2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #include "exec/helper-proto.h"
30 #include "qemu/host-utils.h"
31 #include "exec/cpu_ldst.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/timer.h"
35 void xtensa_cpu_do_unaligned_access(CPUState
*cs
,
36 vaddr addr
, int is_write
, int is_user
, uintptr_t retaddr
)
38 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
39 CPUXtensaState
*env
= &cpu
->env
;
41 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
42 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
43 cpu_restore_state(CPU(cpu
), retaddr
);
44 HELPER(exception_cause_vaddr
)(env
,
45 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
49 void tlb_fill(CPUState
*cs
,
50 target_ulong vaddr
, int is_write
, int mmu_idx
, uintptr_t retaddr
)
52 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
53 CPUXtensaState
*env
= &cpu
->env
;
57 int ret
= xtensa_get_physical_addr(env
, true, vaddr
, is_write
, mmu_idx
,
58 &paddr
, &page_size
, &access
);
60 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__
,
61 vaddr
, is_write
, mmu_idx
, paddr
, ret
);
65 vaddr
& TARGET_PAGE_MASK
,
66 paddr
& TARGET_PAGE_MASK
,
67 access
, mmu_idx
, page_size
);
69 cpu_restore_state(cs
, retaddr
);
70 HELPER(exception_cause_vaddr
)(env
, env
->pc
, ret
, vaddr
);
74 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
79 int ret
= xtensa_get_physical_addr(env
, false, vaddr
, 2, 0,
80 &paddr
, &page_size
, &access
);
82 tb_invalidate_phys_addr(&address_space_memory
, paddr
);
86 void HELPER(exception
)(CPUXtensaState
*env
, uint32_t excp
)
88 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
90 cs
->exception_index
= excp
;
91 if (excp
== EXCP_DEBUG
) {
92 env
->exception_taken
= 0;
97 void HELPER(exception_cause
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
102 if (env
->sregs
[PS
] & PS_EXCM
) {
103 if (env
->config
->ndepc
) {
104 env
->sregs
[DEPC
] = pc
;
106 env
->sregs
[EPC1
] = pc
;
110 env
->sregs
[EPC1
] = pc
;
111 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
114 env
->sregs
[EXCCAUSE
] = cause
;
115 env
->sregs
[PS
] |= PS_EXCM
;
117 HELPER(exception
)(env
, vector
);
120 void HELPER(exception_cause_vaddr
)(CPUXtensaState
*env
,
121 uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
123 env
->sregs
[EXCVADDR
] = vaddr
;
124 HELPER(exception_cause
)(env
, pc
, cause
);
127 void debug_exception_env(CPUXtensaState
*env
, uint32_t cause
)
129 if (xtensa_get_cintlevel(env
) < env
->config
->debug_level
) {
130 HELPER(debug_exception
)(env
, env
->pc
, cause
);
134 void HELPER(debug_exception
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
136 unsigned level
= env
->config
->debug_level
;
139 env
->sregs
[DEBUGCAUSE
] = cause
;
140 env
->sregs
[EPC1
+ level
- 1] = pc
;
141 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
142 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
143 (level
<< PS_INTLEVEL_SHIFT
);
144 HELPER(exception
)(env
, EXC_DEBUG
);
147 uint32_t HELPER(nsa
)(uint32_t v
)
149 if (v
& 0x80000000) {
152 return v
? clz32(v
) - 1 : 31;
155 uint32_t HELPER(nsau
)(uint32_t v
)
157 return v
? clz32(v
) : 32;
160 static void copy_window_from_phys(CPUXtensaState
*env
,
161 uint32_t window
, uint32_t phys
, uint32_t n
)
163 assert(phys
< env
->config
->nareg
);
164 if (phys
+ n
<= env
->config
->nareg
) {
165 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
166 n
* sizeof(uint32_t));
168 uint32_t n1
= env
->config
->nareg
- phys
;
169 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
170 n1
* sizeof(uint32_t));
171 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
172 (n
- n1
) * sizeof(uint32_t));
176 static void copy_phys_from_window(CPUXtensaState
*env
,
177 uint32_t phys
, uint32_t window
, uint32_t n
)
179 assert(phys
< env
->config
->nareg
);
180 if (phys
+ n
<= env
->config
->nareg
) {
181 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
182 n
* sizeof(uint32_t));
184 uint32_t n1
= env
->config
->nareg
- phys
;
185 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
186 n1
* sizeof(uint32_t));
187 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
188 (n
- n1
) * sizeof(uint32_t));
193 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
195 return a
& (env
->config
->nareg
/ 4 - 1);
198 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
200 return 1 << windowbase_bound(a
, env
);
203 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
205 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
208 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
210 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
213 static void rotate_window_abs(CPUXtensaState
*env
, uint32_t position
)
215 xtensa_sync_phys_from_window(env
);
216 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
217 xtensa_sync_window_from_phys(env
);
220 static void rotate_window(CPUXtensaState
*env
, uint32_t delta
)
222 rotate_window_abs(env
, env
->sregs
[WINDOW_BASE
] + delta
);
225 void HELPER(wsr_windowbase
)(CPUXtensaState
*env
, uint32_t v
)
227 rotate_window_abs(env
, v
);
230 void HELPER(entry
