target/arm/cpu64: max cpu: Introduce sve<N> properties
[qemu/ar7.git] / target / arm / helper.c
blobbe67e2c66d6700f2fce0f289c8cbd547d5cbb64d
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #endif
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
39 #ifndef CONFIG_USER_ONLY
41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
42 MMUAccessType access_type, ARMMMUIdx mmu_idx,
43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
44 target_ulong *page_size_ptr,
45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 #endif
48 static void switch_mode(CPUARMState *env, int mode);
50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
52 int nregs;
54 /* VFP data registers are always little-endian. */
55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56 if (reg < nregs) {
57 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
58 return 8;
60 if (arm_feature(env, ARM_FEATURE_NEON)) {
61 /* Aliases for Q regs. */
62 nregs += 16;
63 if (reg < nregs) {
64 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65 stq_le_p(buf, q[0]);
66 stq_le_p(buf + 8, q[1]);
67 return 16;
70 switch (reg - nregs) {
71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
75 return 0;
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
80 int nregs;
82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83 if (reg < nregs) {
84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85 return 8;
87 if (arm_feature(env, ARM_FEATURE_NEON)) {
88 nregs += 16;
89 if (reg < nregs) {
90 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91 q[0] = ldq_le_p(buf);
92 q[1] = ldq_le_p(buf + 8);
93 return 16;
96 switch (reg - nregs) {
97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
101 return 0;
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
106 switch (reg) {
107 case 0 ... 31:
108 /* 128 bit FP register */
110 uint64_t *q = aa64_vfp_qreg(env, reg);
111 stq_le_p(buf, q[0]);
112 stq_le_p(buf + 8, q[1]);
113 return 16;
115 case 32:
116 /* FPSR */
117 stl_p(buf, vfp_get_fpsr(env));
118 return 4;
119 case 33:
120 /* FPCR */
121 stl_p(buf, vfp_get_fpcr(env));
122 return 4;
123 default:
124 return 0;
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
154 assert(ri->fieldoffset);
155 if (cpreg_field_is_64bit(ri)) {
156 return CPREG_FIELD64(env, ri);
157 } else {
158 return CPREG_FIELD32(env, ri);
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
175 return (char *)env + ri->fieldoffset;
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri->type & ARM_CP_CONST) {
182 return ri->resetvalue;
183 } else if (ri->raw_readfn) {
184 return ri->raw_readfn(env, ri);
185 } else if (ri->readfn) {
186 return ri->readfn(env, ri);
187 } else {
188 return raw_read(env, ri);
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193 uint64_t v)
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
200 if (ri->type & ARM_CP_CONST) {
201 return;
202 } else if (ri->raw_writefn) {
203 ri->raw_writefn(env, ri, v);
204 } else if (ri->writefn) {
205 ri->writefn(env, ri, v);
206 } else {
207 raw_write(env, ri, v);
211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
213 ARMCPU *cpu = env_archcpu(env);
214 const ARMCPRegInfo *ri;
215 uint32_t key;
217 key = cpu->dyn_xml.cpregs_keys[reg];
218 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219 if (ri) {
220 if (cpreg_field_is_64bit(ri)) {
221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222 } else {
223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
226 return 0;
229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
231 return 0;
234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
236 /* Return true if the regdef would cause an assertion if you called
237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238 * program bug for it not to have the NO_RAW flag).
239 * NB that returning false here doesn't necessarily mean that calling
240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241 * read/write access functions which are safe for raw use" from "has
242 * read/write access functions which have side effects but has forgotten
243 * to provide raw access functions".
244 * The tests here line up with the conditions in read/write_raw_cp_reg()
245 * and assertions in raw_read()/raw_write().
247 if ((ri->type & ARM_CP_CONST) ||
248 ri->fieldoffset ||
249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250 return false;
252 return true;
255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
257 /* Write the coprocessor state from cpu->env to the (index,value) list. */
258 int i;
259 bool ok = true;
261 for (i = 0; i < cpu->cpreg_array_len; i++) {
262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263 const ARMCPRegInfo *ri;
264 uint64_t newval;
266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
267 if (!ri) {
268 ok = false;
269 continue;
271 if (ri->type & ARM_CP_NO_RAW) {
272 continue;
275 newval = read_raw_cp_reg(&cpu->env, ri);
276 if (kvm_sync) {
278 * Only sync if the previous list->cpustate sync succeeded.
279 * Rather than tracking the success/failure state for every
280 * item in the list, we just recheck "does the raw write we must
281 * have made in write_list_to_cpustate() read back OK" here.
283 uint64_t oldval = cpu->cpreg_values[i];
285 if (oldval == newval) {
286 continue;
289 write_raw_cp_reg(&cpu->env, ri, oldval);
290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291 continue;
294 write_raw_cp_reg(&cpu->env, ri, newval);
296 cpu->cpreg_values[i] = newval;
298 return ok;
301 bool write_list_to_cpustate(ARMCPU *cpu)
303 int i;
304 bool ok = true;
306 for (i = 0; i < cpu->cpreg_array_len; i++) {
307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308 uint64_t v = cpu->cpreg_values[i];
309 const ARMCPRegInfo *ri;
311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312 if (!ri) {
313 ok = false;
314 continue;
316 if (ri->type & ARM_CP_NO_RAW) {
317 continue;
319 /* Write value and confirm it reads back as written
320 * (to catch read-only registers and partially read-only
321 * registers where the incoming migration value doesn't match)
323 write_raw_cp_reg(&cpu->env, ri, v);
324 if (read_raw_cp_reg(&cpu->env, ri) != v) {
325 ok = false;
328 return ok;
331 static void add_cpreg_to_list(gpointer key, gpointer opaque)
333 ARMCPU *cpu = opaque;
334 uint64_t regidx;
335 const ARMCPRegInfo *ri;
337 regidx = *(uint32_t *)key;
338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342 /* The value array need not be initialized at this point */
343 cpu->cpreg_array_len++;
347 static void count_cpreg(gpointer key, gpointer opaque)
349 ARMCPU *cpu = opaque;
350 uint64_t regidx;
351 const ARMCPRegInfo *ri;
353 regidx = *(uint32_t *)key;
354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
357 cpu->cpreg_array_len++;
361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
366 if (aidx > bidx) {
367 return 1;
369 if (aidx < bidx) {
370 return -1;
372 return 0;
375 void init_cpreg_list(ARMCPU *cpu)
377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378 * Note that we require cpreg_tuples[] to be sorted by key ID.
380 GList *keys;
381 int arraylen;
383 keys = g_hash_table_get_keys(cpu->cp_regs);
384 keys = g_list_sort(keys, cpreg_key_compare);
386 cpu->cpreg_array_len = 0;
388 g_list_foreach(keys, count_cpreg, cpu);
390 arraylen = cpu->cpreg_array_len;
391 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392 cpu->cpreg_values = g_new(uint64_t, arraylen);
393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396 cpu->cpreg_array_len = 0;
398 g_list_foreach(keys, add_cpreg_to_list, cpu);
400 assert(cpu->cpreg_array_len == arraylen);
402 g_list_free(keys);
406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
409 * access_el3_aa32ns: Used to check AArch32 register views.
410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
412 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
413 const ARMCPRegInfo *ri,
414 bool isread)
416 bool secure = arm_is_secure_below_el3(env);
418 assert(!arm_el_is_aa64(env, 3));
419 if (secure) {
420 return CP_ACCESS_TRAP_UNCATEGORIZED;
422 return CP_ACCESS_OK;
425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
426 const ARMCPRegInfo *ri,
427 bool isread)
429 if (!arm_el_is_aa64(env, 3)) {
430 return access_el3_aa32ns(env, ri, isread);
432 return CP_ACCESS_OK;
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438 * We assume that the .access field is set to PL1_RW.
440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
441 const ARMCPRegInfo *ri,
442 bool isread)
444 if (arm_current_el(env) == 3) {
445 return CP_ACCESS_OK;
447 if (arm_is_secure_below_el3(env)) {
448 return CP_ACCESS_TRAP_EL3;
450 /* This will be EL1 NS and EL2 NS, which just UNDEF */
451 return CP_ACCESS_TRAP_UNCATEGORIZED;
454 /* Check for traps to "powerdown debug" registers, which are controlled
455 * by MDCR.TDOSA
457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458 bool isread)
460 int el = arm_current_el(env);
461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462 (env->cp15.mdcr_el2 & MDCR_TDE) ||
463 (arm_hcr_el2_eff(env) & HCR_TGE);
465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
466 return CP_ACCESS_TRAP_EL2;
468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469 return CP_ACCESS_TRAP_EL3;
471 return CP_ACCESS_OK;
474 /* Check for traps to "debug ROM" registers, which are controlled
475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478 bool isread)
480 int el = arm_current_el(env);
481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482 (env->cp15.mdcr_el2 & MDCR_TDE) ||
483 (arm_hcr_el2_eff(env) & HCR_TGE);
485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
486 return CP_ACCESS_TRAP_EL2;
488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489 return CP_ACCESS_TRAP_EL3;
491 return CP_ACCESS_OK;
494 /* Check for traps to general debug registers, which are controlled
495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498 bool isread)
500 int el = arm_current_el(env);
501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502 (env->cp15.mdcr_el2 & MDCR_TDE) ||
503 (arm_hcr_el2_eff(env) & HCR_TGE);
505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
506 return CP_ACCESS_TRAP_EL2;
508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509 return CP_ACCESS_TRAP_EL3;
511 return CP_ACCESS_OK;
514 /* Check for traps to performance monitor registers, which are controlled
515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518 bool isread)
520 int el = arm_current_el(env);
522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523 && !arm_is_secure_below_el3(env)) {
524 return CP_ACCESS_TRAP_EL2;
526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527 return CP_ACCESS_TRAP_EL3;
529 return CP_ACCESS_OK;
532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
534 ARMCPU *cpu = env_archcpu(env);
536 raw_write(env, ri, value);
537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
542 ARMCPU *cpu = env_archcpu(env);
544 if (raw_read(env, ri) != value) {
545 /* Unlike real hardware the qemu TLB uses virtual addresses,
546 * not modified virtual addresses, so this causes a TLB flush.
548 tlb_flush(CPU(cpu));
549 raw_write(env, ri, value);
553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 ARMCPU *cpu = env_archcpu(env);
558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
559 && !extended_addresses_enabled(env)) {
560 /* For VMSA (when not using the LPAE long descriptor page table
561 * format) this register includes the ASID, so do a TLB flush.
562 * For PMSA it is purely a process ID and no action is needed.
564 tlb_flush(CPU(cpu));
566 raw_write(env, ri, value);
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
573 CPUState *cs = env_cpu(env);
575 tlb_flush_all_cpus_synced(cs);
578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_all_cpus_synced(cs);
586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
589 CPUState *cs = env_cpu(env);
591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
597 CPUState *cs = env_cpu(env);
599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
603 * Non-IS variants of TLB operations are upgraded to
604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605 * force broadcast of these operations.
607 static bool tlb_force_broadcast(CPUARMState *env)
609 return (env->cp15.hcr_el2 & HCR_FB) &&
610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value)
616 /* Invalidate all (TLBIALL) */
617 ARMCPU *cpu = env_archcpu(env);
619 if (tlb_force_broadcast(env)) {
620 tlbiall_is_write(env, NULL, value);
621 return;
624 tlb_flush(CPU(cpu));
627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631 ARMCPU *cpu = env_archcpu(env);
633 if (tlb_force_broadcast(env)) {
634 tlbimva_is_write(env, NULL, value);
635 return;
638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
642 uint64_t value)
644 /* Invalidate by ASID (TLBIASID) */
645 ARMCPU *cpu = env_archcpu(env);
647 if (tlb_force_broadcast(env)) {
648 tlbiasid_is_write(env, NULL, value);
649 return;
652 tlb_flush(CPU(cpu));
655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
659 ARMCPU *cpu = env_archcpu(env);
661 if (tlb_force_broadcast(env)) {
662 tlbimvaa_is_write(env, NULL, value);
663 return;
666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
670 uint64_t value)
672 CPUState *cs = env_cpu(env);
674 tlb_flush_by_mmuidx(cs,
675 ARMMMUIdxBit_S12NSE1 |
676 ARMMMUIdxBit_S12NSE0 |
677 ARMMMUIdxBit_S2NS);
680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
683 CPUState *cs = env_cpu(env);
685 tlb_flush_by_mmuidx_all_cpus_synced(cs,
686 ARMMMUIdxBit_S12NSE1 |
687 ARMMMUIdxBit_S12NSE0 |
688 ARMMMUIdxBit_S2NS);
691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 uint64_t value)
694 /* Invalidate by IPA. This has to invalidate any structures that
695 * contain only stage 2 translation information, but does not need
696 * to apply to structures that contain combined stage 1 and stage 2
697 * translation information.
698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
700 CPUState *cs = env_cpu(env);
701 uint64_t pageaddr;
703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
704 return;
707 pageaddr = sextract64(value << 12, 0, 40);
709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713 uint64_t value)
715 CPUState *cs = env_cpu(env);
716 uint64_t pageaddr;
718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
719 return;
722 pageaddr = sextract64(value << 12, 0, 40);
724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
725 ARMMMUIdxBit_S2NS);
728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
729 uint64_t value)
731 CPUState *cs = env_cpu(env);
733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737 uint64_t value)
739 CPUState *cs = env_cpu(env);
741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
745 uint64_t value)
747 CPUState *cs = env_cpu(env);
748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
756 CPUState *cs = env_cpu(env);
757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
760 ARMMMUIdxBit_S1E2);
763 static const ARMCPRegInfo cp_reginfo[] = {
764 /* Define the secure and non-secure FCSE identifier CP registers
765 * separately because there is no secure bank in V8 (no _EL3). This allows
766 * the secure register to be properly reset and migrated. There is also no
767 * v8 EL1 version of the register so the non-secure instance stands alone.
769 { .name = "FCSEIDR",
770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
774 { .name = "FCSEIDR_S",
775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
779 /* Define the secure and non-secure context identifier CP registers
780 * separately because there is no secure bank in V8 (no _EL3). This allows
781 * the secure register to be properly reset and migrated. In the
782 * non-secure case, the 32-bit register will have reset and migration
783 * disabled during registration as it is handled by the 64-bit instance.
785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
795 REGINFO_SENTINEL
798 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
799 /* NB: Some of these registers exist in v8 but with more precise
800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
802 /* MMU Domain access control / MPU write buffer control */
803 { .name = "DACR",
804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
805 .access = PL1_RW, .resetvalue = 0,
806 .writefn = dacr_write, .raw_writefn = raw_write,
807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
808 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810 * For v6 and v5, these mappings are overly broad.
812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
820 /* Cache maintenance ops; some of this space may be overridden later. */
821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
824 REGINFO_SENTINEL
827 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
828 /* Not all pre-v6 cores implemented this WFI, so this is slightly
829 * over-broad.
831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
832 .access = PL1_W, .type = ARM_CP_WFI },
833 REGINFO_SENTINEL
836 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838 * is UNPREDICTABLE; we choose to NOP as most implementations do).
840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
841 .access = PL1_W, .type = ARM_CP_WFI },
842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844 * OMAPCP will override this space.
846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
848 .resetvalue = 0 },
849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
851 .resetvalue = 0 },
852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
855 .resetvalue = 0 },
856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857 * implementing it as RAZ means the "debug architecture version" bits
858 * will read as a reserved value, which should cause Linux to not try
859 * to use the debug hardware.
861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
863 /* MMU TLB control. Note that the wildcarding means we cover not just
864 * the unified TLB ops but also the dside/iside/inner-shareable variants.
866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
868 .type = ARM_CP_NO_RAW },
869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
871 .type = ARM_CP_NO_RAW },
872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
874 .type = ARM_CP_NO_RAW },
875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
877 .type = ARM_CP_NO_RAW },
878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
882 REGINFO_SENTINEL
885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
886 uint64_t value)
888 uint32_t mask = 0;
890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891 if (!arm_feature(env, ARM_FEATURE_V8)) {
892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
896 if (arm_feature(env, ARM_FEATURE_VFP)) {
897 /* VFP coprocessor: cp10 & cp11 [23:20] */
898 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
900 if (!arm_feature(env, ARM_FEATURE_NEON)) {
901 /* ASEDIS [31] bit is RAO/WI */
902 value |= (1 << 31);
905 /* VFPv3 and upwards with NEON implement 32 double precision
906 * registers (D0-D31).
908 if (!arm_feature(env, ARM_FEATURE_NEON) ||
909 !arm_feature(env, ARM_FEATURE_VFP3)) {
910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911 value |= (1 << 30);
914 value &= mask;
918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923 value &= ~(0xf << 20);
924 value |= env->cp15.cpacr_el1 & (0xf << 20);
927 env->cp15.cpacr_el1 = value;
930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
936 uint64_t value = env->cp15.cpacr_el1;
938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940 value &= ~(0xf << 20);
942 return value;
946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
948 /* Call cpacr_write() so that we reset with the correct RAO bits set
949 * for our CPU features.
951 cpacr_write(env, ri, 0);
954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955 bool isread)
957 if (arm_feature(env, ARM_FEATURE_V8)) {
958 /* Check if CPACR accesses are to be trapped to EL2 */
959 if (arm_current_el(env) == 1 &&
960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961 return CP_ACCESS_TRAP_EL2;
962 /* Check if CPACR accesses are to be trapped to EL3 */
963 } else if (arm_current_el(env) < 3 &&
964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965 return CP_ACCESS_TRAP_EL3;
969 return CP_ACCESS_OK;
972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973 bool isread)
975 /* Check if CPTR accesses are set to trap to EL3 */
976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977 return CP_ACCESS_TRAP_EL3;
980 return CP_ACCESS_OK;
983 static const ARMCPRegInfo v6_cp_reginfo[] = {
984 /* prefetch by MVA in v6, NOP in v7 */
985 { .name = "MVA_prefetch",
986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987 .access = PL1_W, .type = ARM_CP_NOP },
988 /* We need to break the TB after ISB to execute self-modifying code
989 * correctly and also to take any pending interrupts immediately.
990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
995 .access = PL0_W, .type = ARM_CP_NOP },
996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
997 .access = PL0_W, .type = ARM_CP_NOP },
998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
999 .access = PL1_RW,
1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001 offsetof(CPUARMState, cp15.ifar_ns) },
1002 .resetvalue = 0, },
1003 /* Watchpoint Fault Address Register : should actually only be present
1004 * for 1136, 1176, 11MPCore.
1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012 REGINFO_SENTINEL
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK 0xf800
1017 #define PMCRN_SHIFT 11
1018 #define PMCRLC 0x40
1019 #define PMCRDP 0x10
1020 #define PMCRD 0x8
1021 #define PMCRC 0x4
1022 #define PMCRP 0x2
1023 #define PMCRE 0x1
1025 #define PMXEVTYPER_P 0x80000000
1026 #define PMXEVTYPER_U 0x40000000
1027 #define PMXEVTYPER_NSK 0x20000000
1028 #define PMXEVTYPER_NSU 0x10000000
1029 #define PMXEVTYPER_NSH 0x08000000
1030 #define PMXEVTYPER_M 0x04000000
1031 #define PMXEVTYPER_MT 0x02000000
1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035 PMXEVTYPER_M | PMXEVTYPER_MT | \
1036 PMXEVTYPER_EVTCOUNT)
1038 #define PMCCFILTR 0xf8000000
1039 #define PMCCFILTR_M PMXEVTYPER_M
1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1042 static inline uint32_t pmu_num_counters(CPUARMState *env)
1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1053 typedef struct pm_event {
1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056 bool (*supported)(CPUARMState *);
1058 * Retrieve the current count of the underlying event. The programmed
1059 * counters hold a difference from the return value from this function
1061 uint64_t (*get_count)(CPUARMState *);
1063 * Return how many nanoseconds it will take (at a minimum) for count events
1064 * to occur. A negative value indicates the counter will never overflow, or
1065 * that the counter has otherwise arranged for the overflow bit to be set
1066 * and the PMU interrupt to be raised on overflow.
1068 int64_t (*ns_per_count)(uint64_t);
1069 } pm_event;
1071 static bool event_always_supported(CPUARMState *env)
1073 return true;
1076 static uint64_t swinc_get_count(CPUARMState *env)
1079 * SW_INCR events are written directly to the pmevcntr's by writes to
1080 * PMSWINC, so there is no underlying count maintained by the PMU itself
1082 return 0;
1085 static int64_t swinc_ns_per(uint64_t ignored)
1087 return -1;
1091 * Return the underlying cycle count for the PMU cycle counters. If we're in
1092 * usermode, simply return 0.
1094 static uint64_t cycles_get_count(CPUARMState *env)
1096 #ifndef CONFIG_USER_ONLY
1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1099 #else
1100 return cpu_get_host_ticks();
1101 #endif
1104 #ifndef CONFIG_USER_ONLY
1105 static int64_t cycles_ns_per(uint64_t cycles)
1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1110 static bool instructions_supported(CPUARMState *env)
1112 return use_icount == 1 /* Precise instruction counting */;
1115 static uint64_t instructions_get_count(CPUARMState *env)
1117 return (uint64_t)cpu_get_icount_raw();
1120 static int64_t instructions_ns_per(uint64_t icount)
1122 return cpu_icount_to_ns((int64_t)icount);
1124 #endif
1126 static const pm_event pm_events[] = {
1127 { .number = 0x000, /* SW_INCR */
1128 .supported = event_always_supported,
1129 .get_count = swinc_get_count,
1130 .ns_per_count = swinc_ns_per,
1132 #ifndef CONFIG_USER_ONLY
1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134 .supported = instructions_supported,
1135 .get_count = instructions_get_count,
1136 .ns_per_count = instructions_ns_per,
1138 { .number = 0x011, /* CPU_CYCLES, Cycle */
1139 .supported = event_always_supported,
1140 .get_count = cycles_get_count,
1141 .ns_per_count = cycles_ns_per,
1143 #endif
1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148 * events (i.e. the statistical profiling extension), this implementation
1149 * should first be updated to something sparse instead of the current
1150 * supported_event_map[] array.
1152 #define MAX_EVENT_ID 0x11
1153 #define UNSUPPORTED_EVENT UINT16_MAX
1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158 * of ARM event numbers to indices in our pm_events array.
1160 * Note: Events in the 0x40XX range are not currently supported.
1162 void pmu_init(ARMCPU *cpu)
1164 unsigned int i;
1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1168 * events to them
1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1171 supported_event_map[i] = UNSUPPORTED_EVENT;
1173 cpu->pmceid0 = 0;
1174 cpu->pmceid1 = 0;
1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1177 const pm_event *cnt = &pm_events[i];
1178 assert(cnt->number <= MAX_EVENT_ID);
1179 /* We do not currently support events in the 0x40xx range */
1180 assert(cnt->number <= 0x3f);
1182 if (cnt->supported(&cpu->env)) {
1183 supported_event_map[cnt->number] = i;
1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1185 if (cnt->number & 0x20) {
1186 cpu->pmceid1 |= event_mask;
1187 } else {
1188 cpu->pmceid0 |= event_mask;
1195 * Check at runtime whether a PMU event is supported for the current machine
1197 static bool event_supported(uint16_t number)
1199 if (number > MAX_EVENT_ID) {
1200 return false;
1202 return supported_event_map[number] != UNSUPPORTED_EVENT;
1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1206 bool isread)
1208 /* Performance monitor registers user accessibility is controlled
1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210 * trapping to EL2 or EL3 for other accesses.
1212 int el = arm_current_el(env);
1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1215 return CP_ACCESS_TRAP;
1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1218 && !arm_is_secure_below_el3(env)) {
1219 return CP_ACCESS_TRAP_EL2;
1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1222 return CP_ACCESS_TRAP_EL3;
1225 return CP_ACCESS_OK;
1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1229 const ARMCPRegInfo *ri,
1230 bool isread)
1232 /* ER: event counter read trap control */
1233 if (arm_feature(env, ARM_FEATURE_V8)
1234 && arm_current_el(env) == 0
1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1236 && isread) {
1237 return CP_ACCESS_OK;
1240 return pmreg_access(env, ri, isread);
1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1244 const ARMCPRegInfo *ri,
1245 bool isread)
1247 /* SW: software increment write trap control */
1248 if (arm_feature(env, ARM_FEATURE_V8)
1249 && arm_current_el(env) == 0
1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1251 && !isread) {
1252 return CP_ACCESS_OK;
1255 return pmreg_access(env, ri, isread);
1258 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1259 const ARMCPRegInfo *ri,
1260 bool isread)
1262 /* ER: event counter read trap control */
1263 if (arm_feature(env, ARM_FEATURE_V8)
1264 && arm_current_el(env) == 0
1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1266 return CP_ACCESS_OK;
1269 return pmreg_access(env, ri, isread);
1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1273 const ARMCPRegInfo *ri,
1274 bool isread)
1276 /* CR: cycle counter read trap control */
1277 if (arm_feature(env, ARM_FEATURE_V8)
1278 && arm_current_el(env) == 0
1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1280 && isread) {
1281 return CP_ACCESS_OK;
1284 return pmreg_access(env, ri, isread);
1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288 * the current EL, security state, and register configuration.
