2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <machine/profile.h>
56 //#define DEBUG_TB_INVALIDATE
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock
*tbs
;
76 static int code_gen_max_blocks
;
77 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
94 #define code_gen_section \
95 __attribute__((aligned (32)))
98 uint8_t code_gen_prologue
[1024] code_gen_section
;
99 static uint8_t *code_gen_buffer
;
100 static unsigned long code_gen_buffer_size
;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size
;
103 static uint8_t *code_gen_ptr
;
105 #if !defined(CONFIG_USER_ONLY)
107 static int in_migration
;
109 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
) };
113 /* current CPU in the current thread. It is only valid inside
115 CPUState
*cpu_single_env
;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
124 typedef struct PageDesc
{
125 /* list of TBs intersecting this ram page */
126 TranslationBlock
*first_tb
;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count
;
130 uint8_t *code_bitmap
;
131 #if defined(CONFIG_USER_ONLY)
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 /* Size of the L2 (and L3, etc) page tables. */
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
162 #define P_L1_BITS P_L1_BITS_REM
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
168 #define V_L1_BITS V_L1_BITS_REM
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size
;
178 unsigned long qemu_host_page_bits
;
179 unsigned long qemu_host_page_size
;
180 unsigned long qemu_host_page_mask
;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map
[V_L1_SIZE
];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc
{
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset
;
190 ram_addr_t region_offset
;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map
[P_L1_SIZE
];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
201 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
202 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
203 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
204 static int io_mem_watch
;
209 static const char *logfilename
= "qemu.log";
211 static const char *logfilename
= "/tmp/qemu.log";
215 static int log_append
= 0;
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count
;
221 static int tb_flush_count
;
222 static int tb_phys_invalidate_count
;
225 static void map_exec(void *addr
, long size
)
228 VirtualProtect(addr
, size
,
229 PAGE_EXECUTE_READWRITE
, &old_protect
);
233 static void map_exec(void *addr
, long size
)
235 unsigned long start
, end
, page_size
;
237 page_size
= getpagesize();
238 start
= (unsigned long)addr
;
239 start
&= ~(page_size
- 1);
241 end
= (unsigned long)addr
+ size
;
242 end
+= page_size
- 1;
243 end
&= ~(page_size
- 1);
245 mprotect((void *)start
, end
- start
,
246 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
256 SYSTEM_INFO system_info
;
258 GetSystemInfo(&system_info
);
259 qemu_real_host_page_size
= system_info
.dwPageSize
;
262 qemu_real_host_page_size
= getpagesize();
264 if (qemu_host_page_size
== 0)
265 qemu_host_page_size
= qemu_real_host_page_size
;
266 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
267 qemu_host_page_size
= TARGET_PAGE_SIZE
;
268 qemu_host_page_bits
= 0;
269 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
270 qemu_host_page_bits
++;
271 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry
*freep
;
279 freep
= kinfo_getvmmap(getpid(), &cnt
);
282 for (i
= 0; i
< cnt
; i
++) {
283 unsigned long startaddr
, endaddr
;
285 startaddr
= freep
[i
].kve_start
;
286 endaddr
= freep
[i
].kve_end
;
287 if (h2g_valid(startaddr
)) {
288 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
290 if (h2g_valid(endaddr
)) {
291 endaddr
= h2g(endaddr
);
292 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
296 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
307 last_brk
= (unsigned long)sbrk(0);
309 f
= fopen("/compat/linux/proc/self/maps", "r");
314 unsigned long startaddr
, endaddr
;
317 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
319 if (n
== 2 && h2g_valid(startaddr
)) {
320 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
322 if (h2g_valid(endaddr
)) {
323 endaddr
= h2g(endaddr
);
327 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
339 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
357 /* Level 1. Always allocated. */
358 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
361 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
368 ALLOC(p
, sizeof(void *) * L2_SIZE
);
372 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
380 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
386 return pd
+ (index
& (L2_SIZE
- 1));
389 static inline PageDesc
*page_find(tb_page_addr_t index
)
391 return page_find_alloc(index
, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
401 /* Level 1. Always allocated. */
402 lp
= l1_phys_map
+ ((index
>> P_L1_SHIFT
) & (P_L1_SIZE
- 1));
405 for (i
= P_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
411 *lp
= p
= qemu_mallocz(sizeof(void *) * L2_SIZE
);
413 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
424 *lp
= pd
= qemu_malloc(sizeof(PhysPageDesc
) * L2_SIZE
);
426 for (i
= 0; i
< L2_SIZE
; i
++) {
427 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
428 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
432 return pd
+ (index
& (L2_SIZE
- 1));
435 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
437 return phys_page_find_alloc(index
, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr
);
441 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
457 __attribute__((aligned (CODE_GEN_ALIGN
)));
460 static void code_gen_alloc(unsigned long tb_size
)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer
= static_code_gen_buffer
;
464 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
465 map_exec(code_gen_buffer
, code_gen_buffer_size
);
467 code_gen_buffer_size
= tb_size
;
468 if (code_gen_buffer_size
== 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
473 /* XXX: needs adjustments */
474 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
477 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
478 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
486 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
487 #if defined(__x86_64__)
489 /* Cannot map more than that */
490 if (code_gen_buffer_size
> (800 * 1024 * 1024))
491 code_gen_buffer_size
= (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
495 start
= (void *) 0x60000000UL
;
496 if (code_gen_buffer_size
> (512 * 1024 * 1024))
497 code_gen_buffer_size
= (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
501 start
= (void *) 0x01000000UL
;
502 if (code_gen_buffer_size
> 16 * 1024 * 1024)
503 code_gen_buffer_size
= 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
510 start
= (void *)0x90000000UL
;
512 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
513 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
515 if (code_gen_buffer
== MAP_FAILED
) {
516 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
525 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
530 addr
= (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size
> (800 * 1024 * 1024))
533 code_gen_buffer_size
= (800 * 1024 * 1024);
534 #elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
537 addr
= (void *) 0x60000000UL
;
538 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
539 code_gen_buffer_size
= (512 * 1024 * 1024);
542 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
543 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
545 if (code_gen_buffer
== MAP_FAILED
) {
546 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
551 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
552 map_exec(code_gen_buffer
, code_gen_buffer_size
);
554 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
555 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
556 code_gen_buffer_max_size
= code_gen_buffer_size
-
557 (TCG_MAX_OP_SIZE
* OPC_MAX_SIZE
);
558 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
559 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
562 /* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
565 void cpu_exec_init_all(unsigned long tb_size
)
568 code_gen_alloc(tb_size
);
569 code_gen_ptr
= code_gen_buffer
;
571 #if !defined(CONFIG_USER_ONLY)
574 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx
);
581 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
583 static int cpu_common_post_load(void *opaque
, int version_id
)
585 CPUState
*env
= opaque
;
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env
->interrupt_request
&= ~0x01;
595 static const VMStateDescription vmstate_cpu_common
= {
596 .name
= "cpu_common",
598 .minimum_version_id
= 1,
599 .minimum_version_id_old
= 1,
600 .post_load
= cpu_common_post_load
,
601 .fields
= (VMStateField
[]) {
602 VMSTATE_UINT32(halted
, CPUState
),
603 VMSTATE_UINT32(interrupt_request
, CPUState
),
604 VMSTATE_END_OF_LIST()
609 CPUState
*qemu_get_cpu(int cpu
)
611 CPUState
*env
= first_cpu
;
614 if (env
->cpu_index
== cpu
)
622 void cpu_exec_init(CPUState
*env
)
627 #if defined(CONFIG_USER_ONLY)
630 env
->next_cpu
= NULL
;
633 while (*penv
!= NULL
) {
634 penv
= &(*penv
)->next_cpu
;
637 env
->cpu_index
= cpu_index
;
639 QTAILQ_INIT(&env
->breakpoints
);
640 QTAILQ_INIT(&env
->watchpoints
);
641 #ifndef CONFIG_USER_ONLY
642 env
->thread_id
= qemu_get_thread_id();
645 #if defined(CONFIG_USER_ONLY)
648 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
649 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
650 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
651 cpu_save
, cpu_load
, env
);
655 /* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657 static TranslationBlock
*tb_alloc(target_ulong pc
)
659 TranslationBlock
*tb
;
661 if (nb_tbs
>= code_gen_max_blocks
||
662 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
670 void tb_free(TranslationBlock
*tb
)
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
676 code_gen_ptr
= tb
->tc_ptr
;
681 static inline void invalidate_page_bitmap(PageDesc
*p
)
683 if (p
->code_bitmap
) {
684 qemu_free(p
->code_bitmap
);
685 p
->code_bitmap
= NULL
;
687 p
->code_write_count
= 0;
690 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
692 static void page_flush_tb_1 (int level
, void **lp
)
701 for (i
= 0; i
< L2_SIZE
; ++i
) {
702 pd
[i
].first_tb
= NULL
;
703 invalidate_page_bitmap(pd
+ i
);
707 for (i
= 0; i
< L2_SIZE
; ++i
) {
708 page_flush_tb_1 (level
- 1, pp
+ i
);
713 static void page_flush_tb(void)
716 for (i
= 0; i
< V_L1_SIZE
; i
++) {
717 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
721 /* flush all the translation blocks */
722 /* XXX: tb_flush is currently not thread safe */
723 void tb_flush(CPUState
*env1
)
726 #if defined(DEBUG_FLUSH)
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
730 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
732 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
733 cpu_abort(env1
, "Internal error: code buffer overflow\n");
737 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
738 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
741 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
744 code_gen_ptr
= code_gen_buffer
;
745 /* XXX: flush processor icache at this point if cache flush is
750 #ifdef DEBUG_TB_CHECK
752 static void tb_invalidate_check(target_ulong address
)
754 TranslationBlock
*tb
;
756 address
&= TARGET_PAGE_MASK
;
757 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
758 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
759 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
760 address
>= tb
->pc
+ tb
->size
)) {
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
763 address
, (long)tb
->pc
, tb
->size
);