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t s
, uint32_t imm
)
232 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
233 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
234 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
236 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
238 uint32_t windowstart
= xtensa_replicate_windowstart(env
) >>
239 (env
->sregs
[WINDOW_BASE
] + 1);
241 if (windowstart
& ((1 << callinc
) - 1)) {
242 HELPER(window_check
)(env
, pc
, callinc
);
244 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - (imm
<< 3);
245 rotate_window(env
, callinc
);
246 env
->sregs
[WINDOW_START
] |=
247 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
251 void HELPER(window_check
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t w
)
253 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
254 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
257 if ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) {
265 if (windowstart
& windowstart_bit(windowbase
+ n
, env
)) {
270 m
= windowbase_bound(windowbase
+ n
, env
);
271 rotate_window(env
, n
);
272 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
273 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
274 env
->sregs
[EPC1
] = env
->pc
= pc
;
276 if (windowstart
& windowstart_bit(m
+ 1, env
)) {
277 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW4
);
278 } else if (windowstart
& windowstart_bit(m
+ 2, env
)) {
279 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW8
);
281 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW12
);
285 uint32_t HELPER(retw
)(CPUXtensaState
*env
, uint32_t pc
)
287 int n
= (env
->regs
[0] >> 30) & 0x3;
289 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
290 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
293 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
295 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
297 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
301 if (n
== 0 || (m
!= 0 && m
!= n
) ||
302 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
303 qemu_log("Illegal retw instruction(pc = %08x), "
304 "PS = %08x, m = %d, n = %d\n",
305 pc
, env
->sregs
[PS
], m
, n
);
306 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
308 int owb
= windowbase
;
310 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
312 rotate_window(env
, -n
);
313 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
314 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
316 /* window underflow */
317 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
318 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
319 env
->sregs
[EPC1
] = env
->pc
= pc
;
322 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW4
);
324 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW8
);
326 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW12
);
333 void HELPER(rotw
)(CPUXtensaState
*env
, uint32_t imm4
)
335 rotate_window(env
, imm4
);
338 void HELPER(restore_owb
)(CPUXtensaState
*env
)
340 rotate_window_abs(env
, (env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
343 void HELPER(movsp
)(CPUXtensaState
*env
, uint32_t pc
)
345 if ((env
->sregs
[WINDOW_START
] &
346 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
347 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
348 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
349 HELPER(exception_cause
)(env
, pc
, ALLOCA_CAUSE
);
353 void HELPER(wsr_lbeg
)(CPUXtensaState
*env
, uint32_t v
)
355 if (env
->sregs
[LBEG
] != v
) {
356 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
357 env
->sregs
[LBEG
] = v
;
361 void HELPER(wsr_lend
)(CPUXtensaState
*env
, uint32_t v
)
363 if (env
->sregs
[LEND
] != v
) {
364 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
365 env
->sregs
[LEND
] = v
;
366 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
370 void HELPER(dump_state
)(CPUXtensaState
*env
)
372 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
374 cpu_dump_state(CPU(cpu
), stderr
, fprintf
, 0);
377 void HELPER(waiti
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t intlevel
)
382 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
383 (intlevel
<< PS_INTLEVEL_SHIFT
);
384 check_interrupts(env
);
385 if (env
->pending_irq_level
) {
386 cpu_loop_exit(CPU(xtensa_env_get_cpu(env
)));
390 cpu
= CPU(xtensa_env_get_cpu(env
));
391 env
->halt_clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
393 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_TIMER_INTERRUPT
)) {
394 xtensa_rearm_ccompare_timer(env
);
396 HELPER(exception
)(env
, EXCP_HLT
);
399 void HELPER(timer_irq
)(CPUXtensaState
*env
, uint32_t id
, uint32_t active
)
401 xtensa_timer_irq(env
, id
, active
);
404 void HELPER(advance_ccount
)(CPUXtensaState
*env
, uint32_t d
)
406 xtensa_advance_ccount(env
, d
);
409 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
411 check_interrupts(env
);
414 void HELPER(itlb_hit_test
)(CPUXtensaState
*env
, uint32_t vaddr
)
416 get_page_addr_code(env
, vaddr
);
420 * Check vaddr accessibility/cache attributes and raise an exception if
421 * specified by the ATOMCTL SR.