1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1292 uint64_t filter;
1293 bool e, p, u, nsk, nsu, nsh, m;
1294 bool enabled, prohibited, filtered;
1295 bool secure = arm_is_secure(env);
1296 int el = arm_current_el(env);
1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1299 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1300 return false;
1303 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1304 (counter < hpmn || counter == 31)) {
1305 e = env->cp15.c9_pmcr & PMCRE;
1306 } else {
1307 e = env->cp15.mdcr_el2 & MDCR_HPME;
1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1311 if (!secure) {
1312 if (el == 2 && (counter < hpmn || counter == 31)) {
1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1314 } else {
1315 prohibited = false;
1317 } else {
1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1319 (env->cp15.mdcr_el3 & MDCR_SPME);
1322 if (prohibited && counter == 31) {
1323 prohibited = env->cp15.c9_pmcr & PMCRDP;
1326 if (counter == 31) {
1327 filter = env->cp15.pmccfiltr_el0;
1328 } else {
1329 filter = env->cp15.c14_pmevtyper[counter];
1332 p = filter & PMXEVTYPER_P;
1333 u = filter & PMXEVTYPER_U;
1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1337 m = arm_el_is_aa64(env, 1) &&
1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1340 if (el == 0) {
1341 filtered = secure ? u : u != nsu;
1342 } else if (el == 1) {
1343 filtered = secure ? p : p != nsk;
1344 } else if (el == 2) {
1345 filtered = !nsh;
1346 } else { /* EL3 */
1347 filtered = m != p;
1350 if (counter != 31) {
1352 * If not checking PMCCNTR, ensure the counter is setup to an event we
1353 * support
1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1356 if (!event_supported(event)) {
1357 return false;
1361 return enabled && !prohibited && !filtered;
1364 static void pmu_update_irq(CPUARMState *env)
1366 ARMCPU *cpu = env_archcpu(env);
1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1372 * Ensure c15_ccnt is the guest-visible count so that operations such as
1373 * enabling/disabling the counter or filtering, modifying the count itself,
1374 * etc. can be done logically. This is essentially a no-op if the counter is
1375 * not enabled at the time of the call.
1377 static void pmccntr_op_start(CPUARMState *env)
1379 uint64_t cycles = cycles_get_count(env);
1381 if (pmu_counter_enabled(env, 31)) {
1382 uint64_t eff_cycles = cycles;
1383 if (env->cp15.c9_pmcr & PMCRD) {
1384 /* Increment once every 64 processor clock cycles */
1385 eff_cycles /= 64;
1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1391 1ull << 63 : 1ull << 31;
1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1393 env->cp15.c9_pmovsr |= (1 << 31);
1394 pmu_update_irq(env);
1397 env->cp15.c15_ccnt = new_pmccntr;
1399 env->cp15.c15_ccnt_delta = cycles;
1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1405 * pmccntr_op_start.
1407 static void pmccntr_op_finish(CPUARMState *env)
1409 if (pmu_counter_enabled(env, 31)) {
1410 #ifndef CONFIG_USER_ONLY
1411 /* Calculate when the counter will next overflow */
1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1413 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1414 remaining_cycles = (uint32_t)remaining_cycles;
1416 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1418 if (overflow_in > 0) {
1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1420 overflow_in;
1421 ARMCPU *cpu = env_archcpu(env);
1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1424 #endif
1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1427 if (env->cp15.c9_pmcr & PMCRD) {
1428 /* Increment once every 64 processor clock cycles */
1429 prev_cycles /= 64;
1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1439 uint64_t count = 0;
1440 if (event_supported(event)) {
1441 uint16_t event_idx = supported_event_map[event];
1442 count = pm_events[event_idx].get_count(env);
1445 if (pmu_counter_enabled(env, counter)) {
1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1449 env->cp15.c9_pmovsr |= (1 << counter);
1450 pmu_update_irq(env);
1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1454 env->cp15.c14_pmevcntr_delta[counter] = count;
1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1459 if (pmu_counter_enabled(env, counter)) {
1460 #ifndef CONFIG_USER_ONLY
1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1462 uint16_t event_idx = supported_event_map[event];
1463 uint64_t delta = UINT32_MAX -
1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1467 if (overflow_in > 0) {
1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1469 overflow_in;
1470 ARMCPU *cpu = env_archcpu(env);
1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1473 #endif
1475 env->cp15.c14_pmevcntr_delta[counter] -=
1476 env->cp15.c14_pmevcntr[counter];
1480 void pmu_op_start(CPUARMState *env)
1482 unsigned int i;
1483 pmccntr_op_start(env);
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 pmevcntr_op_start(env, i);
1489 void pmu_op_finish(CPUARMState *env)
1491 unsigned int i;
1492 pmccntr_op_finish(env);
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 pmevcntr_op_finish(env, i);
1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1500 pmu_op_start(&cpu->env);
1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1505 pmu_op_finish(&cpu->env);
1508 void arm_pmu_timer_cb(void *opaque)
1510 ARMCPU *cpu = opaque;
1513 * Update all the counter values based on the current underlying counts,
1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516 * counter may expire.
1518 pmu_op_start(&cpu->env);
1519 pmu_op_finish(&cpu->env);
1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1525 pmu_op_start(env);
1527 if (value & PMCRC) {
1528 /* The counter has been reset */
1529 env->cp15.c15_ccnt = 0;
1532 if (value & PMCRP) {
1533 unsigned int i;
1534 for (i = 0; i < pmu_num_counters(env); i++) {
1535 env->cp15.c14_pmevcntr[i] = 0;
1539 /* only the DP, X, D and E bits are writable */
1540 env->cp15.c9_pmcr &= ~0x39;
1541 env->cp15.c9_pmcr |= (value & 0x39);
1543 pmu_op_finish(env);
1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547 uint64_t value)
1549 unsigned int i;
1550 for (i = 0; i < pmu_num_counters(env); i++) {
1551 /* Increment a counter's count iff: */
1552 if ((value & (1 << i)) && /* counter's bit is set */
1553 /* counter is enabled and not filtered */
1554 pmu_counter_enabled(env, i) &&
1555 /* counter is SW_INCR */
1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1557 pmevcntr_op_start(env, i);
1560 * Detect if this write causes an overflow since we can't predict
1561 * PMSWINC overflows like we can for other events
1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1566 env->cp15.c9_pmovsr |= (1 << i);
1567 pmu_update_irq(env);
1570 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1572 pmevcntr_op_finish(env, i);
1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1579 uint64_t ret;
1580 pmccntr_op_start(env);
1581 ret = env->cp15.c15_ccnt;
1582 pmccntr_op_finish(env);
1583 return ret;
1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587 uint64_t value)
1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1592 * accessed.
1594 env->cp15.c9_pmselr = value & 0x1f;
1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1598 uint64_t value)
1600 pmccntr_op_start(env);
1601 env->cp15.c15_ccnt = value;
1602 pmccntr_op_finish(env);
1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1608 uint64_t cur_val = pmccntr_read(env, NULL);
1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1614 uint64_t value)
1616 pmccntr_op_start(env);
1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1618 pmccntr_op_finish(env);
1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1622 uint64_t value)
1624 pmccntr_op_start(env);
1625 /* M is not accessible from AArch32 */
1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1627 (value & PMCCFILTR);
1628 pmccntr_op_finish(env);
1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1633 /* M is not visible in AArch32 */
1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638 uint64_t value)
1640 value &= pmu_counter_mask(env);
1641 env->cp15.c9_pmcnten |= value;
1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645 uint64_t value)
1647 value &= pmu_counter_mask(env);
1648 env->cp15.c9_pmcnten &= ~value;
1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value)
1654 value &= pmu_counter_mask(env);
1655 env->cp15.c9_pmovsr &= ~value;
1656 pmu_update_irq(env);
1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint64_t value)
1662 value &= pmu_counter_mask(env);
1663 env->cp15.c9_pmovsr |= value;
1664 pmu_update_irq(env);
1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value, const uint8_t counter)
1670 if (counter == 31) {
1671 pmccfiltr_write(env, ri, value);
1672 } else if (counter < pmu_num_counters(env)) {
1673 pmevcntr_op_start(env, counter);
1676 * If this counter's event type is changing, store the current
1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678 * pmevcntr_op_finish has the correct baseline when it converts back to
1679 * a delta.
1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1682 PMXEVTYPER_EVTCOUNT;
1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1684 if (old_event != new_event) {
1685 uint64_t count = 0;
1686 if (event_supported(new_event)) {
1687 uint16_t event_idx = supported_event_map[new_event];
1688 count = pm_events[event_idx].get_count(env);
1690 env->cp15.c14_pmevcntr_delta[counter] = count;
1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1694 pmevcntr_op_finish(env, counter);
1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697 * PMSELR value is equal to or greater than the number of implemented
1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1703 const uint8_t counter)
1705 if (counter == 31) {
1706 return env->cp15.pmccfiltr_el0;
1707 } else if (counter < pmu_num_counters(env)) {
1708 return env->cp15.c14_pmevtyper[counter];
1709 } else {
1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1714 return 0;
1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1722 pmevtyper_write(env, ri, value, counter);
1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint64_t value)
1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1729 env->cp15.c14_pmevtyper[counter] = value;
1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733 * pmu_op_finish calls when loading saved state for a migration. Because
1734 * we're potentially updating the type of event here, the value written to
1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736 * different counter type. Therefore, we need to set this value to the
1737 * current count for the counter type we're writing so that pmu_op_finish
1738 * has the correct count for its calculation.
1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1741 if (event_supported(event)) {
1742 uint16_t event_idx = supported_event_map[event];
1743 env->cp15.c14_pmevcntr_delta[counter] =
1744 pm_events[event_idx].get_count(env);
1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 return pmevtyper_read(env, ri, counter);
1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755 uint64_t value)
1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766 uint64_t value, uint8_t counter)
1768 if (counter < pmu_num_counters(env)) {
1769 pmevcntr_op_start(env, counter);
1770 env->cp15.c14_pmevcntr[counter] = value;
1771 pmevcntr_op_finish(env, counter);
1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775 * are CONSTRAINED UNPREDICTABLE.
1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1780 uint8_t counter)
1782 if (counter < pmu_num_counters(env)) {
1783 uint64_t ret;
1784 pmevcntr_op_start(env, counter);
1785 ret = env->cp15.c14_pmevcntr[counter];
1786 pmevcntr_op_finish(env, counter);
1787 return ret;
1788 } else {
1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790 * are CONSTRAINED UNPREDICTABLE. */
1791 return 0;
1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1799 pmevcntr_write(env, ri, value, counter);
1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1805 return pmevcntr_read(env, ri, counter);
1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1812 assert(counter < pmu_num_counters(env));
1813 env->cp15.c14_pmevcntr[counter] = value;
1814 pmevcntr_write(env, ri, value, counter);
1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1820 assert(counter < pmu_num_counters(env));
1821 return env->cp15.c14_pmevcntr[counter];
1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825 uint64_t value)
1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836 uint64_t value)
1838 if (arm_feature(env, ARM_FEATURE_V8)) {
1839 env->cp15.c9_pmuserenr = value & 0xf;
1840 } else {
1841 env->cp15.c9_pmuserenr = value & 1;
1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846 uint64_t value)
1848 /* We have no event counters so only the C bit can be changed */
1849 value &= pmu_counter_mask(env);
1850 env->cp15.c9_pminten |= value;
1851 pmu_update_irq(env);
1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855 uint64_t value)
1857 value &= pmu_counter_mask(env);
1858 env->cp15.c9_pminten &= ~value;
1859 pmu_update_irq(env);
1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863 uint64_t value)
1865 /* Note that even though the AArch64 view of this register has bits
1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867 * architectural requirements for bits which are RES0 only in some
1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1871 raw_write(env, ri, value & ~0x1FULL);
1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1876 /* Begin with base v8.0 state. */
1877 uint32_t valid_mask = 0x3fff;
1878 ARMCPU *cpu = env_archcpu(env);
1880 if (arm_el_is_aa64(env, 3)) {
1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1882 valid_mask &= ~SCR_NET;
1883 } else {
1884 valid_mask &= ~(SCR_RW | SCR_ST);
1887 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1888 valid_mask &= ~SCR_HCE;
1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891 * supported if EL2 exists. The bit is UNK/SBZP when
1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893 * when EL2 is unavailable.
1894 * On ARMv8, this bit is always available.
1896 if (arm_feature(env, ARM_FEATURE_V7) &&
1897 !arm_feature(env, ARM_FEATURE_V8)) {
1898 valid_mask &= ~SCR_SMD;
1901 if (cpu_isar_feature(aa64_lor, cpu)) {
1902 valid_mask |= SCR_TLOR;
1904 if (cpu_isar_feature(aa64_pauth, cpu)) {
1905 valid_mask |= SCR_API | SCR_APK;
1908 /* Clear all-context RES0 bits. */
1909 value &= valid_mask;
1910 raw_write(env, ri, value);
1913 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1915 ARMCPU *cpu = env_archcpu(env);
1917 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1918 * bank
1920 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1921 ri->secure & ARM_CP_SECSTATE_S);
1923 return cpu->ccsidr[index];
1926 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1927 uint64_t value)
1929 raw_write(env, ri, value & 0xf);
1932 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1934 CPUState *cs = env_cpu(env);
1935 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1936 uint64_t ret = 0;
1938 if (hcr_el2 & HCR_IMO) {
1939 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1940 ret |= CPSR_I;
1942 } else {
1943 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1944 ret |= CPSR_I;
1948 if (hcr_el2 & HCR_FMO) {
1949 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1950 ret |= CPSR_F;
1952 } else {
1953 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1954 ret |= CPSR_F;
1958 /* External aborts are not possible in QEMU so A bit is always clear */
1959 return ret;
1962 static const ARMCPRegInfo v7_cp_reginfo[] = {
1963 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1964 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1965 .access = PL1_W, .type = ARM_CP_NOP },
1966 /* Performance monitors are implementation defined in v7,
1967 * but with an ARM recommended set of registers, which we
1968 * follow.
1970 * Performance registers fall into three categories:
1971 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1972 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1973 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1974 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1975 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1977 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1978 .access = PL0_RW, .type = ARM_CP_ALIAS,
1979 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1980 .writefn = pmcntenset_write,
1981 .accessfn = pmreg_access,
1982 .raw_writefn = raw_write },
1983 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1984 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1985 .access = PL0_RW, .accessfn = pmreg_access,
1986 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1987 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1988 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1989 .access = PL0_RW,
1990 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1991 .accessfn = pmreg_access,
1992 .writefn = pmcntenclr_write,
1993 .type = ARM_CP_ALIAS },
1994 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1995 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1996 .access = PL0_RW, .accessfn = pmreg_access,
1997 .type = ARM_CP_ALIAS,
1998 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1999 .writefn = pmcntenclr_write },
2000 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2001 .access = PL0_RW, .type = ARM_CP_IO,
2002 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2003 .accessfn = pmreg_access,
2004 .writefn = pmovsr_write,
2005 .raw_writefn = raw_write },
2006 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2007 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2008 .access = PL0_RW, .accessfn = pmreg_access,
2009 .type = ARM_CP_ALIAS | ARM_CP_IO,
2010 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2011 .writefn = pmovsr_write,
2012 .raw_writefn = raw_write },
2013 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2014 .access = PL0_W, .accessfn = pmreg_access_swinc,
2015 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2016 .writefn = pmswinc_write },
2017 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2019 .access = PL0_W, .accessfn = pmreg_access_swinc,
2020 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021 .writefn = pmswinc_write },
2022 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2023 .access = PL0_RW, .type = ARM_CP_ALIAS,
2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2025 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2026 .raw_writefn = raw_write},
2027 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2028 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2029 .access = PL0_RW, .accessfn = pmreg_access_selr,
2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2031 .writefn = pmselr_write, .raw_writefn = raw_write, },
2032 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2033 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2034 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2035 .accessfn = pmreg_access_ccntr },
2036 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2037 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2038 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2039 .type = ARM_CP_IO,
2040 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2041 .readfn = pmccntr_read, .writefn = pmccntr_write,
2042 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2043 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2044 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2045 .access = PL0_RW, .accessfn = pmreg_access,
2046 .type = ARM_CP_ALIAS | ARM_CP_IO,
2047 .resetvalue = 0, },
2048 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2049 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2050 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2051 .access = PL0_RW, .accessfn = pmreg_access,
2052 .type = ARM_CP_IO,
2053 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2054 .resetvalue = 0, },
2055 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2056 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2057 .accessfn = pmreg_access,
2058 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2059 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2061 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2062 .accessfn = pmreg_access,
2063 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2064 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2065 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2066 .accessfn = pmreg_access_xevcntr,
2067 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2068 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2070 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2071 .accessfn = pmreg_access_xevcntr,
2072 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2073 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2074 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2075 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2076 .resetvalue = 0,
2077 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2078 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2080 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2082 .resetvalue = 0,
2083 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2084 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2085 .access = PL1_RW, .accessfn = access_tpm,
2086 .type = ARM_CP_ALIAS | ARM_CP_IO,
2087 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2088 .resetvalue = 0,
2089 .writefn = pmintenset_write, .raw_writefn = raw_write },
2090 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2091 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2092 .access = PL1_RW, .accessfn = access_tpm,
2093 .type = ARM_CP_IO,
2094 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2095 .writefn = pmintenset_write, .raw_writefn = raw_write,
2096 .resetvalue = 0x0 },
2097 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2098 .access = PL1_RW, .accessfn = access_tpm,
2099 .type = ARM_CP_ALIAS | ARM_CP_IO,
2100 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2101 .writefn = pmintenclr_write, },
2102 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2104 .access = PL1_RW, .accessfn = access_tpm,
2105 .type = ARM_CP_ALIAS | ARM_CP_IO,
2106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2107 .writefn = pmintenclr_write },
2108 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2109 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2110 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2111 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2113 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2114 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2115 offsetof(CPUARMState, cp15.csselr_ns) } },
2116 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2117 * just RAZ for all cores:
2119 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2120 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2122 /* Auxiliary fault status registers: these also are IMPDEF, and we
2123 * choose to RAZ/WI for all cores.
2125 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2126 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2127 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2128 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2129 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2130 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2131 /* MAIR can just read-as-written because we don't implement caches
2132 * and so don't need to care about memory attributes.
2134 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2135 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2136 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2137 .resetvalue = 0 },
2138 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2139 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2140 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2141 .resetvalue = 0 },
2142 /* For non-long-descriptor page tables these are PRRR and NMRR;
2143 * regardless they still act as reads-as-written for QEMU.
2145 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2146 * allows them to assign the correct fieldoffset based on the endianness
2147 * handled in the field definitions.
2149 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2150 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2151 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2152 offsetof(CPUARMState, cp15.mair0_ns) },
2153 .resetfn = arm_cp_reset_ignore },
2154 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2155 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2156 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2157 offsetof(CPUARMState, cp15.mair1_ns) },
2158 .resetfn = arm_cp_reset_ignore },
2159 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2160 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2161 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2162 /* 32 bit ITLB invalidates */
2163 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2164 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2165 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2167 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2168 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2169 /* 32 bit DTLB invalidates */
2170 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2171 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2172 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2174 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2175 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2176 /* 32 bit TLB invalidates */
2177 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2178 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2179 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2180 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2181 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2182 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2183 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2184 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2185 REGINFO_SENTINEL
2188 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2189 /* 32 bit TLB invalidates, Inner Shareable */
2190 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2191 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2192 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2193 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2194 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2195 .type = ARM_CP_NO_RAW, .access = PL1_W,
2196 .writefn = tlbiasid_is_write },
2197 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2198 .type = ARM_CP_NO_RAW, .access = PL1_W,
2199 .writefn = tlbimvaa_is_write },
2200 REGINFO_SENTINEL
2203 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2204 /* PMOVSSET is not implemented in v7 before v7ve */
2205 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2206 .access = PL0_RW, .accessfn = pmreg_access,
2207 .type = ARM_CP_ALIAS | ARM_CP_IO,
2208 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2209 .writefn = pmovsset_write,
2210 .raw_writefn = raw_write },
2211 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2212 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2213 .access = PL0_RW, .accessfn = pmreg_access,
2214 .type = ARM_CP_ALIAS | ARM_CP_IO,
2215 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2216 .writefn = pmovsset_write,
2217 .raw_writefn = raw_write },
2218 REGINFO_SENTINEL
2221 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2222 uint64_t value)
2224 value &= 1;
2225 env->teecr = value;
2228 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2229 bool isread)
2231 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2232 return CP_ACCESS_TRAP;
2234 return CP_ACCESS_OK;
2237 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2238 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2239 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2240 .resetvalue = 0,
2241 .writefn = teecr_write },
2242 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2243 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2244 .accessfn = teehbr_access, .resetvalue = 0 },
2245 REGINFO_SENTINEL
2248 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2249 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2250 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2251 .access = PL0_RW,
2252 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2253 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2254 .access = PL0_RW,
2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2256 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2257 .resetfn = arm_cp_reset_ignore },
2258 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2259 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2260 .access = PL0_R|PL1_W,
2261 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2262 .resetvalue = 0},
2263 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2264 .access = PL0_R|PL1_W,
2265 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2266 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2267 .resetfn = arm_cp_reset_ignore },
2268 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2269 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2270 .access = PL1_RW,
2271 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2272 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2273 .access = PL1_RW,
2274 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2275 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2276 .resetvalue = 0 },
2277 REGINFO_SENTINEL
2280 #ifndef CONFIG_USER_ONLY
2282 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2283 bool isread)
2285 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2286 * Writable only at the highest implemented exception level.
2288 int el = arm_current_el(env);
2290 switch (el) {
2291 case 0:
2292 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2293 return CP_ACCESS_TRAP;
2295 break;
2296 case 1:
2297 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2298 arm_is_secure_below_el3(env)) {
2299 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2300 return CP_ACCESS_TRAP_UNCATEGORIZED;
2302 break;
2303 case 2:
2304 case 3:
2305 break;
2308 if (!isread && el < arm_highest_el(env)) {
2309 return CP_ACCESS_TRAP_UNCATEGORIZED;
2312 return CP_ACCESS_OK;
2315 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2316 bool isread)
2318 unsigned int cur_el = arm_current_el(env);
2319 bool secure = arm_is_secure(env);
2321 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2322 if (cur_el == 0 &&
2323 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2324 return CP_ACCESS_TRAP;
2327 if (arm_feature(env, ARM_FEATURE_EL2) &&
2328 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2329 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2330 return CP_ACCESS_TRAP_EL2;
2332 return CP_ACCESS_OK;
2335 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2336 bool isread)
2338 unsigned int cur_el = arm_current_el(env);
2339 bool secure = arm_is_secure(env);
2341 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2342 * EL0[PV]TEN is zero.
2344 if (cur_el == 0 &&
2345 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2346 return CP_ACCESS_TRAP;
2349 if (arm_feature(env, ARM_FEATURE_EL2) &&
2350 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2351 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2352 return CP_ACCESS_TRAP_EL2;
2354 return CP_ACCESS_OK;
2357 static CPAccessResult gt_pct_access(CPUARMState *env,
2358 const ARMCPRegInfo *ri,
2359 bool isread)
2361 return gt_counter_access(env, GTIMER_PHYS, isread);
2364 static CPAccessResult gt_vct_access(CPUARMState *env,
2365 const ARMCPRegInfo *ri,
2366 bool isread)
2368 return gt_counter_access(env, GTIMER_VIRT, isread);
2371 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2372 bool isread)
2374 return gt_timer_access(env, GTIMER_PHYS, isread);
2377 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2378 bool isread)
2380 return gt_timer_access(env, GTIMER_VIRT, isread);
2383 static CPAccessResult gt_stimer_access(CPUARMState *env,
2384 const ARMCPRegInfo *ri,
2385 bool isread)
2387 /* The AArch64 register view of the secure physical timer is
2388 * always accessible from EL3, and configurably accessible from
2389 * Secure EL1.
2391 switch (arm_current_el(env)) {
2392 case 1:
2393 if (!arm_is_secure(env)) {
2394 return CP_ACCESS_TRAP;
2396 if (!(env->cp15.scr_el3 & SCR_ST)) {
2397 return CP_ACCESS_TRAP_EL3;
2399 return CP_ACCESS_OK;
2400 case 0:
2401 case 2:
2402 return CP_ACCESS_TRAP;
2403 case 3:
2404 return CP_ACCESS_OK;
2405 default:
2406 g_assert_not_reached();
2410 static uint64_t gt_get_countervalue(CPUARMState *env)
2412 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2415 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2417 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2419 if (gt->ctl & 1) {
2420 /* Timer enabled: calculate and set current ISTATUS, irq, and
2421 * reset timer to when ISTATUS next has to change
2423 uint64_t offset = timeridx == GTIMER_VIRT ?
