
9141 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9142 break;
9143 case 1:
9144 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9145 break;
9146 case 2:
9147 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9148 break;
9149 default:
9150 g_assert_not_reached();
9152 } else { /* SUQADD */
9153 switch (size) {
9154 case 0:
9155 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9156 break;
9157 case 1:
9158 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9159 break;
9160 case 2:
9161 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9162 break;
9163 default:
9164 g_assert_not_reached();
9168 if (is_scalar) {
9169 TCGv_i64 tcg_zero = tcg_const_i64(0);
9170 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9171 tcg_temp_free_i64(tcg_zero);
9173 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9175 tcg_temp_free_i32(tcg_rd);
9176 tcg_temp_free_i32(tcg_rn);
9177 clear_vec_high(s, is_q, rd);
9181 /* AdvSIMD scalar two reg misc
9182 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9183 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9184 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9185 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9187 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9189 int rd = extract32(insn, 0, 5);
9190 int rn = extract32(insn, 5, 5);
9191 int opcode = extract32(insn, 12, 5);
9192 int size = extract32(insn, 22, 2);
9193 bool u = extract32(insn, 29, 1);
9194 bool is_fcvt = false;
9195 int rmode;
9196 TCGv_i32 tcg_rmode;
9197 TCGv_ptr tcg_fpstatus;
9199 switch (opcode) {
9200 case 0x3: /* USQADD / SUQADD*/
9201 if (!fp_access_check(s)) {
9202 return;
9204 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9205 return;
9206 case 0x7: /* SQABS / SQNEG */
9207 break;
9208 case 0xa: /* CMLT */
9209 if (u) {
9210 unallocated_encoding(s);
9211 return;
9213 /* fall through */
9214 case 0x8: /* CMGT, CMGE */
9215 case 0x9: /* CMEQ, CMLE */
9216 case 0xb: /* ABS, NEG */
9217 if (size != 3) {
9218 unallocated_encoding(s);
9219 return;
9221 break;
9222 case 0x12: /* SQXTUN */
9223 if (!u) {
9224 unallocated_encoding(s);
9225 return;
9227 /* fall through */
9228 case 0x14: /* SQXTN, UQXTN */
9229 if (size == 3) {
9230 unallocated_encoding(s);
9231 return;
9233 if (!fp_access_check(s)) {
9234 return;
9236 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9237 return;
9238 case 0xc ... 0xf:
9239 case 0x16 ... 0x1d:
9240 case 0x1f:
9241 /* Floating point: U, size[1] and opcode indicate operation;
9242 * size[0] indicates single or double precision.
9244 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9245 size = extract32(size, 0, 1) ? 3 : 2;
9246 switch (opcode) {
9247 case 0x2c: /* FCMGT (zero) */
9248 case 0x2d: /* FCMEQ (zero) */
9249 case 0x2e: /* FCMLT (zero) */
9250 case 0x6c: /* FCMGE (zero) */
9251 case 0x6d: /* FCMLE (zero) */
9252 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9253 return;
9254 case 0x1d: /* SCVTF */
9255 case 0x5d: /* UCVTF */
9257 bool is_signed = (opcode == 0x1d);
9258 if (!fp_access_check(s)) {
9259 return;
9261 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9262 return;
9264 case 0x3d: /* FRECPE */
9265 case 0x3f: /* FRECPX */
9266 case 0x7d: /* FRSQRTE */
9267 if (!fp_access_check(s)) {
9268 return;
9270 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9271 return;
9272 case 0x1a: /* FCVTNS */
9273 case 0x1b: /* FCVTMS */
9274 case 0x3a: /* FCVTPS */
9275 case 0x3b: /* FCVTZS */
9276 case 0x5a: /* FCVTNU */
9277 case 0x5b: /* FCVTMU */
9278 case 0x7a: /* FCVTPU */
9279 case 0x7b: /* FCVTZU */
9280 is_fcvt = true;
9281 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9282 break;
9283 case 0x1c: /* FCVTAS */
9284 case 0x5c: /* FCVTAU */
9285 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9286 is_fcvt = true;
9287 rmode = FPROUNDING_TIEAWAY;
9288 break;
9289 case 0x56: /* FCVTXN, FCVTXN2 */
9290 if (size == 2) {
9291 unallocated_encoding(s);
9292 return;
9294 if (!fp_access_check(s)) {
9295 return;
9297 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9298 return;
9299 default:
9300 unallocated_encoding(s);
9301 return;
9303 break;
9304 default:
9305 unallocated_encoding(s);
9306 return;
9309 if (!fp_access_check(s)) {
9310 return;
9313 if (is_fcvt) {
9314 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9315 tcg_fpstatus = get_fpstatus_ptr(false);
9316 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9317 } else {
9318 tcg_rmode = NULL;
9319 tcg_fpstatus = NULL;
9322 if (size == 3) {
9323 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9324 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9326 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9327 write_fp_dreg(s, rd, tcg_rd);
9328 tcg_temp_free_i64(tcg_rd);
9329 tcg_temp_free_i64(tcg_rn);
9330 } else {
9331 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9332 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9334 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9336 switch (opcode) {
9337 case 0x7: /* SQABS, SQNEG */
9339 NeonGenOneOpEnvFn *genfn;
9340 static NeonGenOneOpEnvFn * const fns[3][2] = {
9341 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9342 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9343 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9345 genfn = fns[size][u];
9346 genfn(tcg_rd, cpu_env, tcg_rn);
9347 break;
9349 case 0x1a: /* FCVTNS */
9350 case 0x1b: /* FCVTMS */
9351 case 0x1c: /* FCVTAS */
9352 case 0x3a: /* FCVTPS */
9353 case 0x3b: /* FCVTZS */
9355 TCGv_i32 tcg_shift = tcg_const_i32(0);
9356 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9357 tcg_temp_free_i32(tcg_shift);
9358 break;
9360 case 0x5a: /* FCVTNU */
9361 case 0x5b: /* FCVTMU */
9362 case 0x5c: /* FCVTAU */
9363 case 0x7a: /* FCVTPU */
9364 case 0x7b: /* FCVTZU */
9366 TCGv_i32 tcg_shift = tcg_const_i32(0);
9367 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9368 tcg_temp_free_i32(tcg_shift);
9369 break;
9371 default:
9372 g_assert_not_reached();
9375 write_fp_sreg(s, rd, tcg_rd);
9376 tcg_temp_free_i32(tcg_rd);
9377 tcg_temp_free_i32(tcg_rn);
9380 if (is_fcvt) {
9381 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9382 tcg_temp_free_i32(tcg_rmode);
9383 tcg_temp_free_ptr(tcg_fpstatus);
9387 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9389 tcg_gen_vec_sar8i_i64(a, a, shift);
9390 tcg_gen_vec_add8_i64(d, d, a);
9393 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9395 tcg_gen_vec_sar16i_i64(a, a, shift);
9396 tcg_gen_vec_add16_i64(d, d, a);
9399 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9401 tcg_gen_sari_i32(a, a, shift);
9402 tcg_gen_add_i32(d, d, a);
9405 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9407 tcg_gen_sari_i64(a, a, shift);
9408 tcg_gen_add_i64(d, d, a);
9411 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9413 tcg_gen_sari_vec(vece, a, a, sh);
9414 tcg_gen_add_vec(vece, d, d, a);
9417 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9419 tcg_gen_vec_shr8i_i64(a, a, shift);
9420 tcg_gen_vec_add8_i64(d, d, a);
9423 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9425 tcg_gen_vec_shr16i_i64(a, a, shift);
9426 tcg_gen_vec_add16_i64(d, d, a);
9429 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9431 tcg_gen_shri_i32(a, a, shift);
9432 tcg_gen_add_i32(d, d, a);
9435 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9437 tcg_gen_shri_i64(a, a, shift);
9438 tcg_gen_add_i64(d, d, a);
9441 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9443 tcg_gen_shri_vec(vece, a, a, sh);
9444 tcg_gen_add_vec(vece, d, d, a);
9447 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9449 uint64_t mask = dup_const(MO_8, 0xff >> shift);
9450 TCGv_i64 t = tcg_temp_new_i64();
9452 tcg_gen_shri_i64(t, a, shift);
9453 tcg_gen_andi_i64(t, t, mask);
9454 tcg_gen_andi_i64(d, d, ~mask);
9455 tcg_gen_or_i64(d, d, t);
9456 tcg_temp_free_i64(t);
9459 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9461 uint64_t mask = dup_const(MO_16, 0xffff >> shift);
9462 TCGv_i64 t = tcg_temp_new_i64();
9464 tcg_gen_shri_i64(t, a, shift);
9465 tcg_gen_andi_i64(t, t, mask);
9466 tcg_gen_andi_i64(d, d, ~mask);
9467 tcg_gen_or_i64(d, d, t);
9468 tcg_temp_free_i64(t);
9471 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9473 tcg_gen_shri_i32(a, a, shift);
9474 tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
9477 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9479 tcg_gen_shri_i64(a, a, shift);
9480 tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
9483 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9485 uint64_t mask = (2ull << ((8 << vece) - 1)) - 1;
9486 TCGv_vec t = tcg_temp_new_vec_matching(d);
9487 TCGv_vec m = tcg_temp_new_vec_matching(d);
9489 tcg_gen_dupi_vec(vece, m, mask ^ (mask >> sh));
9490 tcg_gen_shri_vec(vece, t, a, sh);
9491 tcg_gen_and_vec(vece, d, d, m);
9492 tcg_gen_or_vec(vece, d, d, t);
9494 tcg_temp_free_vec(t);
9495 tcg_temp_free_vec(m);
9498 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9499 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9500 int immh, int immb, int opcode, int rn, int rd)
9502 static const GVecGen2i ssra_op[4] = {
9503 { .fni8 = gen_ssra8_i64,
9504 .fniv = gen_ssra_vec,
9505 .load_dest = true,
9506 .opc = INDEX_op_sari_vec,
9507 .vece = MO_8 },
9508 { .fni8 = gen_ssra16_i64,
9509 .fniv = gen_ssra_vec,
9510 .load_dest = true,
9511 .opc = INDEX_op_sari_vec,
9512 .vece = MO_16 },
9513 { .fni4 = gen_ssra32_i32,
9514 .fniv = gen_ssra_vec,
9515 .load_dest = true,
9516 .opc = INDEX_op_sari_vec,
9517 .vece = MO_32 },
9518 { .fni8 = gen_ssra64_i64,
9519 .fniv = gen_ssra_vec,
9520 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9521 .load_dest = true,
9522 .opc = INDEX_op_sari_vec,
9523 .vece = MO_64 },
9525 static const GVecGen2i usra_op[4] = {
9526 { .fni8 = gen_usra8_i64,
9527 .fniv = gen_usra_vec,
9528 .load_dest = true,
9529 .opc = INDEX_op_shri_vec,
9530 .vece = MO_8, },
9531 { .fni8 = gen_usra16_i64,
9532 .fniv = gen_usra_vec,
9533 .load_dest = true,
9534 .opc = INDEX_op_shri_vec,
9535 .vece = MO_16, },
9536 { .fni4 = gen_usra32_i32,
9537 .fniv = gen_usra_vec,
9538 .load_dest = true,
9539 .opc = INDEX_op_shri_vec,
9540 .vece = MO_32, },
9541 { .fni8 = gen_usra64_i64,
9542 .fniv = gen_usra_vec,
9543 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9544 .load_dest = true,
9545 .opc = INDEX_op_shri_vec,
9546 .vece = MO_64, },
9548 static const GVecGen2i sri_op[4] = {
9549 { .fni8 = gen_shr8_ins_i64,
9550 .fniv = gen_shr_ins_vec,
9551 .load_dest = true,
9552 .opc = INDEX_op_shri_vec,
9553 .vece = MO_8 },
9554 { .fni8 = gen_shr16_ins_i64,
9555 .fniv = gen_shr_ins_vec,
9556 .load_dest = true,
9557 .opc = INDEX_op_shri_vec,
9558 .vece = MO_16 },
9559 { .fni4 = gen_shr32_ins_i32,
9560 .fniv = gen_shr_ins_vec,
9561 .load_dest = true,
9562 .opc = INDEX_op_shri_vec,
9563 .vece = MO_32 },
9564 { .fni8 = gen_shr64_ins_i64,
9565 .fniv = gen_shr_ins_vec,
9566 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9567 .load_dest = true,
9568 .opc = INDEX_op_shri_vec,
9569 .vece = MO_64 },
9572 int size = 32 - clz32(immh) - 1;
9573 int immhb = immh << 3 | immb;
9574 int shift = 2 * (8 << size) - immhb;
9575 bool accumulate = false;
9576 int dsize = is_q ? 128 : 64;
9577 int esize = 8 << size;
9578 int elements = dsize/esize;
9579 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9580 TCGv_i64 tcg_rn = new_tmp_a64(s);
9581 TCGv_i64 tcg_rd = new_tmp_a64(s);
9582 TCGv_i64 tcg_round;
9583 uint64_t round_const;
9584 int i;
9586 if (extract32(immh, 3, 1) && !is_q) {
9587 unallocated_encoding(s);
9588 return;
9590 tcg_debug_assert(size <= 3);
9592 if (!fp_access_check(s)) {
9593 return;
9596 switch (opcode) {
9597 case 0x02: /* SSRA / USRA (accumulate) */
9598 if (is_u) {
9599 /* Shift count same as element size produces zero to add. */
9600 if (shift == 8 << size) {
9601 goto done;
9603 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9604 } else {
9605 /* Shift count same as element size produces all sign to add. */
9606 if (shift == 8 << size) {
9607 shift -= 1;
9609 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9611 return;
9612 case 0x08: /* SRI */
9613 /* Shift count same as element size is valid but does nothing. */
9614 if (shift == 8 << size) {
9615 goto done;
9617 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9618 return;
9620 case 0x00: /* SSHR / USHR */
9621 if (is_u) {
9622 if (shift == 8 << size) {
9623 /* Shift count the same size as element size produces zero. */
9624 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9625 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9626 } else {
9627 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9629 } else {
9630 /* Shift count the same size as element size produces all sign. */
9631 if (shift == 8 << size) {
9632 shift -= 1;
9634 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9636 return;
9638 case 0x04: /* SRSHR / URSHR (rounding) */
9639 break;
9640 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9641 accumulate = true;
9642 break;
9643 default:
9644 g_assert_not_reached();
9647 round_const = 1ULL << (shift - 1);
9648 tcg_round = tcg_const_i64(round_const);
9650 for (i = 0; i < elements; i++) {
9651 read_vec_element(s, tcg_rn, rn, i, memop);
9652 if (accumulate) {
9653 read_vec_element(s, tcg_rd, rd, i, memop);
9656 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9657 accumulate, is_u, size, shift);
9659 write_vec_element(s, tcg_rd, rd, i, size);
9661 tcg_temp_free_i64(tcg_round);
9663 done:
9664 clear_vec_high(s, is_q, rd);
9667 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9669 uint64_t mask = dup_const(MO_8, 0xff << shift);
9670 TCGv_i64 t = tcg_temp_new_i64();
9672 tcg_gen_shli_i64(t, a, shift);
9673 tcg_gen_andi_i64(t, t, mask);
9674 tcg_gen_andi_i64(d, d, ~mask);
9675 tcg_gen_or_i64(d, d, t);
9676 tcg_temp_free_i64(t);
9679 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9681 uint64_t mask = dup_const(MO_16, 0xffff << shift);
9682 TCGv_i64 t = tcg_temp_new_i64();
9684 tcg_gen_shli_i64(t, a, shift);
9685 tcg_gen_andi_i64(t, t, mask);
9686 tcg_gen_andi_i64(d, d, ~mask);
9687 tcg_gen_or_i64(d, d, t);
9688 tcg_temp_free_i64(t);
9691 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9693 tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
9696 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9698 tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
9701 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9703 uint64_t mask = (1ull << sh) - 1;
9704 TCGv_vec t = tcg_temp_new_vec_matching(d);
9705 TCGv_vec m = tcg_temp_new_vec_matching(d);
9707 tcg_gen_dupi_vec(vece, m, mask);
9708 tcg_gen_shli_vec(vece, t, a, sh);
9709 tcg_gen_and_vec(vece, d, d, m);
9710 tcg_gen_or_vec(vece, d, d, t);
9712 tcg_temp_free_vec(t);
9713 tcg_temp_free_vec(m);
9716 /* SHL/SLI - Vector shift left */
9717 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9718 int immh, int immb, int opcode, int rn, int rd)
9720 static const GVecGen2i shi_op[4] = {
9721 { .fni8 = gen_shl8_ins_i64,
9722 .fniv = gen_shl_ins_vec,
9723 .opc = INDEX_op_shli_vec,
9724 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9725 .load_dest = true,
9726 .vece = MO_8 },
9727 { .fni8 = gen_shl16_ins_i64,
9728 .fniv = gen_shl_ins_vec,
9729 .opc = INDEX_op_shli_vec,
9730 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9731 .load_dest = true,
9732 .vece = MO_16 },
9733 { .fni4 = gen_shl32_ins_i32,
9734 .fniv = gen_shl_ins_vec,
9735 .opc = INDEX_op_shli_vec,
9736 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9737 .load_dest = true,
9738 .vece = MO_32 },
9739 { .fni8 = gen_shl64_ins_i64,
9740 .fniv = gen_shl_ins_vec,
9741 .opc = INDEX_op_shli_vec,
9742 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9743 .load_dest = true,
9744 .vece = MO_64 },
9746 int size = 32 - clz32(immh) - 1;
9747 int immhb = immh << 3 | immb;
9748 int shift = immhb - (8 << size);
9750 if (extract32(immh, 3, 1) && !is_q) {
9751 unallocated_encoding(s);
9752 return;
9755 if (size > 3 && !is_q) {
9756 unallocated_encoding(s);
9757 return;
9760 if (!fp_access_check(s)) {
9761 return;
9764 if (insert) {
9765 gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]);
9766 } else {
9767 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
9771 /* USHLL/SHLL - Vector shift left with widening */
9772 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
9773 int immh, int immb, int opcode, int rn, int rd)
9775 int size = 32 - clz32(immh) - 1;
9776 int immhb = immh << 3 | immb;
9777 int shift = immhb - (8 << size);
9778 int dsize = 64;
9779 int esize = 8 << size;
9780 int elements = dsize/esize;
9781 TCGv_i64 tcg_rn = new_tmp_a64(s);
9782 TCGv_i64 tcg_rd = new_tmp_a64(s);
9783 int i;
9785 if (size >= 3) {
9786 unallocated_encoding(s);
9787 return;
9790 if (!fp_access_check(s)) {
9791 return;
9794 /* For the LL variants the store is larger than the load,
9795 * so if rd == rn we would overwrite parts of our input.