769 /* verify that all the pages have correct rights for code */
770 static void tb_page_check(void)
772 TranslationBlock
*tb
;
773 int i
, flags1
, flags2
;
775 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
776 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
777 flags1
= page_get_flags(tb
->pc
);
778 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
779 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
781 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
789 /* invalidate one TB */
790 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
793 TranslationBlock
*tb1
;
797 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
800 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
804 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
806 TranslationBlock
*tb1
;
812 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
814 *ptb
= tb1
->page_next
[n1
];
817 ptb
= &tb1
->page_next
[n1
];
821 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
823 TranslationBlock
*tb1
, **ptb
;
826 ptb
= &tb
->jmp_next
[n
];
829 /* find tb(n) in circular list */
833 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
834 if (n1
== n
&& tb1
== tb
)
837 ptb
= &tb1
->jmp_first
;
839 ptb
= &tb1
->jmp_next
[n1
];
842 /* now we can suppress tb(n) from the list */
843 *ptb
= tb
->jmp_next
[n
];
845 tb
->jmp_next
[n
] = NULL
;
849 /* reset the jump entry 'n' of a TB so that it is not chained to
851 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
853 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
856 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
861 tb_page_addr_t phys_pc
;
862 TranslationBlock
*tb1
, *tb2
;
864 /* remove the TB from the hash list */
865 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
866 h
= tb_phys_hash_func(phys_pc
);
867 tb_remove(&tb_phys_hash
[h
], tb
,
868 offsetof(TranslationBlock
, phys_hash_next
));
870 /* remove the TB from the page list */
871 if (tb
->page_addr
[0] != page_addr
) {
872 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
873 tb_page_remove(&p
->first_tb
, tb
);
874 invalidate_page_bitmap(p
);
876 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
877 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
878 tb_page_remove(&p
->first_tb
, tb
);
879 invalidate_page_bitmap(p
);
882 tb_invalidated_flag
= 1;
884 /* remove the TB from the hash list */
885 h
= tb_jmp_cache_hash_func(tb
->pc
);
886 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
887 if (env
->tb_jmp_cache
[h
] == tb
)
888 env
->tb_jmp_cache
[h
] = NULL
;
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb
, 0);
893 tb_jmp_remove(tb
, 1);
895 /* suppress any remaining jumps to this TB */
901 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
902 tb2
= tb1
->jmp_next
[n1
];
903 tb_reset_jump(tb1
, n1
);
904 tb1
->jmp_next
[n1
] = NULL
;
907 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
909 tb_phys_invalidate_count
++;
912 static inline void set_bits(uint8_t *tab
, int start
, int len
)
918 mask
= 0xff << (start
& 7);
919 if ((start
& ~7) == (end
& ~7)) {
921 mask
&= ~(0xff << (end
& 7));
926 start
= (start
+ 8) & ~7;
928 while (start
< end1
) {
933 mask
= ~(0xff << (end
& 7));
939 static void build_page_bitmap(PageDesc
*p
)
941 int n
, tb_start
, tb_end
;
942 TranslationBlock
*tb
;
944 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
949 tb
= (TranslationBlock
*)((long)tb
& ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
955 tb_end
= tb_start
+ tb
->size
;
956 if (tb_end
> TARGET_PAGE_SIZE
)
957 tb_end
= TARGET_PAGE_SIZE
;
960 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
962 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
963 tb
= tb
->page_next
[n
];
967 TranslationBlock
*tb_gen_code(CPUState
*env
,
968 target_ulong pc
, target_ulong cs_base
,
969 int flags
, int cflags
)
971 TranslationBlock
*tb
;
973 tb_page_addr_t phys_pc
, phys_page2
;
974 target_ulong virt_page2
;
977 phys_pc
= get_page_addr_code(env
, pc
);
980 /* flush must be done */
982 /* cannot fail at this point */
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag
= 1;
987 tc_ptr
= code_gen_ptr
;
989 tb
->cs_base
= cs_base
;
992 cpu_gen_code(env
, tb
, &code_gen_size
);
993 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
995 /* check next page if needed */
996 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
998 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
999 phys_page2
= get_page_addr_code(env
, virt_page2
);
1001 tb_link_page(tb
, phys_pc
, phys_page2
);
1005 /* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
1010 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1011 int is_cpu_write_access
)
1013 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1014 CPUState
*env
= cpu_single_env
;
1015 tb_page_addr_t tb_start
, tb_end
;
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found
= is_cpu_write_access
;
1020 TranslationBlock
*current_tb
= NULL
;
1021 int current_tb_modified
= 0;
1022 target_ulong current_pc
= 0;
1023 target_ulong current_cs_base
= 0;
1024 int current_flags
= 0;
1025 #endif /* TARGET_HAS_PRECISE_SMC */
1027 p
= page_find(start
>> TARGET_PAGE_BITS
);
1030 if (!p
->code_bitmap
&&
1031 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1032 is_cpu_write_access
) {
1033 /* build code bitmap */
1034 build_page_bitmap(p
);
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1040 while (tb
!= NULL
) {
1042 tb
= (TranslationBlock
*)((long)tb
& ~3);
1043 tb_next
= tb
->page_next
[n
];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1049 tb_end
= tb_start
+ tb
->size
;
1051 tb_start
= tb
->page_addr
[1];
1052 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1054 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1055 #ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found
) {
1057 current_tb_not_found
= 0;
1059 if (env
->mem_io_pc
) {
1060 /* now we have a real cpu fault */
1061 current_tb
= tb_find_pc(env
->mem_io_pc
);
1064 if (current_tb
== tb
&&
1065 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
1072 current_tb_modified
= 1;
1073 cpu_restore_state(current_tb
, env
,
1074 env
->mem_io_pc
, NULL
);
1075 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1078 #endif /* TARGET_HAS_PRECISE_SMC */
1079 /* we need to do that to handle the case where a signal
1080 occurs while doing tb_phys_invalidate() */
1083 saved_tb
= env
->current_tb
;
1084 env
->current_tb
= NULL
;
1086 tb_phys_invalidate(tb
, -1);
1088 env
->current_tb
= saved_tb
;
1089 if (env
->interrupt_request
&& env
->current_tb
)
1090 cpu_interrupt(env
, env
->interrupt_request
);
1095 #if !defined(CONFIG_USER_ONLY)
1096 /* if no code remaining, no need to continue to use slow writes */
1098 invalidate_page_bitmap(p
);
1099 if (is_cpu_write_access
) {
1100 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1104 #ifdef TARGET_HAS_PRECISE_SMC
1105 if (current_tb_modified
) {
1106 /* we generate a block containing just the instruction
1107 modifying the memory. It will ensure that it cannot modify
1109 env
->current_tb
= NULL
;
1110 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1111 cpu_resume_from_signal(env
, NULL
);
1116 /* len must be <= 8 and start must be a multiple of len */
1117 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1123 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1124 cpu_single_env
->mem_io_vaddr
, len
,
1125 cpu_single_env
->eip
,
1126 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1129 p
= page_find(start
>> TARGET_PAGE_BITS
);
1132 if (p
->code_bitmap
) {
1133 offset
= start
& ~TARGET_PAGE_MASK
;
1134 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1135 if (b
& ((1 << len
) - 1))
1139 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1143 #if !defined(CONFIG_SOFTMMU)
1144 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1145 unsigned long pc
, void *puc
)
1147 TranslationBlock
*tb
;
1150 #ifdef TARGET_HAS_PRECISE_SMC
1151 TranslationBlock
*current_tb
= NULL
;
1152 CPUState
*env
= cpu_single_env
;
1153 int current_tb_modified
= 0;
1154 target_ulong current_pc
= 0;
1155 target_ulong current_cs_base
= 0;
1156 int current_flags
= 0;
1159 addr
&= TARGET_PAGE_MASK
;
1160 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1164 #ifdef TARGET_HAS_PRECISE_SMC
1165 if (tb
&& pc
!= 0) {
1166 current_tb
= tb_find_pc(pc
);
1169 while (tb
!= NULL
) {
1171 tb
= (TranslationBlock
*)((long)tb
& ~3);
1172 #ifdef TARGET_HAS_PRECISE_SMC
1173 if (current_tb
== tb
&&
1174 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1175 /* If we are modifying the current TB, we must stop
1176 its execution. We could be more precise by checking
1177 that the modification is after the current PC, but it
1178 would require a specialized function to partially
1179 restore the CPU state */
1181 current_tb_modified
= 1;
1182 cpu_restore_state(current_tb
, env
, pc
, puc
);
1183 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1186 #endif /* TARGET_HAS_PRECISE_SMC */
1187 tb_phys_invalidate(tb
, addr
);
1188 tb
= tb
->page_next
[n
];
1191 #ifdef TARGET_HAS_PRECISE_SMC
1192 if (current_tb_modified
) {
1193 /* we generate a block containing just the instruction
1194 modifying the memory. It will ensure that it cannot modify
1196 env
->current_tb
= NULL
;
1197 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1198 cpu_resume_from_signal(env
, puc
);
1204 /* add the tb in the target page and protect it if necessary */
1205 static inline void tb_alloc_page(TranslationBlock
*tb
,
1206 unsigned int n
, tb_page_addr_t page_addr
)
1209 TranslationBlock
*last_first_tb
;
1211 tb
->page_addr
[n
] = page_addr
;
1212 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1213 tb
->page_next
[n
] = p
->first_tb
;
1214 last_first_tb
= p
->first_tb
;
1215 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1216 invalidate_page_bitmap(p
);
1218 #if defined(TARGET_HAS_SMC) || 1
1220 #if defined(CONFIG_USER_ONLY)
1221 if (p
->flags
& PAGE_WRITE
) {
1226 /* force the host page as non writable (writes will have a
1227 page fault + mprotect overhead) */
1228 page_addr
&= qemu_host_page_mask
;
1230 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1231 addr
+= TARGET_PAGE_SIZE
) {
1233 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1237 p2
->flags
&= ~PAGE_WRITE
;
1239 mprotect(g2h(page_addr
), qemu_host_page_size
,
1240 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1241 #ifdef DEBUG_TB_INVALIDATE
1242 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1247 /* if some code is already present, then the pages are already
1248 protected. So we handle the case where only the first TB is
1249 allocated in a physical page */
1250 if (!last_first_tb
) {
1251 tlb_protect_code(page_addr
);
1255 #endif /* TARGET_HAS_SMC */
1258 /* add a new TB and link it to the physical page tables. phys_page2 is
1259 (-1) to indicate that only one page contains the TB. */
1260 void tb_link_page(TranslationBlock
*tb
,
1261 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1264 TranslationBlock
**ptb
;
1266 /* Grab the mmap lock to stop another thread invalidating this TB
1267 before we are done. */
1269 /* add in the physical hash table */
1270 h
= tb_phys_hash_func(phys_pc
);
1271 ptb
= &tb_phys_hash
[h
];
1272 tb
->phys_hash_next
= *ptb
;
1275 /* add in the page list */
1276 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1277 if (phys_page2
!= -1)
1278 tb_alloc_page(tb
, 1, phys_page2
);
1280 tb
->page_addr
[1] = -1;
1282 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1283 tb
->jmp_next
[0] = NULL
;
1284 tb
->jmp_next
[1] = NULL
;
1286 /* init original jump addresses */
1287 if (tb
->tb_next_offset
[0] != 0xffff)
1288 tb_reset_jump(tb
, 0);
1289 if (tb
->tb_next_offset
[1] != 0xffff)
1290 tb_reset_jump(tb
, 1);
1292 #ifdef DEBUG_TB_CHECK
1298 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1299 tb[1].tc_ptr. Return NULL if not found */