2424 cpu->env.cp15.cntvoff_el2 : 0;
2425 uint64_t count = gt_get_countervalue(&cpu->env);
2426 /* Note that this must be unsigned 64 bit arithmetic: */
2427 int istatus = count - offset >= gt->cval;
2428 uint64_t nexttick;
2429 int irqstate;
2431 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2433 irqstate = (istatus && !(gt->ctl & 2));
2434 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2436 if (istatus) {
2437 /* Next transition is when count rolls back over to zero */
2438 nexttick = UINT64_MAX;
2439 } else {
2440 /* Next transition is when we hit cval */
2441 nexttick = gt->cval + offset;
2443 /* Note that the desired next expiry time might be beyond the
2444 * signed-64-bit range of a QEMUTimer -- in this case we just
2445 * set the timer for as far in the future as possible. When the
2446 * timer expires we will reset the timer for any remaining period.
2448 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2449 nexttick = INT64_MAX / GTIMER_SCALE;
2451 timer_mod(cpu->gt_timer[timeridx], nexttick);
2452 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2453 } else {
2454 /* Timer disabled: ISTATUS and timer output always clear */
2455 gt->ctl &= ~4;
2456 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2457 timer_del(cpu->gt_timer[timeridx]);
2458 trace_arm_gt_recalc_disabled(timeridx);
2462 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2463 int timeridx)
2465 ARMCPU *cpu = env_archcpu(env);
2467 timer_del(cpu->gt_timer[timeridx]);
2470 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2472 return gt_get_countervalue(env);
2475 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2477 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2480 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2481 int timeridx,
2482 uint64_t value)
2484 trace_arm_gt_cval_write(timeridx, value);
2485 env->cp15.c14_timer[timeridx].cval = value;
2486 gt_recalc_timer(env_archcpu(env), timeridx);
2489 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2490 int timeridx)
2492 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2494 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2495 (gt_get_countervalue(env) - offset));
2498 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2499 int timeridx,
2500 uint64_t value)
2502 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2504 trace_arm_gt_tval_write(timeridx, value);
2505 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2506 sextract64(value, 0, 32);
2507 gt_recalc_timer(env_archcpu(env), timeridx);
2510 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511 int timeridx,
2512 uint64_t value)
2514 ARMCPU *cpu = env_archcpu(env);
2515 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2517 trace_arm_gt_ctl_write(timeridx, value);
2518 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2519 if ((oldval ^ value) & 1) {
2520 /* Enable toggled */
2521 gt_recalc_timer(cpu, timeridx);
2522 } else if ((oldval ^ value) & 2) {
2523 /* IMASK toggled: don't need to recalculate,
2524 * just set the interrupt line based on ISTATUS
2526 int irqstate = (oldval & 4) && !(value & 2);
2528 trace_arm_gt_imask_toggle(timeridx, irqstate);
2529 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2533 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2535 gt_timer_reset(env, ri, GTIMER_PHYS);
2538 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2539 uint64_t value)
2541 gt_cval_write(env, ri, GTIMER_PHYS, value);
2544 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2546 return gt_tval_read(env, ri, GTIMER_PHYS);
2549 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2550 uint64_t value)
2552 gt_tval_write(env, ri, GTIMER_PHYS, value);
2555 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556 uint64_t value)
2558 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2561 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2563 gt_timer_reset(env, ri, GTIMER_VIRT);
2566 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2567 uint64_t value)
2569 gt_cval_write(env, ri, GTIMER_VIRT, value);
2572 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2574 return gt_tval_read(env, ri, GTIMER_VIRT);
2577 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2578 uint64_t value)
2580 gt_tval_write(env, ri, GTIMER_VIRT, value);
2583 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2584 uint64_t value)
2586 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2589 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2590 uint64_t value)
2592 ARMCPU *cpu = env_archcpu(env);
2594 trace_arm_gt_cntvoff_write(value);
2595 raw_write(env, ri, value);
2596 gt_recalc_timer(cpu, GTIMER_VIRT);
2599 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2601 gt_timer_reset(env, ri, GTIMER_HYP);
2604 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2605 uint64_t value)
2607 gt_cval_write(env, ri, GTIMER_HYP, value);
2610 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2612 return gt_tval_read(env, ri, GTIMER_HYP);
2615 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2616 uint64_t value)
2618 gt_tval_write(env, ri, GTIMER_HYP, value);
2621 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2622 uint64_t value)
2624 gt_ctl_write(env, ri, GTIMER_HYP, value);
2627 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2629 gt_timer_reset(env, ri, GTIMER_SEC);
2632 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2633 uint64_t value)
2635 gt_cval_write(env, ri, GTIMER_SEC, value);
2638 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2640 return gt_tval_read(env, ri, GTIMER_SEC);
2643 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2644 uint64_t value)
2646 gt_tval_write(env, ri, GTIMER_SEC, value);
2649 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2650 uint64_t value)
2652 gt_ctl_write(env, ri, GTIMER_SEC, value);
2655 void arm_gt_ptimer_cb(void *opaque)
2657 ARMCPU *cpu = opaque;
2659 gt_recalc_timer(cpu, GTIMER_PHYS);
2662 void arm_gt_vtimer_cb(void *opaque)
2664 ARMCPU *cpu = opaque;
2666 gt_recalc_timer(cpu, GTIMER_VIRT);
2669 void arm_gt_htimer_cb(void *opaque)
2671 ARMCPU *cpu = opaque;
2673 gt_recalc_timer(cpu, GTIMER_HYP);
2676 void arm_gt_stimer_cb(void *opaque)
2678 ARMCPU *cpu = opaque;
2680 gt_recalc_timer(cpu, GTIMER_SEC);
2683 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2684 /* Note that CNTFRQ is purely reads-as-written for the benefit
2685 * of software; writing it doesn't actually change the timer frequency.
2686 * Our reset value matches the fixed frequency we implement the timer at.
2688 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2689 .type = ARM_CP_ALIAS,
2690 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2691 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2693 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2694 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2695 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2696 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2697 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2699 /* overall control: mostly access permissions */
2700 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2701 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2702 .access = PL1_RW,
2703 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2704 .resetvalue = 0,
2706 /* per-timer control */
2707 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2708 .secure = ARM_CP_SECSTATE_NS,
2709 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2710 .accessfn = gt_ptimer_access,
2711 .fieldoffset = offsetoflow32(CPUARMState,
2712 cp15.c14_timer[GTIMER_PHYS].ctl),
2713 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2715 { .name = "CNTP_CTL_S",
2716 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2717 .secure = ARM_CP_SECSTATE_S,
2718 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2719 .accessfn = gt_ptimer_access,
2720 .fieldoffset = offsetoflow32(CPUARMState,
2721 cp15.c14_timer[GTIMER_SEC].ctl),
2722 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2724 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2725 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2726 .type = ARM_CP_IO, .access = PL0_RW,
2727 .accessfn = gt_ptimer_access,
2728 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2729 .resetvalue = 0,
2730 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2732 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2733 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2734 .accessfn = gt_vtimer_access,
2735 .fieldoffset = offsetoflow32(CPUARMState,
2736 cp15.c14_timer[GTIMER_VIRT].ctl),
2737 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2739 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2740 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2741 .type = ARM_CP_IO, .access = PL0_RW,
2742 .accessfn = gt_vtimer_access,
2743 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2744 .resetvalue = 0,
2745 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2747 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2748 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2749 .secure = ARM_CP_SECSTATE_NS,
2750 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2751 .accessfn = gt_ptimer_access,
2752 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2754 { .name = "CNTP_TVAL_S",
2755 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2756 .secure = ARM_CP_SECSTATE_S,
2757 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2758 .accessfn = gt_ptimer_access,
2759 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2761 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2762 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2763 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2764 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2765 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2767 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2768 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2769 .accessfn = gt_vtimer_access,
2770 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2772 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2773 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2774 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2775 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2776 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2778 /* The counter itself */
2779 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2780 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2781 .accessfn = gt_pct_access,
2782 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2784 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2785 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2786 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2787 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2789 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2790 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2791 .accessfn = gt_vct_access,
2792 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2794 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2795 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2796 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2797 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2799 /* Comparison value, indicating when the timer goes off */
2800 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2801 .secure = ARM_CP_SECSTATE_NS,
2802 .access = PL0_RW,
2803 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2804 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2805 .accessfn = gt_ptimer_access,
2806 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2808 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2809 .secure = ARM_CP_SECSTATE_S,
2810 .access = PL0_RW,
2811 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2812 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2813 .accessfn = gt_ptimer_access,
2814 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2816 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2817 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2818 .access = PL0_RW,
2819 .type = ARM_CP_IO,
2820 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2821 .resetvalue = 0, .accessfn = gt_ptimer_access,
2822 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2824 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2825 .access = PL0_RW,
2826 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2827 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2828 .accessfn = gt_vtimer_access,
2829 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2831 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2832 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2833 .access = PL0_RW,
2834 .type = ARM_CP_IO,
2835 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2836 .resetvalue = 0, .accessfn = gt_vtimer_access,
2837 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2839 /* Secure timer -- this is actually restricted to only EL3
2840 * and configurably Secure-EL1 via the accessfn.
2842 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2843 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2844 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2845 .accessfn = gt_stimer_access,
2846 .readfn = gt_sec_tval_read,
2847 .writefn = gt_sec_tval_write,
2848 .resetfn = gt_sec_timer_reset,
2850 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2851 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2852 .type = ARM_CP_IO, .access = PL1_RW,
2853 .accessfn = gt_stimer_access,
2854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2855 .resetvalue = 0,
2856 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2858 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2859 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2860 .type = ARM_CP_IO, .access = PL1_RW,
2861 .accessfn = gt_stimer_access,
2862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2863 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2865 REGINFO_SENTINEL
2868 #else
2870 /* In user-mode most of the generic timer registers are inaccessible
2871 * however modern kernels (4.12+) allow access to cntvct_el0
2874 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2876 /* Currently we have no support for QEMUTimer in linux-user so we
2877 * can't call gt_get_countervalue(env), instead we directly
2878 * call the lower level functions.
2880 return cpu_get_clock() / GTIMER_SCALE;
2883 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2884 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2885 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2886 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2887 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2888 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2890 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2892 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2893 .readfn = gt_virt_cnt_read,
2895 REGINFO_SENTINEL
2898 #endif
2900 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2902 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2903 raw_write(env, ri, value);
2904 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2905 raw_write(env, ri, value & 0xfffff6ff);
2906 } else {
2907 raw_write(env, ri, value & 0xfffff1ff);
2911 #ifndef CONFIG_USER_ONLY
2912 /* get_phys_addr() isn't present for user-mode-only targets */
2914 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2915 bool isread)
2917 if (ri->opc2 & 4) {
2918 /* The ATS12NSO* operations must trap to EL3 if executed in
2919 * Secure EL1 (which can only happen if EL3 is AArch64).
2920 * They are simply UNDEF if executed from NS EL1.
2921 * They function normally from EL2 or EL3.
2923 if (arm_current_el(env) == 1) {
2924 if (arm_is_secure_below_el3(env)) {
2925 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2927 return CP_ACCESS_TRAP_UNCATEGORIZED;
2930 return CP_ACCESS_OK;
2933 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2934 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2936 hwaddr phys_addr;
2937 target_ulong page_size;
2938 int prot;
2939 bool ret;
2940 uint64_t par64;
2941 bool format64 = false;
2942 MemTxAttrs attrs = {};
2943 ARMMMUFaultInfo fi = {};
2944 ARMCacheAttrs cacheattrs = {};
2946 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2947 &prot, &page_size, &fi, &cacheattrs);
2949 if (ret) {
2951 * Some kinds of translation fault must cause exceptions rather
2952 * than being reported in the PAR.
2954 int current_el = arm_current_el(env);
2955 int target_el;
2956 uint32_t syn, fsr, fsc;
2957 bool take_exc = false;
2959 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
2960 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) {
2962 * Synchronous stage 2 fault on an access made as part of the
2963 * translation table walk for AT S1E0* or AT S1E1* insn
2964 * executed from NS EL1. If this is a synchronous external abort
2965 * and SCR_EL3.EA == 1, then we take a synchronous external abort
2966 * to EL3. Otherwise the fault is taken as an exception to EL2,
2967 * and HPFAR_EL2 holds the faulting IPA.
2969 if (fi.type == ARMFault_SyncExternalOnWalk &&
2970 (env->cp15.scr_el3 & SCR_EA)) {
2971 target_el = 3;
2972 } else {
2973 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
2974 target_el = 2;
2976 take_exc = true;
2977 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
2979 * Synchronous external aborts during a translation table walk
2980 * are taken as Data Abort exceptions.
2982 if (fi.stage2) {
2983 if (current_el == 3) {
2984 target_el = 3;
2985 } else {
2986 target_el = 2;
2988 } else {
2989 target_el = exception_target_el(env);
2991 take_exc = true;
2994 if (take_exc) {
2995 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
2996 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
2997 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
2998 fsr = arm_fi_to_lfsc(&fi);
2999 fsc = extract32(fsr, 0, 6);
3000 } else {
3001 fsr = arm_fi_to_sfsc(&fi);
3002 fsc = 0x3f;
3005 * Report exception with ESR indicating a fault due to a
3006 * translation table walk for a cache maintenance instruction.
3008 syn = syn_data_abort_no_iss(current_el == target_el,
3009 fi.ea, 1, fi.s1ptw, 1, fsc);
3010 env->exception.vaddress = value;
3011 env->exception.fsr = fsr;
3012 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3016 if (is_a64(env)) {
3017 format64 = true;
3018 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3020 * ATS1Cxx:
3021 * * TTBCR.EAE determines whether the result is returned using the
3022 * 32-bit or the 64-bit PAR format
3023 * * Instructions executed in Hyp mode always use the 64bit format
3025 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3026 * * The Non-secure TTBCR.EAE bit is set to 1
3027 * * The implementation includes EL2, and the value of HCR.VM is 1
3029 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3031 * ATS1Hx always uses the 64bit format.
3033 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3035 if (arm_feature(env, ARM_FEATURE_EL2)) {
3036 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
3037 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3038 } else {
3039 format64 |= arm_current_el(env) == 2;
3044 if (format64) {
3045 /* Create a 64-bit PAR */
3046 par64 = (1 << 11); /* LPAE bit always set */
3047 if (!ret) {
3048 par64 |= phys_addr & ~0xfffULL;
3049 if (!attrs.secure) {
3050 par64 |= (1 << 9); /* NS */
3052 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3053 par64 |= cacheattrs.shareability << 7; /* SH */
3054 } else {
3055 uint32_t fsr = arm_fi_to_lfsc(&fi);
3057 par64 |= 1; /* F */
3058 par64 |= (fsr & 0x3f) << 1; /* FS */
3059 if (fi.stage2) {
3060 par64 |= (1 << 9); /* S */
3062 if (fi.s1ptw) {
3063 par64 |= (1 << 8); /* PTW */
3066 } else {
3067 /* fsr is a DFSR/IFSR value for the short descriptor
3068 * translation table format (with WnR always clear).
3069 * Convert it to a 32-bit PAR.
3071 if (!ret) {
3072 /* We do not set any attribute bits in the PAR */
3073 if (page_size == (1 << 24)
3074 && arm_feature(env, ARM_FEATURE_V7)) {
3075 par64 = (phys_addr & 0xff000000) | (1 << 1);
3076 } else {
3077 par64 = phys_addr & 0xfffff000;
3079 if (!attrs.secure) {
3080 par64 |= (1 << 9); /* NS */
3082 } else {
3083 uint32_t fsr = arm_fi_to_sfsc(&fi);
3085 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3086 ((fsr & 0xf) << 1) | 1;
3089 return par64;
3092 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3094 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3095 uint64_t par64;
3096 ARMMMUIdx mmu_idx;
3097 int el = arm_current_el(env);
3098 bool secure = arm_is_secure_below_el3(env);
3100 switch (ri->opc2 & 6) {
3101 case 0:
3102 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3103 switch (el) {
3104 case 3:
3105 mmu_idx = ARMMMUIdx_S1E3;
3106 break;
3107 case 2:
3108 mmu_idx = ARMMMUIdx_S1NSE1;
3109 break;
3110 case 1:
3111 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3112 break;
3113 default:
3114 g_assert_not_reached();
3116 break;
3117 case 2:
3118 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3119 switch (el) {
3120 case 3:
3121 mmu_idx = ARMMMUIdx_S1SE0;
3122 break;
3123 case 2:
3124 mmu_idx = ARMMMUIdx_S1NSE0;
3125 break;
3126 case 1:
3127 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3128 break;
3129 default:
3130 g_assert_not_reached();
3132 break;
3133 case 4:
3134 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3135 mmu_idx = ARMMMUIdx_S12NSE1;
3136 break;
3137 case 6:
3138 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3139 mmu_idx = ARMMMUIdx_S12NSE0;
3140 break;
3141 default:
3142 g_assert_not_reached();
3145 par64 = do_ats_write(env, value, access_type, mmu_idx);
3147 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3150 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3151 uint64_t value)
3153 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3154 uint64_t par64;
3156 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3158 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3161 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3162 bool isread)
3164 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3165 return CP_ACCESS_TRAP;
3167 return CP_ACCESS_OK;
3170 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3171 uint64_t value)
3173 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3174 ARMMMUIdx mmu_idx;
3175 int secure = arm_is_secure_below_el3(env);
3177 switch (ri->opc2 & 6) {
3178 case 0:
3179 switch (ri->opc1) {
3180 case 0: /* AT S1E1R, AT S1E1W */
3181 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3182 break;
3183 case 4: /* AT S1E2R, AT S1E2W */
3184 mmu_idx = ARMMMUIdx_S1E2;
3185 break;
3186 case 6: /* AT S1E3R, AT S1E3W */
3187 mmu_idx = ARMMMUIdx_S1E3;
3188 break;
3189 default:
3190 g_assert_not_reached();
3192 break;
3193 case 2: /* AT S1E0R, AT S1E0W */
3194 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3195 break;
3196 case 4: /* AT S12E1R, AT S12E1W */
3197 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3198 break;
3199 case 6: /* AT S12E0R, AT S12E0W */
3200 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3201 break;
3202 default:
3203 g_assert_not_reached();
3206 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3208 #endif
3210 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3211 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3212 .access = PL1_RW, .resetvalue = 0,
3213 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3214 offsetoflow32(CPUARMState, cp15.par_ns) },
3215 .writefn = par_write },
3216 #ifndef CONFIG_USER_ONLY
3217 /* This underdecoding is safe because the reginfo is NO_RAW. */
3218 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3219 .access = PL1_W, .accessfn = ats_access,
3220 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3221 #endif
3222 REGINFO_SENTINEL
3225 /* Return basic MPU access permission bits. */
3226 static uint32_t simple_mpu_ap_bits(uint32_t val)
3228 uint32_t ret;
3229 uint32_t mask;
3230 int i;
3231 ret = 0;
3232 mask = 3;
3233 for (i = 0; i < 16; i += 2) {
3234 ret |= (val >> i) & mask;
3235 mask <<= 2;
3237 return ret;
3240 /* Pad basic MPU access permission bits to extended format. */
3241 static uint32_t extended_mpu_ap_bits(uint32_t val)
3243 uint32_t ret;
3244 uint32_t mask;
3245 int i;
3246 ret = 0;
3247 mask = 3;
3248 for (i = 0; i < 16; i += 2) {
3249 ret |= (val & mask) << i;
3250 mask <<= 2;
3252 return ret;
3255 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3256 uint64_t value)
3258 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3261 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3263 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3266 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3267 uint64_t value)
3269 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3272 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3274 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3277 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3279 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3281 if (!u32p) {
3282 return 0;
3285 u32p += env->pmsav7.rnr[M_REG_NS];
3286 return *u32p;
3289 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3290 uint64_t value)
3292 ARMCPU *cpu = env_archcpu(env);
3293 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3295 if (!u32p) {
3296 return;
3299 u32p += env->pmsav7.rnr[M_REG_NS];
3300 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3301 *u32p = value;
3304 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3305 uint64_t value)
3307 ARMCPU *cpu = env_archcpu(env);
3308 uint32_t nrgs = cpu->pmsav7_dregion;
3310 if (value >= nrgs) {
3311 qemu_log_mask(LOG_GUEST_ERROR,
3312 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3313 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3314 return;
3317 raw_write(env, ri, value);
3320 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3321 /* Reset for all these registers is handled in arm_cpu_reset(),
3322 * because the PMSAv7 is also used by M-profile CPUs, which do
3323 * not register cpregs but still need the state to be reset.
3325 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3326 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3327 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3328 .readfn = pmsav7_read, .writefn = pmsav7_write,
3329 .resetfn = arm_cp_reset_ignore },
3330 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3331 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3332 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3333 .readfn = pmsav7_read, .writefn = pmsav7_write,
3334 .resetfn = arm_cp_reset_ignore },
3335 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3336 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3337 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3338 .readfn = pmsav7_read, .writefn = pmsav7_write,
3339 .resetfn = arm_cp_reset_ignore },
3340 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3341 .access = PL1_RW,
3342 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3343 .writefn = pmsav7_rgnr_write,
3344 .resetfn = arm_cp_reset_ignore },
3345 REGINFO_SENTINEL
3348 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3349 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3350 .access = PL1_RW, .type = ARM_CP_ALIAS,
3351 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3352 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3353 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3354 .access = PL1_RW, .type = ARM_CP_ALIAS,
3355 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3356 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3357 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3358 .access = PL1_RW,
3359 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3360 .resetvalue = 0, },
3361 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3362 .access = PL1_RW,
3363 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3364 .resetvalue = 0, },
3365 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3366 .access = PL1_RW,
3367 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3368 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3369 .access = PL1_RW,
3370 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3371 /* Protection region base and size registers */
3372 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3373 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3374 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3375 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3376 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3377 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3378 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3379 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3380 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3381 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3382 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3383 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3384 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3385 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3386 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3387 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3388 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3389 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3390 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3391 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3392 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3393 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3394 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3395 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3396 REGINFO_SENTINEL
3399 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3400 uint64_t value)
3402 TCR *tcr = raw_ptr(env, ri);
3403 int maskshift = extract32(value, 0, 3);
3405 if (!arm_feature(env, ARM_FEATURE_V8)) {
3406 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3407 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3408 * using Long-desciptor translation table format */
3409 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3410 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3411 /* In an implementation that includes the Security Extensions
3412 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3413 * Short-descriptor translation table format.
3415 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3416 } else {
3417 value &= TTBCR_N;
3421 /* Update the masks corresponding to the TCR bank being written
3422 * Note that we always calculate mask and base_mask, but
3423 * they are only used for short-descriptor tables (ie if EAE is 0);
3424 * for long-descriptor tables the TCR fields are used differently
3425 * and the mask and base_mask values are meaningless.
3427 tcr->raw_tcr = value;
3428 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3429 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3432 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3433 uint64_t value)
3435 ARMCPU *cpu = env_archcpu(env);
3436 TCR *tcr = raw_ptr(env, ri);
3438 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3439 /* With LPAE the TTBCR could result in a change of ASID
3440 * via the TTBCR.A1 bit, so do a TLB flush.
3442 tlb_flush(CPU(cpu));
3444 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3445 value = deposit64(tcr->raw_tcr, 0, 32, value);
3446 vmsa_ttbcr_raw_write(env, ri, value);
3449 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3451 TCR *tcr = raw_ptr(env, ri);
3453 /* Reset both the TCR as well as the masks corresponding to the bank of
3454 * the TCR being reset.
3456 tcr->raw_tcr = 0;
3457 tcr->mask = 0;
3458 tcr->base_mask = 0xffffc000u;
3461 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3462 uint64_t value)
3464 ARMCPU *cpu = env_archcpu(env);
3465 TCR *tcr = raw_ptr(env, ri);
3467 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3468 tlb_flush(CPU(cpu));
3469 tcr->raw_tcr = value;
3472 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3473 uint64_t value)
3475 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3476 if (cpreg_field_is_64bit(ri) &&
3477 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3478 ARMCPU *cpu = env_archcpu(env);
3479 tlb_flush(CPU(cpu));
3481 raw_write(env, ri, value);
3484 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3485 uint64_t value)
3487 ARMCPU *cpu = env_archcpu(env);
3488 CPUState *cs = CPU(cpu);
3490 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3491 if (raw_read(env, ri) != value) {
3492 tlb_flush_by_mmuidx(cs,
3493 ARMMMUIdxBit_S12NSE1 |
3494 ARMMMUIdxBit_S12NSE0 |
3495 ARMMMUIdxBit_S2NS);
3496 raw_write(env, ri, value);
3500 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3501 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3502 .access = PL1_RW, .type = ARM_CP_ALIAS,
3503 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3504 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3505 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3506 .access = PL1_RW, .resetvalue = 0,
3507 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3508 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3509 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3510 .access = PL1_RW, .resetvalue = 0,
3511 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3512 offsetof(CPUARMState, cp15.dfar_ns) } },
3513 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3514 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3515 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3516 .resetvalue = 0, },
3517 REGINFO_SENTINEL
3520 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3521 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3522 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3523 .access = PL1_RW,
3524 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3525 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3526 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3527 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3528 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3529 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3530 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3531 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3532 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3533 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3534 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3535 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3536 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3537 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3538 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3539 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3540 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3541 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3542 .raw_writefn = vmsa_ttbcr_raw_write,
3543 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3544 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3545 REGINFO_SENTINEL
3548 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3549 * qemu tlbs nor adjusting cached masks.