9796 * So load everything right now and use shifts in the main loop.
9798 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
9800 for (i = 0; i < elements; i++) {
9801 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
9802 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
9803 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
9804 write_vec_element(s, tcg_rd, rd, i, size + 1);
9808 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
9809 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
9810 int immh, int immb, int opcode, int rn, int rd)
9812 int immhb = immh << 3 | immb;
9813 int size = 32 - clz32(immh) - 1;
9814 int dsize = 64;
9815 int esize = 8 << size;
9816 int elements = dsize/esize;
9817 int shift = (2 * esize) - immhb;
9818 bool round = extract32(opcode, 0, 1);
9819 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
9820 TCGv_i64 tcg_round;
9821 int i;
9823 if (extract32(immh, 3, 1)) {
9824 unallocated_encoding(s);
9825 return;
9828 if (!fp_access_check(s)) {
9829 return;
9832 tcg_rn = tcg_temp_new_i64();
9833 tcg_rd = tcg_temp_new_i64();
9834 tcg_final = tcg_temp_new_i64();
9835 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
9837 if (round) {
9838 uint64_t round_const = 1ULL << (shift - 1);
9839 tcg_round = tcg_const_i64(round_const);
9840 } else {
9841 tcg_round = NULL;
9844 for (i = 0; i < elements; i++) {
9845 read_vec_element(s, tcg_rn, rn, i, size+1);
9846 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9847 false, true, size+1, shift);
9849 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9852 if (!is_q) {
9853 write_vec_element(s, tcg_final, rd, 0, MO_64);
9854 } else {
9855 write_vec_element(s, tcg_final, rd, 1, MO_64);
9857 if (round) {
9858 tcg_temp_free_i64(tcg_round);
9860 tcg_temp_free_i64(tcg_rn);
9861 tcg_temp_free_i64(tcg_rd);
9862 tcg_temp_free_i64(tcg_final);
9864 clear_vec_high(s, is_q, rd);
9868 /* AdvSIMD shift by immediate
9869 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9870 * +---+---+---+-------------+------+------+--------+---+------+------+
9871 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9872 * +---+---+---+-------------+------+------+--------+---+------+------+
9874 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
9876 int rd = extract32(insn, 0, 5);
9877 int rn = extract32(insn, 5, 5);
9878 int opcode = extract32(insn, 11, 5);
9879 int immb = extract32(insn, 16, 3);
9880 int immh = extract32(insn, 19, 4);
9881 bool is_u = extract32(insn, 29, 1);
9882 bool is_q = extract32(insn, 30, 1);
9884 switch (opcode) {
9885 case 0x08: /* SRI */
9886 if (!is_u) {
9887 unallocated_encoding(s);
9888 return;
9890 /* fall through */
9891 case 0x00: /* SSHR / USHR */
9892 case 0x02: /* SSRA / USRA (accumulate) */
9893 case 0x04: /* SRSHR / URSHR (rounding) */
9894 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9895 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
9896 break;
9897 case 0x0a: /* SHL / SLI */
9898 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9899 break;
9900 case 0x10: /* SHRN */
9901 case 0x11: /* RSHRN / SQRSHRUN */
9902 if (is_u) {
9903 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
9904 opcode, rn, rd);
9905 } else {
9906 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
9908 break;
9909 case 0x12: /* SQSHRN / UQSHRN */
9910 case 0x13: /* SQRSHRN / UQRSHRN */
9911 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
9912 opcode, rn, rd);
9913 break;
9914 case 0x14: /* SSHLL / USHLL */
9915 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9916 break;
9917 case 0x1c: /* SCVTF / UCVTF */
9918 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
9919 opcode, rn, rd);
9920 break;
9921 case 0xc: /* SQSHLU */
9922 if (!is_u) {
9923 unallocated_encoding(s);
9924 return;
9926 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
9927 break;
9928 case 0xe: /* SQSHL, UQSHL */
9929 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
9930 break;
9931 case 0x1f: /* FCVTZS/ FCVTZU */
9932 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
9933 return;
9934 default:
9935 unallocated_encoding(s);
9936 return;
9940 /* Generate code to do a "long" addition or subtraction, ie one done in
9941 * TCGv_i64 on vector lanes twice the width specified by size.
9943 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
9944 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
9946 static NeonGenTwo64OpFn * const fns[3][2] = {
9947 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
9948 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
9949 { tcg_gen_add_i64, tcg_gen_sub_i64 },
9951 NeonGenTwo64OpFn *genfn;
9952 assert(size < 3);
9954 genfn = fns[size][is_sub];
9955 genfn(tcg_res, tcg_op1, tcg_op2);
9958 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
9959 int opcode, int rd, int rn, int rm)
9961 /* 3-reg-different widening insns: 64 x 64 -> 128 */
9962 TCGv_i64 tcg_res[2];
9963 int pass, accop;
9965 tcg_res[0] = tcg_temp_new_i64();
9966 tcg_res[1] = tcg_temp_new_i64();
9968 /* Does this op do an adding accumulate, a subtracting accumulate,
9969 * or no accumulate at all?
9971 switch (opcode) {
9972 case 5:
9973 case 8:
9974 case 9:
9975 accop = 1;
9976 break;
9977 case 10:
9978 case 11:
9979 accop = -1;
9980 break;
9981 default:
9982 accop = 0;
9983 break;
9986 if (accop != 0) {
9987 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
9988 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
9991 /* size == 2 means two 32x32->64 operations; this is worth special
9992 * casing because we can generally handle it inline.
9994 if (size == 2) {
9995 for (pass = 0; pass < 2; pass++) {
9996 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9997 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9998 TCGv_i64 tcg_passres;
9999 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10001 int elt = pass + is_q * 2;
10003 read_vec_element(s, tcg_op1, rn, elt, memop);
10004 read_vec_element(s, tcg_op2, rm, elt, memop);
10006 if (accop == 0) {
10007 tcg_passres = tcg_res[pass];
10008 } else {
10009 tcg_passres = tcg_temp_new_i64();
10012 switch (opcode) {
10013 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10014 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10015 break;
10016 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10017 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10018 break;
10019 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10020 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10022 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10023 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10025 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10026 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10027 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10028 tcg_passres,
10029 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10030 tcg_temp_free_i64(tcg_tmp1);
10031 tcg_temp_free_i64(tcg_tmp2);
10032 break;
10034 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10035 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10036 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10037 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10038 break;
10039 case 9: /* SQDMLAL, SQDMLAL2 */
10040 case 11: /* SQDMLSL, SQDMLSL2 */
10041 case 13: /* SQDMULL, SQDMULL2 */
10042 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10043 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10044 tcg_passres, tcg_passres);
10045 break;
10046 default:
10047 g_assert_not_reached();
10050 if (opcode == 9 || opcode == 11) {
10051 /* saturating accumulate ops */
10052 if (accop < 0) {
10053 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10055 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10056 tcg_res[pass], tcg_passres);
10057 } else if (accop > 0) {
10058 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10059 } else if (accop < 0) {
10060 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10063 if (accop != 0) {
10064 tcg_temp_free_i64(tcg_passres);
10067 tcg_temp_free_i64(tcg_op1);
10068 tcg_temp_free_i64(tcg_op2);
10070 } else {
10071 /* size 0 or 1, generally helper functions */
10072 for (pass = 0; pass < 2; pass++) {
10073 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10074 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10075 TCGv_i64 tcg_passres;
10076 int elt = pass + is_q * 2;
10078 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10079 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10081 if (accop == 0) {
10082 tcg_passres = tcg_res[pass];
10083 } else {
10084 tcg_passres = tcg_temp_new_i64();
10087 switch (opcode) {
10088 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10089 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10091 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10092 static NeonGenWidenFn * const widenfns[2][2] = {
10093 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10094 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10096 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10098 widenfn(tcg_op2_64, tcg_op2);
10099 widenfn(tcg_passres, tcg_op1);
10100 gen_neon_addl(size, (opcode == 2), tcg_passres,
10101 tcg_passres, tcg_op2_64);
10102 tcg_temp_free_i64(tcg_op2_64);
10103 break;
10105 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10106 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10107 if (size == 0) {
10108 if (is_u) {
10109 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10110 } else {
10111 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10113 } else {
10114 if (is_u) {
10115 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10116 } else {
10117 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10120 break;
10121 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10122 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10123 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10124 if (size == 0) {
10125 if (is_u) {
10126 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10127 } else {
10128 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10130 } else {
10131 if (is_u) {
10132 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10133 } else {
10134 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10137 break;
10138 case 9: /* SQDMLAL, SQDMLAL2 */
10139 case 11: /* SQDMLSL, SQDMLSL2 */
10140 case 13: /* SQDMULL, SQDMULL2 */
10141 assert(size == 1);
10142 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10143 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10144 tcg_passres, tcg_passres);
10145 break;
10146 case 14: /* PMULL */
10147 assert(size == 0);
10148 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10149 break;
10150 default:
10151 g_assert_not_reached();
10153 tcg_temp_free_i32(tcg_op1);
10154 tcg_temp_free_i32(tcg_op2);
10156 if (accop != 0) {
10157 if (opcode == 9 || opcode == 11) {
10158 /* saturating accumulate ops */
10159 if (accop < 0) {
10160 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10162 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10163 tcg_res[pass],
10164 tcg_passres);
10165 } else {
10166 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10167 tcg_res[pass], tcg_passres);
10169 tcg_temp_free_i64(tcg_passres);
10174 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10175 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10176 tcg_temp_free_i64(tcg_res[0]);
10177 tcg_temp_free_i64(tcg_res[1]);
10180 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10181 int opcode, int rd, int rn, int rm)
10183 TCGv_i64 tcg_res[2];
10184 int part = is_q ? 2 : 0;
10185 int pass;
10187 for (pass = 0; pass < 2; pass++) {
10188 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10189 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10190 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10191 static NeonGenWidenFn * const widenfns[3][2] = {
10192 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10193 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10194 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10196 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10198 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10199 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10200 widenfn(tcg_op2_wide, tcg_op2);
10201 tcg_temp_free_i32(tcg_op2);
10202 tcg_res[pass] = tcg_temp_new_i64();
10203 gen_neon_addl(size, (opcode == 3),
10204 tcg_res[pass], tcg_op1, tcg_op2_wide);
10205 tcg_temp_free_i64(tcg_op1);
10206 tcg_temp_free_i64(tcg_op2_wide);
10209 for (pass = 0; pass < 2; pass++) {
10210 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10211 tcg_temp_free_i64(tcg_res[pass]);
10215 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10217 tcg_gen_addi_i64(in, in, 1U << 31);
10218 tcg_gen_extrh_i64_i32(res, in);
10221 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10222 int opcode, int rd, int rn, int rm)
10224 TCGv_i32 tcg_res[2];
10225 int part = is_q ? 2 : 0;
10226 int pass;
10228 for (pass = 0; pass < 2; pass++) {
10229 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10230 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10231 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10232 static NeonGenNarrowFn * const narrowfns[3][2] = {
10233 { gen_helper_neon_narrow_high_u8,
10234 gen_helper_neon_narrow_round_high_u8 },
10235 { gen_helper_neon_narrow_high_u16,
10236 gen_helper_neon_narrow_round_high_u16 },
10237 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10239 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10241 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10242 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10244 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10246 tcg_temp_free_i64(tcg_op1);
10247 tcg_temp_free_i64(tcg_op2);
10249 tcg_res[pass] = tcg_temp_new_i32();
10250 gennarrow(tcg_res[pass], tcg_wideres);
10251 tcg_temp_free_i64(tcg_wideres);
10254 for (pass = 0; pass < 2; pass++) {
10255 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10256 tcg_temp_free_i32(tcg_res[pass]);
10258 clear_vec_high(s, is_q, rd);
10261 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10263 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10264 * is the only three-reg-diff instruction which produces a
10265 * 128-bit wide result from a single operation. However since
10266 * it's possible to calculate the two halves more or less
10267 * separately we just use two helper calls.
10269 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10270 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10271 TCGv_i64 tcg_res = tcg_temp_new_i64();
10273 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10274 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10275 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10276 write_vec_element(s, tcg_res, rd, 0, MO_64);
10277 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10278 write_vec_element(s, tcg_res, rd, 1, MO_64);
10280 tcg_temp_free_i64(tcg_op1);
10281 tcg_temp_free_i64(tcg_op2);
10282 tcg_temp_free_i64(tcg_res);
10285 /* AdvSIMD three different
10286 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10287 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10288 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10289 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10291 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10293 /* Instructions in this group fall into three basic classes
10294 * (in each case with the operation working on each element in
10295 * the input vectors):
10296 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10297 * 128 bit input)
10298 * (2) wide 64 x 128 -> 128
10299 * (3) narrowing 128 x 128 -> 64
10300 * Here we do initial decode, catch unallocated cases and
10301 * dispatch to separate functions for each class.