423 * Note: local memory exclusion is not implemented
425 void HELPER(check_atomctl
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t vaddr
)
427 uint32_t paddr
, page_size
, access
;
428 uint32_t atomctl
= env
->sregs
[ATOMCTL
];
429 int rc
= xtensa_get_physical_addr(env
, true, vaddr
, 1,
430 xtensa_get_cring(env
), &paddr
, &page_size
, &access
);
433 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
434 * see opcode description in the ISA
437 (access
& (PAGE_READ
| PAGE_WRITE
)) != (PAGE_READ
| PAGE_WRITE
)) {
438 rc
= STORE_PROHIBITED_CAUSE
;
442 HELPER(exception_cause_vaddr
)(env
, pc
, rc
, vaddr
);
446 * When data cache is not configured use ATOMCTL bypass field.
447 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
448 * under the Conditional Store Option.
450 if (!xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
451 access
= PAGE_CACHE_BYPASS
;
454 switch (access
& PAGE_CACHE_MASK
) {
461 case PAGE_CACHE_BYPASS
:
462 if ((atomctl
& 0x3) == 0) {
463 HELPER(exception_cause_vaddr
)(env
, pc
,
464 LOAD_STORE_ERROR_CAUSE
, vaddr
);
468 case PAGE_CACHE_ISOLATE
:
469 HELPER(exception_cause_vaddr
)(env
, pc
,
470 LOAD_STORE_ERROR_CAUSE
, vaddr
);
478 void HELPER(wsr_rasid
)(CPUXtensaState
*env
, uint32_t v
)
480 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
482 v
= (v
& 0xffffff00) | 0x1;
483 if (v
!= env
->sregs
[RASID
]) {
484 env
->sregs
[RASID
] = v
;
485 tlb_flush(CPU(cpu
), 1);
489 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
491 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
495 return (tlbcfg
>> 16) & 0x3;
498 return (tlbcfg
>> 20) & 0x1;
501 return (tlbcfg
>> 24) & 0x1;
509 * Get bit mask for the virtual address bits translated by the TLB way
511 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
513 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
514 bool varway56
= dtlb
?
515 env
->config
->dtlb
.varway56
:
516 env
->config
->itlb
.varway56
;
520 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
524 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
531 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
540 return REGION_PAGE_MASK
;
545 * Get bit mask for the 'VPN without index' field.
546 * See ISA, 4.6.5.6, data format for RxTLB0
548 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
552 env
->config
->dtlb
.nrefillentries
:
553 env
->config
->itlb
.nrefillentries
) == 32;
554 return is32
? 0xffff8000 : 0xffffc000;
555 } else if (way
== 4) {
556 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
557 } else if (way
<= 6) {
558 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
559 bool varway56
= dtlb
?
560 env
->config
->dtlb
.varway56
:
561 env
->config
->itlb
.varway56
;
564 return mask
<< (way
== 5 ? 2 : 3);
574 * Split virtual address into VPN (with index) and entry index
575 * for the given TLB way
577 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
578 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
580 bool varway56
= dtlb
?