3551 static const ARMCPRegInfo ttbcr2_reginfo = {
3552 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3553 .access = PL1_RW, .type = ARM_CP_ALIAS,
3554 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3555 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3558 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3559 uint64_t value)
3561 env->cp15.c15_ticonfig = value & 0xe7;
3562 /* The OS_TYPE bit in this register changes the reported CPUID! */
3563 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3564 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3567 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3568 uint64_t value)
3570 env->cp15.c15_threadid = value & 0xffff;
3573 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3574 uint64_t value)
3576 /* Wait-for-interrupt (deprecated) */
3577 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3580 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3581 uint64_t value)
3583 /* On OMAP there are registers indicating the max/min index of dcache lines
3584 * containing a dirty line; cache flush operations have to reset these.
3586 env->cp15.c15_i_max = 0x000;
3587 env->cp15.c15_i_min = 0xff0;
3590 static const ARMCPRegInfo omap_cp_reginfo[] = {
3591 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3592 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3593 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3594 .resetvalue = 0, },
3595 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3596 .access = PL1_RW, .type = ARM_CP_NOP },
3597 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3598 .access = PL1_RW,
3599 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3600 .writefn = omap_ticonfig_write },
3601 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3602 .access = PL1_RW,
3603 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3604 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3605 .access = PL1_RW, .resetvalue = 0xff0,
3606 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3607 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3608 .access = PL1_RW,
3609 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3610 .writefn = omap_threadid_write },
3611 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3612 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3613 .type = ARM_CP_NO_RAW,
3614 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3615 /* TODO: Peripheral port remap register:
3616 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3617 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3618 * when MMU is off.
3620 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3621 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3622 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3623 .writefn = omap_cachemaint_write },
3624 { .name = "C9", .cp = 15, .crn = 9,
3625 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3626 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3627 REGINFO_SENTINEL
3630 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3631 uint64_t value)
3633 env->cp15.c15_cpar = value & 0x3fff;
3636 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3637 { .name = "XSCALE_CPAR",
3638 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3639 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3640 .writefn = xscale_cpar_write, },
3641 { .name = "XSCALE_AUXCR",
3642 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3643 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3644 .resetvalue = 0, },
3645 /* XScale specific cache-lockdown: since we have no cache we NOP these
3646 * and hope the guest does not really rely on cache behaviour.
3648 { .name = "XSCALE_LOCK_ICACHE_LINE",
3649 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3650 .access = PL1_W, .type = ARM_CP_NOP },
3651 { .name = "XSCALE_UNLOCK_ICACHE",
3652 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3653 .access = PL1_W, .type = ARM_CP_NOP },
3654 { .name = "XSCALE_DCACHE_LOCK",
3655 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3656 .access = PL1_RW, .type = ARM_CP_NOP },
3657 { .name = "XSCALE_UNLOCK_DCACHE",
3658 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3659 .access = PL1_W, .type = ARM_CP_NOP },
3660 REGINFO_SENTINEL
3663 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3664 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3665 * implementation of this implementation-defined space.
3666 * Ideally this should eventually disappear in favour of actually
3667 * implementing the correct behaviour for all cores.
3669 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3670 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671 .access = PL1_RW,
3672 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3673 .resetvalue = 0 },
3674 REGINFO_SENTINEL
3677 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3678 /* Cache status: RAZ because we have no cache so it's always clean */
3679 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3680 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3681 .resetvalue = 0 },
3682 REGINFO_SENTINEL
3685 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3686 /* We never have a a block transfer operation in progress */
3687 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3688 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3689 .resetvalue = 0 },
3690 /* The cache ops themselves: these all NOP for QEMU */
3691 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3692 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3693 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3694 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3695 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3696 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3697 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3698 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3699 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3700 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3701 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3702 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3703 REGINFO_SENTINEL
3706 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3707 /* The cache test-and-clean instructions always return (1 << 30)
3708 * to indicate that there are no dirty cache lines.
3710 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3711 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3712 .resetvalue = (1 << 30) },
3713 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3714 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3715 .resetvalue = (1 << 30) },
3716 REGINFO_SENTINEL
3719 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3720 /* Ignore ReadBuffer accesses */
3721 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3722 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3723 .access = PL1_RW, .resetvalue = 0,
3724 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3725 REGINFO_SENTINEL
3728 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3730 ARMCPU *cpu = env_archcpu(env);
3731 unsigned int cur_el = arm_current_el(env);
3732 bool secure = arm_is_secure(env);
3734 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3735 return env->cp15.vpidr_el2;
3737 return raw_read(env, ri);
3740 static uint64_t mpidr_read_val(CPUARMState *env)
3742 ARMCPU *cpu = env_archcpu(env);
3743 uint64_t mpidr = cpu->mp_affinity;
3745 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3746 mpidr |= (1U << 31);
3747 /* Cores which are uniprocessor (non-coherent)
3748 * but still implement the MP extensions set
3749 * bit 30. (For instance, Cortex-R5).
3751 if (cpu->mp_is_up) {
3752 mpidr |= (1u << 30);
3755 return mpidr;
3758 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3760 unsigned int cur_el = arm_current_el(env);
3761 bool secure = arm_is_secure(env);
3763 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3764 return env->cp15.vmpidr_el2;
3766 return mpidr_read_val(env);
3769 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3770 /* NOP AMAIR0/1 */
3771 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3772 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3773 .access = PL1_RW, .type = ARM_CP_CONST,
3774 .resetvalue = 0 },
3775 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3776 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3777 .access = PL1_RW, .type = ARM_CP_CONST,
3778 .resetvalue = 0 },
3779 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3780 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3781 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3782 offsetof(CPUARMState, cp15.par_ns)} },
3783 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3784 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3785 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3786 offsetof(CPUARMState, cp15.ttbr0_ns) },
3787 .writefn = vmsa_ttbr_write, },
3788 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3789 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3791 offsetof(CPUARMState, cp15.ttbr1_ns) },
3792 .writefn = vmsa_ttbr_write, },
3793 REGINFO_SENTINEL
3796 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3798 return vfp_get_fpcr(env);
3801 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3802 uint64_t value)
3804 vfp_set_fpcr(env, value);
3807 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3809 return vfp_get_fpsr(env);
3812 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3813 uint64_t value)
3815 vfp_set_fpsr(env, value);
3818 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3819 bool isread)
3821 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3822 return CP_ACCESS_TRAP;
3824 return CP_ACCESS_OK;
3827 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3828 uint64_t value)
3830 env->daif = value & PSTATE_DAIF;
3833 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3834 const ARMCPRegInfo *ri,
3835 bool isread)
3837 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3838 * SCTLR_EL1.UCI is set.
3840 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3841 return CP_ACCESS_TRAP;
3843 return CP_ACCESS_OK;
3846 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3847 * Page D4-1736 (DDI0487A.b)
3850 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3851 uint64_t value)
3853 CPUState *cs = env_cpu(env);
3854 bool sec = arm_is_secure_below_el3(env);
3856 if (sec) {
3857 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3858 ARMMMUIdxBit_S1SE1 |
3859 ARMMMUIdxBit_S1SE0);
3860 } else {
3861 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3862 ARMMMUIdxBit_S12NSE1 |
3863 ARMMMUIdxBit_S12NSE0);
3867 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3868 uint64_t value)
3870 CPUState *cs = env_cpu(env);
3872 if (tlb_force_broadcast(env)) {
3873 tlbi_aa64_vmalle1is_write(env, NULL, value);
3874 return;
3877 if (arm_is_secure_below_el3(env)) {
3878 tlb_flush_by_mmuidx(cs,
3879 ARMMMUIdxBit_S1SE1 |
3880 ARMMMUIdxBit_S1SE0);
3881 } else {
3882 tlb_flush_by_mmuidx(cs,
3883 ARMMMUIdxBit_S12NSE1 |
3884 ARMMMUIdxBit_S12NSE0);
3888 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3889 uint64_t value)
3891 /* Note that the 'ALL' scope must invalidate both stage 1 and
3892 * stage 2 translations, whereas most other scopes only invalidate
3893 * stage 1 translations.
3895 ARMCPU *cpu = env_archcpu(env);
3896 CPUState *cs = CPU(cpu);
3898 if (arm_is_secure_below_el3(env)) {
3899 tlb_flush_by_mmuidx(cs,
3900 ARMMMUIdxBit_S1SE1 |
3901 ARMMMUIdxBit_S1SE0);
3902 } else {
3903 if (arm_feature(env, ARM_FEATURE_EL2)) {
3904 tlb_flush_by_mmuidx(cs,
3905 ARMMMUIdxBit_S12NSE1 |
3906 ARMMMUIdxBit_S12NSE0 |
3907 ARMMMUIdxBit_S2NS);
3908 } else {
3909 tlb_flush_by_mmuidx(cs,
3910 ARMMMUIdxBit_S12NSE1 |
3911 ARMMMUIdxBit_S12NSE0);
3916 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3917 uint64_t value)
3919 ARMCPU *cpu = env_archcpu(env);
3920 CPUState *cs = CPU(cpu);
3922 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3925 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3926 uint64_t value)
3928 ARMCPU *cpu = env_archcpu(env);
3929 CPUState *cs = CPU(cpu);
3931 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3934 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3935 uint64_t value)
3937 /* Note that the 'ALL' scope must invalidate both stage 1 and
3938 * stage 2 translations, whereas most other scopes only invalidate
3939 * stage 1 translations.
3941 CPUState *cs = env_cpu(env);
3942 bool sec = arm_is_secure_below_el3(env);
3943 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3945 if (sec) {
3946 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3947 ARMMMUIdxBit_S1SE1 |
3948 ARMMMUIdxBit_S1SE0);
3949 } else if (has_el2) {
3950 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3951 ARMMMUIdxBit_S12NSE1 |
3952 ARMMMUIdxBit_S12NSE0 |
3953 ARMMMUIdxBit_S2NS);
3954 } else {
3955 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3956 ARMMMUIdxBit_S12NSE1 |
3957 ARMMMUIdxBit_S12NSE0);
3961 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962 uint64_t value)
3964 CPUState *cs = env_cpu(env);
3966 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3969 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3970 uint64_t value)
3972 CPUState *cs = env_cpu(env);
3974 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3977 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978 uint64_t value)
3980 /* Invalidate by VA, EL2
3981 * Currently handles both VAE2 and VALE2, since we don't support
3982 * flush-last-level-only.
3984 ARMCPU *cpu = env_archcpu(env);
3985 CPUState *cs = CPU(cpu);
3986 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3988 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3991 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3992 uint64_t value)
3994 /* Invalidate by VA, EL3
3995 * Currently handles both VAE3 and VALE3, since we don't support
3996 * flush-last-level-only.
3998 ARMCPU *cpu = env_archcpu(env);
3999 CPUState *cs = CPU(cpu);
4000 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4002 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
4005 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4006 uint64_t value)
4008 ARMCPU *cpu = env_archcpu(env);
4009 CPUState *cs = CPU(cpu);
4010 bool sec = arm_is_secure_below_el3(env);
4011 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4013 if (sec) {
4014 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4015 ARMMMUIdxBit_S1SE1 |
4016 ARMMMUIdxBit_S1SE0);
4017 } else {
4018 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4019 ARMMMUIdxBit_S12NSE1 |
4020 ARMMMUIdxBit_S12NSE0);
4024 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4025 uint64_t value)
4027 /* Invalidate by VA, EL1&0 (AArch64 version).
4028 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4029 * since we don't support flush-for-specific-ASID-only or
4030 * flush-last-level-only.
4032 ARMCPU *cpu = env_archcpu(env);
4033 CPUState *cs = CPU(cpu);
4034 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4036 if (tlb_force_broadcast(env)) {
4037 tlbi_aa64_vae1is_write(env, NULL, value);
4038 return;
4041 if (arm_is_secure_below_el3(env)) {
4042 tlb_flush_page_by_mmuidx(cs, pageaddr,
4043 ARMMMUIdxBit_S1SE1 |
4044 ARMMMUIdxBit_S1SE0);
4045 } else {
4046 tlb_flush_page_by_mmuidx(cs, pageaddr,
4047 ARMMMUIdxBit_S12NSE1 |
4048 ARMMMUIdxBit_S12NSE0);
4052 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4053 uint64_t value)
4055 CPUState *cs = env_cpu(env);
4056 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4058 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4059 ARMMMUIdxBit_S1E2);
4062 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4063 uint64_t value)
4065 CPUState *cs = env_cpu(env);
4066 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4068 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4069 ARMMMUIdxBit_S1E3);
4072 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4073 uint64_t value)
4075 /* Invalidate by IPA. This has to invalidate any structures that
4076 * contain only stage 2 translation information, but does not need
4077 * to apply to structures that contain combined stage 1 and stage 2
4078 * translation information.
4079 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4081 ARMCPU *cpu = env_archcpu(env);
4082 CPUState *cs = CPU(cpu);
4083 uint64_t pageaddr;
4085 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4086 return;
4089 pageaddr = sextract64(value << 12, 0, 48);
4091 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4094 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4095 uint64_t value)
4097 CPUState *cs = env_cpu(env);
4098 uint64_t pageaddr;
4100 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4101 return;
4104 pageaddr = sextract64(value << 12, 0, 48);
4106 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4107 ARMMMUIdxBit_S2NS);
4110 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4111 bool isread)
4113 /* We don't implement EL2, so the only control on DC ZVA is the
4114 * bit in the SCTLR which can prohibit access for EL0.
4116 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4117 return CP_ACCESS_TRAP;
4119 return CP_ACCESS_OK;
4122 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4124 ARMCPU *cpu = env_archcpu(env);
4125 int dzp_bit = 1 << 4;
4127 /* DZP indicates whether DC ZVA access is allowed */
4128 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4129 dzp_bit = 0;
4131 return cpu->dcz_blocksize | dzp_bit;
4134 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4135 bool isread)
4137 if (!(env->pstate & PSTATE_SP)) {
4138 /* Access to SP_EL0 is undefined if it's being used as
4139 * the stack pointer.
4141 return CP_ACCESS_TRAP_UNCATEGORIZED;
4143 return CP_ACCESS_OK;
4146 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4148 return env->pstate & PSTATE_SP;
4151 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4153 update_spsel(env, val);
4156 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4157 uint64_t value)
4159 ARMCPU *cpu = env_archcpu(env);
4161 if (raw_read(env, ri) == value) {
4162 /* Skip the TLB flush if nothing actually changed; Linux likes
4163 * to do a lot of pointless SCTLR writes.
4165 return;
4168 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4169 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4170 value &= ~SCTLR_M;
4173 raw_write(env, ri, value);
4174 /* ??? Lots of these bits are not implemented. */
4175 /* This may enable/disable the MMU, so do a TLB flush. */
4176 tlb_flush(CPU(cpu));
4178 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4180 * Normally we would always end the TB on an SCTLR write; see the
4181 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4182 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4183 * of hflags from the translator, so do it here.
4185 arm_rebuild_hflags(env);
4189 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4190 bool isread)
4192 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4193 return CP_ACCESS_TRAP_FP_EL2;
4195 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4196 return CP_ACCESS_TRAP_FP_EL3;
4198 return CP_ACCESS_OK;
4201 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4202 uint64_t value)
4204 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4207 static const ARMCPRegInfo v8_cp_reginfo[] = {
4208 /* Minimal set of EL0-visible registers. This will need to be expanded
4209 * significantly for system emulation of AArch64 CPUs.
4211 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4212 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4213 .access = PL0_RW, .type = ARM_CP_NZCV },
4214 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4215 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4216 .type = ARM_CP_NO_RAW,
4217 .access = PL0_RW, .accessfn = aa64_daif_access,
4218 .fieldoffset = offsetof(CPUARMState, daif),
4219 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4220 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4221 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4222 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4223 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4224 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4225 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4226 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4227 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4228 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4229 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4230 .access = PL0_R, .type = ARM_CP_NO_RAW,
4231 .readfn = aa64_dczid_read },
4232 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4233 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4234 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4235 #ifndef CONFIG_USER_ONLY
4236 /* Avoid overhead of an access check that always passes in user-mode */
4237 .accessfn = aa64_zva_access,
4238 #endif
4240 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4241 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4242 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4243 /* Cache ops: all NOPs since we don't emulate caches */
4244 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4245 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4246 .access = PL1_W, .type = ARM_CP_NOP },
4247 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4249 .access = PL1_W, .type = ARM_CP_NOP },
4250 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4251 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4252 .access = PL0_W, .type = ARM_CP_NOP,
4253 .accessfn = aa64_cacheop_access },
4254 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4255 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4256 .access = PL1_W, .type = ARM_CP_NOP },
4257 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4258 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4259 .access = PL1_W, .type = ARM_CP_NOP },
4260 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4262 .access = PL0_W, .type = ARM_CP_NOP,
4263 .accessfn = aa64_cacheop_access },
4264 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4265 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4266 .access = PL1_W, .type = ARM_CP_NOP },
4267 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4268 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4269 .access = PL0_W, .type = ARM_CP_NOP,
4270 .accessfn = aa64_cacheop_access },
4271 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4272 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4273 .access = PL0_W, .type = ARM_CP_NOP,
4274 .accessfn = aa64_cacheop_access },
4275 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4276 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4277 .access = PL1_W, .type = ARM_CP_NOP },
4278 /* TLBI operations */
4279 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4280 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4281 .access = PL1_W, .type = ARM_CP_NO_RAW,
4282 .writefn = tlbi_aa64_vmalle1is_write },
4283 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4284 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4285 .access = PL1_W, .type = ARM_CP_NO_RAW,
4286 .writefn = tlbi_aa64_vae1is_write },
4287 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4288 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4289 .access = PL1_W, .type = ARM_CP_NO_RAW,
4290 .writefn = tlbi_aa64_vmalle1is_write },
4291 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4292 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4293 .access = PL1_W, .type = ARM_CP_NO_RAW,
4294 .writefn = tlbi_aa64_vae1is_write },
4295 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4296 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4297 .access = PL1_W, .type = ARM_CP_NO_RAW,
4298 .writefn = tlbi_aa64_vae1is_write },
4299 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4300 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4301 .access = PL1_W, .type = ARM_CP_NO_RAW,
4302 .writefn = tlbi_aa64_vae1is_write },
4303 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4304 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4305 .access = PL1_W, .type = ARM_CP_NO_RAW,
4306 .writefn = tlbi_aa64_vmalle1_write },
4307 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4308 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4309 .access = PL1_W, .type = ARM_CP_NO_RAW,
4310 .writefn = tlbi_aa64_vae1_write },
4311 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4312 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4313 .access = PL1_W, .type = ARM_CP_NO_RAW,
4314 .writefn = tlbi_aa64_vmalle1_write },
4315 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4316 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4317 .access = PL1_W, .type = ARM_CP_NO_RAW,
4318 .writefn = tlbi_aa64_vae1_write },
4319 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4321 .access = PL1_W, .type = ARM_CP_NO_RAW,
4322 .writefn = tlbi_aa64_vae1_write },
4323 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4324 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4325 .access = PL1_W, .type = ARM_CP_NO_RAW,
4326 .writefn = tlbi_aa64_vae1_write },
4327 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4328 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4329 .access = PL2_W, .type = ARM_CP_NO_RAW,
4330 .writefn = tlbi_aa64_ipas2e1is_write },
4331 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4332 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4333 .access = PL2_W, .type = ARM_CP_NO_RAW,
4334 .writefn = tlbi_aa64_ipas2e1is_write },
4335 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4336 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4337 .access = PL2_W, .type = ARM_CP_NO_RAW,
4338 .writefn = tlbi_aa64_alle1is_write },
4339 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4340 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4341 .access = PL2_W, .type = ARM_CP_NO_RAW,
4342 .writefn = tlbi_aa64_alle1is_write },
4343 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4344 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4345 .access = PL2_W, .type = ARM_CP_NO_RAW,
4346 .writefn = tlbi_aa64_ipas2e1_write },
4347 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4348 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4349 .access = PL2_W, .type = ARM_CP_NO_RAW,
4350 .writefn = tlbi_aa64_ipas2e1_write },
4351 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4352 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4353 .access = PL2_W, .type = ARM_CP_NO_RAW,
4354 .writefn = tlbi_aa64_alle1_write },
4355 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4356 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4357 .access = PL2_W, .type = ARM_CP_NO_RAW,
4358 .writefn = tlbi_aa64_alle1is_write },
4359 #ifndef CONFIG_USER_ONLY
4360 /* 64 bit address translation operations */
4361 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4362 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4363 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4364 .writefn = ats_write64 },
4365 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4366 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4367 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4368 .writefn = ats_write64 },
4369 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4370 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4371 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4372 .writefn = ats_write64 },
4373 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4374 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4375 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4376 .writefn = ats_write64 },
4377 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4378 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4379 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4380 .writefn = ats_write64 },
4381 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4382 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4383 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4384 .writefn = ats_write64 },
4385 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4386 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4387 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4388 .writefn = ats_write64 },
4389 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4390 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4391 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4392 .writefn = ats_write64 },
4393 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4394 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4395 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4396 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4397 .writefn = ats_write64 },
4398 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4399 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4400 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4401 .writefn = ats_write64 },
4402 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4403 .type = ARM_CP_ALIAS,
4404 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4405 .access = PL1_RW, .resetvalue = 0,
4406 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4407 .writefn = par_write },
4408 #endif
4409 /* TLB invalidate last level of translation table walk */
4410 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4412 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4413 .type = ARM_CP_NO_RAW, .access = PL1_W,
4414 .writefn = tlbimvaa_is_write },
4415 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4417 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4419 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4420 .type = ARM_CP_NO_RAW, .access = PL2_W,
4421 .writefn = tlbimva_hyp_write },
4422 { .name = "TLBIMVALHIS",
4423 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4424 .type = ARM_CP_NO_RAW, .access = PL2_W,
4425 .writefn = tlbimva_hyp_is_write },
4426 { .name = "TLBIIPAS2",
4427 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4428 .type = ARM_CP_NO_RAW, .access = PL2_W,
4429 .writefn = tlbiipas2_write },
4430 { .name = "TLBIIPAS2IS",
4431 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4432 .type = ARM_CP_NO_RAW, .access = PL2_W,
4433 .writefn = tlbiipas2_is_write },
4434 { .name = "TLBIIPAS2L",
4435 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4436 .type = ARM_CP_NO_RAW, .access = PL2_W,
4437 .writefn = tlbiipas2_write },
4438 { .name = "TLBIIPAS2LIS",
4439 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4440 .type = ARM_CP_NO_RAW, .access = PL2_W,
4441 .writefn = tlbiipas2_is_write },
4442 /* 32 bit cache operations */
4443 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4444 .type = ARM_CP_NOP, .access = PL1_W },
4445 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4446 .type = ARM_CP_NOP, .access = PL1_W },
4447 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4448 .type = ARM_CP_NOP, .access = PL1_W },
4449 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4450 .type = ARM_CP_NOP, .access = PL1_W },
4451 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4452 .type = ARM_CP_NOP, .access = PL1_W },
4453 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4454 .type = ARM_CP_NOP, .access = PL1_W },
4455 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4456 .type = ARM_CP_NOP, .access = PL1_W },
4457 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4458 .type = ARM_CP_NOP, .access = PL1_W },
4459 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4460 .type = ARM_CP_NOP, .access = PL1_W },
4461 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4462 .type = ARM_CP_NOP, .access = PL1_W },
4463 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4464 .type = ARM_CP_NOP, .access = PL1_W },
4465 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4466 .type = ARM_CP_NOP, .access = PL1_W },
4467 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4468 .type = ARM_CP_NOP, .access = PL1_W },
4469 /* MMU Domain access control / MPU write buffer control */
4470 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4471 .access = PL1_RW, .resetvalue = 0,
4472 .writefn = dacr_write, .raw_writefn = raw_write,
4473 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4474 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4475 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4476 .type = ARM_CP_ALIAS,
4477 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4478 .access = PL1_RW,
4479 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4480 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4481 .type = ARM_CP_ALIAS,
4482 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4483 .access = PL1_RW,
4484 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4485 /* We rely on the access checks not allowing the guest to write to the
4486 * state field when SPSel indicates that it's being used as the stack
4487 * pointer.