10303 int is_q = extract32(insn, 30, 1);
10304 int is_u = extract32(insn, 29, 1);
10305 int size = extract32(insn, 22, 2);
10306 int opcode = extract32(insn, 12, 4);
10307 int rm = extract32(insn, 16, 5);
10308 int rn = extract32(insn, 5, 5);
10309 int rd = extract32(insn, 0, 5);
10311 switch (opcode) {
10312 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10313 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10314 /* 64 x 128 -> 128 */
10315 if (size == 3) {
10316 unallocated_encoding(s);
10317 return;
10319 if (!fp_access_check(s)) {
10320 return;
10322 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10323 break;
10324 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10325 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10326 /* 128 x 128 -> 64 */
10327 if (size == 3) {
10328 unallocated_encoding(s);
10329 return;
10331 if (!fp_access_check(s)) {
10332 return;
10334 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10335 break;
10336 case 14: /* PMULL, PMULL2 */
10337 if (is_u || size == 1 || size == 2) {
10338 unallocated_encoding(s);
10339 return;
10341 if (size == 3) {
10342 if (!dc_isar_feature(aa64_pmull, s)) {
10343 unallocated_encoding(s);
10344 return;
10346 if (!fp_access_check(s)) {
10347 return;
10349 handle_pmull_64(s, is_q, rd, rn, rm);
10350 return;
10352 goto is_widening;
10353 case 9: /* SQDMLAL, SQDMLAL2 */
10354 case 11: /* SQDMLSL, SQDMLSL2 */
10355 case 13: /* SQDMULL, SQDMULL2 */
10356 if (is_u || size == 0) {
10357 unallocated_encoding(s);
10358 return;
10360 /* fall through */
10361 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10362 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10363 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10364 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10365 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10366 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10367 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10368 /* 64 x 64 -> 128 */
10369 if (size == 3) {
10370 unallocated_encoding(s);
10371 return;
10373 is_widening:
10374 if (!fp_access_check(s)) {
10375 return;
10378 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10379 break;
10380 default:
10381 /* opcode 15 not allocated */
10382 unallocated_encoding(s);
10383 break;
10387 static void gen_bsl_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10389 tcg_gen_xor_i64(rn, rn, rm);
10390 tcg_gen_and_i64(rn, rn, rd);
10391 tcg_gen_xor_i64(rd, rm, rn);
10394 static void gen_bit_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10396 tcg_gen_xor_i64(rn, rn, rd);
10397 tcg_gen_and_i64(rn, rn, rm);
10398 tcg_gen_xor_i64(rd, rd, rn);
10401 static void gen_bif_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10403 tcg_gen_xor_i64(rn, rn, rd);
10404 tcg_gen_andc_i64(rn, rn, rm);
10405 tcg_gen_xor_i64(rd, rd, rn);
10408 static void gen_bsl_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10410 tcg_gen_xor_vec(vece, rn, rn, rm);
10411 tcg_gen_and_vec(vece, rn, rn, rd);
10412 tcg_gen_xor_vec(vece, rd, rm, rn);
10415 static void gen_bit_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10417 tcg_gen_xor_vec(vece, rn, rn, rd);
10418 tcg_gen_and_vec(vece, rn, rn, rm);
10419 tcg_gen_xor_vec(vece, rd, rd, rn);
10422 static void gen_bif_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10424 tcg_gen_xor_vec(vece, rn, rn, rd);
10425 tcg_gen_andc_vec(vece, rn, rn, rm);
10426 tcg_gen_xor_vec(vece, rd, rd, rn);
10429 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10430 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10432 static const GVecGen3 bsl_op = {
10433 .fni8 = gen_bsl_i64,
10434 .fniv = gen_bsl_vec,
10435 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10436 .load_dest = true
10438 static const GVecGen3 bit_op = {
10439 .fni8 = gen_bit_i64,
10440 .fniv = gen_bit_vec,
10441 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10442 .load_dest = true
10444 static const GVecGen3 bif_op = {
10445 .fni8 = gen_bif_i64,
10446 .fniv = gen_bif_vec,
10447 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10448 .load_dest = true
10451 int rd = extract32(insn, 0, 5);
10452 int rn = extract32(insn, 5, 5);
10453 int rm = extract32(insn, 16, 5);
10454 int size = extract32(insn, 22, 2);
10455 bool is_u = extract32(insn, 29, 1);
10456 bool is_q = extract32(insn, 30, 1);
10458 if (!fp_access_check(s)) {
10459 return;
10462 switch (size + 4 * is_u) {
10463 case 0: /* AND */
10464 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10465 return;
10466 case 1: /* BIC */
10467 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10468 return;
10469 case 2: /* ORR */
10470 if (rn == rm) { /* MOV */
10471 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
10472 } else {
10473 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10475 return;
10476 case 3: /* ORN */
10477 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10478 return;
10479 case 4: /* EOR */
10480 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10481 return;
10483 case 5: /* BSL bitwise select */
10484 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
10485 return;
10486 case 6: /* BIT, bitwise insert if true */
10487 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
10488 return;
10489 case 7: /* BIF, bitwise insert if false */
10490 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
10491 return;
10493 default:
10494 g_assert_not_reached();
10498 /* Pairwise op subgroup of C3.6.16.
10500 * This is called directly or via the handle_3same_float for float pairwise
10501 * operations where the opcode and size are calculated differently.
10503 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10504 int size, int rn, int rm, int rd)
10506 TCGv_ptr fpst;
10507 int pass;
10509 /* Floating point operations need fpst */
10510 if (opcode >= 0x58) {
10511 fpst = get_fpstatus_ptr(false);
10512 } else {
10513 fpst = NULL;
10516 if (!fp_access_check(s)) {
10517 return;
10520 /* These operations work on the concatenated rm:rn, with each pair of
10521 * adjacent elements being operated on to produce an element in the result.
10523 if (size == 3) {
10524 TCGv_i64 tcg_res[2];
10526 for (pass = 0; pass < 2; pass++) {
10527 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10528 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10529 int passreg = (pass == 0) ? rn : rm;
10531 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10532 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10533 tcg_res[pass] = tcg_temp_new_i64();
10535 switch (opcode) {
10536 case 0x17: /* ADDP */
10537 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10538 break;
10539 case 0x58: /* FMAXNMP */
10540 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10541 break;
10542 case 0x5a: /* FADDP */
10543 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10544 break;
10545 case 0x5e: /* FMAXP */
10546 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10547 break;
10548 case 0x78: /* FMINNMP */
10549 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10550 break;
10551 case 0x7e: /* FMINP */
10552 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10553 break;
10554 default:
10555 g_assert_not_reached();
10558 tcg_temp_free_i64(tcg_op1);
10559 tcg_temp_free_i64(tcg_op2);
10562 for (pass = 0; pass < 2; pass++) {
10563 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10564 tcg_temp_free_i64(tcg_res[pass]);
10566 } else {
10567 int maxpass = is_q ? 4 : 2;
10568 TCGv_i32 tcg_res[4];
10570 for (pass = 0; pass < maxpass; pass++) {
10571 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10572 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10573 NeonGenTwoOpFn *genfn = NULL;
10574 int passreg = pass < (maxpass / 2) ? rn : rm;
10575 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10577 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10578 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10579 tcg_res[pass] = tcg_temp_new_i32();
10581 switch (opcode) {
10582 case 0x17: /* ADDP */
10584 static NeonGenTwoOpFn * const fns[3] = {
10585 gen_helper_neon_padd_u8,
10586 gen_helper_neon_padd_u16,
10587 tcg_gen_add_i32,
10589 genfn = fns[size];
10590 break;
10592 case 0x14: /* SMAXP, UMAXP */
10594 static NeonGenTwoOpFn * const fns[3][2] = {
10595 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10596 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10597 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10599 genfn = fns[size][u];
10600 break;
10602 case 0x15: /* SMINP, UMINP */
10604 static NeonGenTwoOpFn * const fns[3][2] = {
10605 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10606 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10607 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10609 genfn = fns[size][u];
10610 break;
10612 /* The FP operations are all on single floats (32 bit) */
10613 case 0x58: /* FMAXNMP */
10614 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10615 break;
10616 case 0x5a: /* FADDP */
10617 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10618 break;
10619 case 0x5e: /* FMAXP */
10620 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10621 break;
10622 case 0x78: /* FMINNMP */
10623 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10624 break;
10625 case 0x7e: /* FMINP */
10626 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10627 break;
10628 default:
10629 g_assert_not_reached();
10632 /* FP ops called directly, otherwise call now */
10633 if (genfn) {
10634 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10637 tcg_temp_free_i32(tcg_op1);
10638 tcg_temp_free_i32(tcg_op2);
10641 for (pass = 0; pass < maxpass; pass++) {
10642 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10643 tcg_temp_free_i32(tcg_res[pass]);
10645 clear_vec_high(s, is_q, rd);
10648 if (fpst) {
10649 tcg_temp_free_ptr(fpst);
10653 /* Floating point op subgroup of C3.6.16. */
10654 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10656 /* For floating point ops, the U, size[1] and opcode bits
10657 * together indicate the operation. size[0] indicates single
10658 * or double.
10660 int fpopcode = extract32(insn, 11, 5)
10661 | (extract32(insn, 23, 1) << 5)
10662 | (extract32(insn, 29, 1) << 6);
10663 int is_q = extract32(insn, 30, 1);
10664 int size = extract32(insn, 22, 1);
10665 int rm = extract32(insn, 16, 5);
10666 int rn = extract32(insn, 5, 5);
10667 int rd = extract32(insn, 0, 5);
10669 int datasize = is_q ? 128 : 64;
10670 int esize = 32 << size;
10671 int elements = datasize / esize;
10673 if (size == 1 && !is_q) {
10674 unallocated_encoding(s);
10675 return;
10678 switch (fpopcode) {
10679 case 0x58: /* FMAXNMP */
10680 case 0x5a: /* FADDP */
10681 case 0x5e: /* FMAXP */
10682 case 0x78: /* FMINNMP */
10683 case 0x7e: /* FMINP */
10684 if (size && !is_q) {
10685 unallocated_encoding(s);
10686 return;
10688 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10689 rn, rm, rd);
10690 return;
10691 case 0x1b: /* FMULX */
10692 case 0x1f: /* FRECPS */
10693 case 0x3f: /* FRSQRTS */
10694 case 0x5d: /* FACGE */
10695 case 0x7d: /* FACGT */
10696 case 0x19: /* FMLA */
10697 case 0x39: /* FMLS */
10698 case 0x18: /* FMAXNM */
10699 case 0x1a: /* FADD */
10700 case 0x1c: /* FCMEQ */
10701 case 0x1e: /* FMAX */
10702 case 0x38: /* FMINNM */
10703 case 0x3a: /* FSUB */
10704 case 0x3e: /* FMIN */
10705 case 0x5b: /* FMUL */
10706 case 0x5c: /* FCMGE */
10707 case 0x5f: /* FDIV */
10708 case 0x7a: /* FABD */
10709 case 0x7c: /* FCMGT */
10710 if (!fp_access_check(s)) {
10711 return;
10714 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10715 return;
10716 default:
10717 unallocated_encoding(s);
10718 return;
10722 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10724 gen_helper_neon_mul_u8(a, a, b);
10725 gen_helper_neon_add_u8(d, d, a);
10728 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10730 gen_helper_neon_mul_u16(a, a, b);
10731 gen_helper_neon_add_u16(d, d, a);
10734 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10736 tcg_gen_mul_i32(a, a, b);
10737 tcg_gen_add_i32(d, d, a);
10740 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10742 tcg_gen_mul_i64(a, a, b);
10743 tcg_gen_add_i64(d, d, a);
10746 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10748 tcg_gen_mul_vec(vece, a, a, b);
10749 tcg_gen_add_vec(vece, d, d, a);
10752 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10754 gen_helper_neon_mul_u8(a, a, b);
10755 gen_helper_neon_sub_u8(d, d, a);
10758 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10760 gen_helper_neon_mul_u16(a, a, b);
10761 gen_helper_neon_sub_u16(d, d, a);
10764 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10766 tcg_gen_mul_i32(a, a, b);
10767 tcg_gen_sub_i32(d, d, a);
10770 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10772 tcg_gen_mul_i64(a, a, b);
10773 tcg_gen_sub_i64(d, d, a);
10776 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10778 tcg_gen_mul_vec(vece, a, a, b);
10779 tcg_gen_sub_vec(vece, d, d, a);
10782 /* Integer op subgroup of C3.6.16. */
10783 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10785 static const GVecGen3 cmtst_op[4] = {
10786 { .fni4 = gen_helper_neon_tst_u8,
10787 .fniv = gen_cmtst_vec,
10788 .vece = MO_8 },
10789 { .fni4 = gen_helper_neon_tst_u16,
10790 .fniv = gen_cmtst_vec,
10791 .vece = MO_16 },
10792 { .fni4 = gen_cmtst_i32,
10793 .fniv = gen_cmtst_vec,
10794 .vece = MO_32 },
10795 { .fni8 = gen_cmtst_i64,
10796 .fniv = gen_cmtst_vec,
10797 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10798 .vece = MO_64 },
10800 static const GVecGen3 mla_op[4] = {
10801 { .fni4 = gen_mla8_i32,
10802 .fniv = gen_mla_vec,
10803 .opc = INDEX_op_mul_vec,
10804 .load_dest = true,
10805 .vece = MO_8 },
10806 { .fni4 = gen_mla16_i32,
10807 .fniv = gen_mla_vec,
10808 .opc = INDEX_op_mul_vec,
10809 .load_dest = true,
10810 .vece = MO_16 },
10811 { .fni4 = gen_mla32_i32,
10812 .fniv = gen_mla_vec,
10813 .opc = INDEX_op_mul_vec,
10814 .load_dest = true,
10815 .vece = MO_32 },
10816 { .fni8 = gen_mla64_i64,
10817 .fniv = gen_mla_vec,
10818 .opc = INDEX_op_mul_vec,
10819 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10820 .load_dest = true,
10821 .vece = MO_64 },
10823 static const GVecGen3 mls_op[4] = {
10824 { .fni4 = gen_mls8_i32,
10825 .fniv = gen_mls_vec,
10826 .opc = INDEX_op_mul_vec,
10827 .load_dest = true,
10828 .vece = MO_8 },
10829 { .fni4 = gen_mls16_i32,
10830 .fniv = gen_mls_vec,
10831 .opc = INDEX_op_mul_vec,
10832 .load_dest = true,
10833 .vece = MO_16 },
10834 { .fni4 = gen_mls32_i32,
10835 .fniv = gen_mls_vec,
10836 .opc = INDEX_op_mul_vec,
10837 .load_dest = true,
10838 .vece = MO_32 },
10839 { .fni8 = gen_mls64_i64,
10840 .fniv = gen_mls_vec,
10841 .opc = INDEX_op_mul_vec,
10842 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10843 .load_dest = true,
10844 .vece = MO_64 },
10847 int is_q = extract32(insn, 30, 1);
10848 int u = extract32(insn, 29, 1);
10849 int size = extract32(insn, 22, 2);
10850 int opcode = extract32(insn, 11, 5);
10851 int rm = extract32(insn, 16, 5);
10852 int rn = extract32(insn, 5, 5);
10853 int rd = extract32(insn, 0, 5);
10854 int pass;
10855 TCGCond cond;
10857 switch (opcode) {
10858 case 0x13: /* MUL, PMUL */
10859 if (u && size != 0) {
10860 unallocated_encoding(s);
10861 return;
10863 /* fall through */
10864 case 0x0: /* SHADD, UHADD */
10865 case 0x2: /* SRHADD, URHADD */
10866 case 0x4: /* SHSUB, UHSUB */
10867 case 0xc: /* SMAX, UMAX */
10868 case 0xd: /* SMIN, UMIN */
10869 case 0xe: /* SABD, UABD */
10870 case 0xf: /* SABA, UABA */
10871 case 0x12: /* MLA, MLS */
10872 if (size == 3) {
10873 unallocated_encoding(s);
10874 return;
10876 break;
10877 case 0x16: /* SQDMULH, SQRDMULH */
10878 if (size == 0 || size == 3) {
10879 unallocated_encoding(s);
10880 return;
10882 break;
10883 default:
10884 if (size == 3 && !is_q) {
10885 unallocated_encoding(s);
10886 return;
10888 break;
10891 if (!fp_access_check(s)) {
10892 return;
10895 switch (opcode) {
10896 case 0x10: /* ADD, SUB */
10897 if (u) {
10898 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10899 } else {
10900 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10902 return;
10903 case 0x13: /* MUL, PMUL */
10904 if (!u) { /* MUL */
10905 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10906 return;
10908 break;
10909 case 0x12: /* MLA, MLS */
10910 if (u) {
10911 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10912 } else {
10913 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10915 return;
10916 case 0x11:
10917 if (!u) { /* CMTST */
10918 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
10919 return;
10921 /* else CMEQ */
10922 cond = TCG_COND_EQ;
10923 goto do_gvec_cmp;
10924 case 0x06: /* CMGT, CMHI */
10925 cond = u ? TCG_COND_GTU : TCG_COND_GT;
10926 goto do_gvec_cmp;
10927 case 0x07: /* CMGE, CMHS */
10928 cond = u ? TCG_COND_GEU : TCG_COND_GE;
10929 do_gvec_cmp:
10930 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
10931 vec_full_reg_offset(s, rn),
10932 vec_full_reg_offset(s, rm),
10933 is_q ? 16 : 8, vec_full_reg_size(s));
10934 return;
10937 if (size == 3) {
10938 assert(is_q);
10939 for (pass = 0; pass < 2; pass++) {
10940 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10941 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10942 TCGv_i64 tcg_res = tcg_temp_new_i64();
10944 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10945 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10947 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
10949 write_vec_element(s, tcg_res, rd, pass, MO_64);
10951 tcg_temp_free_i64(tcg_res);
10952 tcg_temp_free_i64(tcg_op1);
10953 tcg_temp_free_i64(tcg_op2);
10955 } else {
10956 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10957 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10958 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10959 TCGv_i32 tcg_res = tcg_temp_new_i32();
10960 NeonGenTwoOpFn *genfn = NULL;
10961 NeonGenTwoOpEnvFn *genenvfn = NULL;
10963 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
10964 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
10966 switch (opcode) {
10967 case 0x0: /* SHADD, UHADD */
10969 static NeonGenTwoOpFn * const fns[3][2] = {
10970 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
10971 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
10972 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
10974 genfn = fns[size][u];
10975 break;
10977 case 0x1: /* SQADD, UQADD */
10979 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10980 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
10981 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
10982 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
10984 genenvfn = fns[size][u];
10985 break;