1300 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1302 int m_min
, m_max
, m
;
1304 TranslationBlock
*tb
;
1308 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1309 tc_ptr
>= (unsigned long)code_gen_ptr
)
1311 /* binary search (cf Knuth) */
1314 while (m_min
<= m_max
) {
1315 m
= (m_min
+ m_max
) >> 1;
1317 v
= (unsigned long)tb
->tc_ptr
;
1320 else if (tc_ptr
< v
) {
1329 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1331 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1333 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1336 tb1
= tb
->jmp_next
[n
];
1338 /* find head of list */
1341 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1344 tb1
= tb1
->jmp_next
[n1
];
1346 /* we are now sure now that tb jumps to tb1 */
1349 /* remove tb from the jmp_first list */
1350 ptb
= &tb_next
->jmp_first
;
1354 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1355 if (n1
== n
&& tb1
== tb
)
1357 ptb
= &tb1
->jmp_next
[n1
];
1359 *ptb
= tb
->jmp_next
[n
];
1360 tb
->jmp_next
[n
] = NULL
;
1362 /* suppress the jump to next tb in generated code */
1363 tb_reset_jump(tb
, n
);
1365 /* suppress jumps in the tb on which we could have jumped */
1366 tb_reset_jump_recursive(tb_next
);
1370 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1372 tb_reset_jump_recursive2(tb
, 0);
1373 tb_reset_jump_recursive2(tb
, 1);
1376 #if defined(TARGET_HAS_ICE)
1377 #if defined(CONFIG_USER_ONLY)
1378 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1380 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1383 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1385 target_phys_addr_t addr
;
1387 ram_addr_t ram_addr
;
1390 addr
= cpu_get_phys_page_debug(env
, pc
);
1391 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1393 pd
= IO_MEM_UNASSIGNED
;
1395 pd
= p
->phys_offset
;
1397 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1398 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1401 #endif /* TARGET_HAS_ICE */
1403 #if defined(CONFIG_USER_ONLY)
1404 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1409 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1410 int flags
, CPUWatchpoint
**watchpoint
)
1415 /* Add a watchpoint. */
1416 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1417 int flags
, CPUWatchpoint
**watchpoint
)
1419 target_ulong len_mask
= ~(len
- 1);
1422 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1423 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1424 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1425 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1428 wp
= qemu_malloc(sizeof(*wp
));
1431 wp
->len_mask
= len_mask
;
1434 /* keep all GDB-injected watchpoints in front */
1436 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1438 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1440 tlb_flush_page(env
, addr
);
1447 /* Remove a specific watchpoint. */
1448 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1451 target_ulong len_mask
= ~(len
- 1);
1454 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1455 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1456 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1457 cpu_watchpoint_remove_by_ref(env
, wp
);
1464 /* Remove a specific watchpoint by reference. */
1465 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1467 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1469 tlb_flush_page(env
, watchpoint
->vaddr
);
1471 qemu_free(watchpoint
);
1474 /* Remove all matching watchpoints. */
1475 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1477 CPUWatchpoint
*wp
, *next
;
1479 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1480 if (wp
->flags
& mask
)
1481 cpu_watchpoint_remove_by_ref(env
, wp
);
1486 /* Add a breakpoint. */
1487 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1488 CPUBreakpoint
**breakpoint
)
1490 #if defined(TARGET_HAS_ICE)
1493 bp
= qemu_malloc(sizeof(*bp
));
1498 /* keep all GDB-injected breakpoints in front */
1500 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1502 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1504 breakpoint_invalidate(env
, pc
);
1514 /* Remove a specific breakpoint. */
1515 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1517 #if defined(TARGET_HAS_ICE)
1520 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1521 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1522 cpu_breakpoint_remove_by_ref(env
, bp
);
1532 /* Remove a specific breakpoint by reference. */
1533 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1535 #if defined(TARGET_HAS_ICE)
1536 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1538 breakpoint_invalidate(env
, breakpoint
->pc
);
1540 qemu_free(breakpoint
);
1544 /* Remove all matching breakpoints. */
1545 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1547 #if defined(TARGET_HAS_ICE)
1548 CPUBreakpoint
*bp
, *next
;
1550 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1551 if (bp
->flags
& mask
)
1552 cpu_breakpoint_remove_by_ref(env
, bp
);
1557 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1558 CPU loop after each instruction */
1559 void cpu_single_step(CPUState
*env
, int enabled
)
1561 #if defined(TARGET_HAS_ICE)
1562 if (env
->singlestep_enabled
!= enabled
) {
1563 env
->singlestep_enabled
= enabled
;
1565 kvm_update_guest_debug(env
, 0);
1567 /* must flush all the translated code to avoid inconsistencies */
1568 /* XXX: only flush what is necessary */
1575 /* enable or disable low levels log */
1576 void cpu_set_log(int log_flags
)
1578 loglevel
= log_flags
;
1579 if (loglevel
&& !logfile
) {
1580 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1582 perror(logfilename
);
1585 #if !defined(CONFIG_SOFTMMU)
1586 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1588 static char logfile_buf
[4096];
1589 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1591 #elif !defined(_WIN32)
1592 /* Win32 doesn't support line-buffering and requires size >= 2 */
1593 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1597 if (!loglevel
&& logfile
) {
1603 void cpu_set_log_filename(const char *filename
)
1605 logfilename
= strdup(filename
);
1610 cpu_set_log(loglevel
);
1613 static void cpu_unlink_tb(CPUState
*env
)
1615 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1616 problem and hope the cpu will stop of its own accord. For userspace
1617 emulation this often isn't actually as bad as it sounds. Often
1618 signals are used primarily to interrupt blocking syscalls. */
1619 TranslationBlock
*tb
;
1620 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1622 spin_lock(&interrupt_lock
);
1623 tb
= env
->current_tb
;
1624 /* if the cpu is currently executing code, we must unlink it and
1625 all the potentially executing TB */
1627 env
->current_tb
= NULL
;
1628 tb_reset_jump_recursive(tb
);
1630 spin_unlock(&interrupt_lock
);
1633 /* mask must never be zero, except for A20 change call */
1634 void cpu_interrupt(CPUState
*env
, int mask
)
1638 old_mask
= env
->interrupt_request
;
1639 env
->interrupt_request
|= mask
;
1641 #ifndef CONFIG_USER_ONLY
1643 * If called from iothread context, wake the target cpu in
1646 if (!qemu_cpu_is_self(env
)) {
1653 env
->icount_decr
.u16
.high
= 0xffff;
1654 #ifndef CONFIG_USER_ONLY
1656 && (mask
& ~old_mask
) != 0) {
1657 cpu_abort(env
, "Raised interrupt while not in I/O function");
1665 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1667 env
->interrupt_request
&= ~mask
;
1670 void cpu_exit(CPUState
*env
)
1672 env
->exit_request
= 1;
1676 const CPULogItem cpu_log_items
[] = {
1677 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1678 "show generated host assembly code for each compiled TB" },
1679 { CPU_LOG_TB_IN_ASM
, "in_asm",
1680 "show target assembly code for each compiled TB" },
1681 { CPU_LOG_TB_OP
, "op",
1682 "show micro ops for each compiled TB" },
1683 { CPU_LOG_TB_OP_OPT
, "op_opt",
1686 "before eflags optimization and "
1688 "after liveness analysis" },
1689 { CPU_LOG_INT
, "int",
1690 "show interrupts/exceptions in short format" },
1691 { CPU_LOG_EXEC
, "exec",
1692 "show trace before each executed TB (lots of logs)" },
1693 { CPU_LOG_TB_CPU
, "cpu",
1694 "show CPU state before block translation" },
1696 { CPU_LOG_PCALL
, "pcall",
1697 "show protected mode far calls/returns/exceptions" },
1698 { CPU_LOG_RESET
, "cpu_reset",
1699 "show CPU state before CPU resets" },
1702 { CPU_LOG_IOPORT
, "ioport",
1703 "show all i/o ports accesses" },
1708 #ifndef CONFIG_USER_ONLY
1709 static QLIST_HEAD(memory_client_list
, CPUPhysMemoryClient
) memory_client_list
1710 = QLIST_HEAD_INITIALIZER(memory_client_list
);
1712 static void cpu_notify_set_memory(target_phys_addr_t start_addr
,
1714 ram_addr_t phys_offset
,
1717 CPUPhysMemoryClient
*client
;
1718 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1719 client
->set_memory(client
, start_addr
, size
, phys_offset
, log_dirty
);
1723 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start
,
1724 target_phys_addr_t end
)
1726 CPUPhysMemoryClient
*client
;
1727 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1728 int r
= client
->sync_dirty_bitmap(client
, start
, end
);
1735 static int cpu_notify_migration_log(int enable
)
1737 CPUPhysMemoryClient
*client
;
1738 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1739 int r
= client
->migration_log(client
, enable
);
1746 static void phys_page_for_each_1(CPUPhysMemoryClient
*client
,
1747 int level
, void **lp
)
1755 PhysPageDesc
*pd
= *lp
;
1756 for (i
= 0; i
< L2_SIZE
; ++i
) {
1757 if (pd
[i
].phys_offset
!= IO_MEM_UNASSIGNED
) {
1758 client
->set_memory(client
, pd
[i
].region_offset
,
1759 TARGET_PAGE_SIZE
, pd
[i
].phys_offset
, false);
1764 for (i
= 0; i
< L2_SIZE
; ++i
) {
1765 phys_page_for_each_1(client
, level
- 1, pp
+ i
);
1770 static void phys_page_for_each(CPUPhysMemoryClient
*client
)
1773 for (i
= 0; i
< P_L1_SIZE
; ++i
) {
1774 phys_page_for_each_1(client
, P_L1_SHIFT
/ L2_BITS
- 1,
1779 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*client
)
1781 QLIST_INSERT_HEAD(&memory_client_list
, client
, list
);
1782 phys_page_for_each(client
);
1785 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*client
)
1787 QLIST_REMOVE(client
, list
);
1791 static int cmp1(const char *s1
, int n
, const char *s2
)
1793 if (strlen(s2
) != n
)
1795 return memcmp(s1
, s2
, n
) == 0;
1798 /* takes a comma separated list of log masks. Return 0 if error. */
1799 int cpu_str_to_log_mask(const char *str
)
1801 const CPULogItem
*item
;
1808 p1
= strchr(p
, ',');
1811 if(cmp1(p
,p1
-p
,"all")) {
1812 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1816 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1817 if (cmp1(p
, p1
- p
, item
->name
))
1831 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1838 fprintf(stderr
, "qemu: fatal: ");
1839 vfprintf(stderr
, fmt
, ap
);
1840 fprintf(stderr
, "\n");
1842 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1844 cpu_dump_state(env
, stderr
, fprintf
, 0);
1846 if (qemu_log_enabled()) {
1847 qemu_log("qemu: fatal: ");
1848 qemu_log_vprintf(fmt
, ap2
);
1851 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1853 log_cpu_state(env
, 0);
1860 #if defined(CONFIG_USER_ONLY)
1862 struct sigaction act
;
1863 sigfillset(&act
.sa_mask
);
1864 act
.sa_handler
= SIG_DFL
;
1865 sigaction(SIGABRT
, &act
, NULL
);
1871 CPUState
*cpu_copy(CPUState
*env
)
1873 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1874 CPUState
*next_cpu
= new_env
->next_cpu
;
1875 int cpu_index
= new_env
->cpu_index
;
1876 #if defined(TARGET_HAS_ICE)
1881 memcpy(new_env
, env
, sizeof(CPUState
));
1883 /* Preserve chaining and index. */
1884 new_env
->next_cpu
= next_cpu
;
1885 new_env
->cpu_index
= cpu_index
;
1887 /* Clone all break/watchpoints.