4489 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4490 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4491 .access = PL1_RW, .accessfn = sp_el0_access,
4492 .type = ARM_CP_ALIAS,
4493 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4494 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4495 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4496 .access = PL2_RW, .type = ARM_CP_ALIAS,
4497 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4498 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4499 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4500 .type = ARM_CP_NO_RAW,
4501 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4502 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4503 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4504 .type = ARM_CP_ALIAS,
4505 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4506 .access = PL2_RW, .accessfn = fpexc32_access },
4507 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4508 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4509 .access = PL2_RW, .resetvalue = 0,
4510 .writefn = dacr_write, .raw_writefn = raw_write,
4511 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4512 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4513 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4514 .access = PL2_RW, .resetvalue = 0,
4515 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4516 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4517 .type = ARM_CP_ALIAS,
4518 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4519 .access = PL2_RW,
4520 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4521 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4522 .type = ARM_CP_ALIAS,
4523 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4524 .access = PL2_RW,
4525 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4526 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4527 .type = ARM_CP_ALIAS,
4528 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4529 .access = PL2_RW,
4530 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4531 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4532 .type = ARM_CP_ALIAS,
4533 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4534 .access = PL2_RW,
4535 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4536 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4537 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4538 .resetvalue = 0,
4539 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4540 { .name = "SDCR", .type = ARM_CP_ALIAS,
4541 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4542 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4543 .writefn = sdcr_write,
4544 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4545 REGINFO_SENTINEL
4548 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4549 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4550 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4552 .access = PL2_RW,
4553 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4554 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4555 .type = ARM_CP_NO_RAW,
4556 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4557 .access = PL2_RW,
4558 .type = ARM_CP_CONST, .resetvalue = 0 },
4559 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4560 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4561 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4562 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4563 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4564 .access = PL2_RW,
4565 .type = ARM_CP_CONST, .resetvalue = 0 },
4566 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4567 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4568 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4569 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4570 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4571 .access = PL2_RW, .type = ARM_CP_CONST,
4572 .resetvalue = 0 },
4573 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4574 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4575 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4576 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4577 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4578 .access = PL2_RW, .type = ARM_CP_CONST,
4579 .resetvalue = 0 },
4580 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4581 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4582 .access = PL2_RW, .type = ARM_CP_CONST,
4583 .resetvalue = 0 },
4584 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4585 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4586 .access = PL2_RW, .type = ARM_CP_CONST,
4587 .resetvalue = 0 },
4588 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4589 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4590 .access = PL2_RW, .type = ARM_CP_CONST,
4591 .resetvalue = 0 },
4592 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4593 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4594 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4595 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4596 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4597 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4598 .type = ARM_CP_CONST, .resetvalue = 0 },
4599 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4600 .cp = 15, .opc1 = 6, .crm = 2,
4601 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4602 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4603 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4604 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4605 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4606 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4607 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4608 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4609 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4610 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4611 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4612 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4613 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4614 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4615 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4616 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4617 .resetvalue = 0 },
4618 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4619 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4620 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4621 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4622 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4623 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4624 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4625 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4626 .resetvalue = 0 },
4627 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4628 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4629 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4630 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4631 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4632 .resetvalue = 0 },
4633 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4634 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4635 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4636 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4637 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4638 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4639 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4640 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4641 .access = PL2_RW, .accessfn = access_tda,
4642 .type = ARM_CP_CONST, .resetvalue = 0 },
4643 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4644 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4645 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4646 .type = ARM_CP_CONST, .resetvalue = 0 },
4647 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4648 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4649 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4650 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4651 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4652 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4653 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4654 .type = ARM_CP_CONST,
4655 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4656 .access = PL2_RW, .resetvalue = 0 },
4657 REGINFO_SENTINEL
4660 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4661 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4662 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4663 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4664 .access = PL2_RW,
4665 .type = ARM_CP_CONST, .resetvalue = 0 },
4666 REGINFO_SENTINEL
4669 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4671 ARMCPU *cpu = env_archcpu(env);
4672 uint64_t valid_mask = HCR_MASK;
4674 if (arm_feature(env, ARM_FEATURE_EL3)) {
4675 valid_mask &= ~HCR_HCD;
4676 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4677 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4678 * However, if we're using the SMC PSCI conduit then QEMU is
4679 * effectively acting like EL3 firmware and so the guest at
4680 * EL2 should retain the ability to prevent EL1 from being
4681 * able to make SMC calls into the ersatz firmware, so in
4682 * that case HCR.TSC should be read/write.
4684 valid_mask &= ~HCR_TSC;
4686 if (cpu_isar_feature(aa64_lor, cpu)) {
4687 valid_mask |= HCR_TLOR;
4689 if (cpu_isar_feature(aa64_pauth, cpu)) {
4690 valid_mask |= HCR_API | HCR_APK;
4693 /* Clear RES0 bits. */
4694 value &= valid_mask;
4696 /* These bits change the MMU setup:
4697 * HCR_VM enables stage 2 translation
4698 * HCR_PTW forbids certain page-table setups
4699 * HCR_DC Disables stage1 and enables stage2 translation
4701 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4702 tlb_flush(CPU(cpu));
4704 env->cp15.hcr_el2 = value;
4707 * Updates to VI and VF require us to update the status of
4708 * virtual interrupts, which are the logical OR of these bits
4709 * and the state of the input lines from the GIC. (This requires
4710 * that we have the iothread lock, which is done by marking the
4711 * reginfo structs as ARM_CP_IO.)
4712 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4713 * possible for it to be taken immediately, because VIRQ and
4714 * VFIQ are masked unless running at EL0 or EL1, and HCR
4715 * can only be written at EL2.
4717 g_assert(qemu_mutex_iothread_locked());
4718 arm_cpu_update_virq(cpu);
4719 arm_cpu_update_vfiq(cpu);
4722 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4723 uint64_t value)
4725 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4726 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4727 hcr_write(env, NULL, value);
4730 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4731 uint64_t value)
4733 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4734 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4735 hcr_write(env, NULL, value);
4739 * Return the effective value of HCR_EL2.
4740 * Bits that are not included here:
4741 * RW (read from SCR_EL3.RW as needed)
4743 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4745 uint64_t ret = env->cp15.hcr_el2;
4747 if (arm_is_secure_below_el3(env)) {
4749 * "This register has no effect if EL2 is not enabled in the
4750 * current Security state". This is ARMv8.4-SecEL2 speak for
4751 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4753 * Prior to that, the language was "In an implementation that
4754 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4755 * as if this field is 0 for all purposes other than a direct
4756 * read or write access of HCR_EL2". With lots of enumeration
4757 * on a per-field basis. In current QEMU, this is condition
4758 * is arm_is_secure_below_el3.
4760 * Since the v8.4 language applies to the entire register, and
4761 * appears to be backward compatible, use that.
4763 ret = 0;
4764 } else if (ret & HCR_TGE) {
4765 /* These bits are up-to-date as of ARMv8.4. */
4766 if (ret & HCR_E2H) {
4767 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4768 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4769 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4770 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4771 } else {
4772 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4774 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4775 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4776 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4777 HCR_TLOR);
4780 return ret;
4783 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4784 uint64_t value)
4787 * For A-profile AArch32 EL3, if NSACR.CP10
4788 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4790 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4791 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4792 value &= ~(0x3 << 10);
4793 value |= env->cp15.cptr_el[2] & (0x3 << 10);
4795 env->cp15.cptr_el[2] = value;
4798 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4801 * For A-profile AArch32 EL3, if NSACR.CP10
4802 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4804 uint64_t value = env->cp15.cptr_el[2];
4806 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4807 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4808 value |= 0x3 << 10;
4810 return value;
4813 static const ARMCPRegInfo el2_cp_reginfo[] = {
4814 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4815 .type = ARM_CP_IO,
4816 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4817 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4818 .writefn = hcr_write },
4819 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4820 .type = ARM_CP_ALIAS | ARM_CP_IO,
4821 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4822 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4823 .writefn = hcr_writelow },
4824 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4825 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4826 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4827 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4828 .type = ARM_CP_ALIAS,
4829 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4830 .access = PL2_RW,
4831 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4832 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4833 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4834 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4835 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4836 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4837 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4838 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4839 .type = ARM_CP_ALIAS,
4840 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4841 .access = PL2_RW,
4842 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4843 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4844 .type = ARM_CP_ALIAS,
4845 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4846 .access = PL2_RW,
4847 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4848 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4849 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4850 .access = PL2_RW, .writefn = vbar_write,
4851 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4852 .resetvalue = 0 },
4853 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4854 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4855 .access = PL3_RW, .type = ARM_CP_ALIAS,
4856 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4857 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4858 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4859 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4860 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4861 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4862 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4863 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4864 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4865 .resetvalue = 0 },
4866 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4867 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4868 .access = PL2_RW, .type = ARM_CP_ALIAS,
4869 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4870 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4871 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4872 .access = PL2_RW, .type = ARM_CP_CONST,
4873 .resetvalue = 0 },
4874 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4875 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4876 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4877 .access = PL2_RW, .type = ARM_CP_CONST,
4878 .resetvalue = 0 },
4879 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4880 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4881 .access = PL2_RW, .type = ARM_CP_CONST,
4882 .resetvalue = 0 },
4883 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4884 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4885 .access = PL2_RW, .type = ARM_CP_CONST,
4886 .resetvalue = 0 },
4887 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4888 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4889 .access = PL2_RW,
4890 /* no .writefn needed as this can't cause an ASID change;
4891 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4893 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4894 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4895 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4896 .type = ARM_CP_ALIAS,
4897 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4898 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4899 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4900 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4901 .access = PL2_RW,
4902 /* no .writefn needed as this can't cause an ASID change;
4903 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4905 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4906 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4907 .cp = 15, .opc1 = 6, .crm = 2,
4908 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4909 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4910 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4911 .writefn = vttbr_write },
4912 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4913 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4914 .access = PL2_RW, .writefn = vttbr_write,
4915 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4916 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4917 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4918 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4919 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4920 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4921 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4922 .access = PL2_RW, .resetvalue = 0,
4923 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4924 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4925 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4926 .access = PL2_RW, .resetvalue = 0,
4927 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4928 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4929 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4930 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4931 { .name = "TLBIALLNSNH",
4932 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4933 .type = ARM_CP_NO_RAW, .access = PL2_W,
4934 .writefn = tlbiall_nsnh_write },
4935 { .name = "TLBIALLNSNHIS",
4936 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4937 .type = ARM_CP_NO_RAW, .access = PL2_W,
4938 .writefn = tlbiall_nsnh_is_write },
4939 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4940 .type = ARM_CP_NO_RAW, .access = PL2_W,
4941 .writefn = tlbiall_hyp_write },
4942 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4943 .type = ARM_CP_NO_RAW, .access = PL2_W,
4944 .writefn = tlbiall_hyp_is_write },
4945 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4946 .type = ARM_CP_NO_RAW, .access = PL2_W,
4947 .writefn = tlbimva_hyp_write },
4948 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4949 .type = ARM_CP_NO_RAW, .access = PL2_W,
4950 .writefn = tlbimva_hyp_is_write },
4951 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4953 .type = ARM_CP_NO_RAW, .access = PL2_W,
4954 .writefn = tlbi_aa64_alle2_write },
4955 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4957 .type = ARM_CP_NO_RAW, .access = PL2_W,
4958 .writefn = tlbi_aa64_vae2_write },
4959 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4961 .access = PL2_W, .type = ARM_CP_NO_RAW,
4962 .writefn = tlbi_aa64_vae2_write },
4963 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4964 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4965 .access = PL2_W, .type = ARM_CP_NO_RAW,
4966 .writefn = tlbi_aa64_alle2is_write },
4967 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4968 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4969 .type = ARM_CP_NO_RAW, .access = PL2_W,
4970 .writefn = tlbi_aa64_vae2is_write },
4971 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4972 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4973 .access = PL2_W, .type = ARM_CP_NO_RAW,
4974 .writefn = tlbi_aa64_vae2is_write },
4975 #ifndef CONFIG_USER_ONLY
4976 /* Unlike the other EL2-related AT operations, these must
4977 * UNDEF from EL3 if EL2 is not implemented, which is why we
4978 * define them here rather than with the rest of the AT ops.
4980 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4981 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4982 .access = PL2_W, .accessfn = at_s1e2_access,
4983 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4984 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4985 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4986 .access = PL2_W, .accessfn = at_s1e2_access,
4987 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4988 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4989 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4990 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4991 * to behave as if SCR.NS was 1.
4993 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4994 .access = PL2_W,
4995 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
4996 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4997 .access = PL2_W,
4998 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
4999 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5000 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5001 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5002 * reset values as IMPDEF. We choose to reset to 3 to comply with
5003 * both ARMv7 and ARMv8.
5005 .access = PL2_RW, .resetvalue = 3,
5006 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5007 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5008 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5009 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5010 .writefn = gt_cntvoff_write,
5011 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5012 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5013 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5014 .writefn = gt_cntvoff_write,
5015 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5016 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5017 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5018 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5019 .type = ARM_CP_IO, .access = PL2_RW,
5020 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5021 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5022 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5023 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5024 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5025 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5026 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5027 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5028 .resetfn = gt_hyp_timer_reset,
5029 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5030 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5031 .type = ARM_CP_IO,
5032 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5033 .access = PL2_RW,
5034 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5035 .resetvalue = 0,
5036 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5037 #endif
5038 /* The only field of MDCR_EL2 that has a defined architectural reset value
5039 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5040 * don't implement any PMU event counters, so using zero as a reset
5041 * value for MDCR_EL2 is okay
5043 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5044 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5045 .access = PL2_RW, .resetvalue = 0,
5046 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5047 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5048 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5049 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5050 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5051 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5052 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5053 .access = PL2_RW,
5054 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5055 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5056 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5057 .access = PL2_RW,
5058 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5059 REGINFO_SENTINEL
5062 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5063 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5064 .type = ARM_CP_ALIAS | ARM_CP_IO,
5065 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5066 .access = PL2_RW,
5067 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5068 .writefn = hcr_writehigh },
5069 REGINFO_SENTINEL
5072 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5073 bool isread)
5075 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5076 * At Secure EL1 it traps to EL3.
5078 if (arm_current_el(env) == 3) {
5079 return CP_ACCESS_OK;
5081 if (arm_is_secure_below_el3(env)) {
5082 return CP_ACCESS_TRAP_EL3;
5084 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5085 if (isread) {
5086 return CP_ACCESS_OK;
5088 return CP_ACCESS_TRAP_UNCATEGORIZED;
5091 static const ARMCPRegInfo el3_cp_reginfo[] = {
5092 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5093 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5094 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5095 .resetvalue = 0, .writefn = scr_write },
5096 { .name = "SCR", .type = ARM_CP_ALIAS,
5097 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5098 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5099 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5100 .writefn = scr_write },
5101 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5102 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5103 .access = PL3_RW, .resetvalue = 0,
5104 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5105 { .name = "SDER",
5106 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5107 .access = PL3_RW, .resetvalue = 0,
5108 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5109 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5110 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5111 .writefn = vbar_write, .resetvalue = 0,
5112 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5113 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5114 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5115 .access = PL3_RW, .resetvalue = 0,
5116 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5117 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5118 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5119 .access = PL3_RW,
5120 /* no .writefn needed as this can't cause an ASID change;
5121 * we must provide a .raw_writefn and .resetfn because we handle
5122 * reset and migration for the AArch32 TTBCR(S), which might be
5123 * using mask and base_mask.
5125 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5126 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5127 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5128 .type = ARM_CP_ALIAS,
5129 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5130 .access = PL3_RW,
5131 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5132 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5133 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5134 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5135 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5136 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5137 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5138 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5139 .type = ARM_CP_ALIAS,
5140 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5141 .access = PL3_RW,
5142 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5143 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5144 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5145 .access = PL3_RW, .writefn = vbar_write,
5146 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5147 .resetvalue = 0 },
5148 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5149 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5150 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5151 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5152 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5153 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5154 .access = PL3_RW, .resetvalue = 0,
5155 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5156 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5157 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5158 .access = PL3_RW, .type = ARM_CP_CONST,
5159 .resetvalue = 0 },
5160 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5161 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5162 .access = PL3_RW, .type = ARM_CP_CONST,
5163 .resetvalue = 0 },
5164 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5165 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5166 .access = PL3_RW, .type = ARM_CP_CONST,
5167 .resetvalue = 0 },
5168 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5169 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5170 .access = PL3_W, .type = ARM_CP_NO_RAW,
5171 .writefn = tlbi_aa64_alle3is_write },
5172 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5173 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5174 .access = PL3_W, .type = ARM_CP_NO_RAW,
5175 .writefn = tlbi_aa64_vae3is_write },
5176 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5177 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5178 .access = PL3_W, .type = ARM_CP_NO_RAW,
5179 .writefn = tlbi_aa64_vae3is_write },
5180 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5181 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5182 .access = PL3_W, .type = ARM_CP_NO_RAW,
5183 .writefn = tlbi_aa64_alle3_write },
5184 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5185 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5186 .access = PL3_W, .type = ARM_CP_NO_RAW,
5187 .writefn = tlbi_aa64_vae3_write },
5188 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5189 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5190 .access = PL3_W, .type = ARM_CP_NO_RAW,
5191 .writefn = tlbi_aa64_vae3_write },
5192 REGINFO_SENTINEL
5195 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5196 bool isread)
5198 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5199 * but the AArch32 CTR has its own reginfo struct)
5201 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5202 return CP_ACCESS_TRAP;
5204 return CP_ACCESS_OK;
5207 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5208 uint64_t value)
5210 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5211 * read via a bit in OSLSR_EL1.
5213 int oslock;
5215 if (ri->state == ARM_CP_STATE_AA32) {
5216 oslock = (value == 0xC5ACCE55);
5217 } else {
5218 oslock = value & 1;
5221 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5224 static const ARMCPRegInfo debug_cp_reginfo[] = {
5225 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5226 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5227 * unlike DBGDRAR it is never accessible from EL0.
5228 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5229 * accessor.
5231 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5232 .access = PL0_R, .accessfn = access_tdra,
5233 .type = ARM_CP_CONST, .resetvalue = 0 },
5234 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5235 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5236 .access = PL1_R, .accessfn = access_tdra,
5237 .type = ARM_CP_CONST, .resetvalue = 0 },
5238 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5239 .access = PL0_R, .accessfn = access_tdra,
5240 .type = ARM_CP_CONST, .resetvalue = 0 },
5241 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5242 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5243 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5244 .access = PL1_RW, .accessfn = access_tda,
5245 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5246 .resetvalue = 0 },
5247 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5248 * We don't implement the configurable EL0 access.
5250 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5251 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5252 .type = ARM_CP_ALIAS,
5253 .access = PL1_R, .accessfn = access_tda,
5254 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5255 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5256 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5257 .access = PL1_W, .type = ARM_CP_NO_RAW,
5258 .accessfn = access_tdosa,
5259 .writefn = oslar_write },
5260 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5261 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5262 .access = PL1_R, .resetvalue = 10,
5263 .accessfn = access_tdosa,
5264 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5265 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5266 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5267 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5268 .access = PL1_RW, .accessfn = access_tdosa,
5269 .type = ARM_CP_NOP },
5270 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5271 * implement vector catch debug events yet.
5273 { .name = "DBGVCR",
5274 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5275 .access = PL1_RW, .accessfn = access_tda,
5276 .type = ARM_CP_NOP },
5277 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5278 * to save and restore a 32-bit guest's DBGVCR)
5280 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5281 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5282 .access = PL2_RW, .accessfn = access_tda,
5283 .type = ARM_CP_NOP },
5284 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5285 * Channel but Linux may try to access this register. The 32-bit
5286 * alias is DBGDCCINT.
5288 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5289 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5290 .access = PL1_RW, .accessfn = access_tda,
5291 .type = ARM_CP_NOP },
5292 REGINFO_SENTINEL
5295 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5296 /* 64 bit access versions of the (dummy) debug registers */
5297 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5298 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5299 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5300 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5301 REGINFO_SENTINEL
5304 /* Return the exception level to which exceptions should be taken
5305 * via SVEAccessTrap. If an exception should be routed through
5306 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5307 * take care of raising that exception.
5308 * C.f. the ARM pseudocode function CheckSVEEnabled.
5310 int sve_exception_el(CPUARMState *env, int el)
5312 #ifndef CONFIG_USER_ONLY
5313 if (el <= 1) {
5314 bool disabled = false;
5316 /* The CPACR.ZEN controls traps to EL1:
5317 * 0, 2 : trap EL0 and EL1 accesses
5318 * 1 : trap only EL0 accesses
5319 * 3 : trap no accesses
5321 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5322 disabled = true;
5323 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5324 disabled = el == 0;
5326 if (disabled) {
5327 /* route_to_el2 */
5328 return (arm_feature(env, ARM_FEATURE_EL2)
5329 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5332 /* Check CPACR.FPEN. */
5333 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5334 disabled = true;
5335 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5336 disabled = el == 0;
5338 if (disabled) {
5339 return 0;
5343 /* CPTR_EL2. Since TZ and TFP are positive,
5344 * they will be zero when EL2 is not present.
5346 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5347 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5348 return 2;
5350 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5351 return 0;
5355 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5356 if (arm_feature(env, ARM_FEATURE_EL3)
5357 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5358 return 3;
5360 #endif
5361 return 0;
5364 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5366 uint32_t start_vq = (start_len & 0xf) + 1;
5368 return arm_cpu_vq_map_next_smaller(cpu, start_vq + 1) - 1;
5372 * Given that SVE is enabled, return the vector length for EL.
5374 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5376 ARMCPU *cpu = env_archcpu(env);
5377 uint32_t zcr_len = cpu->sve_max_vq - 1;
5379 if (el <= 1) {
5380 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5382 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5383 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5385 if (arm_feature(env, ARM_FEATURE_EL3)) {
5386 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5389 return sve_zcr_get_valid_len(cpu, zcr_len);
5392 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5393 uint64_t value)
5395 int cur_el = arm_current_el(env);
5396 int old_len = sve_zcr_len_for_el(env, cur_el);
5397 int new_len;
5399 /* Bits other than [3:0] are RAZ/WI. */
5400 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5401 raw_write(env, ri, value & 0xf);
5404 * Because we arrived here, we know both FP and SVE are enabled;
5405 * otherwise we would have trapped access to the ZCR_ELn register.
5407 new_len = sve_zcr_len_for_el(env, cur_el);
5408 if (new_len < old_len) {
5409 aarch64_sve_narrow_vq(env, new_len + 1);
5413 static const ARMCPRegInfo zcr_el1_reginfo = {
5414 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5415 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5416 .access = PL1_RW, .type = ARM_CP_SVE,
5417 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5418 .writefn = zcr_write, .raw_writefn = raw_write
5421 static const ARMCPRegInfo zcr_el2_reginfo = {
5422 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5423 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5424 .access = PL2_RW, .type = ARM_CP_SVE,
5425 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5426 .writefn = zcr_write, .raw_writefn = raw_write
5429 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5430 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5431 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5432 .access = PL2_RW, .type = ARM_CP_SVE,
5433 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5436 static const ARMCPRegInfo zcr_el3_reginfo = {
5437 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5438 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5439 .access = PL3_RW, .type = ARM_CP_SVE,
5440 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5441 .writefn = zcr_write, .raw_writefn = raw_write
5444 void hw_watchpoint_update(ARMCPU *cpu, int n)
5446 CPUARMState *env = &cpu->env;
5447 vaddr len = 0;
5448 vaddr wvr = env->cp15.dbgwvr[n];
5449 uint64_t wcr = env->cp15.dbgwcr[n];
5450 int mask;
5451 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5453 if (env->cpu_watchpoint[n]) {
5454 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5455 env->cpu_watchpoint[n] = NULL;
5458 if (!extract64(wcr, 0, 1)) {
5459 /* E bit clear : watchpoint disabled */
5460 return;
5463 switch (extract64(wcr, 3, 2)) {
5464 case 0:
5465 /* LSC 00 is reserved and must behave as if the wp is disabled */
5466 return;
5467 case 1:
5468 flags |= BP_MEM_READ;
5469 break;
5470 case 2:
5471 flags |= BP_MEM_WRITE;
5472 break;
5473 case 3:
5474 flags |= BP_MEM_ACCESS;
5475 break;
5478 /* Attempts to use both MASK and BAS fields simultaneously are
5479 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5480 * thus generating a watchpoint for every byte in the masked region.
5482 mask = extract64(wcr, 24, 4);
5483 if (mask == 1 || mask == 2) {
5484 /* Reserved values of MASK; we must act as if the mask value was
5485 * some non-reserved value, or as if the watchpoint were disabled.
5486 * We choose the latter.
5488 return;
5489 } else if (mask) {
5490 /* Watchpoint covers an aligned area up to 2GB in size */
5491 len = 1ULL << mask;
5492 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5493 * whether the watchpoint fires when the unmasked bits match; we opt
5494 * to generate the exceptions.
5496 wvr &= ~(len - 1);
5497 } else {
5498 /* Watchpoint covers bytes defined by the byte address select bits */
5499 int bas = extract64(wcr, 5, 8);
5500 int basstart;
5502 if (bas == 0) {
5503 /* This must act as if the watchpoint is disabled */
5504 return;
5507 if (extract64(wvr, 2, 1)) {
5508 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5509 * ignored, and BAS[3:0] define which bytes to watch.