10987 case 0x2: /* SRHADD, URHADD */
10989 static NeonGenTwoOpFn * const fns[3][2] = {
10990 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
10991 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
10992 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
10994 genfn = fns[size][u];
10995 break;
10997 case 0x4: /* SHSUB, UHSUB */
10999 static NeonGenTwoOpFn * const fns[3][2] = {
11000 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11001 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11002 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11004 genfn = fns[size][u];
11005 break;
11007 case 0x5: /* SQSUB, UQSUB */
11009 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11010 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
11011 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
11012 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
11014 genenvfn = fns[size][u];
11015 break;
11017 case 0x8: /* SSHL, USHL */
11019 static NeonGenTwoOpFn * const fns[3][2] = {
11020 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
11021 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
11022 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
11024 genfn = fns[size][u];
11025 break;
11027 case 0x9: /* SQSHL, UQSHL */
11029 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11030 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11031 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11032 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11034 genenvfn = fns[size][u];
11035 break;
11037 case 0xa: /* SRSHL, URSHL */
11039 static NeonGenTwoOpFn * const fns[3][2] = {
11040 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11041 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11042 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11044 genfn = fns[size][u];
11045 break;
11047 case 0xb: /* SQRSHL, UQRSHL */
11049 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11050 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11051 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11052 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11054 genenvfn = fns[size][u];
11055 break;
11057 case 0xc: /* SMAX, UMAX */
11059 static NeonGenTwoOpFn * const fns[3][2] = {
11060 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
11061 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
11062 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11064 genfn = fns[size][u];
11065 break;
11068 case 0xd: /* SMIN, UMIN */
11070 static NeonGenTwoOpFn * const fns[3][2] = {
11071 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
11072 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
11073 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11075 genfn = fns[size][u];
11076 break;
11078 case 0xe: /* SABD, UABD */
11079 case 0xf: /* SABA, UABA */
11081 static NeonGenTwoOpFn * const fns[3][2] = {
11082 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11083 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11084 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11086 genfn = fns[size][u];
11087 break;
11089 case 0x13: /* MUL, PMUL */
11090 assert(u); /* PMUL */
11091 assert(size == 0);
11092 genfn = gen_helper_neon_mul_p8;
11093 break;
11094 case 0x16: /* SQDMULH, SQRDMULH */
11096 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11097 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11098 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11100 assert(size == 1 || size == 2);
11101 genenvfn = fns[size - 1][u];
11102 break;
11104 default:
11105 g_assert_not_reached();
11108 if (genenvfn) {
11109 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11110 } else {
11111 genfn(tcg_res, tcg_op1, tcg_op2);
11114 if (opcode == 0xf) {
11115 /* SABA, UABA: accumulating ops */
11116 static NeonGenTwoOpFn * const fns[3] = {
11117 gen_helper_neon_add_u8,
11118 gen_helper_neon_add_u16,
11119 tcg_gen_add_i32,
11122 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11123 fns[size](tcg_res, tcg_op1, tcg_res);
11126 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11128 tcg_temp_free_i32(tcg_res);
11129 tcg_temp_free_i32(tcg_op1);
11130 tcg_temp_free_i32(tcg_op2);
11133 clear_vec_high(s, is_q, rd);
11136 /* AdvSIMD three same
11137 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11138 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11139 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11140 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11142 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11144 int opcode = extract32(insn, 11, 5);
11146 switch (opcode) {
11147 case 0x3: /* logic ops */
11148 disas_simd_3same_logic(s, insn);
11149 break;
11150 case 0x17: /* ADDP */
11151 case 0x14: /* SMAXP, UMAXP */
11152 case 0x15: /* SMINP, UMINP */
11154 /* Pairwise operations */
11155 int is_q = extract32(insn, 30, 1);
11156 int u = extract32(insn, 29, 1);
11157 int size = extract32(insn, 22, 2);
11158 int rm = extract32(insn, 16, 5);
11159 int rn = extract32(insn, 5, 5);
11160 int rd = extract32(insn, 0, 5);
11161 if (opcode == 0x17) {
11162 if (u || (size == 3 && !is_q)) {
11163 unallocated_encoding(s);
11164 return;
11166 } else {
11167 if (size == 3) {
11168 unallocated_encoding(s);
11169 return;
11172 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11173 break;
11175 case 0x18 ... 0x31:
11176 /* floating point ops, sz[1] and U are part of opcode */
11177 disas_simd_3same_float(s, insn);
11178 break;
11179 default:
11180 disas_simd_3same_int(s, insn);
11181 break;
11186 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11188 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11189 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11190 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11191 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11193 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11194 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11197 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11199 int opcode, fpopcode;
11200 int is_q, u, a, rm, rn, rd;
11201 int datasize, elements;
11202 int pass;
11203 TCGv_ptr fpst;
11204 bool pairwise = false;
11206 if (!dc_isar_feature(aa64_fp16, s)) {
11207 unallocated_encoding(s);
11208 return;
11211 if (!fp_access_check(s)) {
11212 return;
11215 /* For these floating point ops, the U, a and opcode bits
11216 * together indicate the operation.
11218 opcode = extract32(insn, 11, 3);
11219 u = extract32(insn, 29, 1);
11220 a = extract32(insn, 23, 1);
11221 is_q = extract32(insn, 30, 1);
11222 rm = extract32(insn, 16, 5);
11223 rn = extract32(insn, 5, 5);
11224 rd = extract32(insn, 0, 5);
11226 fpopcode = opcode | (a << 3) | (u << 4);
11227 datasize = is_q ? 128 : 64;
11228 elements = datasize / 16;
11230 switch (fpopcode) {
11231 case 0x10: /* FMAXNMP */
11232 case 0x12: /* FADDP */
11233 case 0x16: /* FMAXP */
11234 case 0x18: /* FMINNMP */
11235 case 0x1e: /* FMINP */
11236 pairwise = true;
11237 break;
11240 fpst = get_fpstatus_ptr(true);
11242 if (pairwise) {
11243 int maxpass = is_q ? 8 : 4;
11244 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11245 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11246 TCGv_i32 tcg_res[8];
11248 for (pass = 0; pass < maxpass; pass++) {
11249 int passreg = pass < (maxpass / 2) ? rn : rm;
11250 int passelt = (pass << 1) & (maxpass - 1);
11252 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11253 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11254 tcg_res[pass] = tcg_temp_new_i32();
11256 switch (fpopcode) {
11257 case 0x10: /* FMAXNMP */
11258 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11259 fpst);
11260 break;
11261 case 0x12: /* FADDP */
11262 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11263 break;
11264 case 0x16: /* FMAXP */
11265 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11266 break;
11267 case 0x18: /* FMINNMP */
11268 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11269 fpst);
11270 break;
11271 case 0x1e: /* FMINP */
11272 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11273 break;
11274 default:
11275 g_assert_not_reached();
11279 for (pass = 0; pass < maxpass; pass++) {
11280 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11281 tcg_temp_free_i32(tcg_res[pass]);
11284 tcg_temp_free_i32(tcg_op1);
11285 tcg_temp_free_i32(tcg_op2);
11287 } else {
11288 for (pass = 0; pass < elements; pass++) {
11289 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11290 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11291 TCGv_i32 tcg_res = tcg_temp_new_i32();
11293 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11294 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11296 switch (fpopcode) {
11297 case 0x0: /* FMAXNM */
11298 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11299 break;
11300 case 0x1: /* FMLA */
11301 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11302 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11303 fpst);
11304 break;
11305 case 0x2: /* FADD */
11306 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11307 break;
11308 case 0x3: /* FMULX */
11309 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11310 break;
11311 case 0x4: /* FCMEQ */
11312 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11313 break;
11314 case 0x6: /* FMAX */
11315 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11316 break;
11317 case 0x7: /* FRECPS */
11318 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11319 break;
11320 case 0x8: /* FMINNM */
11321 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11322 break;
11323 case 0x9: /* FMLS */
11324 /* As usual for ARM, separate negation for fused multiply-add */
11325 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11326 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11327 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11328 fpst);
11329 break;
11330 case 0xa: /* FSUB */
11331 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11332 break;
11333 case 0xe: /* FMIN */
11334 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11335 break;
11336 case 0xf: /* FRSQRTS */
11337 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11338 break;
11339 case 0x13: /* FMUL */
11340 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11341 break;
11342 case 0x14: /* FCMGE */
11343 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11344 break;
11345 case 0x15: /* FACGE */
11346 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11347 break;
11348 case 0x17: /* FDIV */
11349 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11350 break;
11351 case 0x1a: /* FABD */
11352 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11353 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11354 break;
11355 case 0x1c: /* FCMGT */
11356 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11357 break;
11358 case 0x1d: /* FACGT */
11359 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11360 break;
11361 default:
11362 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11363 __func__, insn, fpopcode, s->pc);
11364 g_assert_not_reached();
11367 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11368 tcg_temp_free_i32(tcg_res);
11369 tcg_temp_free_i32(tcg_op1);
11370 tcg_temp_free_i32(tcg_op2);
11374 tcg_temp_free_ptr(fpst);
11376 clear_vec_high(s, is_q, rd);
11379 /* AdvSIMD three same extra
11380 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11381 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11382 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11383 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11385 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11387 int rd = extract32(insn, 0, 5);
11388 int rn = extract32(insn, 5, 5);
11389 int opcode = extract32(insn, 11, 4);
11390 int rm = extract32(insn, 16, 5);
11391 int size = extract32(insn, 22, 2);
11392 bool u = extract32(insn, 29, 1);
11393 bool is_q = extract32(insn, 30, 1);
11394 bool feature;
11395 int rot;
11397 switch (u * 16 + opcode) {
11398 case 0x10: /* SQRDMLAH (vector) */
11399 case 0x11: /* SQRDMLSH (vector) */
11400 if (size != 1 && size != 2) {
11401 unallocated_encoding(s);
11402 return;
11404 feature = dc_isar_feature(aa64_rdm, s);
11405 break;
11406 case 0x02: /* SDOT (vector) */
11407 case 0x12: /* UDOT (vector) */
11408 if (size != MO_32) {
11409 unallocated_encoding(s);
11410 return;
11412 feature = dc_isar_feature(aa64_dp, s);
11413 break;
11414 case 0x18: /* FCMLA, #0 */
11415 case 0x19: /* FCMLA, #90 */
11416 case 0x1a: /* FCMLA, #180 */
11417 case 0x1b: /* FCMLA, #270 */
11418 case 0x1c: /* FCADD, #90 */
11419 case 0x1e: /* FCADD, #270 */
11420 if (size == 0
11421 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11422 || (size == 3 && !is_q)) {
11423 unallocated_encoding(s);
11424 return;
11426 feature = dc_isar_feature(aa64_fcma, s);
11427 break;
11428 default:
11429 unallocated_encoding(s);
11430 return;
11432 if (!feature) {
11433 unallocated_encoding(s);
11434 return;
11436 if (!fp_access_check(s)) {
11437 return;
11440 switch (opcode) {
11441 case 0x0: /* SQRDMLAH (vector) */
11442 switch (size) {
11443 case 1:
11444 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11445 break;
11446 case 2:
11447 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11448 break;
11449 default:
11450 g_assert_not_reached();
11452 return;
11454 case 0x1: /* SQRDMLSH (vector) */
11455 switch (size) {
11456 case 1:
11457 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11458 break;
11459 case 2:
11460 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11461 break;
11462 default:
11463 g_assert_not_reached();
11465 return;
11467 case 0x2: /* SDOT / UDOT */
11468 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11469 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11470 return;
11472 case 0x8: /* FCMLA, #0 */
11473 case 0x9: /* FCMLA, #90 */
11474 case 0xa: /* FCMLA, #180 */
11475 case 0xb: /* FCMLA, #270 */
11476 rot = extract32(opcode, 0, 2);
11477 switch (size) {
11478 case 1:
11479 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11480 gen_helper_gvec_fcmlah);
11481 break;
11482 case 2:
11483 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11484 gen_helper_gvec_fcmlas);
11485 break;
11486 case 3:
11487 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11488 gen_helper_gvec_fcmlad);
11489 break;
11490 default:
11491 g_assert_not_reached();
11493 return;
11495 case 0xc: /* FCADD, #90 */
11496 case 0xe: /* FCADD, #270 */
11497 rot = extract32(opcode, 1, 1);
11498 switch (size) {
11499 case 1:
11500 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11501 gen_helper_gvec_fcaddh);
11502 break;
11503 case 2:
11504 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11505 gen_helper_gvec_fcadds);
11506 break;
11507 case 3:
11508 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11509 gen_helper_gvec_fcaddd);
11510 break;
11511 default:
11512 g_assert_not_reached();
11514 return;
11516 default:
11517 g_assert_not_reached();
11521 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11522 int size, int rn, int rd)
11524 /* Handle 2-reg-misc ops which are widening (so each size element
11525 * in the source becomes a 2*size element in the destination.
11526 * The only instruction like this is FCVTL.
11528 int pass;
11530 if (size == 3) {
11531 /* 32 -> 64 bit fp conversion */
11532 TCGv_i64 tcg_res[2];
11533 int srcelt = is_q ? 2 : 0;
11535 for (pass = 0; pass < 2; pass++) {
11536 TCGv_i32 tcg_op = tcg_temp_new_i32();
11537 tcg_res[pass] = tcg_temp_new_i64();
11539 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11540 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11541 tcg_temp_free_i32(tcg_op);
11543 for (pass = 0; pass < 2; pass++) {
11544 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11545 tcg_temp_free_i64(tcg_res[pass]);
11547 } else {
11548 /* 16 -> 32 bit fp conversion */
11549 int srcelt = is_q ? 4 : 0;
11550 TCGv_i32 tcg_res[4];
11551 TCGv_ptr fpst = get_fpstatus_ptr(false);
11552 TCGv_i32 ahp = get_ahp_flag();
11554 for (pass = 0; pass < 4; pass++) {
11555 tcg_res[pass] = tcg_temp_new_i32();
11557 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11558 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11559 fpst, ahp);
11561 for (pass = 0; pass < 4; pass++) {
11562 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11563 tcg_temp_free_i32(tcg_res[pass]);
11566 tcg_temp_free_ptr(fpst);
11567 tcg_temp_free_i32(ahp);
11571 static void handle_rev(DisasContext *s, int opcode, bool u,
11572 bool is_q, int size, int rn, int rd)
11574 int op = (opcode << 1) | u;
11575 int opsz = op + size;
11576 int grp_size = 3 - opsz;
11577 int dsize = is_q ? 128 : 64;
11578 int i;
11580 if (opsz >= 3) {
11581 unallocated_encoding(s);
11582 return;
11585 if (!fp_access_check(s)) {
11586 return;
11589 if (size == 0) {
11590 /* Special case bytes, use bswap op on each group of elements */
11591 int groups = dsize / (8 << grp_size);
11593 for (i = 0; i < groups; i++) {
11594 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11596 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11597 switch (grp_size) {
11598 case MO_16:
11599 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11600 break;
11601 case MO_32:
11602 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11603 break;
11604 case MO_64:
11605 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11606 break;
11607 default:
11608 g_assert_not_reached();
11610 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11611 tcg_temp_free_i64(tcg_tmp);
11613 clear_vec_high(s, is_q, rd);
11614 } else {
11615 int revmask = (1 << grp_size) - 1;
11616 int esize = 8 << size;
11617 int elements = dsize / esize;
11618 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11619 TCGv_i64 tcg_rd = tcg_const_i64(0);
11620 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11622 for (i = 0; i < elements; i++) {
11623 int e_rev = (i & 0xf) ^ revmask;
11624 int off = e_rev * esize;
11625 read_vec_element(s, tcg_rn, rn, i, size);
11626 if (off >= 64) {
11627 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11628 tcg_rn, off - 64, esize);
11629 } else {
11630 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11633 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11634 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11636 tcg_temp_free_i64(tcg_rd_hi);
11637 tcg_temp_free_i64(tcg_rd);
11638 tcg_temp_free_i64(tcg_rn);
11642 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11643 bool is_q, int size, int rn, int rd)
11645 /* Implement the pairwise operations from 2-misc:
11646 * SADDLP, UADDLP, SADALP, UADALP.
11647 * These all add pairs of elements in the input to produce a
11648 * double-width result element in the output (possibly accumulating).