1888 Note: Once we support ptrace with hw-debug register access, make sure
1889 BP_CPU break/watchpoints are handled correctly on clone. */
1890 QTAILQ_INIT(&env
->breakpoints
);
1891 QTAILQ_INIT(&env
->watchpoints
);
1892 #if defined(TARGET_HAS_ICE)
1893 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1894 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1896 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1897 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1905 #if !defined(CONFIG_USER_ONLY)
1907 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1911 /* Discard jump cache entries for any tb which might potentially
1912 overlap the flushed page. */
1913 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1914 memset (&env
->tb_jmp_cache
[i
], 0,
1915 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1917 i
= tb_jmp_cache_hash_page(addr
);
1918 memset (&env
->tb_jmp_cache
[i
], 0,
1919 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1922 static CPUTLBEntry s_cputlb_empty_entry
= {
1929 /* NOTE: if flush_global is true, also flush global entries (not
1931 void tlb_flush(CPUState
*env
, int flush_global
)
1935 #if defined(DEBUG_TLB)
1936 printf("tlb_flush:\n");
1938 /* must reset current TB so that interrupts cannot modify the
1939 links while we are modifying them */
1940 env
->current_tb
= NULL
;
1942 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1944 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1945 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1949 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1951 env
->tlb_flush_addr
= -1;
1952 env
->tlb_flush_mask
= 0;
1956 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1958 if (addr
== (tlb_entry
->addr_read
&
1959 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1960 addr
== (tlb_entry
->addr_write
&
1961 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1962 addr
== (tlb_entry
->addr_code
&
1963 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1964 *tlb_entry
= s_cputlb_empty_entry
;
1968 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1973 #if defined(DEBUG_TLB)
1974 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1976 /* Check if we need to flush due to large pages. */
1977 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
1978 #if defined(DEBUG_TLB)
1979 printf("tlb_flush_page: forced full flush ("
1980 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
1981 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
1986 /* must reset current TB so that interrupts cannot modify the
1987 links while we are modifying them */
1988 env
->current_tb
= NULL
;
1990 addr
&= TARGET_PAGE_MASK
;
1991 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1992 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1993 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1995 tlb_flush_jmp_cache(env
, addr
);
1998 /* update the TLBs so that writes to code in the virtual page 'addr'
2000 static void tlb_protect_code(ram_addr_t ram_addr
)
2002 cpu_physical_memory_reset_dirty(ram_addr
,
2003 ram_addr
+ TARGET_PAGE_SIZE
,
2007 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2008 tested for self modifying code */
2009 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
2012 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
2015 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2016 unsigned long start
, unsigned long length
)
2019 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2020 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2021 if ((addr
- start
) < length
) {
2022 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
2027 /* Note: start and end must be within the same ram block. */
2028 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2032 unsigned long length
, start1
;
2035 start
&= TARGET_PAGE_MASK
;
2036 end
= TARGET_PAGE_ALIGN(end
);
2038 length
= end
- start
;
2041 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
2043 /* we modify the TLB cache so that the dirty bit will be set again
2044 when accessing the range */
2045 start1
= (unsigned long)qemu_safe_ram_ptr(start
);
2046 /* Chek that we don't span multiple blocks - this breaks the
2047 address comparisons below. */
2048 if ((unsigned long)qemu_safe_ram_ptr(end
- 1) - start1
2049 != (end
- 1) - start
) {
2053 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2055 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2056 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2057 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2063 int cpu_physical_memory_set_dirty_tracking(int enable
)
2066 in_migration
= enable
;
2067 ret
= cpu_notify_migration_log(!!enable
);
2071 int cpu_physical_memory_get_dirty_tracking(void)
2073 return in_migration
;
2076 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
2077 target_phys_addr_t end_addr
)
2081 ret
= cpu_notify_sync_dirty_bitmap(start_addr
, end_addr
);
2085 int cpu_physical_log_start(target_phys_addr_t start_addr
,
2088 CPUPhysMemoryClient
*client
;
2089 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2090 if (client
->log_start
) {
2091 int r
= client
->log_start(client
, start_addr
, size
);
2100 int cpu_physical_log_stop(target_phys_addr_t start_addr
,
2103 CPUPhysMemoryClient
*client
;
2104 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2105 if (client
->log_stop
) {
2106 int r
= client
->log_stop(client
, start_addr
, size
);
2115 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2117 ram_addr_t ram_addr
;
2120 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2121 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2122 + tlb_entry
->addend
);
2123 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
2124 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2125 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2130 /* update the TLB according to the current state of the dirty bits */
2131 void cpu_tlb_update_dirty(CPUState
*env
)
2135 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2136 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2137 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2141 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2143 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2144 tlb_entry
->addr_write
= vaddr
;
2147 /* update the TLB corresponding to virtual page vaddr
2148 so that it is no longer dirty */
2149 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2154 vaddr
&= TARGET_PAGE_MASK
;
2155 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2156 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2157 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2160 /* Our TLB does not support large pages, so remember the area covered by
2161 large pages and trigger a full TLB flush if these are invalidated. */
2162 static void tlb_add_large_page(CPUState
*env
, target_ulong vaddr
,
2165 target_ulong mask
= ~(size
- 1);
2167 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2168 env
->tlb_flush_addr
= vaddr
& mask
;
2169 env
->tlb_flush_mask
= mask
;
2172 /* Extend the existing region to include the new page.
2173 This is a compromise between unnecessary flushes and the cost
2174 of maintaining a full variable size TLB. */
2175 mask
&= env
->tlb_flush_mask
;
2176 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2179 env
->tlb_flush_addr
&= mask
;
2180 env
->tlb_flush_mask
= mask
;
2183 /* Add a new TLB entry. At most one entry for a given virtual address
2184 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2185 supplied size is only used by tlb_flush_page. */
2186 void tlb_set_page(CPUState
*env
, target_ulong vaddr
,
2187 target_phys_addr_t paddr
, int prot
,
2188 int mmu_idx
, target_ulong size
)
2193 target_ulong address
;
2194 target_ulong code_address
;
2195 unsigned long addend
;
2198 target_phys_addr_t iotlb
;
2200 assert(size
>= TARGET_PAGE_SIZE
);
2201 if (size
!= TARGET_PAGE_SIZE
) {
2202 tlb_add_large_page(env
, vaddr
, size
);
2204 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2206 pd
= IO_MEM_UNASSIGNED
;
2208 pd
= p
->phys_offset
;
2210 #if defined(DEBUG_TLB)
2211 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
2212 " prot=%x idx=%d pd=0x%08lx\n",
2213 vaddr
, paddr
, prot
, mmu_idx
, pd
);
2217 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2218 /* IO memory case (romd handled later) */
2219 address
|= TLB_MMIO
;
2221 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2222 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2224 iotlb
= pd
& TARGET_PAGE_MASK
;
2225 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2226 iotlb
|= IO_MEM_NOTDIRTY
;
2228 iotlb
|= IO_MEM_ROM
;
2230 /* IO handlers are currently passed a physical address.
2231 It would be nice to pass an offset from the base address
2232 of that region. This would avoid having to special case RAM,
2233 and avoid full address decoding in every device.