5511 bas &= 0xf;
5513 /* The BAS bits are supposed to be programmed to indicate a contiguous
5514 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5515 * we fire for each byte in the word/doubleword addressed by the WVR.
5516 * We choose to ignore any non-zero bits after the first range of 1s.
5518 basstart = ctz32(bas);
5519 len = cto32(bas >> basstart);
5520 wvr += basstart;
5523 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5524 &env->cpu_watchpoint[n]);
5527 void hw_watchpoint_update_all(ARMCPU *cpu)
5529 int i;
5530 CPUARMState *env = &cpu->env;
5532 /* Completely clear out existing QEMU watchpoints and our array, to
5533 * avoid possible stale entries following migration load.
5535 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5536 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5538 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5539 hw_watchpoint_update(cpu, i);
5543 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5544 uint64_t value)
5546 ARMCPU *cpu = env_archcpu(env);
5547 int i = ri->crm;
5549 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5550 * register reads and behaves as if values written are sign extended.
5551 * Bits [1:0] are RES0.
5553 value = sextract64(value, 0, 49) & ~3ULL;
5555 raw_write(env, ri, value);
5556 hw_watchpoint_update(cpu, i);
5559 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5560 uint64_t value)
5562 ARMCPU *cpu = env_archcpu(env);
5563 int i = ri->crm;
5565 raw_write(env, ri, value);
5566 hw_watchpoint_update(cpu, i);
5569 void hw_breakpoint_update(ARMCPU *cpu, int n)
5571 CPUARMState *env = &cpu->env;
5572 uint64_t bvr = env->cp15.dbgbvr[n];
5573 uint64_t bcr = env->cp15.dbgbcr[n];
5574 vaddr addr;
5575 int bt;
5576 int flags = BP_CPU;
5578 if (env->cpu_breakpoint[n]) {
5579 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5580 env->cpu_breakpoint[n] = NULL;
5583 if (!extract64(bcr, 0, 1)) {
5584 /* E bit clear : watchpoint disabled */
5585 return;
5588 bt = extract64(bcr, 20, 4);
5590 switch (bt) {
5591 case 4: /* unlinked address mismatch (reserved if AArch64) */
5592 case 5: /* linked address mismatch (reserved if AArch64) */
5593 qemu_log_mask(LOG_UNIMP,
5594 "arm: address mismatch breakpoint types not implemented\n");
5595 return;
5596 case 0: /* unlinked address match */
5597 case 1: /* linked address match */
5599 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5600 * we behave as if the register was sign extended. Bits [1:0] are
5601 * RES0. The BAS field is used to allow setting breakpoints on 16
5602 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5603 * a bp will fire if the addresses covered by the bp and the addresses
5604 * covered by the insn overlap but the insn doesn't start at the
5605 * start of the bp address range. We choose to require the insn and
5606 * the bp to have the same address. The constraints on writing to
5607 * BAS enforced in dbgbcr_write mean we have only four cases:
5608 * 0b0000 => no breakpoint
5609 * 0b0011 => breakpoint on addr
5610 * 0b1100 => breakpoint on addr + 2
5611 * 0b1111 => breakpoint on addr
5612 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5614 int bas = extract64(bcr, 5, 4);
5615 addr = sextract64(bvr, 0, 49) & ~3ULL;
5616 if (bas == 0) {
5617 return;
5619 if (bas == 0xc) {
5620 addr += 2;
5622 break;
5624 case 2: /* unlinked context ID match */
5625 case 8: /* unlinked VMID match (reserved if no EL2) */
5626 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5627 qemu_log_mask(LOG_UNIMP,
5628 "arm: unlinked context breakpoint types not implemented\n");
5629 return;
5630 case 9: /* linked VMID match (reserved if no EL2) */
5631 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5632 case 3: /* linked context ID match */
5633 default:
5634 /* We must generate no events for Linked context matches (unless
5635 * they are linked to by some other bp/wp, which is handled in
5636 * updates for the linking bp/wp). We choose to also generate no events
5637 * for reserved values.
5639 return;
5642 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5645 void hw_breakpoint_update_all(ARMCPU *cpu)
5647 int i;
5648 CPUARMState *env = &cpu->env;
5650 /* Completely clear out existing QEMU breakpoints and our array, to
5651 * avoid possible stale entries following migration load.
5653 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5654 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5656 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5657 hw_breakpoint_update(cpu, i);
5661 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5662 uint64_t value)
5664 ARMCPU *cpu = env_archcpu(env);
5665 int i = ri->crm;
5667 raw_write(env, ri, value);
5668 hw_breakpoint_update(cpu, i);
5671 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5672 uint64_t value)
5674 ARMCPU *cpu = env_archcpu(env);
5675 int i = ri->crm;
5677 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5678 * copy of BAS[0].
5680 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5681 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5683 raw_write(env, ri, value);
5684 hw_breakpoint_update(cpu, i);
5687 static void define_debug_regs(ARMCPU *cpu)
5689 /* Define v7 and v8 architectural debug registers.
5690 * These are just dummy implementations for now.
5692 int i;
5693 int wrps, brps, ctx_cmps;
5694 ARMCPRegInfo dbgdidr = {
5695 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5696 .access = PL0_R, .accessfn = access_tda,
5697 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5700 /* Note that all these register fields hold "number of Xs minus 1". */
5701 brps = extract32(cpu->dbgdidr, 24, 4);
5702 wrps = extract32(cpu->dbgdidr, 28, 4);
5703 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5705 assert(ctx_cmps <= brps);
5707 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5708 * of the debug registers such as number of breakpoints;
5709 * check that if they both exist then they agree.
5711 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5712 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5713 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5714 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5717 define_one_arm_cp_reg(cpu, &dbgdidr);
5718 define_arm_cp_regs(cpu, debug_cp_reginfo);
5720 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5721 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5724 for (i = 0; i < brps + 1; i++) {
5725 ARMCPRegInfo dbgregs[] = {
5726 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5727 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5728 .access = PL1_RW, .accessfn = access_tda,
5729 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5730 .writefn = dbgbvr_write, .raw_writefn = raw_write
5732 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5733 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5734 .access = PL1_RW, .accessfn = access_tda,
5735 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5736 .writefn = dbgbcr_write, .raw_writefn = raw_write
5738 REGINFO_SENTINEL
5740 define_arm_cp_regs(cpu, dbgregs);
5743 for (i = 0; i < wrps + 1; i++) {
5744 ARMCPRegInfo dbgregs[] = {
5745 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5746 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5747 .access = PL1_RW, .accessfn = access_tda,
5748 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5749 .writefn = dbgwvr_write, .raw_writefn = raw_write
5751 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5752 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5753 .access = PL1_RW, .accessfn = access_tda,
5754 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5755 .writefn = dbgwcr_write, .raw_writefn = raw_write
5757 REGINFO_SENTINEL
5759 define_arm_cp_regs(cpu, dbgregs);
5763 /* We don't know until after realize whether there's a GICv3
5764 * attached, and that is what registers the gicv3 sysregs.
5765 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5766 * at runtime.
5768 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5770 ARMCPU *cpu = env_archcpu(env);
5771 uint64_t pfr1 = cpu->id_pfr1;
5773 if (env->gicv3state) {
5774 pfr1 |= 1 << 28;
5776 return pfr1;
5779 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5781 ARMCPU *cpu = env_archcpu(env);
5782 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5784 if (env->gicv3state) {
5785 pfr0 |= 1 << 24;
5787 return pfr0;
5790 /* Shared logic between LORID and the rest of the LOR* registers.
5791 * Secure state has already been delt with.
5793 static CPAccessResult access_lor_ns(CPUARMState *env)
5795 int el = arm_current_el(env);
5797 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5798 return CP_ACCESS_TRAP_EL2;
5800 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5801 return CP_ACCESS_TRAP_EL3;
5803 return CP_ACCESS_OK;
5806 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5807 bool isread)
5809 if (arm_is_secure_below_el3(env)) {
5810 /* Access ok in secure mode. */
5811 return CP_ACCESS_OK;
5813 return access_lor_ns(env);
5816 static CPAccessResult access_lor_other(CPUARMState *env,
5817 const ARMCPRegInfo *ri, bool isread)
5819 if (arm_is_secure_below_el3(env)) {
5820 /* Access denied in secure mode. */
5821 return CP_ACCESS_TRAP;
5823 return access_lor_ns(env);
5826 #ifdef TARGET_AARCH64
5827 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5828 bool isread)
5830 int el = arm_current_el(env);
5832 if (el < 2 &&
5833 arm_feature(env, ARM_FEATURE_EL2) &&
5834 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5835 return CP_ACCESS_TRAP_EL2;
5837 if (el < 3 &&
5838 arm_feature(env, ARM_FEATURE_EL3) &&
5839 !(env->cp15.scr_el3 & SCR_APK)) {
5840 return CP_ACCESS_TRAP_EL3;
5842 return CP_ACCESS_OK;
5845 static const ARMCPRegInfo pauth_reginfo[] = {
5846 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5847 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5848 .access = PL1_RW, .accessfn = access_pauth,
5849 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5850 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5851 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5852 .access = PL1_RW, .accessfn = access_pauth,
5853 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5854 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5855 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5856 .access = PL1_RW, .accessfn = access_pauth,
5857 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5858 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5859 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5860 .access = PL1_RW, .accessfn = access_pauth,
5861 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5862 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5864 .access = PL1_RW, .accessfn = access_pauth,
5865 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5866 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5868 .access = PL1_RW, .accessfn = access_pauth,
5869 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5870 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5872 .access = PL1_RW, .accessfn = access_pauth,
5873 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5874 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5875 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5876 .access = PL1_RW, .accessfn = access_pauth,
5877 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5878 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5879 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5880 .access = PL1_RW, .accessfn = access_pauth,
5881 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5882 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5883 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5884 .access = PL1_RW, .accessfn = access_pauth,
5885 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5886 REGINFO_SENTINEL
5889 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5891 Error *err = NULL;
5892 uint64_t ret;
5894 /* Success sets NZCV = 0000. */
5895 env->NF = env->CF = env->VF = 0, env->ZF = 1;
5897 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5899 * ??? Failed, for unknown reasons in the crypto subsystem.
5900 * The best we can do is log the reason and return the
5901 * timed-out indication to the guest. There is no reason
5902 * we know to expect this failure to be transitory, so the
5903 * guest may well hang retrying the operation.
5905 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5906 ri->name, error_get_pretty(err));
5907 error_free(err);
5909 env->ZF = 0; /* NZCF = 0100 */
5910 return 0;
5912 return ret;
5915 /* We do not support re-seeding, so the two registers operate the same. */
5916 static const ARMCPRegInfo rndr_reginfo[] = {
5917 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5918 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5919 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5920 .access = PL0_R, .readfn = rndr_readfn },
5921 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5922 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5923 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5924 .access = PL0_R, .readfn = rndr_readfn },
5925 REGINFO_SENTINEL
5927 #endif
5929 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5930 bool isread)
5932 int el = arm_current_el(env);
5934 if (el == 0) {
5935 uint64_t sctlr = arm_sctlr(env, el);
5936 if (!(sctlr & SCTLR_EnRCTX)) {
5937 return CP_ACCESS_TRAP;
5939 } else if (el == 1) {
5940 uint64_t hcr = arm_hcr_el2_eff(env);
5941 if (hcr & HCR_NV) {
5942 return CP_ACCESS_TRAP_EL2;
5945 return CP_ACCESS_OK;
5948 static const ARMCPRegInfo predinv_reginfo[] = {
5949 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5950 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5951 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5952 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5953 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5954 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5955 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5956 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5957 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5959 * Note the AArch32 opcodes have a different OPC1.
5961 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5962 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5963 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5964 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5965 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5966 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5967 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5968 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5969 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5970 REGINFO_SENTINEL
5973 void register_cp_regs_for_features(ARMCPU *cpu)
5975 /* Register all the coprocessor registers based on feature bits */
5976 CPUARMState *env = &cpu->env;
5977 if (arm_feature(env, ARM_FEATURE_M)) {
5978 /* M profile has no coprocessor registers */
5979 return;
5982 define_arm_cp_regs(cpu, cp_reginfo);
5983 if (!arm_feature(env, ARM_FEATURE_V8)) {
5984 /* Must go early as it is full of wildcards that may be
5985 * overridden by later definitions.
5987 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5990 if (arm_feature(env, ARM_FEATURE_V6)) {
5991 /* The ID registers all have impdef reset values */
5992 ARMCPRegInfo v6_idregs[] = {
5993 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5995 .access = PL1_R, .type = ARM_CP_CONST,
5996 .resetvalue = cpu->id_pfr0 },
5997 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5998 * the value of the GIC field until after we define these regs.
6000 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6002 .access = PL1_R, .type = ARM_CP_NO_RAW,
6003 .readfn = id_pfr1_read,
6004 .writefn = arm_cp_write_ignore },
6005 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6007 .access = PL1_R, .type = ARM_CP_CONST,
6008 .resetvalue = cpu->id_dfr0 },
6009 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6011 .access = PL1_R, .type = ARM_CP_CONST,
6012 .resetvalue = cpu->id_afr0 },
6013 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6015 .access = PL1_R, .type = ARM_CP_CONST,
6016 .resetvalue = cpu->id_mmfr0 },
6017 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6019 .access = PL1_R, .type = ARM_CP_CONST,
6020 .resetvalue = cpu->id_mmfr1 },
6021 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6023 .access = PL1_R, .type = ARM_CP_CONST,
6024 .resetvalue = cpu->id_mmfr2 },
6025 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6027 .access = PL1_R, .type = ARM_CP_CONST,
6028 .resetvalue = cpu->id_mmfr3 },
6029 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6031 .access = PL1_R, .type = ARM_CP_CONST,
6032 .resetvalue = cpu->isar.id_isar0 },
6033 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6035 .access = PL1_R, .type = ARM_CP_CONST,
6036 .resetvalue = cpu->isar.id_isar1 },
6037 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6039 .access = PL1_R, .type = ARM_CP_CONST,
6040 .resetvalue = cpu->isar.id_isar2 },
6041 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6043 .access = PL1_R, .type = ARM_CP_CONST,
6044 .resetvalue = cpu->isar.id_isar3 },
6045 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6047 .access = PL1_R, .type = ARM_CP_CONST,
6048 .resetvalue = cpu->isar.id_isar4 },
6049 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6051 .access = PL1_R, .type = ARM_CP_CONST,
6052 .resetvalue = cpu->isar.id_isar5 },
6053 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6055 .access = PL1_R, .type = ARM_CP_CONST,
6056 .resetvalue = cpu->id_mmfr4 },
6057 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6059 .access = PL1_R, .type = ARM_CP_CONST,
6060 .resetvalue = cpu->isar.id_isar6 },
6061 REGINFO_SENTINEL
6063 define_arm_cp_regs(cpu, v6_idregs);
6064 define_arm_cp_regs(cpu, v6_cp_reginfo);
6065 } else {
6066 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6068 if (arm_feature(env, ARM_FEATURE_V6K)) {
6069 define_arm_cp_regs(cpu, v6k_cp_reginfo);
6071 if (arm_feature(env, ARM_FEATURE_V7MP) &&
6072 !arm_feature(env, ARM_FEATURE_PMSA)) {
6073 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6075 if (arm_feature(env, ARM_FEATURE_V7VE)) {
6076 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6078 if (arm_feature(env, ARM_FEATURE_V7)) {
6079 /* v7 performance monitor control register: same implementor
6080 * field as main ID register, and we implement four counters in
6081 * addition to the cycle count register.
6083 unsigned int i, pmcrn = 4;
6084 ARMCPRegInfo pmcr = {
6085 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6086 .access = PL0_RW,
6087 .type = ARM_CP_IO | ARM_CP_ALIAS,
6088 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6089 .accessfn = pmreg_access, .writefn = pmcr_write,
6090 .raw_writefn = raw_write,
6092 ARMCPRegInfo pmcr64 = {
6093 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6095 .access = PL0_RW, .accessfn = pmreg_access,
6096 .type = ARM_CP_IO,
6097 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6098 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6099 .writefn = pmcr_write, .raw_writefn = raw_write,
6101 define_one_arm_cp_reg(cpu, &pmcr);
6102 define_one_arm_cp_reg(cpu, &pmcr64);
6103 for (i = 0; i < pmcrn; i++) {
6104 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6105 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6106 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6107 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6108 ARMCPRegInfo pmev_regs[] = {
6109 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6110 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6111 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6112 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6113 .accessfn = pmreg_access },
6114 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6115 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6116 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6117 .type = ARM_CP_IO,
6118 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6119 .raw_readfn = pmevcntr_rawread,
6120 .raw_writefn = pmevcntr_rawwrite },
6121 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6122 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6123 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6124 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6125 .accessfn = pmreg_access },
6126 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6127 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6128 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6129 .type = ARM_CP_IO,
6130 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6131 .raw_writefn = pmevtyper_rawwrite },
6132 REGINFO_SENTINEL
6134 define_arm_cp_regs(cpu, pmev_regs);
6135 g_free(pmevcntr_name);
6136 g_free(pmevcntr_el0_name);
6137 g_free(pmevtyper_name);
6138 g_free(pmevtyper_el0_name);
6140 ARMCPRegInfo clidr = {
6141 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6142 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6143 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6145 define_one_arm_cp_reg(cpu, &clidr);
6146 define_arm_cp_regs(cpu, v7_cp_reginfo);
6147 define_debug_regs(cpu);
6148 } else {
6149 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6151 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6152 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6153 ARMCPRegInfo v81_pmu_regs[] = {
6154 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6155 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6156 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6157 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6158 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6159 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6160 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6161 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6162 REGINFO_SENTINEL
6164 define_arm_cp_regs(cpu, v81_pmu_regs);
6166 if (arm_feature(env, ARM_FEATURE_V8)) {
6167 /* AArch64 ID registers, which all have impdef reset values.
6168 * Note that within the ID register ranges the unused slots
6169 * must all RAZ, not UNDEF; future architecture versions may
6170 * define new registers here.
6172 ARMCPRegInfo v8_idregs[] = {
6173 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6174 * know the right value for the GIC field until after we
6175 * define these regs.
6177 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6179 .access = PL1_R, .type = ARM_CP_NO_RAW,
6180 .readfn = id_aa64pfr0_read,
6181 .writefn = arm_cp_write_ignore },
6182 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6184 .access = PL1_R, .type = ARM_CP_CONST,
6185 .resetvalue = cpu->isar.id_aa64pfr1},
6186 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6188 .access = PL1_R, .type = ARM_CP_CONST,
6189 .resetvalue = 0 },
6190 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6192 .access = PL1_R, .type = ARM_CP_CONST,
6193 .resetvalue = 0 },
6194 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6196 .access = PL1_R, .type = ARM_CP_CONST,
6197 /* At present, only SVEver == 0 is defined anyway. */
6198 .resetvalue = 0 },
6199 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6201 .access = PL1_R, .type = ARM_CP_CONST,
6202 .resetvalue = 0 },
6203 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6205 .access = PL1_R, .type = ARM_CP_CONST,
6206 .resetvalue = 0 },
6207 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6209 .access = PL1_R, .type = ARM_CP_CONST,
6210 .resetvalue = 0 },
6211 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6213 .access = PL1_R, .type = ARM_CP_CONST,
6214 .resetvalue = cpu->id_aa64dfr0 },
6215 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6216 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6217 .access = PL1_R, .type = ARM_CP_CONST,
6218 .resetvalue = cpu->id_aa64dfr1 },
6219 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6221 .access = PL1_R, .type = ARM_CP_CONST,
6222 .resetvalue = 0 },
6223 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6225 .access = PL1_R, .type = ARM_CP_CONST,
6226 .resetvalue = 0 },
6227 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6229 .access = PL1_R, .type = ARM_CP_CONST,
6230 .resetvalue = cpu->id_aa64afr0 },
6231 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6233 .access = PL1_R, .type = ARM_CP_CONST,
6234 .resetvalue = cpu->id_aa64afr1 },
6235 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6237 .access = PL1_R, .type = ARM_CP_CONST,
6238 .resetvalue = 0 },
6239 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6241 .access = PL1_R, .type = ARM_CP_CONST,
6242 .resetvalue = 0 },
6243 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6245 .access = PL1_R, .type = ARM_CP_CONST,
6246 .resetvalue = cpu->isar.id_aa64isar0 },
6247 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6249 .access = PL1_R, .type = ARM_CP_CONST,
6250 .resetvalue = cpu->isar.id_aa64isar1 },
6251 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6253 .access = PL1_R, .type = ARM_CP_CONST,
6254 .resetvalue = 0 },
6255 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6257 .access = PL1_R, .type = ARM_CP_CONST,
6258 .resetvalue = 0 },
6259 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6260 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6261 .access = PL1_R, .type = ARM_CP_CONST,
6262 .resetvalue = 0 },
6263 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6265 .access = PL1_R, .type = ARM_CP_CONST,
6266 .resetvalue = 0 },
6267 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6269 .access = PL1_R, .type = ARM_CP_CONST,
6270 .resetvalue = 0 },
6271 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6273 .access = PL1_R, .type = ARM_CP_CONST,
6274 .resetvalue = 0 },
6275 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6277 .access = PL1_R, .type = ARM_CP_CONST,
6278 .resetvalue = cpu->isar.id_aa64mmfr0 },
6279 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6281 .access = PL1_R, .type = ARM_CP_CONST,
6282 .resetvalue = cpu->isar.id_aa64mmfr1 },
6283 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6285 .access = PL1_R, .type = ARM_CP_CONST,
6286 .resetvalue = 0 },
6287 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6289 .access = PL1_R, .type = ARM_CP_CONST,
6290 .resetvalue = 0 },
6291 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6293 .access = PL1_R, .type = ARM_CP_CONST,
6294 .resetvalue = 0 },
6295 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6297 .access = PL1_R, .type = ARM_CP_CONST,
6298 .resetvalue = 0 },
6299 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6301 .access = PL1_R, .type = ARM_CP_CONST,
6302 .resetvalue = 0 },
6303 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6305 .access = PL1_R, .type = ARM_CP_CONST,
6306 .resetvalue = 0 },
6307 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6309 .access = PL1_R, .type = ARM_CP_CONST,
6310 .resetvalue = cpu->isar.mvfr0 },
6311 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6313 .access = PL1_R, .type = ARM_CP_CONST,
6314 .resetvalue = cpu->isar.mvfr1 },
6315 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6317 .access = PL1_R, .type = ARM_CP_CONST,
6318 .resetvalue = cpu->isar.mvfr2 },
6319 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6321 .access = PL1_R, .type = ARM_CP_CONST,
6322 .resetvalue = 0 },
6323 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6325 .access = PL1_R, .type = ARM_CP_CONST,
6326 .resetvalue = 0 },
6327 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6329 .access = PL1_R, .type = ARM_CP_CONST,
6330 .resetvalue = 0 },
6331 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6332 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6333 .access = PL1_R, .type = ARM_CP_CONST,
6334 .resetvalue = 0 },
6335 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6337 .access = PL1_R, .type = ARM_CP_CONST,
6338 .resetvalue = 0 },
6339 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6340 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6341 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6342 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6343 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6345 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6346 .resetvalue = cpu->pmceid0 },
6347 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6348 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6349 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6350 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6351 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6352 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6353 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6354 .resetvalue = cpu->pmceid1 },
6355 REGINFO_SENTINEL
6357 #ifdef CONFIG_USER_ONLY
6358 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6359 { .name = "ID_AA64PFR0_EL1",
6360 .exported_bits = 0x000f000f00ff0000,
6361 .fixed_bits = 0x0000000000000011 },
6362 { .name = "ID_AA64PFR1_EL1",
6363 .exported_bits = 0x00000000000000f0 },
6364 { .name = "ID_AA64PFR*_EL1_RESERVED",
6365 .is_glob = true },
6366 { .name = "ID_AA64ZFR0_EL1" },
6367 { .name = "ID_AA64MMFR0_EL1",
6368 .fixed_bits = 0x00000000ff000000 },
6369 { .name = "ID_AA64MMFR1_EL1" },
6370 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6371 .is_glob = true },
6372 { .name = "ID_AA64DFR0_EL1",
6373 .fixed_bits = 0x0000000000000006 },
6374 { .name = "ID_AA64DFR1_EL1" },
6375 { .name = "ID_AA64DFR*_EL1_RESERVED",
6376 .is_glob = true },
6377 { .name = "ID_AA64AFR*",
6378 .is_glob = true },
6379 { .name = "ID_AA64ISAR0_EL1",
6380 .exported_bits = 0x00fffffff0fffff0 },
6381 { .name = "ID_AA64ISAR1_EL1",
6382 .exported_bits = 0x000000f0ffffffff },
6383 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6384 .is_glob = true },
6385 REGUSERINFO_SENTINEL
6387 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6388 #endif
6389 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6390 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6391 !arm_feature(env, ARM_FEATURE_EL2)) {
6392 ARMCPRegInfo rvbar = {
6393 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6394 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6395 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6397 define_one_arm_cp_reg(cpu, &rvbar);
6399 define_arm_cp_regs(cpu, v8_idregs);
6400 define_arm_cp_regs(cpu, v8_cp_reginfo);
6402 if (arm_feature(env, ARM_FEATURE_EL2)) {
6403 uint64_t vmpidr_def = mpidr_read_val(env);
6404 ARMCPRegInfo vpidr_regs[] = {
6405 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6406 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6407 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6408 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6409 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6410 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6411 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6412 .access = PL2_RW, .resetvalue = cpu->midr,
6413 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6414 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6415 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6416 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6417 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6418 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6419 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6420 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6421 .access = PL2_RW,
6422 .resetvalue = vmpidr_def,
6423 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6424 REGINFO_SENTINEL
6426 define_arm_cp_regs(cpu, vpidr_regs);
6427 define_arm_cp_regs(cpu, el2_cp_reginfo);
6428 if (arm_feature(env, ARM_FEATURE_V8)) {
6429 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6431 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6432 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6433 ARMCPRegInfo rvbar = {
6434 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6435 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6436 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6438 define_one_arm_cp_reg(cpu, &rvbar);
6440 } else {
6441 /* If EL2 is missing but higher ELs are enabled, we need to
6442 * register the no_el2 reginfos.