581 env
->config
->dtlb
.varway56
:
582 env
->config
->itlb
.varway56
;
590 env
->config
->dtlb
.nrefillentries
:
591 env
->config
->itlb
.nrefillentries
) == 32;
592 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
597 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
598 *ei
= (v
>> eibase
) & 0x3;
604 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
605 *ei
= (v
>> eibase
) & 0x3;
607 *ei
= (v
>> 27) & 0x1;
613 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
614 *ei
= (v
>> eibase
) & 0x7;
616 *ei
= (v
>> 28) & 0x1;
625 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
629 * Split TLB address into TLB way, entry index and VPN (with index).
630 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
632 static void split_tlb_entry_spec(CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
633 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
635 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
636 *wi
= v
& (dtlb
? 0xf : 0x7);
637 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
639 *vpn
= v
& REGION_PAGE_MASK
;
641 *ei
= (v
>> 29) & 0x7;
645 static xtensa_tlb_entry
*get_tlb_entry(CPUXtensaState
*env
,
646 uint32_t v
, bool dtlb
, uint32_t *pwi
)
652 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
656 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
659 uint32_t HELPER(rtlb0
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
661 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
663 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
664 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
666 return v
& REGION_PAGE_MASK
;
670 uint32_t HELPER(rtlb1
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
672 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, NULL
);
673 return entry
->paddr
| entry
->attr
;
676 void HELPER(itlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
678 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
680 xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
681 if (entry
->variable
&& entry
->asid
) {
682 tlb_flush_page(CPU(xtensa_env_get_cpu(env
)), entry
->vaddr
);
688 uint32_t HELPER(ptlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
690 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
694 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
698 if (ring
>= xtensa_get_ring(env
)) {
699 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
703 case INST_TLB_MULTI_HIT_CAUSE
:
704 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
705 HELPER(exception_cause_vaddr
)(env
, env
->pc
, res
, v
);
710 return (v
& REGION_PAGE_MASK
) | 0x1;
714 void xtensa_tlb_set_entry_mmu(const CPUXtensaState
*env
,
715 xtensa_tlb_entry
*entry
, bool dtlb
,
716 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
719 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
720 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
721 entry
->attr
= pte
& 0xf;
724 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
725 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
727 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
728 CPUState
*cs
= CPU(cpu
);
729 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
731 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
732 if (entry
->variable
) {
734 tlb_flush_page(cs
, entry
->vaddr
);
736 xtensa_tlb_set_entry_mmu(env
, entry
, dtlb
, wi
, ei
, vpn
, pte
);
737 tlb_flush_page(cs
, entry
->vaddr
);
739 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
740 __func__
, dtlb
, wi
, ei
);
743 tlb_flush_page(cs
, entry
->vaddr
);
744 if (xtensa_option_enabled(env
->config
,
745 XTENSA_OPTION_REGION_TRANSLATION
)) {
746 entry
->paddr
= pte
& REGION_PAGE_MASK
;
748 entry
->attr
= pte
& 0xf;
752 void HELPER(wtlb
)(CPUXtensaState
*env
, uint32_t p
, uint32_t v
, uint32_t dtlb
)
757 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
758 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
762 void HELPER(wsr_ibreakenable
)(CPUXtensaState
*env
, uint32_t v
)
764 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
767 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
768 if (change
& (1 << i
)) {
769 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
772 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
775 void HELPER(wsr_ibreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
777 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
778 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
779 tb_invalidate_virtual_addr(env
, v
);
781 env
->sregs
[IBREAKA
+ i
] = v
;
784 static void set_dbreak(CPUXtensaState
*env
, unsigned i
, uint32_t dbreaka
,
787 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
788 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
789 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
791 if (env
->cpu_watchpoint