2234 We can't use the high bits of pd for this because
2235 IO_MEM_ROMD uses these as a ram address. */
2236 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2238 iotlb
+= p
->region_offset
;
2244 code_address
= address
;
2245 /* Make accesses to pages with watchpoints go via the
2246 watchpoint trap routines. */
2247 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2248 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2249 /* Avoid trapping reads of pages with a write breakpoint. */
2250 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
2251 iotlb
= io_mem_watch
+ paddr
;
2252 address
|= TLB_MMIO
;
2258 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2259 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2260 te
= &env
->tlb_table
[mmu_idx
][index
];
2261 te
->addend
= addend
- vaddr
;
2262 if (prot
& PAGE_READ
) {
2263 te
->addr_read
= address
;
2268 if (prot
& PAGE_EXEC
) {
2269 te
->addr_code
= code_address
;
2273 if (prot
& PAGE_WRITE
) {
2274 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2275 (pd
& IO_MEM_ROMD
)) {
2276 /* Write access calls the I/O callback. */
2277 te
->addr_write
= address
| TLB_MMIO
;
2278 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2279 !cpu_physical_memory_is_dirty(pd
)) {
2280 te
->addr_write
= address
| TLB_NOTDIRTY
;
2282 te
->addr_write
= address
;
2285 te
->addr_write
= -1;
2291 void tlb_flush(CPUState
*env
, int flush_global
)
2295 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2300 * Walks guest process memory "regions" one by one
2301 * and calls callback function 'fn' for each region.
2304 struct walk_memory_regions_data
2306 walk_memory_regions_fn fn
;
2308 unsigned long start
;
2312 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2313 abi_ulong end
, int new_prot
)
2315 if (data
->start
!= -1ul) {
2316 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2322 data
->start
= (new_prot
? end
: -1ul);
2323 data
->prot
= new_prot
;
2328 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2329 abi_ulong base
, int level
, void **lp
)
2335 return walk_memory_regions_end(data
, base
, 0);
2340 for (i
= 0; i
< L2_SIZE
; ++i
) {
2341 int prot
= pd
[i
].flags
;
2343 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2344 if (prot
!= data
->prot
) {
2345 rc
= walk_memory_regions_end(data
, pa
, prot
);
2353 for (i
= 0; i
< L2_SIZE
; ++i
) {
2354 pa
= base
| ((abi_ulong
)i
<<
2355 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2356 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2366 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2368 struct walk_memory_regions_data data
;
2376 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2377 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2378 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2384 return walk_memory_regions_end(&data
, 0, 0);
2387 static int dump_region(void *priv
, abi_ulong start
,
2388 abi_ulong end
, unsigned long prot
)
2390 FILE *f
= (FILE *)priv
;
2392 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2393 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2394 start
, end
, end
- start
,
2395 ((prot
& PAGE_READ
) ? 'r' : '-'),
2396 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2397 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2402 /* dump memory mappings */
2403 void page_dump(FILE *f
)
2405 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2406 "start", "end", "size", "prot");
2407 walk_memory_regions(f
, dump_region
);
2410 int page_get_flags(target_ulong address
)
2414 p
= page_find(address
>> TARGET_PAGE_BITS
);
2420 /* Modify the flags of a page and invalidate the code if necessary.
2421 The flag PAGE_WRITE_ORG is positioned automatically depending
2422 on PAGE_WRITE. The mmap_lock should already be held. */
2423 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2425 target_ulong addr
, len
;
2427 /* This function should never be called with addresses outside the
2428 guest address space. If this assert fires, it probably indicates
2429 a missing call to h2g_valid. */
2430 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2431 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2433 assert(start
< end
);
2435 start
= start
& TARGET_PAGE_MASK
;
2436 end
= TARGET_PAGE_ALIGN(end
);
2438 if (flags
& PAGE_WRITE
) {
2439 flags
|= PAGE_WRITE_ORG
;
2442 for (addr
= start
, len
= end
- start
;
2444 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2445 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2447 /* If the write protection bit is set, then we invalidate
2449 if (!(p
->flags
& PAGE_WRITE
) &&
2450 (flags
& PAGE_WRITE
) &&
2452 tb_invalidate_phys_page(addr
, 0, NULL
);
2458 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2464 /* This function should never be called with addresses outside the
2465 guest address space. If this assert fires, it probably indicates
2466 a missing call to h2g_valid. */
2467 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2468 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2474 if (start
+ len
- 1 < start
) {
2475 /* We've wrapped around. */
2479 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2480 start
= start
& TARGET_PAGE_MASK
;
2482 for (addr
= start
, len
= end
- start
;
2484 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2485 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2488 if( !(p
->flags
& PAGE_VALID
) )
2491 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2493 if (flags
& PAGE_WRITE
) {
2494 if (!(p
->flags
& PAGE_WRITE_ORG
))
2496 /* unprotect the page if it was put read-only because it
2497 contains translated code */
2498 if (!(p
->flags
& PAGE_WRITE
)) {
2499 if (!page_unprotect(addr
, 0, NULL
))
2508 /* called from signal handler: invalidate the code and unprotect the
2509 page. Return TRUE if the fault was successfully handled. */
2510 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2514 target_ulong host_start
, host_end
, addr
;
2516 /* Technically this isn't safe inside a signal handler. However we
2517 know this only ever happens in a synchronous SEGV handler, so in
2518 practice it seems to be ok. */
2521 p
= page_find(address
>> TARGET_PAGE_BITS
);
2527 /* if the page was really writable, then we change its
2528 protection back to writable */
2529 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2530 host_start
= address
& qemu_host_page_mask
;
2531 host_end
= host_start
+ qemu_host_page_size
;
2534 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2535 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2536 p
->flags
|= PAGE_WRITE
;
2539 /* and since the content will be modified, we must invalidate
2540 the corresponding translated code. */
2541 tb_invalidate_phys_page(addr
, pc
, puc
);
2542 #ifdef DEBUG_TB_CHECK
2543 tb_invalidate_check(addr
);
2546 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2556 static inline void tlb_set_dirty(CPUState
*env
,
2557 unsigned long addr
, target_ulong vaddr
)
2560 #endif /* defined(CONFIG_USER_ONLY) */
2562 #if !defined(CONFIG_USER_ONLY)
2564 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2565 typedef struct subpage_t
{
2566 target_phys_addr_t base
;
2567 ram_addr_t sub_io_index
[TARGET_PAGE_SIZE
];
2568 ram_addr_t region_offset
[TARGET_PAGE_SIZE
];
2571 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2572 ram_addr_t memory
, ram_addr_t region_offset
);
2573 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2574 ram_addr_t orig_memory
,
2575 ram_addr_t region_offset
);
2576 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2579 if (addr > start_addr) \
2582 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2583 if (start_addr2 > 0) \
2587 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2588 end_addr2 = TARGET_PAGE_SIZE - 1; \
2590 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2591 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2596 /* register physical memory.
2597 For RAM, 'size' must be a multiple of the target page size.
2598 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2599 io memory page. The address used when calling the IO function is
2600 the offset from the start of the region, plus region_offset. Both
2601 start_addr and region_offset are rounded down to a page boundary
2602 before calculating this offset. This should not be a problem unless
2603 the low bits of start_addr and region_offset differ. */
2604 void cpu_register_physical_memory_log(target_phys_addr_t start_addr
,
2606 ram_addr_t phys_offset
,
2607 ram_addr_t region_offset
,
2610 target_phys_addr_t addr
, end_addr
;
2613 ram_addr_t orig_size
= size
;
2616 cpu_notify_set_memory(start_addr
, size
, phys_offset
, log_dirty
);
2618 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2619 region_offset
= start_addr
;
2621 region_offset
&= TARGET_PAGE_MASK
;
2622 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2623 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2624 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2625 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2626 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2627 ram_addr_t orig_memory
= p
->phys_offset
;
2628 target_phys_addr_t start_addr2
, end_addr2
;
2629 int need_subpage
= 0;
2631 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2634 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2635 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2636 &p
->phys_offset
, orig_memory
,
2639 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2642 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2644 p
->region_offset
= 0;
2646 p
->phys_offset
= phys_offset
;
2647 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2648 (phys_offset
& IO_MEM_ROMD
))
2649 phys_offset
+= TARGET_PAGE_SIZE
;
2652 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2653 p
->phys_offset
= phys_offset
;
2654 p
->region_offset
= region_offset
;
2655 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2656 (phys_offset
& IO_MEM_ROMD
)) {
2657 phys_offset
+= TARGET_PAGE_SIZE
;
2659 target_phys_addr_t start_addr2
, end_addr2
;
2660 int need_subpage
= 0;
2662 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2663 end_addr2
, need_subpage
);
2666 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2667 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2668 addr
& TARGET_PAGE_MASK
);
2669 subpage_register(subpage
, start_addr2
, end_addr2
,
2670 phys_offset
, region_offset
);
2671 p
->region_offset
= 0;
2675 region_offset
+= TARGET_PAGE_SIZE
;
2678 /* since each CPU stores ram addresses in its TLB cache, we must
2679 reset the modified entries */
2681 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2686 /* XXX: temporary until new memory mapping API */
2687 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2691 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2693 return IO_MEM_UNASSIGNED
;
2694 return p
->phys_offset
;
2697 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2700 kvm_coalesce_mmio_region(addr
, size
);
2703 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2706 kvm_uncoalesce_mmio_region(addr
, size
);
2709 void qemu_flush_coalesced_mmio_buffer(void)
2712 kvm_flush_coalesced_mmio_buffer();
2715 #if defined(__linux__) && !defined(TARGET_S390X)
2717 #include <sys/vfs.h>
2719 #define HUGETLBFS_MAGIC 0x958458f6
2721 static long gethugepagesize(const char *path
)
2727 ret
= statfs(path
, &fs
);
2728 } while (ret
!= 0 && errno
== EINTR
);
2735 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2736 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2741 static void *file_ram_alloc(RAMBlock
*block
,
2751 unsigned long hpagesize
;
2753 hpagesize
= gethugepagesize(path
);
2758 if (memory
< hpagesize
) {
2762 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2763 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2767 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2771 fd
= mkstemp(filename
);
2773 perror("unable to create backing store for hugepages");
2780 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2783 * ftruncate is not supported by hugetlbfs in older
2784 * hosts, so don't bother bailing out on errors.
2785 * If anything goes wrong with it under other filesystems,
2788 if (ftruncate(fd
, memory
))
2789 perror("ftruncate");
2792 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2793 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2794 * to sidestep this quirk.