6444 if (arm_feature(env, ARM_FEATURE_EL3)) {
6445 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6446 * of MIDR_EL1 and MPIDR_EL1.
6448 ARMCPRegInfo vpidr_regs[] = {
6449 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6450 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6451 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6452 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6453 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6454 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6455 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6456 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6457 .type = ARM_CP_NO_RAW,
6458 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6459 REGINFO_SENTINEL
6461 define_arm_cp_regs(cpu, vpidr_regs);
6462 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6463 if (arm_feature(env, ARM_FEATURE_V8)) {
6464 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6468 if (arm_feature(env, ARM_FEATURE_EL3)) {
6469 define_arm_cp_regs(cpu, el3_cp_reginfo);
6470 ARMCPRegInfo el3_regs[] = {
6471 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6472 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6473 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6474 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6475 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6476 .access = PL3_RW,
6477 .raw_writefn = raw_write, .writefn = sctlr_write,
6478 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6479 .resetvalue = cpu->reset_sctlr },
6480 REGINFO_SENTINEL
6483 define_arm_cp_regs(cpu, el3_regs);
6485 /* The behaviour of NSACR is sufficiently various that we don't
6486 * try to describe it in a single reginfo:
6487 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6488 * reads as constant 0xc00 from NS EL1 and NS EL2
6489 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6490 * if v7 without EL3, register doesn't exist
6491 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6493 if (arm_feature(env, ARM_FEATURE_EL3)) {
6494 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6495 ARMCPRegInfo nsacr = {
6496 .name = "NSACR", .type = ARM_CP_CONST,
6497 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6498 .access = PL1_RW, .accessfn = nsacr_access,
6499 .resetvalue = 0xc00
6501 define_one_arm_cp_reg(cpu, &nsacr);
6502 } else {
6503 ARMCPRegInfo nsacr = {
6504 .name = "NSACR",
6505 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6506 .access = PL3_RW | PL1_R,
6507 .resetvalue = 0,
6508 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6510 define_one_arm_cp_reg(cpu, &nsacr);
6512 } else {
6513 if (arm_feature(env, ARM_FEATURE_V8)) {
6514 ARMCPRegInfo nsacr = {
6515 .name = "NSACR", .type = ARM_CP_CONST,
6516 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6517 .access = PL1_R,
6518 .resetvalue = 0xc00
6520 define_one_arm_cp_reg(cpu, &nsacr);
6524 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6525 if (arm_feature(env, ARM_FEATURE_V6)) {
6526 /* PMSAv6 not implemented */
6527 assert(arm_feature(env, ARM_FEATURE_V7));
6528 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6529 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6530 } else {
6531 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6533 } else {
6534 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6535 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6536 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6537 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6538 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6541 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6542 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6544 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6545 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6547 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6548 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6550 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6551 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6553 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6554 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6556 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6557 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6559 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6560 define_arm_cp_regs(cpu, omap_cp_reginfo);
6562 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6563 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6565 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6566 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6568 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6569 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6571 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6572 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6574 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6575 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6576 * be read-only (ie write causes UNDEF exception).
6579 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6580 /* Pre-v8 MIDR space.
6581 * Note that the MIDR isn't a simple constant register because
6582 * of the TI925 behaviour where writes to another register can
6583 * cause the MIDR value to change.
6585 * Unimplemented registers in the c15 0 0 0 space default to
6586 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6587 * and friends override accordingly.
6589 { .name = "MIDR",
6590 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6591 .access = PL1_R, .resetvalue = cpu->midr,
6592 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6593 .readfn = midr_read,
6594 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6595 .type = ARM_CP_OVERRIDE },
6596 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6597 { .name = "DUMMY",
6598 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6599 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6600 { .name = "DUMMY",
6601 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6602 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6603 { .name = "DUMMY",
6604 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6605 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6606 { .name = "DUMMY",
6607 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6608 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6609 { .name = "DUMMY",
6610 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6611 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6612 REGINFO_SENTINEL
6614 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6615 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6617 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6618 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6619 .readfn = midr_read },
6620 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6621 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6622 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6623 .access = PL1_R, .resetvalue = cpu->midr },
6624 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6625 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6626 .access = PL1_R, .resetvalue = cpu->midr },
6627 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6629 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6630 REGINFO_SENTINEL
6632 ARMCPRegInfo id_cp_reginfo[] = {
6633 /* These are common to v8 and pre-v8 */
6634 { .name = "CTR",
6635 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6636 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6637 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6638 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6639 .access = PL0_R, .accessfn = ctr_el0_access,
6640 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6641 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6642 { .name = "TCMTR",
6643 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6644 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6645 REGINFO_SENTINEL
6647 /* TLBTR is specific to VMSA */
6648 ARMCPRegInfo id_tlbtr_reginfo = {
6649 .name = "TLBTR",
6650 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6651 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6653 /* MPUIR is specific to PMSA V6+ */
6654 ARMCPRegInfo id_mpuir_reginfo = {
6655 .name = "MPUIR",
6656 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6657 .access = PL1_R, .type = ARM_CP_CONST,
6658 .resetvalue = cpu->pmsav7_dregion << 8
6660 ARMCPRegInfo crn0_wi_reginfo = {
6661 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6662 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6663 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6665 #ifdef CONFIG_USER_ONLY
6666 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6667 { .name = "MIDR_EL1",
6668 .exported_bits = 0x00000000ffffffff },
6669 { .name = "REVIDR_EL1" },
6670 REGUSERINFO_SENTINEL
6672 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6673 #endif
6674 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6675 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6676 ARMCPRegInfo *r;
6677 /* Register the blanket "writes ignored" value first to cover the
6678 * whole space. Then update the specific ID registers to allow write
6679 * access, so that they ignore writes rather than causing them to
6680 * UNDEF.
6682 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6683 for (r = id_pre_v8_midr_cp_reginfo;
6684 r->type != ARM_CP_SENTINEL; r++) {
6685 r->access = PL1_RW;
6687 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6688 r->access = PL1_RW;
6690 id_mpuir_reginfo.access = PL1_RW;
6691 id_tlbtr_reginfo.access = PL1_RW;
6693 if (arm_feature(env, ARM_FEATURE_V8)) {
6694 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6695 } else {
6696 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6698 define_arm_cp_regs(cpu, id_cp_reginfo);
6699 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6700 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6701 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6702 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6706 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6707 ARMCPRegInfo mpidr_cp_reginfo[] = {
6708 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6709 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6710 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6711 REGINFO_SENTINEL
6713 #ifdef CONFIG_USER_ONLY
6714 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6715 { .name = "MPIDR_EL1",
6716 .fixed_bits = 0x0000000080000000 },
6717 REGUSERINFO_SENTINEL
6719 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6720 #endif
6721 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6724 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6725 ARMCPRegInfo auxcr_reginfo[] = {
6726 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6727 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6728 .access = PL1_RW, .type = ARM_CP_CONST,
6729 .resetvalue = cpu->reset_auxcr },
6730 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6731 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6732 .access = PL2_RW, .type = ARM_CP_CONST,
6733 .resetvalue = 0 },
6734 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6735 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6736 .access = PL3_RW, .type = ARM_CP_CONST,
6737 .resetvalue = 0 },
6738 REGINFO_SENTINEL
6740 define_arm_cp_regs(cpu, auxcr_reginfo);
6741 if (arm_feature(env, ARM_FEATURE_V8)) {
6742 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6743 ARMCPRegInfo hactlr2_reginfo = {
6744 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6745 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6746 .access = PL2_RW, .type = ARM_CP_CONST,
6747 .resetvalue = 0
6749 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6753 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6755 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
6756 * There are two flavours:
6757 * (1) older 32-bit only cores have a simple 32-bit CBAR
6758 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
6759 * 32-bit register visible to AArch32 at a different encoding
6760 * to the "flavour 1" register and with the bits rearranged to
6761 * be able to squash a 64-bit address into the 32-bit view.
6762 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
6763 * in future if we support AArch32-only configs of some of the
6764 * AArch64 cores we might need to add a specific feature flag
6765 * to indicate cores with "flavour 2" CBAR.
6767 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6768 /* 32 bit view is [31:18] 0...0 [43:32]. */
6769 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6770 | extract64(cpu->reset_cbar, 32, 12);
6771 ARMCPRegInfo cbar_reginfo[] = {
6772 { .name = "CBAR",
6773 .type = ARM_CP_CONST,
6774 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
6775 .access = PL1_R, .resetvalue = cbar32 },
6776 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6777 .type = ARM_CP_CONST,
6778 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6779 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6780 REGINFO_SENTINEL
6782 /* We don't implement a r/w 64 bit CBAR currently */
6783 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6784 define_arm_cp_regs(cpu, cbar_reginfo);
6785 } else {
6786 ARMCPRegInfo cbar = {
6787 .name = "CBAR",
6788 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6789 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6790 .fieldoffset = offsetof(CPUARMState,
6791 cp15.c15_config_base_address)
6793 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6794 cbar.access = PL1_R;
6795 cbar.fieldoffset = 0;
6796 cbar.type = ARM_CP_CONST;
6798 define_one_arm_cp_reg(cpu, &cbar);
6802 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6803 ARMCPRegInfo vbar_cp_reginfo[] = {
6804 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6805 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6806 .access = PL1_RW, .writefn = vbar_write,
6807 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6808 offsetof(CPUARMState, cp15.vbar_ns) },
6809 .resetvalue = 0 },
6810 REGINFO_SENTINEL
6812 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6815 /* Generic registers whose values depend on the implementation */
6817 ARMCPRegInfo sctlr = {
6818 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6819 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6820 .access = PL1_RW,
6821 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6822 offsetof(CPUARMState, cp15.sctlr_ns) },
6823 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6824 .raw_writefn = raw_write,
6826 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6827 /* Normally we would always end the TB on an SCTLR write, but Linux
6828 * arch/arm/mach-pxa/sleep.S expects two instructions following
6829 * an MMU enable to execute from cache. Imitate this behaviour.
6831 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6833 define_one_arm_cp_reg(cpu, &sctlr);
6836 if (cpu_isar_feature(aa64_lor, cpu)) {
6838 * A trivial implementation of ARMv8.1-LOR leaves all of these
6839 * registers fixed at 0, which indicates that there are zero
6840 * supported Limited Ordering regions.
6842 static const ARMCPRegInfo lor_reginfo[] = {
6843 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6844 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6845 .access = PL1_RW, .accessfn = access_lor_other,
6846 .type = ARM_CP_CONST, .resetvalue = 0 },
6847 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6848 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6849 .access = PL1_RW, .accessfn = access_lor_other,
6850 .type = ARM_CP_CONST, .resetvalue = 0 },
6851 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6852 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6853 .access = PL1_RW, .accessfn = access_lor_other,
6854 .type = ARM_CP_CONST, .resetvalue = 0 },
6855 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6856 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6857 .access = PL1_RW, .accessfn = access_lor_other,
6858 .type = ARM_CP_CONST, .resetvalue = 0 },
6859 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6860 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6861 .access = PL1_R, .accessfn = access_lorid,
6862 .type = ARM_CP_CONST, .resetvalue = 0 },
6863 REGINFO_SENTINEL
6865 define_arm_cp_regs(cpu, lor_reginfo);
6868 if (cpu_isar_feature(aa64_sve, cpu)) {
6869 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6870 if (arm_feature(env, ARM_FEATURE_EL2)) {
6871 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6872 } else {
6873 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6875 if (arm_feature(env, ARM_FEATURE_EL3)) {
6876 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6880 #ifdef TARGET_AARCH64
6881 if (cpu_isar_feature(aa64_pauth, cpu)) {
6882 define_arm_cp_regs(cpu, pauth_reginfo);
6884 if (cpu_isar_feature(aa64_rndr, cpu)) {
6885 define_arm_cp_regs(cpu, rndr_reginfo);
6887 #endif
6890 * While all v8.0 cpus support aarch64, QEMU does have configurations
6891 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6892 * which will set ID_ISAR6.
6894 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6895 ? cpu_isar_feature(aa64_predinv, cpu)
6896 : cpu_isar_feature(aa32_predinv, cpu)) {
6897 define_arm_cp_regs(cpu, predinv_reginfo);
6901 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6903 CPUState *cs = CPU(cpu);
6904 CPUARMState *env = &cpu->env;
6906 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6907 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6908 aarch64_fpu_gdb_set_reg,
6909 34, "aarch64-fpu.xml", 0);
6910 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6911 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6912 51, "arm-neon.xml", 0);
6913 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6914 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6915 35, "arm-vfp3.xml", 0);
6916 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6917 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6918 19, "arm-vfp.xml", 0);
6920 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6921 arm_gen_dynamic_xml(cs),
6922 "system-registers.xml", 0);
6925 /* Sort alphabetically by type name, except for "any". */
6926 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6928 ObjectClass *class_a = (ObjectClass *)a;
6929 ObjectClass *class_b = (ObjectClass *)b;
6930 const char *name_a, *name_b;
6932 name_a = object_class_get_name(class_a);
6933 name_b = object_class_get_name(class_b);
6934 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6935 return 1;
6936 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6937 return -1;
6938 } else {
6939 return strcmp(name_a, name_b);
6943 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6945 ObjectClass *oc = data;
6946 const char *typename;
6947 char *name;
6949 typename = object_class_get_name(oc);
6950 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6951 qemu_printf(" %s\n", name);
6952 g_free(name);
6955 void arm_cpu_list(void)
6957 GSList *list;
6959 list = object_class_get_list(TYPE_ARM_CPU, false);
6960 list = g_slist_sort(list, arm_cpu_list_compare);
6961 qemu_printf("Available CPUs:\n");
6962 g_slist_foreach(list, arm_cpu_list_entry, NULL);
6963 g_slist_free(list);
6966 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6968 ObjectClass *oc = data;
6969 CpuDefinitionInfoList **cpu_list = user_data;
6970 CpuDefinitionInfoList *entry;
6971 CpuDefinitionInfo *info;
6972 const char *typename;
6974 typename = object_class_get_name(oc);
6975 info = g_malloc0(sizeof(*info));
6976 info->name = g_strndup(typename,
6977 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6978 info->q_typename = g_strdup(typename);
6980 entry = g_malloc0(sizeof(*entry));
6981 entry->value = info;
6982 entry->next = *cpu_list;
6983 *cpu_list = entry;
6986 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6988 CpuDefinitionInfoList *cpu_list = NULL;
6989 GSList *list;
6991 list = object_class_get_list(TYPE_ARM_CPU, false);
6992 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6993 g_slist_free(list);
6995 return cpu_list;
6998 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6999 void *opaque, int state, int secstate,
7000 int crm, int opc1, int opc2,
7001 const char *name)
7003 /* Private utility function for define_one_arm_cp_reg_with_opaque():
7004 * add a single reginfo struct to the hash table.
7006 uint32_t *key = g_new(uint32_t, 1);
7007 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7008 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
7009 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7011 r2->name = g_strdup(name);
7012 /* Reset the secure state to the specific incoming state. This is
7013 * necessary as the register may have been defined with both states.
7015 r2->secure = secstate;
7017 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7018 /* Register is banked (using both entries in array).
7019 * Overwriting fieldoffset as the array is only used to define
7020 * banked registers but later only fieldoffset is used.
7022 r2->fieldoffset = r->bank_fieldoffsets[ns];
7025 if (state == ARM_CP_STATE_AA32) {
7026 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7027 /* If the register is banked then we don't need to migrate or
7028 * reset the 32-bit instance in certain cases:
7030 * 1) If the register has both 32-bit and 64-bit instances then we
7031 * can count on the 64-bit instance taking care of the
7032 * non-secure bank.
7033 * 2) If ARMv8 is enabled then we can count on a 64-bit version
7034 * taking care of the secure bank. This requires that separate
7035 * 32 and 64-bit definitions are provided.
7037 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7038 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7039 r2->type |= ARM_CP_ALIAS;
7041 } else if ((secstate != r->secure) && !ns) {
7042 /* The register is not banked so we only want to allow migration of
7043 * the non-secure instance.
7045 r2->type |= ARM_CP_ALIAS;
7048 if (r->state == ARM_CP_STATE_BOTH) {
7049 /* We assume it is a cp15 register if the .cp field is left unset.
7051 if (r2->cp == 0) {
7052 r2->cp = 15;
7055 #ifdef HOST_WORDS_BIGENDIAN
7056 if (r2->fieldoffset) {
7057 r2->fieldoffset += sizeof(uint32_t);
7059 #endif
7062 if (state == ARM_CP_STATE_AA64) {
7063 /* To allow abbreviation of ARMCPRegInfo
7064 * definitions, we treat cp == 0 as equivalent to
7065 * the value for "standard guest-visible sysreg".
7066 * STATE_BOTH definitions are also always "standard
7067 * sysreg" in their AArch64 view (the .cp value may
7068 * be non-zero for the benefit of the AArch32 view).
7070 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7071 r2->cp = CP_REG_ARM64_SYSREG_CP;
7073 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7074 r2->opc0, opc1, opc2);
7075 } else {
7076 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7078 if (opaque) {
7079 r2->opaque = opaque;
7081 /* reginfo passed to helpers is correct for the actual access,
7082 * and is never ARM_CP_STATE_BOTH:
7084 r2->state = state;
7085 /* Make sure reginfo passed to helpers for wildcarded regs
7086 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7088 r2->crm = crm;
7089 r2->opc1 = opc1;
7090 r2->opc2 = opc2;
7091 /* By convention, for wildcarded registers only the first
7092 * entry is used for migration; the others are marked as
7093 * ALIAS so we don't try to transfer the register
7094 * multiple times. Special registers (ie NOP/WFI) are
7095 * never migratable and not even raw-accessible.
7097 if ((r->type & ARM_CP_SPECIAL)) {
7098 r2->type |= ARM_CP_NO_RAW;
7100 if (((r->crm == CP_ANY) && crm != 0) ||
7101 ((r->opc1 == CP_ANY) && opc1 != 0) ||
7102 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7103 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7106 /* Check that raw accesses are either forbidden or handled. Note that
7107 * we can't assert this earlier because the setup of fieldoffset for
7108 * banked registers has to be done first.
7110 if (!(r2->type & ARM_CP_NO_RAW)) {
7111 assert(!raw_accessors_invalid(r2));
7114 /* Overriding of an existing definition must be explicitly
7115 * requested.
7117 if (!(r->type & ARM_CP_OVERRIDE)) {
7118 ARMCPRegInfo *oldreg;
7119 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7120 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7121 fprintf(stderr, "Register redefined: cp=%d %d bit "
7122 "crn=%d crm=%d opc1=%d opc2=%d, "
7123 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7124 r2->crn, r2->crm, r2->opc1, r2->opc2,
7125 oldreg->name, r2->name);
7126 g_assert_not_reached();
7129 g_hash_table_insert(cpu->cp_regs, key, r2);
7133 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7134 const ARMCPRegInfo *r, void *opaque)
7136 /* Define implementations of coprocessor registers.
7137 * We store these in a hashtable because typically
7138 * there are less than 150 registers in a space which
7139 * is 16*16*16*8*8 = 262144 in size.
7140 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7141 * If a register is defined twice then the second definition is
7142 * used, so this can be used to define some generic registers and
7143 * then override them with implementation specific variations.
7144 * At least one of the original and the second definition should
7145 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7146 * against accidental use.
7148 * The state field defines whether the register is to be
7149 * visible in the AArch32 or AArch64 execution state. If the
7150 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7151 * reginfo structure for the AArch32 view, which sees the lower
7152 * 32 bits of the 64 bit register.
7154 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7155 * be wildcarded. AArch64 registers are always considered to be 64
7156 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7157 * the register, if any.
7159 int crm, opc1, opc2, state;
7160 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7161 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7162 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7163 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7164 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7165 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7166 /* 64 bit registers have only CRm and Opc1 fields */
7167 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7168 /* op0 only exists in the AArch64 encodings */
7169 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7170 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7171 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7172 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7173 * encodes a minimum access level for the register. We roll this
7174 * runtime check into our general permission check code, so check
7175 * here that the reginfo's specified permissions are strict enough
7176 * to encompass the generic architectural permission check.
7178 if (r->state != ARM_CP_STATE_AA32) {
7179 int mask = 0;
7180 switch (r->opc1) {
7181 case 0:
7182 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7183 mask = PL0U_R | PL1_RW;
7184 break;
7185 case 1: case 2:
7186 /* min_EL EL1 */
7187 mask = PL1_RW;
7188 break;
7189 case 3:
7190 /* min_EL EL0 */
7191 mask = PL0_RW;
7192 break;
7193 case 4:
7194 /* min_EL EL2 */
7195 mask = PL2_RW;
7196 break;
7197 case 5:
7198 /* unallocated encoding, so not possible */
7199 assert(false);
7200 break;
7201 case 6:
7202 /* min_EL EL3 */
7203 mask = PL3_RW;
7204 break;
7205 case 7:
7206 /* min_EL EL1, secure mode only (we don't check the latter) */
7207 mask = PL1_RW;
7208 break;
7209 default:
7210 /* broken reginfo with out-of-range opc1 */
7211 assert(false);
7212 break;
7214 /* assert our permissions are not too lax (stricter is fine) */
7215 assert((r->access & ~mask) == 0);
7218 /* Check that the register definition has enough info to handle
7219 * reads and writes if they are permitted.
7221 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7222 if (r->access & PL3_R) {
7223 assert((r->fieldoffset ||
7224 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7225 r->readfn);
7227 if (r->access & PL3_W) {
7228 assert((r->fieldoffset ||
7229 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7230 r->writefn);
7233 /* Bad type field probably means missing sentinel at end of reg list */
7234 assert(cptype_valid(r->type));
7235 for (crm = crmmin; crm <= crmmax; crm++) {
7236 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7237 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7238 for (state = ARM_CP_STATE_AA32;
7239 state <= ARM_CP_STATE_AA64; state++) {
7240 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7241 continue;
7243 if (state == ARM_CP_STATE_AA32) {
7244 /* Under AArch32 CP registers can be common
7245 * (same for secure and non-secure world) or banked.
7247 char *name;
7249 switch (r->secure) {
7250 case ARM_CP_SECSTATE_S:
7251 case ARM_CP_SECSTATE_NS:
7252 add_cpreg_to_hashtable(cpu, r, opaque, state,
7253 r->secure, crm, opc1, opc2,
7254 r->name);
7255 break;
7256 default:
7257 name = g_strdup_printf("%s_S", r->name);
7258 add_cpreg_to_hashtable(cpu, r, opaque, state,
7259 ARM_CP_SECSTATE_S,
7260 crm, opc1, opc2, name);
7261 g_free(name);
7262 add_cpreg_to_hashtable(cpu, r, opaque, state,
7263 ARM_CP_SECSTATE_NS,
7264 crm, opc1, opc2, r->name);
7265 break;
7267 } else {
7268 /* AArch64 registers get mapped to non-secure instance
7269 * of AArch32 */
7270 add_cpreg_to_hashtable(cpu, r, opaque, state,
7271 ARM_CP_SECSTATE_NS,
7272 crm, opc1, opc2, r->name);
7280 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7281 const ARMCPRegInfo *regs, void *opaque)
7283 /* Define a whole list of registers */
7284 const ARMCPRegInfo *r;
7285 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7286 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7291 * Modify ARMCPRegInfo for access from userspace.
7293 * This is a data driven modification directed by
7294 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7295 * user-space cannot alter any values and dynamic values pertaining to
7296 * execution state are hidden from user space view anyway.