11650 bool accum = (opcode == 0x6);
11651 int maxpass = is_q ? 2 : 1;
11652 int pass;
11653 TCGv_i64 tcg_res[2];
11655 if (size == 2) {
11656 /* 32 + 32 -> 64 op */
11657 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11659 for (pass = 0; pass < maxpass; pass++) {
11660 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11661 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11663 tcg_res[pass] = tcg_temp_new_i64();
11665 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11666 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11667 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11668 if (accum) {
11669 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11670 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11673 tcg_temp_free_i64(tcg_op1);
11674 tcg_temp_free_i64(tcg_op2);
11676 } else {
11677 for (pass = 0; pass < maxpass; pass++) {
11678 TCGv_i64 tcg_op = tcg_temp_new_i64();
11679 NeonGenOneOpFn *genfn;
11680 static NeonGenOneOpFn * const fns[2][2] = {
11681 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11682 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11685 genfn = fns[size][u];
11687 tcg_res[pass] = tcg_temp_new_i64();
11689 read_vec_element(s, tcg_op, rn, pass, MO_64);
11690 genfn(tcg_res[pass], tcg_op);
11692 if (accum) {
11693 read_vec_element(s, tcg_op, rd, pass, MO_64);
11694 if (size == 0) {
11695 gen_helper_neon_addl_u16(tcg_res[pass],
11696 tcg_res[pass], tcg_op);
11697 } else {
11698 gen_helper_neon_addl_u32(tcg_res[pass],
11699 tcg_res[pass], tcg_op);
11702 tcg_temp_free_i64(tcg_op);
11705 if (!is_q) {
11706 tcg_res[1] = tcg_const_i64(0);
11708 for (pass = 0; pass < 2; pass++) {
11709 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11710 tcg_temp_free_i64(tcg_res[pass]);
11714 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11716 /* Implement SHLL and SHLL2 */
11717 int pass;
11718 int part = is_q ? 2 : 0;
11719 TCGv_i64 tcg_res[2];
11721 for (pass = 0; pass < 2; pass++) {
11722 static NeonGenWidenFn * const widenfns[3] = {
11723 gen_helper_neon_widen_u8,
11724 gen_helper_neon_widen_u16,
11725 tcg_gen_extu_i32_i64,
11727 NeonGenWidenFn *widenfn = widenfns[size];
11728 TCGv_i32 tcg_op = tcg_temp_new_i32();
11730 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11731 tcg_res[pass] = tcg_temp_new_i64();
11732 widenfn(tcg_res[pass], tcg_op);
11733 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11735 tcg_temp_free_i32(tcg_op);
11738 for (pass = 0; pass < 2; pass++) {
11739 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11740 tcg_temp_free_i64(tcg_res[pass]);
11744 /* AdvSIMD two reg misc
11745 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11746 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11747 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11748 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11750 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11752 int size = extract32(insn, 22, 2);
11753 int opcode = extract32(insn, 12, 5);
11754 bool u = extract32(insn, 29, 1);
11755 bool is_q = extract32(insn, 30, 1);
11756 int rn = extract32(insn, 5, 5);
11757 int rd = extract32(insn, 0, 5);
11758 bool need_fpstatus = false;
11759 bool need_rmode = false;
11760 int rmode = -1;
11761 TCGv_i32 tcg_rmode;
11762 TCGv_ptr tcg_fpstatus;
11764 switch (opcode) {
11765 case 0x0: /* REV64, REV32 */
11766 case 0x1: /* REV16 */
11767 handle_rev(s, opcode, u, is_q, size, rn, rd);
11768 return;
11769 case 0x5: /* CNT, NOT, RBIT */
11770 if (u && size == 0) {
11771 /* NOT */
11772 break;
11773 } else if (u && size == 1) {
11774 /* RBIT */
11775 break;
11776 } else if (!u && size == 0) {
11777 /* CNT */
11778 break;
11780 unallocated_encoding(s);
11781 return;
11782 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11783 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11784 if (size == 3) {
11785 unallocated_encoding(s);
11786 return;
11788 if (!fp_access_check(s)) {
11789 return;
11792 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11793 return;
11794 case 0x4: /* CLS, CLZ */
11795 if (size == 3) {
11796 unallocated_encoding(s);
11797 return;
11799 break;
11800 case 0x2: /* SADDLP, UADDLP */
11801 case 0x6: /* SADALP, UADALP */
11802 if (size == 3) {
11803 unallocated_encoding(s);
11804 return;
11806 if (!fp_access_check(s)) {
11807 return;
11809 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11810 return;
11811 case 0x13: /* SHLL, SHLL2 */
11812 if (u == 0 || size == 3) {
11813 unallocated_encoding(s);
11814 return;
11816 if (!fp_access_check(s)) {
11817 return;
11819 handle_shll(s, is_q, size, rn, rd);
11820 return;
11821 case 0xa: /* CMLT */
11822 if (u == 1) {
11823 unallocated_encoding(s);
11824 return;
11826 /* fall through */
11827 case 0x8: /* CMGT, CMGE */
11828 case 0x9: /* CMEQ, CMLE */
11829 case 0xb: /* ABS, NEG */
11830 if (size == 3 && !is_q) {
11831 unallocated_encoding(s);
11832 return;
11834 break;
11835 case 0x3: /* SUQADD, USQADD */
11836 if (size == 3 && !is_q) {
11837 unallocated_encoding(s);
11838 return;
11840 if (!fp_access_check(s)) {
11841 return;
11843 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11844 return;
11845 case 0x7: /* SQABS, SQNEG */
11846 if (size == 3 && !is_q) {
11847 unallocated_encoding(s);
11848 return;
11850 break;
11851 case 0xc ... 0xf:
11852 case 0x16 ... 0x1d:
11853 case 0x1f:
11855 /* Floating point: U, size[1] and opcode indicate operation;
11856 * size[0] indicates single or double precision.
11858 int is_double = extract32(size, 0, 1);
11859 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11860 size = is_double ? 3 : 2;
11861 switch (opcode) {
11862 case 0x2f: /* FABS */
11863 case 0x6f: /* FNEG */
11864 if (size == 3 && !is_q) {
11865 unallocated_encoding(s);
11866 return;
11868 break;
11869 case 0x1d: /* SCVTF */
11870 case 0x5d: /* UCVTF */
11872 bool is_signed = (opcode == 0x1d) ? true : false;
11873 int elements = is_double ? 2 : is_q ? 4 : 2;
11874 if (is_double && !is_q) {
11875 unallocated_encoding(s);
11876 return;
11878 if (!fp_access_check(s)) {
11879 return;
11881 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11882 return;
11884 case 0x2c: /* FCMGT (zero) */
11885 case 0x2d: /* FCMEQ (zero) */
11886 case 0x2e: /* FCMLT (zero) */
11887 case 0x6c: /* FCMGE (zero) */
11888 case 0x6d: /* FCMLE (zero) */
11889 if (size == 3 && !is_q) {
11890 unallocated_encoding(s);
11891 return;
11893 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11894 return;
11895 case 0x7f: /* FSQRT */
11896 if (size == 3 && !is_q) {
11897 unallocated_encoding(s);
11898 return;
11900 break;
11901 case 0x1a: /* FCVTNS */
11902 case 0x1b: /* FCVTMS */
11903 case 0x3a: /* FCVTPS */
11904 case 0x3b: /* FCVTZS */
11905 case 0x5a: /* FCVTNU */
11906 case 0x5b: /* FCVTMU */
11907 case 0x7a: /* FCVTPU */
11908 case 0x7b: /* FCVTZU */
11909 need_fpstatus = true;
11910 need_rmode = true;
11911 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11912 if (size == 3 && !is_q) {
11913 unallocated_encoding(s);
11914 return;
11916 break;
11917 case 0x5c: /* FCVTAU */
11918 case 0x1c: /* FCVTAS */
11919 need_fpstatus = true;
11920 need_rmode = true;
11921 rmode = FPROUNDING_TIEAWAY;
11922 if (size == 3 && !is_q) {
11923 unallocated_encoding(s);
11924 return;
11926 break;
11927 case 0x3c: /* URECPE */
11928 if (size == 3) {
11929 unallocated_encoding(s);
11930 return;
11932 /* fall through */
11933 case 0x3d: /* FRECPE */
11934 case 0x7d: /* FRSQRTE */
11935 if (size == 3 && !is_q) {
11936 unallocated_encoding(s);
11937 return;
11939 if (!fp_access_check(s)) {
11940 return;
11942 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11943 return;
11944 case 0x56: /* FCVTXN, FCVTXN2 */
11945 if (size == 2) {
11946 unallocated_encoding(s);
11947 return;
11949 /* fall through */
11950 case 0x16: /* FCVTN, FCVTN2 */
11951 /* handle_2misc_narrow does a 2*size -> size operation, but these
11952 * instructions encode the source size rather than dest size.
11954 if (!fp_access_check(s)) {
11955 return;
11957 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11958 return;
11959 case 0x17: /* FCVTL, FCVTL2 */
11960 if (!fp_access_check(s)) {
11961 return;
11963 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11964 return;
11965 case 0x18: /* FRINTN */
11966 case 0x19: /* FRINTM */
11967 case 0x38: /* FRINTP */
11968 case 0x39: /* FRINTZ */
11969 need_rmode = true;
11970 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11971 /* fall through */
11972 case 0x59: /* FRINTX */
11973 case 0x79: /* FRINTI */
11974 need_fpstatus = true;
11975 if (size == 3 && !is_q) {
11976 unallocated_encoding(s);
11977 return;
11979 break;
11980 case 0x58: /* FRINTA */
11981 need_rmode = true;
11982 rmode = FPROUNDING_TIEAWAY;
11983 need_fpstatus = true;
11984 if (size == 3 && !is_q) {
11985 unallocated_encoding(s);
11986 return;
11988 break;
11989 case 0x7c: /* URSQRTE */
11990 if (size == 3) {
11991 unallocated_encoding(s);
11992 return;
11994 need_fpstatus = true;
11995 break;
11996 default:
11997 unallocated_encoding(s);
11998 return;
12000 break;
12002 default:
12003 unallocated_encoding(s);
12004 return;
12007 if (!fp_access_check(s)) {
12008 return;
12011 if (need_fpstatus || need_rmode) {
12012 tcg_fpstatus = get_fpstatus_ptr(false);
12013 } else {
12014 tcg_fpstatus = NULL;
12016 if (need_rmode) {
12017 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12018 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12019 } else {
12020 tcg_rmode = NULL;
12023 switch (opcode) {
12024 case 0x5:
12025 if (u && size == 0) { /* NOT */
12026 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12027 return;
12029 break;
12030 case 0xb:
12031 if (u) { /* NEG */
12032 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12033 return;
12035 break;
12038 if (size == 3) {
12039 /* All 64-bit element operations can be shared with scalar 2misc */
12040 int pass;
12042 /* Coverity claims (size == 3 && !is_q) has been eliminated
12043 * from all paths leading to here.
12045 tcg_debug_assert(is_q);
12046 for (pass = 0; pass < 2; pass++) {
12047 TCGv_i64 tcg_op = tcg_temp_new_i64();
12048 TCGv_i64 tcg_res = tcg_temp_new_i64();
12050 read_vec_element(s, tcg_op, rn, pass, MO_64);
12052 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12053 tcg_rmode, tcg_fpstatus);
12055 write_vec_element(s, tcg_res, rd, pass, MO_64);
12057 tcg_temp_free_i64(tcg_res);
12058 tcg_temp_free_i64(tcg_op);
12060 } else {
12061 int pass;
12063 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12064 TCGv_i32 tcg_op = tcg_temp_new_i32();
12065 TCGv_i32 tcg_res = tcg_temp_new_i32();
12066 TCGCond cond;
12068 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12070 if (size == 2) {
12071 /* Special cases for 32 bit elements */
12072 switch (opcode) {
12073 case 0xa: /* CMLT */
12074 /* 32 bit integer comparison against zero, result is
12075 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12076 * and inverting.
12078 cond = TCG_COND_LT;
12079 do_cmop:
12080 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12081 tcg_gen_neg_i32(tcg_res, tcg_res);
12082 break;
12083 case 0x8: /* CMGT, CMGE */
12084 cond = u ? TCG_COND_GE : TCG_COND_GT;
12085 goto do_cmop;
12086 case 0x9: /* CMEQ, CMLE */
12087 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12088 goto do_cmop;
12089 case 0x4: /* CLS */
12090 if (u) {
12091 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12092 } else {
12093 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12095 break;
12096 case 0x7: /* SQABS, SQNEG */
12097 if (u) {
12098 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12099 } else {
12100 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12102 break;
12103 case 0xb: /* ABS, NEG */
12104 if (u) {
12105 tcg_gen_neg_i32(tcg_res, tcg_op);
12106 } else {
12107 TCGv_i32 tcg_zero = tcg_const_i32(0);
12108 tcg_gen_neg_i32(tcg_res, tcg_op);
12109 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
12110 tcg_zero, tcg_op, tcg_res);
12111 tcg_temp_free_i32(tcg_zero);
12113 break;
12114 case 0x2f: /* FABS */
12115 gen_helper_vfp_abss(tcg_res, tcg_op);
12116 break;
12117 case 0x6f: /* FNEG */
12118 gen_helper_vfp_negs(tcg_res, tcg_op);
12119 break;
12120 case 0x7f: /* FSQRT */
12121 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12122 break;
12123 case 0x1a: /* FCVTNS */
12124 case 0x1b: /* FCVTMS */
12125 case 0x1c: /* FCVTAS */
12126 case 0x3a: /* FCVTPS */
12127 case 0x3b: /* FCVTZS */
12129 TCGv_i32 tcg_shift = tcg_const_i32(0);
12130 gen_helper_vfp_tosls(tcg_res, tcg_op,
12131 tcg_shift, tcg_fpstatus);
12132 tcg_temp_free_i32(tcg_shift);
12133 break;
12135 case 0x5a: /* FCVTNU */
12136 case 0x5b: /* FCVTMU */
12137 case 0x5c: /* FCVTAU */
12138 case 0x7a: /* FCVTPU */
12139 case 0x7b: /* FCVTZU */
12141 TCGv_i32 tcg_shift = tcg_const_i32(0);
12142 gen_helper_vfp_touls(tcg_res, tcg_op,
12143 tcg_shift, tcg_fpstatus);
12144 tcg_temp_free_i32(tcg_shift);
12145 break;
12147 case 0x18: /* FRINTN */
12148 case 0x19: /* FRINTM */
12149 case 0x38: /* FRINTP */
12150 case 0x39: /* FRINTZ */
12151 case 0x58: /* FRINTA */
12152 case 0x79: /* FRINTI */
12153 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12154 break;
12155 case 0x59: /* FRINTX */
12156 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12157 break;
12158 case 0x7c: /* URSQRTE */
12159 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12160 break;
12161 default:
12162 g_assert_not_reached();
12164 } else {
12165 /* Use helpers for 8 and 16 bit elements */
12166 switch (opcode) {
12167 case 0x5: /* CNT, RBIT */
12168 /* For these two insns size is part of the opcode specifier
12169 * (handled earlier); they always operate on byte elements.
12171 if (u) {
12172 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12173 } else {
12174 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12176 break;
12177 case 0x7: /* SQABS, SQNEG */
12179 NeonGenOneOpEnvFn *genfn;
12180 static NeonGenOneOpEnvFn * const fns[2][2] = {
12181 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12182 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12184 genfn = fns[size][u];
12185 genfn(tcg_res, cpu_env, tcg_op);
12186 break;
12188 case 0x8: /* CMGT, CMGE */
12189 case 0x9: /* CMEQ, CMLE */
12190 case 0xa: /* CMLT */
12192 static NeonGenTwoOpFn * const fns[3][2] = {
12193 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12194 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12195 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12197 NeonGenTwoOpFn *genfn;
12198 int comp;
12199 bool reverse;
12200 TCGv_i32 tcg_zero = tcg_const_i32(0);
12202 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12203 comp = (opcode - 0x8) * 2 + u;
12204 /* ...but LE, LT are implemented as reverse GE, GT */
12205 reverse = (comp > 2);
12206 if (reverse) {
12207 comp = 4 - comp;
12209 genfn = fns[comp][size];
12210 if (reverse) {
12211 genfn(tcg_res, tcg_zero, tcg_op);
12212 } else {
12213 genfn(tcg_res, tcg_op, tcg_zero);
12215 tcg_temp_free_i32(tcg_zero);
12216 break;
12218 case 0xb: /* ABS, NEG */
12219 if (u) {
12220 TCGv_i32 tcg_zero = tcg_const_i32(0);
12221 if (size) {
12222 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
12223 } else {
12224 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
12226 tcg_temp_free_i32(tcg_zero);
12227 } else {
12228 if (size) {
12229 gen_helper_neon_abs_s16(tcg_res, tcg_op);
12230 } else {
12231 gen_helper_neon_abs_s8(tcg_res, tcg_op);
12234 break;
12235 case 0x4: /* CLS, CLZ */
12236 if (u) {
12237 if (size == 0) {
12238 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12239 } else {
12240 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12242 } else {
12243 if (size == 0) {
12244 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12245 } else {
12246 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12249 break;
12250 default:
12251 g_assert_not_reached();
12255 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12257 tcg_temp_free_i32(tcg_res);
12258 tcg_temp_free_i32(tcg_op);
12261 clear_vec_high(s, is_q, rd);
12263 if (need_rmode) {
12264 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12265 tcg_temp_free_i32(tcg_rmode);
12267 if (need_fpstatus) {
12268 tcg_temp_free_ptr(tcg_fpstatus);
12272 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12274 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12275 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12276 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12277 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12278 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12279 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12281 * This actually covers two groups where scalar access is governed by
12282 * bit 28. A bunch of the instructions (float to integral) only exist
12283 * in the vector form and are un-allocated for the scalar decode. Also
12284 * in the scalar decode Q is always 1.