2796 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2797 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2799 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2801 if (area
== MAP_FAILED
) {
2802 perror("file_ram_alloc: can't mmap RAM pages");
2811 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2813 RAMBlock
*block
, *next_block
;
2814 ram_addr_t offset
= 0, mingap
= ULONG_MAX
;
2816 if (QLIST_EMPTY(&ram_list
.blocks
))
2819 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2820 ram_addr_t end
, next
= ULONG_MAX
;
2822 end
= block
->offset
+ block
->length
;
2824 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2825 if (next_block
->offset
>= end
) {
2826 next
= MIN(next
, next_block
->offset
);
2829 if (next
- end
>= size
&& next
- end
< mingap
) {
2831 mingap
= next
- end
;
2837 static ram_addr_t
last_ram_offset(void)
2840 ram_addr_t last
= 0;
2842 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2843 last
= MAX(last
, block
->offset
+ block
->length
);
2848 ram_addr_t
qemu_ram_alloc_from_ptr(DeviceState
*dev
, const char *name
,
2849 ram_addr_t size
, void *host
)
2851 RAMBlock
*new_block
, *block
;
2853 size
= TARGET_PAGE_ALIGN(size
);
2854 new_block
= qemu_mallocz(sizeof(*new_block
));
2856 if (dev
&& dev
->parent_bus
&& dev
->parent_bus
->info
->get_dev_path
) {
2857 char *id
= dev
->parent_bus
->info
->get_dev_path(dev
);
2859 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2863 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2865 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2866 if (!strcmp(block
->idstr
, new_block
->idstr
)) {
2867 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2874 new_block
->host
= host
;
2875 new_block
->flags
|= RAM_PREALLOC_MASK
;
2878 #if defined (__linux__) && !defined(TARGET_S390X)
2879 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2880 if (!new_block
->host
) {
2881 new_block
->host
= qemu_vmalloc(size
);
2882 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2885 fprintf(stderr
, "-mem-path option unsupported\n");
2889 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2890 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2891 new_block
->host
= mmap((void*)0x1000000, size
,
2892 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2893 MAP_SHARED
| MAP_ANONYMOUS
, -1, 0);
2895 new_block
->host
= qemu_vmalloc(size
);
2897 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2901 new_block
->offset
= find_ram_offset(size
);
2902 new_block
->length
= size
;
2904 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2906 ram_list
.phys_dirty
= qemu_realloc(ram_list
.phys_dirty
,
2907 last_ram_offset() >> TARGET_PAGE_BITS
);
2908 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2909 0xff, size
>> TARGET_PAGE_BITS
);
2912 kvm_setup_guest_memory(new_block
->host
, size
);
2914 return new_block
->offset
;
2917 ram_addr_t
qemu_ram_alloc(DeviceState
*dev
, const char *name
, ram_addr_t size
)
2919 return qemu_ram_alloc_from_ptr(dev
, name
, size
, NULL
);
2922 void qemu_ram_free(ram_addr_t addr
)
2926 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2927 if (addr
== block
->offset
) {
2928 QLIST_REMOVE(block
, next
);
2929 if (block
->flags
& RAM_PREALLOC_MASK
) {
2931 } else if (mem_path
) {
2932 #if defined (__linux__) && !defined(TARGET_S390X)
2934 munmap(block
->host
, block
->length
);
2937 qemu_vfree(block
->host
);
2943 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2944 munmap(block
->host
, block
->length
);
2946 qemu_vfree(block
->host
);
2957 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2964 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2965 offset
= addr
- block
->offset
;
2966 if (offset
< block
->length
) {
2967 vaddr
= block
->host
+ offset
;
2968 if (block
->flags
& RAM_PREALLOC_MASK
) {
2972 munmap(vaddr
, length
);
2974 #if defined(__linux__) && !defined(TARGET_S390X)
2977 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
2980 flags
|= MAP_PRIVATE
;
2982 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2983 flags
, block
->fd
, offset
);
2985 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2986 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2993 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2994 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
2995 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2998 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2999 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3003 if (area
!= vaddr
) {
3004 fprintf(stderr
, "Could not remap addr: %lx@%lx\n",
3008 qemu_madvise(vaddr
, length
, QEMU_MADV_MERGEABLE
);
3014 #endif /* !_WIN32 */
3016 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3017 With the exception of the softmmu code in this file, this should
3018 only be used for local memory (e.g. video ram) that the device owns,
3019 and knows it isn't going to access beyond the end of the block.
3021 It should not be used for general purpose DMA.
3022 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3024 void *qemu_get_ram_ptr(ram_addr_t addr
)
3028 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3029 if (addr
- block
->offset
< block
->length
) {
3030 /* Move this entry to to start of the list. */
3031 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
3032 QLIST_REMOVE(block
, next
);
3033 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
3035 return block
->host
+ (addr
- block
->offset
);
3039 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3045 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3046 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3048 void *qemu_safe_ram_ptr(ram_addr_t addr
)
3052 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3053 if (addr
- block
->offset
< block
->length
) {
3054 return block
->host
+ (addr
- block
->offset
);
3058 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3064 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
3067 uint8_t *host
= ptr
;
3069 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3070 if (host
- block
->host
< block
->length
) {
3071 *ram_addr
= block
->offset
+ (host
- block
->host
);
3078 /* Some of the softmmu routines need to translate from a host pointer
3079 (typically a TLB entry) back to a ram offset. */
3080 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
3082 ram_addr_t ram_addr
;
3084 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
3085 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
3091 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
3093 #ifdef DEBUG_UNASSIGNED
3094 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3096 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3097 do_unassigned_access(addr
, 0, 0, 0, 1);
3102 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
3104 #ifdef DEBUG_UNASSIGNED
3105 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3107 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3108 do_unassigned_access(addr
, 0, 0, 0, 2);
3113 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
3115 #ifdef DEBUG_UNASSIGNED
3116 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3118 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3119 do_unassigned_access(addr
, 0, 0, 0, 4);
3124 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3126 #ifdef DEBUG_UNASSIGNED
3127 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3129 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3130 do_unassigned_access(addr
, 1, 0, 0, 1);
3134 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3136 #ifdef DEBUG_UNASSIGNED
3137 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3139 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3140 do_unassigned_access(addr
, 1, 0, 0, 2);
3144 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3146 #ifdef DEBUG_UNASSIGNED
3147 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3149 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3150 do_unassigned_access(addr
, 1, 0, 0, 4);
3154 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
3155 unassigned_mem_readb
,
3156 unassigned_mem_readw
,
3157 unassigned_mem_readl
,
3160 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
3161 unassigned_mem_writeb
,
3162 unassigned_mem_writew
,
3163 unassigned_mem_writel
,
3166 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
3170 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3171 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3172 #if !defined(CONFIG_USER_ONLY)
3173 tb_invalidate_phys_page_fast(ram_addr
, 1);
3174 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3177 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
3178 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3179 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3180 /* we remove the notdirty callback only if the code has been
3182 if (dirty_flags
== 0xff)
3183 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3186 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
3190 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3191 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3192 #if !defined(CONFIG_USER_ONLY)
3193 tb_invalidate_phys_page_fast(ram_addr
, 2);
3194 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3197 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
3198 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3199 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3200 /* we remove the notdirty callback only if the code has been
3202 if (dirty_flags
== 0xff)
3203 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3206 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
3210 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3211 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3212 #if !defined(CONFIG_USER_ONLY)
3213 tb_invalidate_phys_page_fast(ram_addr
, 4);
3214 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3217 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
3218 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3219 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3220 /* we remove the notdirty callback only if the code has been
3222 if (dirty_flags
== 0xff)
3223 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3226 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
3227 NULL
, /* never used */
3228 NULL
, /* never used */
3229 NULL
, /* never used */
3232 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
3233 notdirty_mem_writeb
,
3234 notdirty_mem_writew
,
3235 notdirty_mem_writel
,
3238 /* Generate a debug exception if a watchpoint has been hit. */
3239 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3241 CPUState
*env
= cpu_single_env
;
3242 target_ulong pc
, cs_base
;
3243 TranslationBlock
*tb
;
3248 if (env
->watchpoint_hit
) {
3249 /* We re-entered the check after replacing the TB. Now raise
3250 * the debug interrupt so that is will trigger after the
3251 * current instruction. */
3252 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3255 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3256 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3257 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3258 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3259 wp
->flags
|= BP_WATCHPOINT_HIT
;
3260 if (!env
->watchpoint_hit
) {
3261 env
->watchpoint_hit
= wp
;
3262 tb
= tb_find_pc(env
->mem_io_pc
);
3264 cpu_abort(env
, "check_watchpoint: could not find TB for "
3265 "pc=%p", (void *)env
->mem_io_pc
);
3267 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
3268 tb_phys_invalidate(tb
, -1);
3269 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3270 env
->exception_index
= EXCP_DEBUG
;
3272 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3273 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3275 cpu_resume_from_signal(env
, NULL
);
3278 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3283 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3284 so these check for a hit then pass through to the normal out-of-line
3286 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
3288 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
3289 return ldub_phys(addr
);
3292 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
3294 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
3295 return lduw_phys(addr
);
3298 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
3300 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
3301 return ldl_phys(addr
);
3304 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3307 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
3308 stb_phys(addr
, val
);
3311 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
3314 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
3315 stw_phys(addr
, val
);
3318 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
3321 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
3322 stl_phys(addr
, val
);
3325 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
3331 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
3337 static inline uint32_t subpage_readlen (subpage_t
*mmio
,
3338 target_phys_addr_t addr
,
3341 unsigned int idx
= SUBPAGE_IDX(addr
);
3342 #if defined(DEBUG_SUBPAGE)
3343 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3344 mmio
, len
, addr
, idx
);
3347 addr
+= mmio
->region_offset
[idx
];
3348 idx
= mmio
->sub_io_index
[idx
];
3349 return io_mem_read
[idx
][len
](io_mem_opaque
[idx
], addr
);
3352 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
3353 uint32_t value
, unsigned int len
)
3355 unsigned int idx
= SUBPAGE_IDX(addr
);
3356 #if defined(DEBUG_SUBPAGE)
3357 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n",
3358 __func__
, mmio
, len
, addr
, idx
, value
);
3361 addr
+= mmio
->region_offset
[idx
];
3362 idx
= mmio
->sub_io_index
[idx
];
3363 io_mem_write
[idx
][len
](io_mem_opaque
[idx
], addr
, value
);
3366 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
3368 return subpage_readlen(opaque
, addr
, 0);
3371 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
3374 subpage_writelen(opaque
, addr
, value
, 0);
3377 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
3379 return subpage_readlen(opaque
, addr
, 1);
3382 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
3385 subpage_writelen(opaque
, addr
, value
, 1);
3388 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
3390 return subpage_readlen(opaque
, addr
, 2);
3393 static void subpage_writel (void *opaque
, target_phys_addr_t addr
,
3396 subpage_writelen(opaque
, addr
, value
, 2);
3399 static CPUReadMemoryFunc
* const subpage_read
[] = {
3405 static CPUWriteMemoryFunc
* const subpage_write
[] = {
3411 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3412 ram_addr_t memory
, ram_addr_t region_offset
)
3416 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3418 idx
= SUBPAGE_IDX(start
);
3419 eidx
= SUBPAGE_IDX(end
);
3420 #if defined(DEBUG_SUBPAGE)
3421 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3422 mmio
, start
, end
, idx
, eidx
, memory
);
3424 if ((memory
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
3425 memory
= IO_MEM_UNASSIGNED
;
3426 memory
= (memory
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3427 for (; idx
<= eidx
; idx
++) {
3428 mmio
->sub_io_index
[idx
] = memory
;
3429 mmio
->region_offset
[idx
] = region_offset
;
3435 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
3436 ram_addr_t orig_memory
,
3437 ram_addr_t region_offset
)
3442 mmio
= qemu_mallocz(sizeof(subpage_t
));
3445 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
,
3446 DEVICE_NATIVE_ENDIAN
);
3447 #if defined(DEBUG_SUBPAGE)
3448 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3449 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3451 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
3452 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, orig_memory
, region_offset
);
3457 static int get_free_io_mem_idx(void)
3461 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
3462 if (!io_mem_used
[i
]) {
3466 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
3471 * Usually, devices operate in little endian mode. There are devices out
3472 * there that operate in big endian too. Each device gets byte swapped
3473 * mmio if plugged onto a CPU that does the other endianness.