[i
]) {
792 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
794 if (dbreakc
& DBREAKC_SB
) {
795 flags
|= BP_MEM_WRITE
;
797 if (dbreakc
& DBREAKC_LB
) {
798 flags
|= BP_MEM_READ
;
800 /* contiguous mask after inversion is one less than some power of 2 */
801 if ((~mask
+ 1) & ~mask
) {
802 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
803 /* cut mask after the first zero bit */
804 mask
= 0xffffffff << (32 - clo32(mask
));
806 if (cpu_watchpoint_insert(cs
, dbreaka
& mask
, ~mask
+ 1,
807 flags
, &env
->cpu_watchpoint
[i
])) {
808 env
->cpu_watchpoint
[i
] = NULL
;
809 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
810 dbreaka
& mask
, ~mask
+ 1);
814 void HELPER(wsr_dbreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
816 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
818 if ((dbreakc
& DBREAKC_SB_LB
) &&
819 env
->sregs
[DBREAKA
+ i
] != v
) {
820 set_dbreak(env
, i
, v
, dbreakc
);
822 env
->sregs
[DBREAKA
+ i
] = v
;
825 void HELPER(wsr_dbreakc
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
827 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
828 if (v
& DBREAKC_SB_LB
) {
829 set_dbreak(env
, i
, env
->sregs
[DBREAKA
+ i
], v
);
831 if (env
->cpu_watchpoint
[i
]) {
832 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
834 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
835 env
->cpu_watchpoint
[i
] = NULL
;
839 env
->sregs
[DBREAKC
+ i
] = v
;
842 void HELPER(wur_fcr
)(CPUXtensaState
*env
, uint32_t v
)
844 static const int rounding_mode
[] = {
845 float_round_nearest_even
,
851 env
->uregs
[FCR
] = v
& 0xfffff07f;
852 set_float_rounding_mode(rounding_mode
[v
& 3], &env
->fp_status
);
855 float32
HELPER(abs_s
)(float32 v
)
857 return float32_abs(v
);
860 float32
HELPER(neg_s
)(float32 v
)
862 return float32_chs(v
);
865 float32
HELPER(add_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
867 return float32_add(a
, b
, &env
->fp_status
);
870 float32
HELPER(sub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
872 return float32_sub(a
, b
, &env
->fp_status
);
875 float32
HELPER(mul_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
877 return float32_mul(a
, b
, &env
->fp_status
);
880 float32
HELPER(madd_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
882 return float32_muladd(b
, c
, a
, 0,
886 float32
HELPER(msub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
888 return float32_muladd(b
, c
, a
, float_muladd_negate_product
,
892 uint32_t HELPER(ftoi
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
894 float_status fp_status
= {0};
896 set_float_rounding_mode(rounding_mode
, &fp_status
);
897 return float32_to_int32(
898 float32_scalbn(v
, scale
, &fp_status
), &fp_status
);
901 uint32_t HELPER(ftoui
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
903 float_status fp_status
= {0};
906 set_float_rounding_mode(rounding_mode
, &fp_status
);
908 res
= float32_scalbn(v
, scale
, &fp_status
);
910 if (float32_is_neg(v
) && !float32_is_any_nan(v
)) {
911 return float32_to_int32(res
, &fp_status
);
913 return float32_to_uint32(res
, &fp_status
);
917 float32
HELPER(itof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
919 return float32_scalbn(int32_to_float32(v
, &env
->fp_status
),
920 (int32_t)scale
, &env
->fp_status
);
923 float32
HELPER(uitof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
925 return float32_scalbn(uint32_to_float32(v
, &env
->fp_status
),
926 (int32_t)scale
, &env
->fp_status
);
929 static inline void set_br(CPUXtensaState
*env
, bool v
, uint32_t br
)
932 env
->sregs
[BR
] |= br
;
934 env
->sregs
[BR
] &= ~br
;
938 void HELPER(un_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
940 set_br(env
, float32_unordered_quiet(a
, b
, &env
->fp_status
), br
);
943 void HELPER(oeq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
945 set_br(env
, float32_eq_quiet(a
, b
, &env
->fp_status
), br
);
948 void HELPER(ueq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
950 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
951 set_br(env
, v
== float_relation_equal
|| v
== float_relation_unordered
, br
);
954 void HELPER(olt_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
956 set_br(env
, float32_lt_quiet(a
, b
, &env
->fp_status
), br
);
959 void HELPER(ult_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
961 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
962 set_br(env
, v
== float_relation_less
|| v
== float_relation_unordered
, br
);
965 void HELPER(ole_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
967 set_br(env
, float32_le_quiet(a
, b
, &env
->fp_status
), br
);
970 void HELPER(ule_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
972 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
973 set_br(env
, v
!= float_relation_greater
, br
);