12286 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12288 int fpop, opcode, a, u;
12289 int rn, rd;
12290 bool is_q;
12291 bool is_scalar;
12292 bool only_in_vector = false;
12294 int pass;
12295 TCGv_i32 tcg_rmode = NULL;
12296 TCGv_ptr tcg_fpstatus = NULL;
12297 bool need_rmode = false;
12298 bool need_fpst = true;
12299 int rmode;
12301 if (!dc_isar_feature(aa64_fp16, s)) {
12302 unallocated_encoding(s);
12303 return;
12306 rd = extract32(insn, 0, 5);
12307 rn = extract32(insn, 5, 5);
12309 a = extract32(insn, 23, 1);
12310 u = extract32(insn, 29, 1);
12311 is_scalar = extract32(insn, 28, 1);
12312 is_q = extract32(insn, 30, 1);
12314 opcode = extract32(insn, 12, 5);
12315 fpop = deposit32(opcode, 5, 1, a);
12316 fpop = deposit32(fpop, 6, 1, u);
12318 rd = extract32(insn, 0, 5);
12319 rn = extract32(insn, 5, 5);
12321 switch (fpop) {
12322 case 0x1d: /* SCVTF */
12323 case 0x5d: /* UCVTF */
12325 int elements;
12327 if (is_scalar) {
12328 elements = 1;
12329 } else {
12330 elements = (is_q ? 8 : 4);
12333 if (!fp_access_check(s)) {
12334 return;
12336 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12337 return;
12339 break;
12340 case 0x2c: /* FCMGT (zero) */
12341 case 0x2d: /* FCMEQ (zero) */
12342 case 0x2e: /* FCMLT (zero) */
12343 case 0x6c: /* FCMGE (zero) */
12344 case 0x6d: /* FCMLE (zero) */
12345 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12346 return;
12347 case 0x3d: /* FRECPE */
12348 case 0x3f: /* FRECPX */
12349 break;
12350 case 0x18: /* FRINTN */
12351 need_rmode = true;
12352 only_in_vector = true;
12353 rmode = FPROUNDING_TIEEVEN;
12354 break;
12355 case 0x19: /* FRINTM */
12356 need_rmode = true;
12357 only_in_vector = true;
12358 rmode = FPROUNDING_NEGINF;
12359 break;
12360 case 0x38: /* FRINTP */
12361 need_rmode = true;
12362 only_in_vector = true;
12363 rmode = FPROUNDING_POSINF;
12364 break;
12365 case 0x39: /* FRINTZ */
12366 need_rmode = true;
12367 only_in_vector = true;
12368 rmode = FPROUNDING_ZERO;
12369 break;
12370 case 0x58: /* FRINTA */
12371 need_rmode = true;
12372 only_in_vector = true;
12373 rmode = FPROUNDING_TIEAWAY;
12374 break;
12375 case 0x59: /* FRINTX */
12376 case 0x79: /* FRINTI */
12377 only_in_vector = true;
12378 /* current rounding mode */
12379 break;
12380 case 0x1a: /* FCVTNS */
12381 need_rmode = true;
12382 rmode = FPROUNDING_TIEEVEN;
12383 break;
12384 case 0x1b: /* FCVTMS */
12385 need_rmode = true;
12386 rmode = FPROUNDING_NEGINF;
12387 break;
12388 case 0x1c: /* FCVTAS */
12389 need_rmode = true;
12390 rmode = FPROUNDING_TIEAWAY;
12391 break;
12392 case 0x3a: /* FCVTPS */
12393 need_rmode = true;
12394 rmode = FPROUNDING_POSINF;
12395 break;
12396 case 0x3b: /* FCVTZS */
12397 need_rmode = true;
12398 rmode = FPROUNDING_ZERO;
12399 break;
12400 case 0x5a: /* FCVTNU */
12401 need_rmode = true;
12402 rmode = FPROUNDING_TIEEVEN;
12403 break;
12404 case 0x5b: /* FCVTMU */
12405 need_rmode = true;
12406 rmode = FPROUNDING_NEGINF;
12407 break;
12408 case 0x5c: /* FCVTAU */
12409 need_rmode = true;
12410 rmode = FPROUNDING_TIEAWAY;
12411 break;
12412 case 0x7a: /* FCVTPU */
12413 need_rmode = true;
12414 rmode = FPROUNDING_POSINF;
12415 break;
12416 case 0x7b: /* FCVTZU */
12417 need_rmode = true;
12418 rmode = FPROUNDING_ZERO;
12419 break;
12420 case 0x2f: /* FABS */
12421 case 0x6f: /* FNEG */
12422 need_fpst = false;
12423 break;
12424 case 0x7d: /* FRSQRTE */
12425 case 0x7f: /* FSQRT (vector) */
12426 break;
12427 default:
12428 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12429 g_assert_not_reached();
12433 /* Check additional constraints for the scalar encoding */
12434 if (is_scalar) {
12435 if (!is_q) {
12436 unallocated_encoding(s);
12437 return;
12439 /* FRINTxx is only in the vector form */
12440 if (only_in_vector) {
12441 unallocated_encoding(s);
12442 return;
12446 if (!fp_access_check(s)) {
12447 return;
12450 if (need_rmode || need_fpst) {
12451 tcg_fpstatus = get_fpstatus_ptr(true);
12454 if (need_rmode) {
12455 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12456 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12459 if (is_scalar) {
12460 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12461 TCGv_i32 tcg_res = tcg_temp_new_i32();
12463 switch (fpop) {
12464 case 0x1a: /* FCVTNS */
12465 case 0x1b: /* FCVTMS */
12466 case 0x1c: /* FCVTAS */
12467 case 0x3a: /* FCVTPS */
12468 case 0x3b: /* FCVTZS */
12469 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12470 break;
12471 case 0x3d: /* FRECPE */
12472 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12473 break;
12474 case 0x3f: /* FRECPX */
12475 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12476 break;
12477 case 0x5a: /* FCVTNU */
12478 case 0x5b: /* FCVTMU */
12479 case 0x5c: /* FCVTAU */
12480 case 0x7a: /* FCVTPU */
12481 case 0x7b: /* FCVTZU */
12482 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12483 break;
12484 case 0x6f: /* FNEG */
12485 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12486 break;
12487 case 0x7d: /* FRSQRTE */
12488 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12489 break;
12490 default:
12491 g_assert_not_reached();
12494 /* limit any sign extension going on */
12495 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12496 write_fp_sreg(s, rd, tcg_res);
12498 tcg_temp_free_i32(tcg_res);
12499 tcg_temp_free_i32(tcg_op);
12500 } else {
12501 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12502 TCGv_i32 tcg_op = tcg_temp_new_i32();
12503 TCGv_i32 tcg_res = tcg_temp_new_i32();
12505 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12507 switch (fpop) {
12508 case 0x1a: /* FCVTNS */
12509 case 0x1b: /* FCVTMS */
12510 case 0x1c: /* FCVTAS */
12511 case 0x3a: /* FCVTPS */
12512 case 0x3b: /* FCVTZS */
12513 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12514 break;
12515 case 0x3d: /* FRECPE */
12516 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12517 break;
12518 case 0x5a: /* FCVTNU */
12519 case 0x5b: /* FCVTMU */
12520 case 0x5c: /* FCVTAU */
12521 case 0x7a: /* FCVTPU */
12522 case 0x7b: /* FCVTZU */
12523 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12524 break;
12525 case 0x18: /* FRINTN */
12526 case 0x19: /* FRINTM */
12527 case 0x38: /* FRINTP */
12528 case 0x39: /* FRINTZ */
12529 case 0x58: /* FRINTA */
12530 case 0x79: /* FRINTI */
12531 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12532 break;
12533 case 0x59: /* FRINTX */
12534 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12535 break;
12536 case 0x2f: /* FABS */
12537 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12538 break;
12539 case 0x6f: /* FNEG */
12540 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12541 break;
12542 case 0x7d: /* FRSQRTE */
12543 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12544 break;
12545 case 0x7f: /* FSQRT */
12546 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12547 break;
12548 default:
12549 g_assert_not_reached();
12552 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12554 tcg_temp_free_i32(tcg_res);
12555 tcg_temp_free_i32(tcg_op);
12558 clear_vec_high(s, is_q, rd);
12561 if (tcg_rmode) {
12562 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12563 tcg_temp_free_i32(tcg_rmode);
12566 if (tcg_fpstatus) {
12567 tcg_temp_free_ptr(tcg_fpstatus);
12571 /* AdvSIMD scalar x indexed element
12572 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12573 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12574 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12575 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12576 * AdvSIMD vector x indexed element
12577 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12578 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12579 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12580 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12582 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12584 /* This encoding has two kinds of instruction:
12585 * normal, where we perform elt x idxelt => elt for each
12586 * element in the vector
12587 * long, where we perform elt x idxelt and generate a result of
12588 * double the width of the input element
12589 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12591 bool is_scalar = extract32(insn, 28, 1);
12592 bool is_q = extract32(insn, 30, 1);
12593 bool u = extract32(insn, 29, 1);
12594 int size = extract32(insn, 22, 2);
12595 int l = extract32(insn, 21, 1);
12596 int m = extract32(insn, 20, 1);
12597 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12598 int rm = extract32(insn, 16, 4);
12599 int opcode = extract32(insn, 12, 4);
12600 int h = extract32(insn, 11, 1);
12601 int rn = extract32(insn, 5, 5);
12602 int rd = extract32(insn, 0, 5);
12603 bool is_long = false;
12604 int is_fp = 0;
12605 bool is_fp16 = false;
12606 int index;
12607 TCGv_ptr fpst;
12609 switch (16 * u + opcode) {
12610 case 0x08: /* MUL */
12611 case 0x10: /* MLA */
12612 case 0x14: /* MLS */
12613 if (is_scalar) {
12614 unallocated_encoding(s);
12615 return;
12617 break;
12618 case 0x02: /* SMLAL, SMLAL2 */
12619 case 0x12: /* UMLAL, UMLAL2 */
12620 case 0x06: /* SMLSL, SMLSL2 */
12621 case 0x16: /* UMLSL, UMLSL2 */
12622 case 0x0a: /* SMULL, SMULL2 */
12623 case 0x1a: /* UMULL, UMULL2 */
12624 if (is_scalar) {
12625 unallocated_encoding(s);
12626 return;
12628 is_long = true;
12629 break;
12630 case 0x03: /* SQDMLAL, SQDMLAL2 */
12631 case 0x07: /* SQDMLSL, SQDMLSL2 */
12632 case 0x0b: /* SQDMULL, SQDMULL2 */
12633 is_long = true;
12634 break;
12635 case 0x0c: /* SQDMULH */
12636 case 0x0d: /* SQRDMULH */
12637 break;
12638 case 0x01: /* FMLA */
12639 case 0x05: /* FMLS */
12640 case 0x09: /* FMUL */
12641 case 0x19: /* FMULX */
12642 is_fp = 1;
12643 break;
12644 case 0x1d: /* SQRDMLAH */
12645 case 0x1f: /* SQRDMLSH */
12646 if (!dc_isar_feature(aa64_rdm, s)) {
12647 unallocated_encoding(s);
12648 return;
12650 break;
12651 case 0x0e: /* SDOT */
12652 case 0x1e: /* UDOT */
12653 if (size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12654 unallocated_encoding(s);
12655 return;
12657 break;
12658 case 0x11: /* FCMLA #0 */
12659 case 0x13: /* FCMLA #90 */
12660 case 0x15: /* FCMLA #180 */
12661 case 0x17: /* FCMLA #270 */
12662 if (!dc_isar_feature(aa64_fcma, s)) {
12663 unallocated_encoding(s);
12664 return;
12666 is_fp = 2;
12667 break;
12668 default:
12669 unallocated_encoding(s);
12670 return;
12673 switch (is_fp) {
12674 case 1: /* normal fp */
12675 /* convert insn encoded size to TCGMemOp size */
12676 switch (size) {
12677 case 0: /* half-precision */
12678 size = MO_16;
12679 is_fp16 = true;
12680 break;
12681 case MO_32: /* single precision */
12682 case MO_64: /* double precision */
12683 break;
12684 default:
12685 unallocated_encoding(s);
12686 return;
12688 break;
12690 case 2: /* complex fp */
12691 /* Each indexable element is a complex pair. */
12692 size <<= 1;
12693 switch (size) {
12694 case MO_32:
12695 if (h && !is_q) {
12696 unallocated_encoding(s);
12697 return;
12699 is_fp16 = true;
12700 break;
12701 case MO_64:
12702 break;
12703 default:
12704 unallocated_encoding(s);
12705 return;
12707 break;
12709 default: /* integer */
12710 switch (size) {
12711 case MO_8:
12712 case MO_64:
12713 unallocated_encoding(s);
12714 return;
12716 break;
12718 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12719 unallocated_encoding(s);
12720 return;
12723 /* Given TCGMemOp size, adjust register and indexing. */
12724 switch (size) {
12725 case MO_16:
12726 index = h << 2 | l << 1 | m;
12727 break;
12728 case MO_32:
12729 index = h << 1 | l;
12730 rm |= m << 4;
12731 break;
12732 case MO_64:
12733 if (l || !is_q) {
12734 unallocated_encoding(s);
12735 return;
12737 index = h;
12738 rm |= m << 4;
12739 break;
12740 default:
12741 g_assert_not_reached();
12744 if (!fp_access_check(s)) {
12745 return;
12748 if (is_fp) {
12749 fpst = get_fpstatus_ptr(is_fp16);
12750 } else {
12751 fpst = NULL;
12754 switch (16 * u + opcode) {
12755 case 0x0e: /* SDOT */
12756 case 0x1e: /* UDOT */
12757 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
12758 u ? gen_helper_gvec_udot_idx_b
12759 : gen_helper_gvec_sdot_idx_b);
12760 return;
12761 case 0x11: /* FCMLA #0 */
12762 case 0x13: /* FCMLA #90 */
12763 case 0x15: /* FCMLA #180 */
12764 case 0x17: /* FCMLA #270 */
12766 int rot = extract32(insn, 13, 2);
12767 int data = (index << 2) | rot;
12768 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12769 vec_full_reg_offset(s, rn),
12770 vec_full_reg_offset(s, rm), fpst,
12771 is_q ? 16 : 8, vec_full_reg_size(s), data,
12772 size == MO_64
12773 ? gen_helper_gvec_fcmlas_idx
12774 : gen_helper_gvec_fcmlah_idx);
12775 tcg_temp_free_ptr(fpst);
12777 return;
12780 if (size == 3) {
12781 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12782 int pass;
12784 assert(is_fp && is_q && !is_long);
12786 read_vec_element(s, tcg_idx, rm, index, MO_64);
12788 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12789 TCGv_i64 tcg_op = tcg_temp_new_i64();
12790 TCGv_i64 tcg_res = tcg_temp_new_i64();
12792 read_vec_element(s, tcg_op, rn, pass, MO_64);
12794 switch (16 * u + opcode) {
12795 case 0x05: /* FMLS */
12796 /* As usual for ARM, separate negation for fused multiply-add */
12797 gen_helper_vfp_negd(tcg_op, tcg_op);
12798 /* fall through */
12799 case 0x01: /* FMLA */
12800 read_vec_element(s, tcg_res, rd, pass, MO_64);
12801 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12802 break;
12803 case 0x09: /* FMUL */
12804 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12805 break;
12806 case 0x19: /* FMULX */
12807 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12808 break;
12809 default:
12810 g_assert_not_reached();
12813 write_vec_element(s, tcg_res, rd, pass, MO_64);
12814 tcg_temp_free_i64(tcg_op);
12815 tcg_temp_free_i64(tcg_res);
12818 tcg_temp_free_i64(tcg_idx);
12819 clear_vec_high(s, !is_scalar, rd);
12820 } else if (!is_long) {
12821 /* 32 bit floating point, or 16 or 32 bit integer.