3483 typedef struct SwapEndianContainer
{
3484 CPUReadMemoryFunc
*read
[3];
3485 CPUWriteMemoryFunc
*write
[3];
3487 } SwapEndianContainer
;
3489 static uint32_t swapendian_mem_readb (void *opaque
, target_phys_addr_t addr
)
3492 SwapEndianContainer
*c
= opaque
;
3493 val
= c
->read
[0](c
->opaque
, addr
);
3497 static uint32_t swapendian_mem_readw(void *opaque
, target_phys_addr_t addr
)
3500 SwapEndianContainer
*c
= opaque
;
3501 val
= bswap16(c
->read
[1](c
->opaque
, addr
));
3505 static uint32_t swapendian_mem_readl(void *opaque
, target_phys_addr_t addr
)
3508 SwapEndianContainer
*c
= opaque
;
3509 val
= bswap32(c
->read
[2](c
->opaque
, addr
));
3513 static CPUReadMemoryFunc
* const swapendian_readfn
[3]={
3514 swapendian_mem_readb
,
3515 swapendian_mem_readw
,
3516 swapendian_mem_readl
3519 static void swapendian_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3522 SwapEndianContainer
*c
= opaque
;
3523 c
->write
[0](c
->opaque
, addr
, val
);
3526 static void swapendian_mem_writew(void *opaque
, target_phys_addr_t addr
,
3529 SwapEndianContainer
*c
= opaque
;
3530 c
->write
[1](c
->opaque
, addr
, bswap16(val
));
3533 static void swapendian_mem_writel(void *opaque
, target_phys_addr_t addr
,
3536 SwapEndianContainer
*c
= opaque
;
3537 c
->write
[2](c
->opaque
, addr
, bswap32(val
));
3540 static CPUWriteMemoryFunc
* const swapendian_writefn
[3]={
3541 swapendian_mem_writeb
,
3542 swapendian_mem_writew
,
3543 swapendian_mem_writel
3546 static void swapendian_init(int io_index
)
3548 SwapEndianContainer
*c
= qemu_malloc(sizeof(SwapEndianContainer
));
3551 /* Swap mmio for big endian targets */
3552 c
->opaque
= io_mem_opaque
[io_index
];
3553 for (i
= 0; i
< 3; i
++) {
3554 c
->read
[i
] = io_mem_read
[io_index
][i
];
3555 c
->write
[i
] = io_mem_write
[io_index
][i
];
3557 io_mem_read
[io_index
][i
] = swapendian_readfn
[i
];
3558 io_mem_write
[io_index
][i
] = swapendian_writefn
[i
];
3560 io_mem_opaque
[io_index
] = c
;
3563 static void swapendian_del(int io_index
)
3565 if (io_mem_read
[io_index
][0] == swapendian_readfn
[0]) {
3566 qemu_free(io_mem_opaque
[io_index
]);
3570 /* mem_read and mem_write are arrays of functions containing the
3571 function to access byte (index 0), word (index 1) and dword (index
3572 2). Functions can be omitted with a NULL function pointer.
3573 If io_index is non zero, the corresponding io zone is
3574 modified. If it is zero, a new io zone is allocated. The return
3575 value can be used with cpu_register_physical_memory(). (-1) is
3576 returned if error. */
3577 static int cpu_register_io_memory_fixed(int io_index
,
3578 CPUReadMemoryFunc
* const *mem_read
,
3579 CPUWriteMemoryFunc
* const *mem_write
,
3580 void *opaque
, enum device_endian endian
)
3584 if (io_index
<= 0) {
3585 io_index
= get_free_io_mem_idx();
3589 io_index
>>= IO_MEM_SHIFT
;
3590 if (io_index
>= IO_MEM_NB_ENTRIES
)
3594 for (i
= 0; i
< 3; ++i
) {
3595 io_mem_read
[io_index
][i
]
3596 = (mem_read
[i
] ? mem_read
[i
] : unassigned_mem_read
[i
]);
3598 for (i
= 0; i
< 3; ++i
) {
3599 io_mem_write
[io_index
][i
]
3600 = (mem_write
[i
] ? mem_write
[i
] : unassigned_mem_write
[i
]);
3602 io_mem_opaque
[io_index
] = opaque
;
3605 case DEVICE_BIG_ENDIAN
:
3606 #ifndef TARGET_WORDS_BIGENDIAN
3607 swapendian_init(io_index
);
3610 case DEVICE_LITTLE_ENDIAN
:
3611 #ifdef TARGET_WORDS_BIGENDIAN
3612 swapendian_init(io_index
);
3615 case DEVICE_NATIVE_ENDIAN
:
3620 return (io_index
<< IO_MEM_SHIFT
);
3623 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
3624 CPUWriteMemoryFunc
* const *mem_write
,
3625 void *opaque
, enum device_endian endian
)
3627 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
, endian
);
3630 void cpu_unregister_io_memory(int io_table_address
)
3633 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3635 swapendian_del(io_index
);
3637 for (i
=0;i
< 3; i
++) {
3638 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3639 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3641 io_mem_opaque
[io_index
] = NULL
;
3642 io_mem_used
[io_index
] = 0;
3645 static void io_mem_init(void)
3649 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
,
3650 unassigned_mem_write
, NULL
,
3651 DEVICE_NATIVE_ENDIAN
);
3652 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
,
3653 unassigned_mem_write
, NULL
,
3654 DEVICE_NATIVE_ENDIAN
);
3655 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
,
3656 notdirty_mem_write
, NULL
,
3657 DEVICE_NATIVE_ENDIAN
);
3661 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3662 watch_mem_write
, NULL
,
3663 DEVICE_NATIVE_ENDIAN
);
3666 #endif /* !defined(CONFIG_USER_ONLY) */
3668 /* physical memory access (slow version, mainly for debug) */
3669 #if defined(CONFIG_USER_ONLY)
3670 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3671 uint8_t *buf
, int len
, int is_write
)
3678 page
= addr
& TARGET_PAGE_MASK
;
3679 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3682 flags
= page_get_flags(page
);
3683 if (!(flags
& PAGE_VALID
))
3686 if (!(flags
& PAGE_WRITE
))
3688 /* XXX: this code should not depend on lock_user */
3689 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3692 unlock_user(p
, addr
, l
);
3694 if (!(flags
& PAGE_READ
))
3696 /* XXX: this code should not depend on lock_user */
3697 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3700 unlock_user(p
, addr
, 0);
3710 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3711 int len
, int is_write
)
3716 target_phys_addr_t page
;
3721 page
= addr
& TARGET_PAGE_MASK
;
3722 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3725 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3727 pd
= IO_MEM_UNASSIGNED
;
3729 pd
= p
->phys_offset
;
3733 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3734 target_phys_addr_t addr1
= addr
;
3735 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3737 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3738 /* XXX: could force cpu_single_env to NULL to avoid
3740 if (l
>= 4 && ((addr1
& 3) == 0)) {
3741 /* 32 bit write access */
3743 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3745 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3746 /* 16 bit write access */
3748 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3751 /* 8 bit write access */
3753 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3757 unsigned long addr1
;
3758 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3760 ptr
= qemu_get_ram_ptr(addr1
);
3761 memcpy(ptr
, buf
, l
);
3762 if (!cpu_physical_memory_is_dirty(addr1
)) {
3763 /* invalidate code */
3764 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3766 cpu_physical_memory_set_dirty_flags(
3767 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3771 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3772 !(pd
& IO_MEM_ROMD
)) {
3773 target_phys_addr_t addr1
= addr
;
3775 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3777 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3778 if (l
>= 4 && ((addr1
& 3) == 0)) {
3779 /* 32 bit read access */
3780 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3783 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3784 /* 16 bit read access */
3785 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3789 /* 8 bit read access */
3790 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3796 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3797 (addr
& ~TARGET_PAGE_MASK
);
3798 memcpy(buf
, ptr
, l
);
3807 /* used for ROM loading : can write in RAM and ROM */
3808 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3809 const uint8_t *buf
, int len
)
3813 target_phys_addr_t page
;
3818 page
= addr
& TARGET_PAGE_MASK
;
3819 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3822 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3824 pd
= IO_MEM_UNASSIGNED
;
3826 pd
= p
->phys_offset
;
3829 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3830 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3831 !(pd
& IO_MEM_ROMD
)) {
3834 unsigned long addr1
;
3835 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3837 ptr
= qemu_get_ram_ptr(addr1
);
3838 memcpy(ptr
, buf
, l
);
3848 target_phys_addr_t addr
;
3849 target_phys_addr_t len
;
3852 static BounceBuffer bounce
;
3854 typedef struct MapClient
{
3856 void (*callback
)(void *opaque
);
3857 QLIST_ENTRY(MapClient
) link
;
3860 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3861 = QLIST_HEAD_INITIALIZER(map_client_list
);
3863 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3865 MapClient
*client
= qemu_malloc(sizeof(*client
));
3867 client
->opaque
= opaque
;
3868 client
->callback
= callback
;
3869 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3873 void cpu_unregister_map_client(void *_client
)
3875 MapClient
*client
= (MapClient
*)_client
;
3877 QLIST_REMOVE(client
, link
);
3881 static void cpu_notify_map_clients(void)
3885 while (!QLIST_EMPTY(&map_client_list
)) {
3886 client
= QLIST_FIRST(&map_client_list
);
3887 client
->callback(client
->opaque
);
3888 cpu_unregister_map_client(client
);
3892 /* Map a physical memory region into a host virtual address.
