2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
27 static inline void set_feature(uint64_t *features
, int feature
)
29 *features
|= 1ULL << feature
;
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass
*ahcc
)
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
39 int i
, ret
, fdarray
[3];
40 uint32_t midr
, id_pfr0
, id_isar0
, mvfr1
;
41 uint64_t features
= 0;
42 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
43 * we know these will only support creating one kind of guest CPU,
44 * which is its preferred CPU type.
46 static const uint32_t cpus_to_try
[] = {
47 QEMU_KVM_ARM_TARGET_CORTEX_A15
,
48 QEMU_KVM_ARM_TARGET_NONE
50 struct kvm_vcpu_init init
;
51 struct kvm_one_reg idregs
[] = {
53 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
54 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
55 .addr
= (uintptr_t)&midr
,
58 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
59 | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
60 .addr
= (uintptr_t)&id_pfr0
,
63 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
64 | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
65 .addr
= (uintptr_t)&id_isar0
,
68 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
69 | KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR1
,
70 .addr
= (uintptr_t)&mvfr1
,
74 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
78 ahcc
->target
= init
.target
;
80 /* This is not strictly blessed by the device tree binding docs yet,
81 * but in practice the kernel does not care about this string so
82 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
84 ahcc
->dtb_compatible
= "arm,arm-v7";
86 for (i
= 0; i
< ARRAY_SIZE(idregs
); i
++) {
87 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, &idregs
[i
]);
93 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
99 /* Now we've retrieved all the register information we can
100 * set the feature bits based on the ID register fields.
101 * We can assume any KVM supporting CPU is at least a v7
102 * with VFPv3, LPAE and the generic timers; this in turn implies
103 * most of the other feature bits, but a few must be tested.
105 set_feature(&features
, ARM_FEATURE_V7
);
106 set_feature(&features
, ARM_FEATURE_VFP3
);
107 set_feature(&features
, ARM_FEATURE_LPAE
);
108 set_feature(&features
, ARM_FEATURE_GENERIC_TIMER
);
110 switch (extract32(id_isar0
, 24, 4)) {
112 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
115 set_feature(&features
, ARM_FEATURE_ARM_DIV
);
116 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
122 if (extract32(id_pfr0
, 12, 4) == 1) {
123 set_feature(&features
, ARM_FEATURE_THUMB2EE
);
125 if (extract32(mvfr1
, 20, 4) == 1) {
126 set_feature(&features
, ARM_FEATURE_VFP_FP16
);
128 if (extract32(mvfr1
, 12, 4) == 1) {
129 set_feature(&features
, ARM_FEATURE_NEON
);
131 if (extract32(mvfr1
, 28, 4) == 1) {
132 /* FMAC support implies VFPv4 */
133 set_feature(&features
, ARM_FEATURE_VFP4
);
136 ahcc
->features
= features
;
141 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
143 /* Return true if the regidx is a register we should synchronize
144 * via the cpreg_tuples array (ie is not a core reg we sync by
145 * hand in kvm_arch_get/put_registers())
147 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
148 case KVM_REG_ARM_CORE
:
149 case KVM_REG_ARM_VFP
:
156 int kvm_arch_init_vcpu(CPUState
*cs
)
160 struct kvm_one_reg r
;
161 ARMCPU
*cpu
= ARM_CPU(cs
);
163 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
) {
164 fprintf(stderr
, "KVM is not supported for this guest CPU type\n");
168 /* Determine init features for this CPU */
169 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
170 if (cpu
->start_powered_off
) {
171 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
173 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
174 cpu
->psci_version
= 2;
175 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
178 /* Do KVM_ARM_VCPU_INIT ioctl */
179 ret
= kvm_arm_vcpu_init(cs
);
184 /* Query the kernel to make sure it supports 32 VFP
185 * registers: QEMU's "cortex-a15" CPU is always a
186 * VFP-D32 core. The simplest way to do this is just
187 * to attempt to read register d31.