12822 * For the 16 bit scalar case we use the usual Neon helpers and
12823 * rely on the fact that 0 op 0 == 0 with no side effects.
12825 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12826 int pass, maxpasses;
12828 if (is_scalar) {
12829 maxpasses = 1;
12830 } else {
12831 maxpasses = is_q ? 4 : 2;
12834 read_vec_element_i32(s, tcg_idx, rm, index, size);
12836 if (size == 1 && !is_scalar) {
12837 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12838 * the index into both halves of the 32 bit tcg_idx and then use
12839 * the usual Neon helpers.
12841 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12844 for (pass = 0; pass < maxpasses; pass++) {
12845 TCGv_i32 tcg_op = tcg_temp_new_i32();
12846 TCGv_i32 tcg_res = tcg_temp_new_i32();
12848 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12850 switch (16 * u + opcode) {
12851 case 0x08: /* MUL */
12852 case 0x10: /* MLA */
12853 case 0x14: /* MLS */
12855 static NeonGenTwoOpFn * const fns[2][2] = {
12856 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12857 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12859 NeonGenTwoOpFn *genfn;
12860 bool is_sub = opcode == 0x4;
12862 if (size == 1) {
12863 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12864 } else {
12865 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12867 if (opcode == 0x8) {
12868 break;
12870 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12871 genfn = fns[size - 1][is_sub];
12872 genfn(tcg_res, tcg_op, tcg_res);
12873 break;
12875 case 0x05: /* FMLS */
12876 case 0x01: /* FMLA */
12877 read_vec_element_i32(s, tcg_res, rd, pass,
12878 is_scalar ? size : MO_32);
12879 switch (size) {
12880 case 1:
12881 if (opcode == 0x5) {
12882 /* As usual for ARM, separate negation for fused
12883 * multiply-add */
12884 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12886 if (is_scalar) {
12887 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12888 tcg_res, fpst);
12889 } else {
12890 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12891 tcg_res, fpst);
12893 break;
12894 case 2:
12895 if (opcode == 0x5) {
12896 /* As usual for ARM, separate negation for
12897 * fused multiply-add */
12898 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12900 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12901 tcg_res, fpst);
12902 break;
12903 default:
12904 g_assert_not_reached();
12906 break;
12907 case 0x09: /* FMUL */
12908 switch (size) {
12909 case 1:
12910 if (is_scalar) {
12911 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12912 tcg_idx, fpst);
12913 } else {
12914 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12915 tcg_idx, fpst);
12917 break;
12918 case 2:
12919 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12920 break;
12921 default:
12922 g_assert_not_reached();
12924 break;
12925 case 0x19: /* FMULX */
12926 switch (size) {
12927 case 1:
12928 if (is_scalar) {
12929 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12930 tcg_idx, fpst);
12931 } else {
12932 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12933 tcg_idx, fpst);
12935 break;
12936 case 2:
12937 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12938 break;
12939 default:
12940 g_assert_not_reached();
12942 break;
12943 case 0x0c: /* SQDMULH */
12944 if (size == 1) {
12945 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12946 tcg_op, tcg_idx);
12947 } else {
12948 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12949 tcg_op, tcg_idx);
12951 break;
12952 case 0x0d: /* SQRDMULH */
12953 if (size == 1) {
12954 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12955 tcg_op, tcg_idx);
12956 } else {
12957 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
12958 tcg_op, tcg_idx);
12960 break;
12961 case 0x1d: /* SQRDMLAH */
12962 read_vec_element_i32(s, tcg_res, rd, pass,
12963 is_scalar ? size : MO_32);
12964 if (size == 1) {
12965 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
12966 tcg_op, tcg_idx, tcg_res);
12967 } else {
12968 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
12969 tcg_op, tcg_idx, tcg_res);
12971 break;
12972 case 0x1f: /* SQRDMLSH */
12973 read_vec_element_i32(s, tcg_res, rd, pass,
12974 is_scalar ? size : MO_32);
12975 if (size == 1) {
12976 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
12977 tcg_op, tcg_idx, tcg_res);
12978 } else {
12979 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
12980 tcg_op, tcg_idx, tcg_res);
12982 break;
12983 default:
12984 g_assert_not_reached();
12987 if (is_scalar) {
12988 write_fp_sreg(s, rd, tcg_res);
12989 } else {
12990 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12993 tcg_temp_free_i32(tcg_op);
12994 tcg_temp_free_i32(tcg_res);
12997 tcg_temp_free_i32(tcg_idx);
12998 clear_vec_high(s, is_q, rd);
12999 } else {
13000 /* long ops: 16x16->32 or 32x32->64 */
13001 TCGv_i64 tcg_res[2];
13002 int pass;
13003 bool satop = extract32(opcode, 0, 1);
13004 TCGMemOp memop = MO_32;
13006 if (satop || !u) {
13007 memop |= MO_SIGN;
13010 if (size == 2) {
13011 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13013 read_vec_element(s, tcg_idx, rm, index, memop);
13015 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13016 TCGv_i64 tcg_op = tcg_temp_new_i64();
13017 TCGv_i64 tcg_passres;
13018 int passelt;
13020 if (is_scalar) {
13021 passelt = 0;
13022 } else {
13023 passelt = pass + (is_q * 2);
13026 read_vec_element(s, tcg_op, rn, passelt, memop);
13028 tcg_res[pass] = tcg_temp_new_i64();
13030 if (opcode == 0xa || opcode == 0xb) {
13031 /* Non-accumulating ops */
13032 tcg_passres = tcg_res[pass];
13033 } else {
13034 tcg_passres = tcg_temp_new_i64();
13037 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13038 tcg_temp_free_i64(tcg_op);
13040 if (satop) {
13041 /* saturating, doubling */
13042 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13043 tcg_passres, tcg_passres);
13046 if (opcode == 0xa || opcode == 0xb) {
13047 continue;
13050 /* Accumulating op: handle accumulate step */
13051 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13053 switch (opcode) {
13054 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13055 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13056 break;
13057 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13058 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13059 break;
13060 case 0x7: /* SQDMLSL, SQDMLSL2 */
13061 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13062 /* fall through */
13063 case 0x3: /* SQDMLAL, SQDMLAL2 */
13064 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13065 tcg_res[pass],
13066 tcg_passres);
13067 break;
13068 default:
13069 g_assert_not_reached();
13071 tcg_temp_free_i64(tcg_passres);
13073 tcg_temp_free_i64(tcg_idx);
13075 clear_vec_high(s, !is_scalar, rd);
13076 } else {
13077 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13079 assert(size == 1);
13080 read_vec_element_i32(s, tcg_idx, rm, index, size);
13082 if (!is_scalar) {
13083 /* The simplest way to handle the 16x16 indexed ops is to
13084 * duplicate the index into both halves of the 32 bit tcg_idx
13085 * and then use the usual Neon helpers.
13087 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13090 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13091 TCGv_i32 tcg_op = tcg_temp_new_i32();
13092 TCGv_i64 tcg_passres;
13094 if (is_scalar) {
13095 read_vec_element_i32(s, tcg_op, rn, pass, size);
13096 } else {
13097 read_vec_element_i32(s, tcg_op, rn,
13098 pass + (is_q * 2), MO_32);
13101 tcg_res[pass] = tcg_temp_new_i64();
13103 if (opcode == 0xa || opcode == 0xb) {
13104 /* Non-accumulating ops */
13105 tcg_passres = tcg_res[pass];
13106 } else {
13107 tcg_passres = tcg_temp_new_i64();
13110 if (memop & MO_SIGN) {
13111 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13112 } else {
13113 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13115 if (satop) {
13116 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13117 tcg_passres, tcg_passres);
13119 tcg_temp_free_i32(tcg_op);
13121 if (opcode == 0xa || opcode == 0xb) {
13122 continue;
13125 /* Accumulating op: handle accumulate step */
13126 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13128 switch (opcode) {
13129 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13130 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13131 tcg_passres);
13132 break;
13133 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13134 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13135 tcg_passres);
13136 break;
13137 case 0x7: /* SQDMLSL, SQDMLSL2 */
13138 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13139 /* fall through */
13140 case 0x3: /* SQDMLAL, SQDMLAL2 */
13141 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13142 tcg_res[pass],
13143 tcg_passres);
13144 break;
13145 default:
13146 g_assert_not_reached();
13148 tcg_temp_free_i64(tcg_passres);
13150 tcg_temp_free_i32(tcg_idx);
13152 if (is_scalar) {
13153 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13157 if (is_scalar) {
13158 tcg_res[1] = tcg_const_i64(0);
13161 for (pass = 0; pass < 2; pass++) {
13162 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13163 tcg_temp_free_i64(tcg_res[pass]);
13167 if (fpst) {
13168 tcg_temp_free_ptr(fpst);
13172 /* Crypto AES
13173 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13174 * +-----------------+------+-----------+--------+-----+------+------+
13175 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13176 * +-----------------+------+-----------+--------+-----+------+------+
13178 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13180 int size = extract32(insn, 22, 2);
13181 int opcode = extract32(insn, 12, 5);
13182 int rn = extract32(insn, 5, 5);
13183 int rd = extract32(insn, 0, 5);
13184 int decrypt;
13185 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13186 TCGv_i32 tcg_decrypt;
13187 CryptoThreeOpIntFn *genfn;
13189 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13190 unallocated_encoding(s);
13191 return;
13194 switch (opcode) {
13195 case 0x4: /* AESE */
13196 decrypt = 0;
13197 genfn = gen_helper_crypto_aese;
13198 break;
13199 case 0x6: /* AESMC */
13200 decrypt = 0;
13201 genfn = gen_helper_crypto_aesmc;
13202 break;
13203 case 0x5: /* AESD */
13204 decrypt = 1;
13205 genfn = gen_helper_crypto_aese;
13206 break;
13207 case 0x7: /* AESIMC */
13208 decrypt = 1;
13209 genfn = gen_helper_crypto_aesmc;
13210 break;
13211 default:
13212 unallocated_encoding(s);
13213 return;
13216 if (!fp_access_check(s)) {
13217 return;
13220 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13221 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13222 tcg_decrypt = tcg_const_i32(decrypt);
13224 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13226 tcg_temp_free_ptr(tcg_rd_ptr);
13227 tcg_temp_free_ptr(tcg_rn_ptr);
13228 tcg_temp_free_i32(tcg_decrypt);
13231 /* Crypto three-reg SHA
13232 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13233 * +-----------------+------+---+------+---+--------+-----+------+------+
13234 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13235 * +-----------------+------+---+------+---+--------+-----+------+------+
13237 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13239 int size = extract32(insn, 22, 2);
13240 int opcode = extract32(insn, 12, 3);
13241 int rm = extract32(insn, 16, 5);
13242 int rn = extract32(insn, 5, 5);
13243 int rd = extract32(insn, 0, 5);
13244 CryptoThreeOpFn *genfn;
13245 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13246 bool feature;
13248 if (size != 0) {
13249 unallocated_encoding(s);
13250 return;
13253 switch (opcode) {
13254 case 0: /* SHA1C */
13255 case 1: /* SHA1P */
13256 case 2: /* SHA1M */
13257 case 3: /* SHA1SU0 */
13258 genfn = NULL;
13259 feature = dc_isar_feature(aa64_sha1, s);
13260 break;
13261 case 4: /* SHA256H */
13262 genfn = gen_helper_crypto_sha256h;
13263 feature = dc_isar_feature(aa64_sha256, s);
13264 break;
13265 case 5: /* SHA256H2 */
13266 genfn = gen_helper_crypto_sha256h2;
13267 feature = dc_isar_feature(aa64_sha256, s);
13268 break;
13269 case 6: /* SHA256SU1 */
13270 genfn = gen_helper_crypto_sha256su1;
13271 feature = dc_isar_feature(aa64_sha256, s);
13272 break;
13273 default:
13274 unallocated_encoding(s);
13275 return;
13278 if (!feature) {
13279 unallocated_encoding(s);
13280 return;
13283 if (!fp_access_check(s)) {
13284 return;
13287 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13288 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13289 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13291 if (genfn) {
13292 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13293 } else {
13294 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13296 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13297 tcg_rm_ptr, tcg_opcode);
13298 tcg_temp_free_i32(tcg_opcode);
13301 tcg_temp_free_ptr(tcg_rd_ptr);
13302 tcg_temp_free_ptr(tcg_rn_ptr);
13303 tcg_temp_free_ptr(tcg_rm_ptr);
13306 /* Crypto two-reg SHA
13307 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13308 * +-----------------+------+-----------+--------+-----+------+------+
13309 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13310 * +-----------------+------+-----------+--------+-----+------+------+
13312 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13314 int size = extract32(insn, 22, 2);
13315 int opcode = extract32(insn, 12, 5);
13316 int rn = extract32(insn, 5, 5);
13317 int rd = extract32(insn, 0, 5);
13318 CryptoTwoOpFn *genfn;
13319 bool feature;
13320 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13322 if (size != 0) {
13323 unallocated_encoding(s);
13324 return;
13327 switch (opcode) {
13328 case 0: /* SHA1H */
13329 feature = dc_isar_feature(aa64_sha1, s);
13330 genfn = gen_helper_crypto_sha1h;
13331 break;
13332 case 1: /* SHA1SU1 */
13333 feature = dc_isar_feature(aa64_sha1, s);
13334 genfn = gen_helper_crypto_sha1su1;
13335 break;
13336 case 2: /* SHA256SU0 */
13337 feature = dc_isar_feature(aa64_sha256, s);
13338 genfn = gen_helper_crypto_sha256su0;
13339 break;
13340 default:
13341 unallocated_encoding(s);
13342 return;
13345 if (!feature) {
13346 unallocated_encoding(s);
13347 return;
13350 if (!fp_access_check(s)) {
13351 return;
13354 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13355 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13357 genfn(tcg_rd_ptr, tcg_rn_ptr);
13359 tcg_temp_free_ptr(tcg_rd_ptr);
13360 tcg_temp_free_ptr(tcg_rn_ptr);
13363 /* Crypto three-reg SHA512
13364 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13365 * +-----------------------+------+---+---+-----+--------+------+------+
13366 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13367 * +-----------------------+------+---+---+-----+--------+------+------+
13369 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13371 int opcode = extract32(insn, 10, 2);
13372 int o = extract32(insn, 14, 1);
13373 int rm = extract32(insn, 16, 5);
13374 int rn = extract32(insn, 5, 5);
13375 int rd = extract32(insn, 0, 5);
13376 bool feature;
13377 CryptoThreeOpFn *genfn;
13379 if (o == 0) {
13380 switch (opcode) {
13381 case 0: /* SHA512H */
13382 feature = dc_isar_feature(aa64_sha512, s);
13383 genfn = gen_helper_crypto_sha512h;
13384 break;
13385 case 1: /* SHA512H2 */
13386 feature = dc_isar_feature(aa64_sha512, s);
13387 genfn = gen_helper_crypto_sha512h2;
13388 break;
13389 case 2: /* SHA512SU1 */
13390 feature = dc_isar_feature(aa64_sha512, s);
13391 genfn = gen_helper_crypto_sha512su1;
13392 break;
13393 case 3: /* RAX1 */
13394 feature = dc_isar_feature(aa64_sha3, s);
13395 genfn = NULL;
13396 break;
13398 } else {
13399 switch (opcode) {
13400 case 0: /* SM3PARTW1 */
13401 feature = dc_isar_feature(aa64_sm3, s);
13402 genfn = gen_helper_crypto_sm3partw1;
13403 break;
13404 case 1: /* SM3PARTW2 */
13405 feature = dc_isar_feature(aa64_sm3, s);
13406 genfn = gen_helper_crypto_sm3partw2;
13407 break;
13408 case 2: /* SM4EKEY */
13409 feature = dc_isar_feature(aa64_sm4, s);
13410 genfn = gen_helper_crypto_sm4ekey;
13411 break;
13412 default:
13413 unallocated_encoding(s);
13414 return;
13418 if (!feature) {
13419 unallocated_encoding(s);
13420 return;
13423 if (!fp_access_check(s)) {
13424 return;
13427 if (genfn) {
13428 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13430 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13431 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13432 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13434 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13436 tcg_temp_free_ptr(tcg_rd_ptr);
13437 tcg_temp_free_ptr(tcg_rn_ptr);
13438 tcg_temp_free_ptr(tcg_rm_ptr);
13439 } else {
13440 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13441 int pass;
13443 tcg_op1 = tcg_temp_new_i64();
13444 tcg_op2 = tcg_temp_new_i64();
13445 tcg_res[0] = tcg_temp_new_i64();
13446 tcg_res[1] = tcg_temp_new_i64();
13448 for (pass = 0; pass < 2; pass++) {
13449 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13450 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13452 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13453 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13455 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13456 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13458 tcg_temp_free_i64(tcg_op1);
13459 tcg_temp_free_i64(tcg_op2);
13460 tcg_temp_free_i64(tcg_res[0]);
13461 tcg_temp_free_i64(tcg_res[1]);
13465 /* Crypto two-reg SHA512
13466 * 31 12 11 10 9 5 4 0
13467 * +-----------------------------------------+--------+------+------+
13468 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13469 * +-----------------------------------------+--------+------+------+
13471 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13473 int opcode = extract32(insn, 10, 2);
13474 int rn = extract32(insn, 5, 5);
13475 int rd = extract32(insn, 0, 5);
13476 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13477 bool feature;
13478 CryptoTwoOpFn *genfn;