3893 * May map a subset of the requested range, given by and returned in *plen.
3894 * May return NULL if resources needed to perform the mapping are exhausted.
3895 * Use only for reads OR writes - not for read-modify-write operations.
3896 * Use cpu_register_map_client() to know when retrying the map operation is
3897 * likely to succeed.
3899 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3900 target_phys_addr_t
*plen
,
3903 target_phys_addr_t len
= *plen
;
3904 target_phys_addr_t done
= 0;
3906 uint8_t *ret
= NULL
;
3908 target_phys_addr_t page
;
3911 unsigned long addr1
;
3914 page
= addr
& TARGET_PAGE_MASK
;
3915 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3918 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3920 pd
= IO_MEM_UNASSIGNED
;
3922 pd
= p
->phys_offset
;
3925 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3926 if (done
|| bounce
.buffer
) {
3929 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3933 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3935 ptr
= bounce
.buffer
;
3937 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3938 ptr
= qemu_get_ram_ptr(addr1
);
3942 } else if (ret
+ done
!= ptr
) {
3954 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3955 * Will also mark the memory as dirty if is_write == 1. access_len gives
3956 * the amount of memory that was actually read or written by the caller.
3958 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3959 int is_write
, target_phys_addr_t access_len
)
3961 if (buffer
!= bounce
.buffer
) {
3963 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
3964 while (access_len
) {
3966 l
= TARGET_PAGE_SIZE
;
3969 if (!cpu_physical_memory_is_dirty(addr1
)) {
3970 /* invalidate code */
3971 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3973 cpu_physical_memory_set_dirty_flags(
3974 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3983 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3985 qemu_vfree(bounce
.buffer
);
3986 bounce
.buffer
= NULL
;
3987 cpu_notify_map_clients();
3990 /* warning: addr must be aligned */
3991 uint32_t ldl_phys(target_phys_addr_t addr
)
3999 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4001 pd
= IO_MEM_UNASSIGNED
;
4003 pd
= p
->phys_offset
;
4006 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4007 !(pd
& IO_MEM_ROMD
)) {
4009 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4011 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4012 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4015 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4016 (addr
& ~TARGET_PAGE_MASK
);
4022 /* warning: addr must be aligned */
4023 uint64_t ldq_phys(target_phys_addr_t addr
)
4031 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4033 pd
= IO_MEM_UNASSIGNED
;
4035 pd
= p
->phys_offset
;
4038 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4039 !(pd
& IO_MEM_ROMD
)) {
4041 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4043 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4044 #ifdef TARGET_WORDS_BIGENDIAN
4045 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
4046 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
4048 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4049 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
4053 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4054 (addr
& ~TARGET_PAGE_MASK
);
4061 uint32_t ldub_phys(target_phys_addr_t addr
)
4064 cpu_physical_memory_read(addr
, &val
, 1);
4068 /* warning: addr must be aligned */
4069 uint32_t lduw_phys(target_phys_addr_t addr
)
4077 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4079 pd
= IO_MEM_UNASSIGNED
;
4081 pd
= p
->phys_offset
;
4084 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4085 !(pd
& IO_MEM_ROMD
)) {
4087 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4089 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4090 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
4093 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4094 (addr
& ~TARGET_PAGE_MASK
);
4100 /* warning: addr must be aligned. The ram page is not masked as dirty
4101 and the code inside is not invalidated. It is useful if the dirty
4102 bits are used to track modified PTEs */
4103 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
4110 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4112 pd
= IO_MEM_UNASSIGNED
;
4114 pd
= p
->phys_offset
;
4117 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4118 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4120 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4121 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4123 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4124 ptr
= qemu_get_ram_ptr(addr1
);
4127 if (unlikely(in_migration
)) {
4128 if (!cpu_physical_memory_is_dirty(addr1
)) {
4129 /* invalidate code */
4130 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4132 cpu_physical_memory_set_dirty_flags(
4133 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4139 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
4146 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4148 pd
= IO_MEM_UNASSIGNED
;
4150 pd
= p
->phys_offset
;
4153 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4154 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4156 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4157 #ifdef TARGET_WORDS_BIGENDIAN
4158 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
4159 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
4161 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4162 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
4165 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4166 (addr
& ~TARGET_PAGE_MASK
);
4171 /* warning: addr must be aligned */
4172 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
4179 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4181 pd
= IO_MEM_UNASSIGNED
;
4183 pd
= p
->phys_offset
;
4186 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4187 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4189 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4190 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4192 unsigned long addr1
;
4193 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4195 ptr
= qemu_get_ram_ptr(addr1
);
4197 if (!cpu_physical_memory_is_dirty(addr1
)) {
4198 /* invalidate code */
4199 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4201 cpu_physical_memory_set_dirty_flags(addr1
,
4202 (0xff & ~CODE_DIRTY_FLAG
));
4208 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
4211 cpu_physical_memory_write(addr
, &v
, 1);
4214 /* warning: addr must be aligned */
4215 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4222 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4224 pd
= IO_MEM_UNASSIGNED
;
4226 pd
= p
->phys_offset
;
4229 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4230 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4232 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4233 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
4235 unsigned long addr1
;
4236 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4238 ptr
= qemu_get_ram_ptr(addr1
);
4240 if (!cpu_physical_memory_is_dirty(addr1
)) {
4241 /* invalidate code */
4242 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4244 cpu_physical_memory_set_dirty_flags(addr1
,
4245 (0xff & ~CODE_DIRTY_FLAG
));
4251 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4254 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
4257 /* virtual memory access for debug (includes writing to ROM) */
4258 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
4259 uint8_t *buf
, int len
, int is_write
)
4262 target_phys_addr_t phys_addr
;
4266 page
= addr
& TARGET_PAGE_MASK
;
4267 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4268 /* if no physical page mapped, return an error */
4269 if (phys_addr
== -1)
4271 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4274 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4276 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4278 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4287 /* in deterministic execution mode, instructions doing device I/Os
4288 must be at the end of the TB */
4289 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
4291 TranslationBlock
*tb
;
4293 target_ulong pc
, cs_base
;
4296 tb
= tb_find_pc((unsigned long)retaddr
);
4298 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4301 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4302 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
4303 /* Calculate how many instructions had been executed before the fault
4305 n
= n
- env
->icount_decr
.u16
.low
;
4306 /* Generate a new TB ending on the I/O insn. */
4308 /* On MIPS and SH, delay slot instructions can only be restarted if
4309 they were already the first instruction in the TB. If this is not
4310 the first instruction in a TB then re-execute the preceding
4312 #if defined(TARGET_MIPS)
4313 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4314 env
->active_tc
.PC
-= 4;
4315 env
->icount_decr
.u16
.low
++;
4316 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4318 #elif defined(TARGET_SH4)
4319 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4322 env
->icount_decr
.u16
.low
++;
4323 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4326 /* This should never happen. */
4327 if (n
> CF_COUNT_MASK
)
4328 cpu_abort(env
, "TB too big during recompile");
4330 cflags
= n
| CF_LAST_IO
;
4332 cs_base
= tb
->cs_base
;
4334 tb_phys_invalidate(tb
, -1);
4335 /* FIXME: In theory this could raise an exception. In practice
4336 we have already translated the block once so it's probably ok. */
4337 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4338 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4339 the first in the TB) then we end up generating a whole new TB and
4340 repeating the fault, which is horribly inefficient.
4341 Better would be to execute just this insn uncached, or generate a
4343 cpu_resume_from_signal(env
, NULL
);
4346 #if !defined(CONFIG_USER_ONLY)
4348 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4350 int i
, target_code_size
, max_target_code_size
;
4351 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4352 TranslationBlock
*tb
;
4354 target_code_size
= 0;
4355 max_target_code_size
= 0;
4357 direct_jmp_count
= 0;
4358 direct_jmp2_count
= 0;
4359 for(i
= 0; i
< nb_tbs
; i
++) {
4361 target_code_size
+= tb
->size
;
4362 if (tb
->size
> max_target_code_size
)
4363 max_target_code_size
= tb
->size
;
4364 if (tb
->page_addr
[1] != -1)
4366 if (tb
->tb_next_offset
[0] != 0xffff) {
4368 if (tb
->tb_next_offset
[1] != 0xffff) {
4369 direct_jmp2_count
++;
4373 /* XXX: avoid using doubles ? */
4374 cpu_fprintf(f
, "Translation buffer state:\n");
4375 cpu_fprintf(f
, "gen code size %td/%ld\n",
4376 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4377 cpu_fprintf(f
, "TB count %d/%d\n",
4378 nb_tbs
, code_gen_max_blocks
);
4379 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4380 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4381 max_target_code_size
);
4382 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4383 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4384 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4385 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4387 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4388 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4390 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4392 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4393 cpu_fprintf(f
, "\nStatistics:\n");
4394 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4395 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4396 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4397 tcg_dump_info(f
, cpu_fprintf
);
4400 #define MMUSUFFIX _cmmu
4401 #define GETPC() NULL
4402 #define env cpu_single_env
4403 #define SOFTMMU_CODE_ACCESS
4406 #include "softmmu_template.h"
4409 #include "softmmu_template.h"
4412 #include "softmmu_template.h"
4415 #include "softmmu_template.h"