189 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
190 r
.addr
= (uintptr_t)(&v
);
191 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
192 if (ret
== -ENOENT
) {
196 return kvm_arm_init_cpreg_list(cpu
);
204 #define COREREG(KERNELNAME, QEMUFIELD) \
206 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
207 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
208 offsetof(CPUARMState, QEMUFIELD) \
211 #define VFPSYSREG(R) \
213 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
214 KVM_REG_ARM_VFP_##R, \
215 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
218 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
219 #define COREREG64(KERNELNAME, QEMUFIELD) \
221 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
222 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
223 offsetoflow32(CPUARMState, QEMUFIELD) \
226 static const Reg regs
[] = {
227 /* R0_usr .. R14_usr */
228 COREREG(usr_regs
.uregs
[0], regs
[0]),
229 COREREG(usr_regs
.uregs
[1], regs
[1]),
230 COREREG(usr_regs
.uregs
[2], regs
[2]),
231 COREREG(usr_regs
.uregs
[3], regs
[3]),
232 COREREG(usr_regs
.uregs
[4], regs
[4]),
233 COREREG(usr_regs
.uregs
[5], regs
[5]),
234 COREREG(usr_regs
.uregs
[6], regs
[6]),
235 COREREG(usr_regs
.uregs
[7], regs
[7]),
236 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
237 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
238 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
239 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
240 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
241 COREREG(usr_regs
.uregs
[13], banked_r13
[0]),
242 COREREG(usr_regs
.uregs
[14], banked_r14
[0]),
243 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
244 COREREG(svc_regs
[0], banked_r13
[1]),
245 COREREG(svc_regs
[1], banked_r14
[1]),
246 COREREG64(svc_regs
[2], banked_spsr
[1]),
247 COREREG(abt_regs
[0], banked_r13
[2]),
248 COREREG(abt_regs
[1], banked_r14
[2]),
249 COREREG64(abt_regs
[2], banked_spsr
[2]),
250 COREREG(und_regs
[0], banked_r13
[3]),
251 COREREG(und_regs
[1], banked_r14
[3]),
252 COREREG64(und_regs
[2], banked_spsr
[3]),
253 COREREG(irq_regs
[0], banked_r13
[4]),
254 COREREG(irq_regs
[1], banked_r14
[4]),
255 COREREG64(irq_regs
[2], banked_spsr
[4]),
256 /* R8_fiq .. R14_fiq and SPSR_fiq */
257 COREREG(fiq_regs
[0], fiq_regs
[0]),
258 COREREG(fiq_regs
[1], fiq_regs
[1]),
259 COREREG(fiq_regs
[2], fiq_regs
[2]),
260 COREREG(fiq_regs
[3], fiq_regs
[3]),
261 COREREG(fiq_regs
[4], fiq_regs
[4]),
262 COREREG(fiq_regs
[5], banked_r13
[5]),
263 COREREG(fiq_regs
[6], banked_r14
[5]),
264 COREREG64(fiq_regs
[7], banked_spsr
[5]),
266 COREREG(usr_regs
.uregs
[15], regs
[15]),
267 /* VFP system registers */
276 int kvm_arch_put_registers(CPUState
*cs
, int level
)
278 ARMCPU
*cpu
= ARM_CPU(cs
);
279 CPUARMState
*env
= &cpu
->env
;
280 struct kvm_one_reg r
;
283 uint32_t cpsr
, fpscr
;
285 /* Make sure the banked regs are properly set */
286 mode
= env
->uncached_cpsr
& CPSR_M
;
287 bn
= bank_number(mode
);
288 if (mode
== ARM_CPU_MODE_FIQ
) {
289 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
291 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
293 env
->banked_r13
[bn
] = env
->regs
[13];
294 env
->banked_r14
[bn
] = env
->regs
[14];
295 env
->banked_spsr
[bn
] = env
->spsr
;
297 /* Now we can safely copy stuff down to the kernel */
298 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
300 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
301 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
307 /* Special cases which aren't a single CPUARMState field */
308 cpsr
= cpsr_read(env
);
309 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
310 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
311 r
.addr
= (uintptr_t)(&cpsr
);
312 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
318 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
319 for (i
= 0; i
< 32; i
++) {
320 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
321 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
328 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
329 KVM_REG_ARM_VFP_FPSCR
;
330 fpscr
= vfp_get_fpscr(env
);
331 r
.addr
= (uintptr_t)&fpscr
;
332 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
337 /* Note that we do not call write_cpustate_to_list()
338 * here, so we are only writing the tuple list back to
339 * KVM. This is safe because nothing can change the
340 * CPUARMState cp15 fields (in particular gdb accesses cannot)
341 * and so there are no changes to sync. In fact syncing would
342 * be wrong at this point: for a constant register where TCG and
343 * KVM disagree about its value, the preceding write_list_to_cpustate()
344 * would not have had any effect on the CPUARMState value (since the
345 * register is read-only), and a write_cpustate_to_list() here would
346 * then try to write the TCG value back into KVM -- this would either
347 * fail or incorrectly change the value the guest sees.
349 * If we ever want to allow the user to modify cp15 registers via
350 * the gdb stub, we would need to be more clever here (for instance
351 * tracking the set of registers kvm_arch_get_registers() successfully
352 * managed to update the CPUARMState with, and only allowing those
353 * to be written back up into the kernel).
355 if (!write_list_to_kvmstate(cpu
)) {
362 int kvm_arch_get_registers(CPUState
*cs
)
364 ARMCPU
*cpu
= ARM_CPU(cs
);
365 CPUARMState
*env
= &cpu
->env
;
366 struct kvm_one_reg r
;
369 uint32_t cpsr
, fpscr
;
371 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
373 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
374 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
380 /* Special cases which aren't a single CPUARMState field */
381 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
382 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
383 r
.addr
= (uintptr_t)(&cpsr
);
384 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
388 cpsr_write(env
, cpsr
, 0xffffffff);
390 /* Make sure the current mode regs are properly set */
391 mode
= env
->uncached_cpsr
& CPSR_M
;
392 bn
= bank_number(mode
);
393 if (mode
== ARM_CPU_MODE_FIQ
) {
394 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
396 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
398 env
->regs
[13] = env
->banked_r13
[bn
];
399 env
->regs
[14] = env
->banked_r14
[bn
];
400 env
->spsr
= env
->banked_spsr
[bn
];
403 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
404 for (i
= 0; i
< 32; i
++) {
405 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
406 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
413 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
414 KVM_REG_ARM_VFP_FPSCR
;
415 r
.addr
= (uintptr_t)&fpscr
;
416 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
420 vfp_set_fpscr(env
, fpscr
);
422 if (!write_kvmstate_to_list(cpu
)) {
425 /* Note that it's OK to have registers which aren't in CPUState,
426 * so we can ignore a failure return here.
428 write_list_to_cpustate(cpu
);