13480 switch (opcode) {
13481 case 0: /* SHA512SU0 */
13482 feature = dc_isar_feature(aa64_sha512, s);
13483 genfn = gen_helper_crypto_sha512su0;
13484 break;
13485 case 1: /* SM4E */
13486 feature = dc_isar_feature(aa64_sm4, s);
13487 genfn = gen_helper_crypto_sm4e;
13488 break;
13489 default:
13490 unallocated_encoding(s);
13491 return;
13494 if (!feature) {
13495 unallocated_encoding(s);
13496 return;
13499 if (!fp_access_check(s)) {
13500 return;
13503 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13504 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13506 genfn(tcg_rd_ptr, tcg_rn_ptr);
13508 tcg_temp_free_ptr(tcg_rd_ptr);
13509 tcg_temp_free_ptr(tcg_rn_ptr);
13512 /* Crypto four-register
13513 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13514 * +-------------------+-----+------+---+------+------+------+
13515 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13516 * +-------------------+-----+------+---+------+------+------+
13518 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13520 int op0 = extract32(insn, 21, 2);
13521 int rm = extract32(insn, 16, 5);
13522 int ra = extract32(insn, 10, 5);
13523 int rn = extract32(insn, 5, 5);
13524 int rd = extract32(insn, 0, 5);
13525 bool feature;
13527 switch (op0) {
13528 case 0: /* EOR3 */
13529 case 1: /* BCAX */
13530 feature = dc_isar_feature(aa64_sha3, s);
13531 break;
13532 case 2: /* SM3SS1 */
13533 feature = dc_isar_feature(aa64_sm3, s);
13534 break;
13535 default:
13536 unallocated_encoding(s);
13537 return;
13540 if (!feature) {
13541 unallocated_encoding(s);
13542 return;
13545 if (!fp_access_check(s)) {
13546 return;
13549 if (op0 < 2) {
13550 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13551 int pass;
13553 tcg_op1 = tcg_temp_new_i64();
13554 tcg_op2 = tcg_temp_new_i64();
13555 tcg_op3 = tcg_temp_new_i64();
13556 tcg_res[0] = tcg_temp_new_i64();
13557 tcg_res[1] = tcg_temp_new_i64();
13559 for (pass = 0; pass < 2; pass++) {
13560 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13561 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13562 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13564 if (op0 == 0) {
13565 /* EOR3 */
13566 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13567 } else {
13568 /* BCAX */
13569 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13571 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13573 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13574 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13576 tcg_temp_free_i64(tcg_op1);
13577 tcg_temp_free_i64(tcg_op2);
13578 tcg_temp_free_i64(tcg_op3);
13579 tcg_temp_free_i64(tcg_res[0]);
13580 tcg_temp_free_i64(tcg_res[1]);
13581 } else {
13582 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13584 tcg_op1 = tcg_temp_new_i32();
13585 tcg_op2 = tcg_temp_new_i32();
13586 tcg_op3 = tcg_temp_new_i32();
13587 tcg_res = tcg_temp_new_i32();
13588 tcg_zero = tcg_const_i32(0);
13590 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13591 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13592 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13594 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13595 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13596 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13597 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13599 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13600 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13601 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13602 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13604 tcg_temp_free_i32(tcg_op1);
13605 tcg_temp_free_i32(tcg_op2);
13606 tcg_temp_free_i32(tcg_op3);
13607 tcg_temp_free_i32(tcg_res);
13608 tcg_temp_free_i32(tcg_zero);
13612 /* Crypto XAR
13613 * 31 21 20 16 15 10 9 5 4 0
13614 * +-----------------------+------+--------+------+------+
13615 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13616 * +-----------------------+------+--------+------+------+
13618 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13620 int rm = extract32(insn, 16, 5);
13621 int imm6 = extract32(insn, 10, 6);
13622 int rn = extract32(insn, 5, 5);
13623 int rd = extract32(insn, 0, 5);
13624 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13625 int pass;
13627 if (!dc_isar_feature(aa64_sha3, s)) {
13628 unallocated_encoding(s);
13629 return;
13632 if (!fp_access_check(s)) {
13633 return;
13636 tcg_op1 = tcg_temp_new_i64();
13637 tcg_op2 = tcg_temp_new_i64();
13638 tcg_res[0] = tcg_temp_new_i64();
13639 tcg_res[1] = tcg_temp_new_i64();
13641 for (pass = 0; pass < 2; pass++) {
13642 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13643 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13645 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13646 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13648 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13649 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13651 tcg_temp_free_i64(tcg_op1);
13652 tcg_temp_free_i64(tcg_op2);
13653 tcg_temp_free_i64(tcg_res[0]);
13654 tcg_temp_free_i64(tcg_res[1]);
13657 /* Crypto three-reg imm2
13658 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13659 * +-----------------------+------+-----+------+--------+------+------+
13660 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13661 * +-----------------------+------+-----+------+--------+------+------+
13663 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13665 int opcode = extract32(insn, 10, 2);
13666 int imm2 = extract32(insn, 12, 2);
13667 int rm = extract32(insn, 16, 5);
13668 int rn = extract32(insn, 5, 5);
13669 int rd = extract32(insn, 0, 5);
13670 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13671 TCGv_i32 tcg_imm2, tcg_opcode;
13673 if (!dc_isar_feature(aa64_sm3, s)) {
13674 unallocated_encoding(s);
13675 return;
13678 if (!fp_access_check(s)) {
13679 return;
13682 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13683 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13684 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13685 tcg_imm2 = tcg_const_i32(imm2);
13686 tcg_opcode = tcg_const_i32(opcode);
13688 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13689 tcg_opcode);
13691 tcg_temp_free_ptr(tcg_rd_ptr);
13692 tcg_temp_free_ptr(tcg_rn_ptr);
13693 tcg_temp_free_ptr(tcg_rm_ptr);
13694 tcg_temp_free_i32(tcg_imm2);
13695 tcg_temp_free_i32(tcg_opcode);
13698 /* C3.6 Data processing - SIMD, inc Crypto
13700 * As the decode gets a little complex we are using a table based
13701 * approach for this part of the decode.
13703 static const AArch64DecodeTable data_proc_simd[] = {
13704 /* pattern , mask , fn */
13705 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13706 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13707 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13708 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13709 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13710 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13711 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13712 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13713 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13714 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13715 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13716 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13717 { 0x2e000000, 0xbf208400, disas_simd_ext },
13718 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13719 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13720 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13721 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13722 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13723 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13724 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13725 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13726 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13727 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13728 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13729 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13730 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13731 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13732 { 0xce800000, 0xffe00000, disas_crypto_xar },
13733 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13734 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13735 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13736 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13737 { 0x00000000, 0x00000000, NULL }
13740 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13742 /* Note that this is called with all non-FP cases from
13743 * table C3-6 so it must UNDEF for entries not specifically
13744 * allocated to instructions in that table.
13746 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13747 if (fn) {
13748 fn(s, insn);
13749 } else {
13750 unallocated_encoding(s);
13754 /* C3.6 Data processing - SIMD and floating point */
13755 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13757 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13758 disas_data_proc_fp(s, insn);
13759 } else {
13760 /* SIMD, including crypto */
13761 disas_data_proc_simd(s, insn);
13765 /* C3.1 A64 instruction index by encoding */
13766 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13768 uint32_t insn;
13770 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13771 s->insn = insn;
13772 s->pc += 4;
13774 s->fp_access_checked = false;
13776 switch (extract32(insn, 25, 4)) {
13777 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
13778 unallocated_encoding(s);
13779 break;
13780 case 0x2:
13781 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
13782 unallocated_encoding(s);
13784 break;
13785 case 0x8: case 0x9: /* Data processing - immediate */
13786 disas_data_proc_imm(s, insn);
13787 break;
13788 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13789 disas_b_exc_sys(s, insn);
13790 break;
13791 case 0x4:
13792 case 0x6:
13793 case 0xc:
13794 case 0xe: /* Loads and stores */
13795 disas_ldst(s, insn);
13796 break;
13797 case 0x5:
13798 case 0xd: /* Data processing - register */
13799 disas_data_proc_reg(s, insn);
13800 break;
13801 case 0x7:
13802 case 0xf: /* Data processing - SIMD and floating point */
13803 disas_data_proc_simd_fp(s, insn);
13804 break;
13805 default:
13806 assert(FALSE); /* all 15 cases should be handled above */
13807 break;
13810 /* if we allocated any temporaries, free them here */
13811 free_tmp_a64(s);
13814 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13815 CPUState *cpu)
13817 DisasContext *dc = container_of(dcbase, DisasContext, base);
13818 CPUARMState *env = cpu->env_ptr;
13819 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13820 int bound;
13822 dc->isar = &arm_cpu->isar;
13823 dc->pc = dc->base.pc_first;
13824 dc->condjmp = 0;
13826 dc->aarch64 = 1;
13827 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
13828 * there is no secure EL1, so we route exceptions to EL3.
13830 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
13831 !arm_el_is_aa64(env, 3);
13832 dc->thumb = 0;
13833 dc->sctlr_b = 0;
13834 dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
13835 dc->condexec_mask = 0;
13836 dc->condexec_cond = 0;
13837 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
13838 dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
13839 dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
13840 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13841 #if !defined(CONFIG_USER_ONLY)
13842 dc->user = (dc->current_el == 0);
13843 #endif
13844 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
13845 dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags);
13846 dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16;
13847 dc->vec_len = 0;
13848 dc->vec_stride = 0;
13849 dc->cp_regs = arm_cpu->cp_regs;
13850 dc->features = env->features;
13852 /* Single step state. The code-generation logic here is:
13853 * SS_ACTIVE == 0:
13854 * generate code with no special handling for single-stepping (except
13855 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13856 * this happens anyway because those changes are all system register or
13857 * PSTATE writes).
13858 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13859 * emit code for one insn
13860 * emit code to clear PSTATE.SS
13861 * emit code to generate software step exception for completed step
13862 * end TB (as usual for having generated an exception)
13863 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13864 * emit code to generate a software step exception
13865 * end the TB
13867 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
13868 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
13869 dc->is_ldex = false;
13870 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
13872 /* Bound the number of insns to execute to those left on the page. */
13873 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13875 /* If architectural single step active, limit to 1. */
13876 if (dc->ss_active) {
13877 bound = 1;
13879 dc->base.max_insns = MIN(dc->base.max_insns, bound);
13881 init_tmp_a64_array(dc);
13884 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13888 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13890 DisasContext *dc = container_of(dcbase, DisasContext, base);
13892 tcg_gen_insn_start(dc->pc, 0, 0);
13893 dc->insn_start = tcg_last_op();
13896 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
13897 const CPUBreakpoint *bp)
13899 DisasContext *dc = container_of(dcbase, DisasContext, base);
13901 if (bp->flags & BP_CPU) {
13902 gen_a64_set_pc_im(dc->pc);
13903 gen_helper_check_breakpoints(cpu_env);
13904 /* End the TB early; it likely won't be executed */
13905 dc->base.is_jmp = DISAS_TOO_MANY;
13906 } else {
13907 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
13908 /* The address covered by the breakpoint must be
13909 included in [tb->pc, tb->pc + tb->size) in order
13910 to for it to be properly cleared -- thus we
13911 increment the PC here so that the logic setting
13912 tb->size below does the right thing. */
13913 dc->pc += 4;
13914 dc->base.is_jmp = DISAS_NORETURN;
13917 return true;
13920 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13922 DisasContext *dc = container_of(dcbase, DisasContext, base);
13923 CPUARMState *env = cpu->env_ptr;
13925 if (dc->ss_active && !dc->pstate_ss) {
13926 /* Singlestep state is Active-pending.
13927 * If we're in this state at the start of a TB then either
13928 * a) we just took an exception to an EL which is being debugged
13929 * and this is the first insn in the exception handler
13930 * b) debug exceptions were masked and we just unmasked them
13931 * without changing EL (eg by clearing PSTATE.D)
13932 * In either case we're going to take a swstep exception in the
13933 * "did not step an insn" case, and so the syndrome ISV and EX
13934 * bits should be zero.
13936 assert(dc->base.num_insns == 1);
13937 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
13938 default_exception_el(dc));
13939 dc->base.is_jmp = DISAS_NORETURN;
13940 } else {
13941 disas_a64_insn(env, dc);
13944 dc->base.pc_next = dc->pc;
13945 translator_loop_temp_check(&dc->base);
13948 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13950 DisasContext *dc = container_of(dcbase, DisasContext, base);
13952 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
13953 /* Note that this means single stepping WFI doesn't halt the CPU.
13954 * For conditional branch insns this is harmless unreachable code as
13955 * gen_goto_tb() has already handled emitting the debug exception
13956 * (and thus a tb-jump is not possible when singlestepping).
13958 switch (dc->base.is_jmp) {
13959 default:
13960 gen_a64_set_pc_im(dc->pc);
13961 /* fall through */
13962 case DISAS_EXIT:
13963 case DISAS_JUMP:
13964 if (dc->base.singlestep_enabled) {
13965 gen_exception_internal(EXCP_DEBUG);
13966 } else {
13967 gen_step_complete_exception(dc);
13969 break;
13970 case DISAS_NORETURN:
13971 break;
13973 } else {
13974 switch (dc->base.is_jmp) {
13975 case DISAS_NEXT:
13976 case DISAS_TOO_MANY:
13977 gen_goto_tb(dc, 1, dc->pc);
13978 break;
13979 default:
13980 case DISAS_UPDATE:
13981 gen_a64_set_pc_im(dc->pc);
13982 /* fall through */
13983 case DISAS_EXIT:
13984 tcg_gen_exit_tb(NULL, 0);
13985 break;
13986 case DISAS_JUMP:
13987 tcg_gen_lookup_and_goto_ptr();
13988 break;
13989 case DISAS_NORETURN:
13990 case DISAS_SWI:
13991 break;
13992 case DISAS_WFE:
13993 gen_a64_set_pc_im(dc->pc);
13994 gen_helper_wfe(cpu_env);
13995 break;
13996 case DISAS_YIELD:
13997 gen_a64_set_pc_im(dc->pc);
13998 gen_helper_yield(cpu_env);
13999 break;
14000 case DISAS_WFI:
14002 /* This is a special case because we don't want to just halt the CPU
14003 * if trying to debug across a WFI.
14005 TCGv_i32 tmp = tcg_const_i32(4);
14007 gen_a64_set_pc_im(dc->pc);
14008 gen_helper_wfi(cpu_env, tmp);
14009 tcg_temp_free_i32(tmp);
14010 /* The helper doesn't necessarily throw an exception, but we
14011 * must go back to the main loop to check for interrupts anyway.
14013 tcg_gen_exit_tb(NULL, 0);
14014 break;
14019 /* Functions above can change dc->pc, so re-align db->pc_next */
14020 dc->base.pc_next = dc->pc;
14023 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14024 CPUState *cpu)
14026 DisasContext *dc = container_of(dcbase, DisasContext, base);
14028 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14029 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14032 const TranslatorOps aarch64_translator_ops = {
14033 .init_disas_context = aarch64_tr_init_disas_context,
14034 .tb_start = aarch64_tr_tb_start,
14035 .insn_start = aarch64_tr_insn_start,
14036 .breakpoint_check = aarch64_tr_breakpoint_check,
14037 .translate_insn = aarch64_tr_translate_insn,
14038 .tb_stop = aarch64_tr_tb_stop,
14039 .disas_log = aarch64_tr_disas_log,