4 /* CPU interfaces that are target independent. */
6 #ifdef TARGET_PHYS_ADDR_BITS
15 #include "qemu-queue.h"
17 #if !defined(CONFIG_USER_ONLY)
25 /* address in the RAM (different from a physical address) */
26 #if defined(CONFIG_XEN_BACKEND) && TARGET_PHYS_ADDR_BITS == 64
27 typedef uint64_t ram_addr_t
;
28 # define RAM_ADDR_MAX UINT64_MAX
29 # define RAM_ADDR_FMT "%" PRIx64
31 typedef unsigned long ram_addr_t
;
32 # define RAM_ADDR_MAX ULONG_MAX
33 # define RAM_ADDR_FMT "%lx"
38 typedef void CPUWriteMemoryFunc(void *opaque
, target_phys_addr_t addr
, uint32_t value
);
39 typedef uint32_t CPUReadMemoryFunc(void *opaque
, target_phys_addr_t addr
);
41 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
);
42 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
);
43 /* This should only be used for ram local to a device. */
44 void *qemu_get_ram_ptr(ram_addr_t addr
);
45 void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
);
46 /* Same but slower, to use for migration, where the order of
47 * RAMBlocks must not change. */
48 void *qemu_safe_ram_ptr(ram_addr_t addr
);
49 void qemu_put_ram_ptr(void *addr
);
50 /* This should not be used by devices. */
51 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
);
52 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
);
54 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
55 int len
, int is_write
);
56 static inline void cpu_physical_memory_read(target_phys_addr_t addr
,
59 cpu_physical_memory_rw(addr
, buf
, len
, 0);
61 static inline void cpu_physical_memory_write(target_phys_addr_t addr
,
62 const void *buf
, int len
)
64 cpu_physical_memory_rw(addr
, (void *)buf
, len
, 1);
66 void *cpu_physical_memory_map(target_phys_addr_t addr
,
67 target_phys_addr_t
*plen
,
69 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
70 int is_write
, target_phys_addr_t access_len
);
71 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
));
72 void cpu_unregister_map_client(void *cookie
);
74 struct CPUPhysMemoryClient
;
75 typedef struct CPUPhysMemoryClient CPUPhysMemoryClient
;
76 struct CPUPhysMemoryClient
{
77 void (*set_memory
)(struct CPUPhysMemoryClient
*client
,
78 target_phys_addr_t start_addr
,
80 ram_addr_t phys_offset
,
82 int (*sync_dirty_bitmap
)(struct CPUPhysMemoryClient
*client
,
83 target_phys_addr_t start_addr
,
84 target_phys_addr_t end_addr
);
85 int (*migration_log
)(struct CPUPhysMemoryClient
*client
,
87 int (*log_start
)(struct CPUPhysMemoryClient
*client
,
88 target_phys_addr_t phys_addr
, ram_addr_t size
);
89 int (*log_stop
)(struct CPUPhysMemoryClient
*client
,
90 target_phys_addr_t phys_addr
, ram_addr_t size
);
91 QLIST_ENTRY(CPUPhysMemoryClient
) list
;
94 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*);
95 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*);
97 /* Coalesced MMIO regions are areas where write operations can be reordered.
98 * This usually implies that write operations are side-effect free. This allows
99 * batching which can make a major impact on performance when using
102 void qemu_flush_coalesced_mmio_buffer(void);
104 uint32_t ldub_phys(target_phys_addr_t addr
);
105 uint32_t lduw_le_phys(target_phys_addr_t addr
);
106 uint32_t lduw_be_phys(target_phys_addr_t addr
);
107 uint32_t ldl_le_phys(target_phys_addr_t addr
);
108 uint32_t ldl_be_phys(target_phys_addr_t addr
);
109 uint64_t ldq_le_phys(target_phys_addr_t addr
);
110 uint64_t ldq_be_phys(target_phys_addr_t addr
);
111 void stb_phys(target_phys_addr_t addr
, uint32_t val
);
112 void stw_le_phys(target_phys_addr_t addr
, uint32_t val
);
113 void stw_be_phys(target_phys_addr_t addr
, uint32_t val
);
114 void stl_le_phys(target_phys_addr_t addr
, uint32_t val
);
115 void stl_be_phys(target_phys_addr_t addr
, uint32_t val
);
116 void stq_le_phys(target_phys_addr_t addr
, uint64_t val
);
117 void stq_be_phys(target_phys_addr_t addr
, uint64_t val
);
120 uint32_t lduw_phys(target_phys_addr_t addr
);
121 uint32_t ldl_phys(target_phys_addr_t addr
);
122 uint64_t ldq_phys(target_phys_addr_t addr
);
123 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
);
124 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
);
125 void stw_phys(target_phys_addr_t addr
, uint32_t val
);
126 void stl_phys(target_phys_addr_t addr
, uint32_t val
);
127 void stq_phys(target_phys_addr_t addr
, uint64_t val
);
130 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
131 const uint8_t *buf
, int len
);
133 #define IO_MEM_SHIFT 3
135 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
136 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
137 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
138 #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
139 #define IO_MEM_SUBPAGE_RAM (4 << IO_MEM_SHIFT)
141 /* Acts like a ROM when read and like a device when written. */
142 #define IO_MEM_ROMD (1)
143 #define IO_MEM_SUBPAGE (2)
147 #endif /* !CPU_COMMON_H */