7298 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7300 const ARMCPRegUserSpaceInfo *m;
7301 ARMCPRegInfo *r;
7303 for (m = mods; m->name; m++) {
7304 GPatternSpec *pat = NULL;
7305 if (m->is_glob) {
7306 pat = g_pattern_spec_new(m->name);
7308 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7309 if (pat && g_pattern_match_string(pat, r->name)) {
7310 r->type = ARM_CP_CONST;
7311 r->access = PL0U_R;
7312 r->resetvalue = 0;
7313 /* continue */
7314 } else if (strcmp(r->name, m->name) == 0) {
7315 r->type = ARM_CP_CONST;
7316 r->access = PL0U_R;
7317 r->resetvalue &= m->exported_bits;
7318 r->resetvalue |= m->fixed_bits;
7319 break;
7322 if (pat) {
7323 g_pattern_spec_free(pat);
7328 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7330 return g_hash_table_lookup(cpregs, &encoded_cp);
7333 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7334 uint64_t value)
7336 /* Helper coprocessor write function for write-ignore registers */
7339 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7341 /* Helper coprocessor write function for read-as-zero registers */
7342 return 0;
7345 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7347 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7350 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7352 /* Return true if it is not valid for us to switch to
7353 * this CPU mode (ie all the UNPREDICTABLE cases in
7354 * the ARM ARM CPSRWriteByInstr pseudocode).
7357 /* Changes to or from Hyp via MSR and CPS are illegal. */
7358 if (write_type == CPSRWriteByInstr &&
7359 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7360 mode == ARM_CPU_MODE_HYP)) {
7361 return 1;
7364 switch (mode) {
7365 case ARM_CPU_MODE_USR:
7366 return 0;
7367 case ARM_CPU_MODE_SYS:
7368 case ARM_CPU_MODE_SVC:
7369 case ARM_CPU_MODE_ABT:
7370 case ARM_CPU_MODE_UND:
7371 case ARM_CPU_MODE_IRQ:
7372 case ARM_CPU_MODE_FIQ:
7373 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7374 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7376 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7377 * and CPS are treated as illegal mode changes.
7379 if (write_type == CPSRWriteByInstr &&
7380 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7381 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7382 return 1;
7384 return 0;
7385 case ARM_CPU_MODE_HYP:
7386 return !arm_feature(env, ARM_FEATURE_EL2)
7387 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7388 case ARM_CPU_MODE_MON:
7389 return arm_current_el(env) < 3;
7390 default:
7391 return 1;
7395 uint32_t cpsr_read(CPUARMState *env)
7397 int ZF;
7398 ZF = (env->ZF == 0);
7399 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7400 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7401 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7402 | ((env->condexec_bits & 0xfc) << 8)
7403 | (env->GE << 16) | (env->daif & CPSR_AIF);
7406 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7407 CPSRWriteType write_type)
7409 uint32_t changed_daif;
7411 if (mask & CPSR_NZCV) {
7412 env->ZF = (~val) & CPSR_Z;
7413 env->NF = val;
7414 env->CF = (val >> 29) & 1;
7415 env->VF = (val << 3) & 0x80000000;
7417 if (mask & CPSR_Q)
7418 env->QF = ((val & CPSR_Q) != 0);
7419 if (mask & CPSR_T)
7420 env->thumb = ((val & CPSR_T) != 0);
7421 if (mask & CPSR_IT_0_1) {
7422 env->condexec_bits &= ~3;
7423 env->condexec_bits |= (val >> 25) & 3;
7425 if (mask & CPSR_IT_2_7) {
7426 env->condexec_bits &= 3;
7427 env->condexec_bits |= (val >> 8) & 0xfc;
7429 if (mask & CPSR_GE) {
7430 env->GE = (val >> 16) & 0xf;
7433 /* In a V7 implementation that includes the security extensions but does
7434 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7435 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7436 * bits respectively.
7438 * In a V8 implementation, it is permitted for privileged software to
7439 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7441 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7442 arm_feature(env, ARM_FEATURE_EL3) &&
7443 !arm_feature(env, ARM_FEATURE_EL2) &&
7444 !arm_is_secure(env)) {
7446 changed_daif = (env->daif ^ val) & mask;
7448 if (changed_daif & CPSR_A) {
7449 /* Check to see if we are allowed to change the masking of async
7450 * abort exceptions from a non-secure state.
7452 if (!(env->cp15.scr_el3 & SCR_AW)) {
7453 qemu_log_mask(LOG_GUEST_ERROR,
7454 "Ignoring attempt to switch CPSR_A flag from "
7455 "non-secure world with SCR.AW bit clear\n");
7456 mask &= ~CPSR_A;
7460 if (changed_daif & CPSR_F) {
7461 /* Check to see if we are allowed to change the masking of FIQ
7462 * exceptions from a non-secure state.
7464 if (!(env->cp15.scr_el3 & SCR_FW)) {
7465 qemu_log_mask(LOG_GUEST_ERROR,
7466 "Ignoring attempt to switch CPSR_F flag from "
7467 "non-secure world with SCR.FW bit clear\n");
7468 mask &= ~CPSR_F;
7471 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7472 * If this bit is set software is not allowed to mask
7473 * FIQs, but is allowed to set CPSR_F to 0.
7475 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7476 (val & CPSR_F)) {
7477 qemu_log_mask(LOG_GUEST_ERROR,
7478 "Ignoring attempt to enable CPSR_F flag "
7479 "(non-maskable FIQ [NMFI] support enabled)\n");
7480 mask &= ~CPSR_F;
7485 env->daif &= ~(CPSR_AIF & mask);
7486 env->daif |= val & CPSR_AIF & mask;
7488 if (write_type != CPSRWriteRaw &&
7489 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7490 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7491 /* Note that we can only get here in USR mode if this is a
7492 * gdb stub write; for this case we follow the architectural
7493 * behaviour for guest writes in USR mode of ignoring an attempt
7494 * to switch mode. (Those are caught by translate.c for writes
7495 * triggered by guest instructions.)
7497 mask &= ~CPSR_M;
7498 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7499 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7500 * v7, and has defined behaviour in v8:
7501 * + leave CPSR.M untouched
7502 * + allow changes to the other CPSR fields
7503 * + set PSTATE.IL
7504 * For user changes via the GDB stub, we don't set PSTATE.IL,
7505 * as this would be unnecessarily harsh for a user error.
7507 mask &= ~CPSR_M;
7508 if (write_type != CPSRWriteByGDBStub &&
7509 arm_feature(env, ARM_FEATURE_V8)) {
7510 mask |= CPSR_IL;
7511 val |= CPSR_IL;
7513 qemu_log_mask(LOG_GUEST_ERROR,
7514 "Illegal AArch32 mode switch attempt from %s to %s\n",
7515 aarch32_mode_name(env->uncached_cpsr),
7516 aarch32_mode_name(val));
7517 } else {
7518 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7519 write_type == CPSRWriteExceptionReturn ?
7520 "Exception return from AArch32" :
7521 "AArch32 mode switch from",
7522 aarch32_mode_name(env->uncached_cpsr),
7523 aarch32_mode_name(val), env->regs[15]);
7524 switch_mode(env, val & CPSR_M);
7527 mask &= ~CACHED_CPSR_BITS;
7528 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7531 /* Sign/zero extend */
7532 uint32_t HELPER(sxtb16)(uint32_t x)
7534 uint32_t res;
7535 res = (uint16_t)(int8_t)x;
7536 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7537 return res;
7540 uint32_t HELPER(uxtb16)(uint32_t x)
7542 uint32_t res;
7543 res = (uint16_t)(uint8_t)x;
7544 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7545 return res;
7548 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7550 if (den == 0)
7551 return 0;
7552 if (num == INT_MIN && den == -1)
7553 return INT_MIN;
7554 return num / den;
7557 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7559 if (den == 0)
7560 return 0;
7561 return num / den;
7564 uint32_t HELPER(rbit)(uint32_t x)
7566 return revbit32(x);
7569 #ifdef CONFIG_USER_ONLY
7571 static void switch_mode(CPUARMState *env, int mode)
7573 ARMCPU *cpu = env_archcpu(env);
7575 if (mode != ARM_CPU_MODE_USR) {
7576 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7580 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7581 uint32_t cur_el, bool secure)
7583 return 1;
7586 void aarch64_sync_64_to_32(CPUARMState *env)
7588 g_assert_not_reached();
7591 #else
7593 static void switch_mode(CPUARMState *env, int mode)
7595 int old_mode;
7596 int i;
7598 old_mode = env->uncached_cpsr & CPSR_M;
7599 if (mode == old_mode)
7600 return;
7602 if (old_mode == ARM_CPU_MODE_FIQ) {
7603 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7604 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7605 } else if (mode == ARM_CPU_MODE_FIQ) {
7606 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7607 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7610 i = bank_number(old_mode);
7611 env->banked_r13[i] = env->regs[13];
7612 env->banked_spsr[i] = env->spsr;
7614 i = bank_number(mode);
7615 env->regs[13] = env->banked_r13[i];
7616 env->spsr = env->banked_spsr[i];
7618 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7619 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7622 /* Physical Interrupt Target EL Lookup Table
7624 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7626 * The below multi-dimensional table is used for looking up the target
7627 * exception level given numerous condition criteria. Specifically, the
7628 * target EL is based on SCR and HCR routing controls as well as the
7629 * currently executing EL and secure state.
7631 * Dimensions:
7632 * target_el_table[2][2][2][2][2][4]
7633 * | | | | | +--- Current EL
7634 * | | | | +------ Non-secure(0)/Secure(1)
7635 * | | | +--------- HCR mask override
7636 * | | +------------ SCR exec state control
7637 * | +--------------- SCR mask override
7638 * +------------------ 32-bit(0)/64-bit(1) EL3
7640 * The table values are as such:
7641 * 0-3 = EL0-EL3
7642 * -1 = Cannot occur
7644 * The ARM ARM target EL table includes entries indicating that an "exception
7645 * is not taken". The two cases where this is applicable are:
7646 * 1) An exception is taken from EL3 but the SCR does not have the exception
7647 * routed to EL3.
7648 * 2) An exception is taken from EL2 but the HCR does not have the exception
7649 * routed to EL2.
7650 * In these two cases, the below table contain a target of EL1. This value is
7651 * returned as it is expected that the consumer of the table data will check
7652 * for "target EL >= current EL" to ensure the exception is not taken.
7654 * SCR HCR
7655 * 64 EA AMO From
7656 * BIT IRQ IMO Non-secure Secure
7657 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7659 static const int8_t target_el_table[2][2][2][2][2][4] = {
7660 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7661 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7662 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7663 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7664 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7665 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7666 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7667 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7668 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7669 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7670 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7671 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7672 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7673 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7674 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7675 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7679 * Determine the target EL for physical exceptions
7681 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7682 uint32_t cur_el, bool secure)
7684 CPUARMState *env = cs->env_ptr;
7685 bool rw;
7686 bool scr;
7687 bool hcr;
7688 int target_el;
7689 /* Is the highest EL AArch64? */
7690 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7691 uint64_t hcr_el2;
7693 if (arm_feature(env, ARM_FEATURE_EL3)) {
7694 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7695 } else {
7696 /* Either EL2 is the highest EL (and so the EL2 register width
7697 * is given by is64); or there is no EL2 or EL3, in which case
7698 * the value of 'rw' does not affect the table lookup anyway.
7700 rw = is64;
7703 hcr_el2 = arm_hcr_el2_eff(env);
7704 switch (excp_idx) {
7705 case EXCP_IRQ:
7706 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7707 hcr = hcr_el2 & HCR_IMO;
7708 break;
7709 case EXCP_FIQ:
7710 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7711 hcr = hcr_el2 & HCR_FMO;
7712 break;
7713 default:
7714 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7715 hcr = hcr_el2 & HCR_AMO;
7716 break;
7719 /* Perform a table-lookup for the target EL given the current state */
7720 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7722 assert(target_el > 0);
7724 return target_el;
7727 void arm_log_exception(int idx)
7729 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7730 const char *exc = NULL;
7731 static const char * const excnames[] = {
7732 [EXCP_UDEF] = "Undefined Instruction",
7733 [EXCP_SWI] = "SVC",
7734 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7735 [EXCP_DATA_ABORT] = "Data Abort",
7736 [EXCP_IRQ] = "IRQ",
7737 [EXCP_FIQ] = "FIQ",
7738 [EXCP_BKPT] = "Breakpoint",
7739 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7740 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7741 [EXCP_HVC] = "Hypervisor Call",
7742 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7743 [EXCP_SMC] = "Secure Monitor Call",
7744 [EXCP_VIRQ] = "Virtual IRQ",
7745 [EXCP_VFIQ] = "Virtual FIQ",
7746 [EXCP_SEMIHOST] = "Semihosting call",
7747 [EXCP_NOCP] = "v7M NOCP UsageFault",
7748 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7749 [EXCP_STKOF] = "v8M STKOF UsageFault",
7750 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7751 [EXCP_LSERR] = "v8M LSERR UsageFault",
7752 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7755 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7756 exc = excnames[idx];
7758 if (!exc) {
7759 exc = "unknown";
7761 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7766 * Function used to synchronize QEMU's AArch64 register set with AArch32
7767 * register set. This is necessary when switching between AArch32 and AArch64
7768 * execution state.
7770 void aarch64_sync_32_to_64(CPUARMState *env)
7772 int i;
7773 uint32_t mode = env->uncached_cpsr & CPSR_M;
7775 /* We can blanket copy R[0:7] to X[0:7] */
7776 for (i = 0; i < 8; i++) {
7777 env->xregs[i] = env->regs[i];
7781 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7782 * Otherwise, they come from the banked user regs.
7784 if (mode == ARM_CPU_MODE_FIQ) {
7785 for (i = 8; i < 13; i++) {
7786 env->xregs[i] = env->usr_regs[i - 8];
7788 } else {
7789 for (i = 8; i < 13; i++) {
7790 env->xregs[i] = env->regs[i];
7795 * Registers x13-x23 are the various mode SP and FP registers. Registers
7796 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7797 * from the mode banked register.
7799 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7800 env->xregs[13] = env->regs[13];
7801 env->xregs[14] = env->regs[14];
7802 } else {
7803 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7804 /* HYP is an exception in that it is copied from r14 */
7805 if (mode == ARM_CPU_MODE_HYP) {
7806 env->xregs[14] = env->regs[14];
7807 } else {
7808 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
7812 if (mode == ARM_CPU_MODE_HYP) {
7813 env->xregs[15] = env->regs[13];
7814 } else {
7815 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7818 if (mode == ARM_CPU_MODE_IRQ) {
7819 env->xregs[16] = env->regs[14];
7820 env->xregs[17] = env->regs[13];
7821 } else {
7822 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
7823 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7826 if (mode == ARM_CPU_MODE_SVC) {
7827 env->xregs[18] = env->regs[14];
7828 env->xregs[19] = env->regs[13];
7829 } else {
7830 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
7831 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7834 if (mode == ARM_CPU_MODE_ABT) {
7835 env->xregs[20] = env->regs[14];
7836 env->xregs[21] = env->regs[13];
7837 } else {
7838 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
7839 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7842 if (mode == ARM_CPU_MODE_UND) {
7843 env->xregs[22] = env->regs[14];
7844 env->xregs[23] = env->regs[13];
7845 } else {
7846 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
7847 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7851 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7852 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7853 * FIQ bank for r8-r14.
7855 if (mode == ARM_CPU_MODE_FIQ) {
7856 for (i = 24; i < 31; i++) {
7857 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7859 } else {
7860 for (i = 24; i < 29; i++) {
7861 env->xregs[i] = env->fiq_regs[i - 24];
7863 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7864 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
7867 env->pc = env->regs[15];
7871 * Function used to synchronize QEMU's AArch32 register set with AArch64
7872 * register set. This is necessary when switching between AArch32 and AArch64
7873 * execution state.
7875 void aarch64_sync_64_to_32(CPUARMState *env)
7877 int i;
7878 uint32_t mode = env->uncached_cpsr & CPSR_M;
7880 /* We can blanket copy X[0:7] to R[0:7] */
7881 for (i = 0; i < 8; i++) {
7882 env->regs[i] = env->xregs[i];
7886 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7887 * Otherwise, we copy x8-x12 into the banked user regs.
7889 if (mode == ARM_CPU_MODE_FIQ) {
7890 for (i = 8; i < 13; i++) {
7891 env->usr_regs[i - 8] = env->xregs[i];
7893 } else {
7894 for (i = 8; i < 13; i++) {
7895 env->regs[i] = env->xregs[i];
7900 * Registers r13 & r14 depend on the current mode.
7901 * If we are in a given mode, we copy the corresponding x registers to r13
7902 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7903 * for the mode.
7905 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7906 env->regs[13] = env->xregs[13];
7907 env->regs[14] = env->xregs[14];
7908 } else {
7909 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7912 * HYP is an exception in that it does not have its own banked r14 but
7913 * shares the USR r14
7915 if (mode == ARM_CPU_MODE_HYP) {
7916 env->regs[14] = env->xregs[14];
7917 } else {
7918 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7922 if (mode == ARM_CPU_MODE_HYP) {
7923 env->regs[13] = env->xregs[15];
7924 } else {
7925 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7928 if (mode == ARM_CPU_MODE_IRQ) {
7929 env->regs[14] = env->xregs[16];
7930 env->regs[13] = env->xregs[17];
7931 } else {
7932 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7933 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7936 if (mode == ARM_CPU_MODE_SVC) {
7937 env->regs[14] = env->xregs[18];
7938 env->regs[13] = env->xregs[19];
7939 } else {
7940 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7941 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7944 if (mode == ARM_CPU_MODE_ABT) {
7945 env->regs[14] = env->xregs[20];
7946 env->regs[13] = env->xregs[21];
7947 } else {
7948 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7949 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7952 if (mode == ARM_CPU_MODE_UND) {
7953 env->regs[14] = env->xregs[22];
7954 env->regs[13] = env->xregs[23];
7955 } else {
7956 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7957 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7960 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7961 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7962 * FIQ bank for r8-r14.
7964 if (mode == ARM_CPU_MODE_FIQ) {
7965 for (i = 24; i < 31; i++) {
7966 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7968 } else {
7969 for (i = 24; i < 29; i++) {
7970 env->fiq_regs[i - 24] = env->xregs[i];
7972 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7973 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7976 env->regs[15] = env->pc;
7979 static void take_aarch32_exception(CPUARMState *env, int new_mode,
7980 uint32_t mask, uint32_t offset,
7981 uint32_t newpc)
7983 /* Change the CPU state so as to actually take the exception. */
7984 switch_mode(env, new_mode);
7986 * For exceptions taken to AArch32 we must clear the SS bit in both
7987 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7989 env->uncached_cpsr &= ~PSTATE_SS;
7990 env->spsr = cpsr_read(env);
7991 /* Clear IT bits. */
7992 env->condexec_bits = 0;
7993 /* Switch to the new mode, and to the correct instruction set. */
7994 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7995 /* Set new mode endianness */
7996 env->uncached_cpsr &= ~CPSR_E;
7997 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7998 env->uncached_cpsr |= CPSR_E;
8000 /* J and IL must always be cleared for exception entry */
8001 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8002 env->daif |= mask;
8004 if (new_mode == ARM_CPU_MODE_HYP) {
8005 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8006 env->elr_el[2] = env->regs[15];
8007 } else {
8009 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8010 * and we should just guard the thumb mode on V4
8012 if (arm_feature(env, ARM_FEATURE_V4T)) {
8013 env->thumb =
8014 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8016 env->regs[14] = env->regs[15] + offset;
8018 env->regs[15] = newpc;
8019 arm_rebuild_hflags(env);
8022 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8025 * Handle exception entry to Hyp mode; this is sufficiently
8026 * different to entry to other AArch32 modes that we handle it
8027 * separately here.
8029 * The vector table entry used is always the 0x14 Hyp mode entry point,
8030 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8031 * The offset applied to the preferred return address is always zero
8032 * (see DDI0487C.a section G1.12.3).
8033 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8035 uint32_t addr, mask;
8036 ARMCPU *cpu = ARM_CPU(cs);
8037 CPUARMState *env = &cpu->env;
8039 switch (cs->exception_index) {
8040 case EXCP_UDEF:
8041 addr = 0x04;
8042 break;
8043 case EXCP_SWI:
8044 addr = 0x14;
8045 break;
8046 case EXCP_BKPT:
8047 /* Fall through to prefetch abort. */
8048 case EXCP_PREFETCH_ABORT:
8049 env->cp15.ifar_s = env->exception.vaddress;
8050 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8051 (uint32_t)env->exception.vaddress);
8052 addr = 0x0c;
8053 break;
8054 case EXCP_DATA_ABORT:
8055 env->cp15.dfar_s = env->exception.vaddress;
8056 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8057 (uint32_t)env->exception.vaddress);
8058 addr = 0x10;
8059 break;
8060 case EXCP_IRQ:
8061 addr = 0x18;
8062 break;
8063 case EXCP_FIQ:
8064 addr = 0x1c;
8065 break;
8066 case EXCP_HVC:
8067 addr = 0x08;
8068 break;
8069 case EXCP_HYP_TRAP:
8070 addr = 0x14;
8071 break;
8072 default:
8073 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8076 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8077 if (!arm_feature(env, ARM_FEATURE_V8)) {
8079 * QEMU syndrome values are v8-style. v7 has the IL bit
8080 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8081 * If this is a v7 CPU, squash the IL bit in those cases.
8083 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8084 (cs->exception_index == EXCP_DATA_ABORT &&
8085 !(env->exception.syndrome & ARM_EL_ISV)) ||
8086 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8087 env->exception.syndrome &= ~ARM_EL_IL;
8090 env->cp15.esr_el[2] = env->exception.syndrome;
8093 if (arm_current_el(env) != 2 && addr < 0x14) {
8094 addr = 0x14;
8097 mask = 0;
8098 if (!(env->cp15.scr_el3 & SCR_EA)) {
8099 mask |= CPSR_A;
8101 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8102 mask |= CPSR_I;
8104 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8105 mask |= CPSR_F;
8108 addr += env->cp15.hvbar;
8110 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8113 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8115 ARMCPU *cpu = ARM_CPU(cs);
8116 CPUARMState *env = &cpu->env;
8117 uint32_t addr;
8118 uint32_t mask;
8119 int new_mode;
8120 uint32_t offset;
8121 uint32_t moe;
8123 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8124 switch (syn_get_ec(env->exception.syndrome)) {
8125 case EC_BREAKPOINT:
8126 case EC_BREAKPOINT_SAME_EL:
8127 moe = 1;
8128 break;
8129 case EC_WATCHPOINT:
8130 case EC_WATCHPOINT_SAME_EL:
8131 moe = 10;
8132 break;
8133 case EC_AA32_BKPT:
8134 moe = 3;
8135 break;
8136 case EC_VECTORCATCH:
8137 moe = 5;
8138 break;
8139 default:
8140 moe = 0;
8141 break;
8144 if (moe) {
8145 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8148 if (env->exception.target_el == 2) {
8149 arm_cpu_do_interrupt_aarch32_hyp(cs);
8150 return;
8153 switch (cs->exception_index) {
8154 case EXCP_UDEF:
8155 new_mode = ARM_CPU_MODE_UND;
8156 addr = 0x04;
8157 mask = CPSR_I;
8158 if (env->thumb)
8159 offset = 2;
8160 else
8161 offset = 4;
8162 break;
8163 case EXCP_SWI:
8164 new_mode = ARM_CPU_MODE_SVC;
8165 addr = 0x08;
8166 mask = CPSR_I;
8167 /* The PC already points to the next instruction. */
8168 offset = 0;
8169 break;
8170 case EXCP_BKPT:
8171 /* Fall through to prefetch abort. */
8172 case EXCP_PREFETCH_ABORT:
8173 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8174 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8175 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8176 env->exception.fsr, (uint32_t)env->exception.vaddress);
8177 new_mode = ARM_CPU_MODE_ABT;
8178 addr = 0x0c;
8179 mask = CPSR_A | CPSR_I;
8180 offset = 4;
8181 break;
8182 case EXCP_DATA_ABORT:
8183 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8184 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8185 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8186 env->exception.fsr,
8187 (uint32_t)env->exception.vaddress);
8188 new_mode = ARM_CPU_MODE_ABT;
8189 addr = 0x10;
8190 mask = CPSR_A | CPSR_I;
8191 offset = 8;
8192 break;
8193 case EXCP_IRQ:
8194 new_mode = ARM_CPU_MODE_IRQ;
8195 addr = 0x18;
8196 /* Disable IRQ and imprecise data aborts. */
8197 mask = CPSR_A | CPSR_I;
8198 offset = 4;
8199 if (env->cp15.scr_el3 & SCR_IRQ) {
8200 /* IRQ routed to monitor mode */
8201 new_mode = ARM_CPU_MODE_MON;
8202 mask |= CPSR_F;
8204 break;
8205 case EXCP_FIQ:
8206 new_mode = ARM_CPU_MODE_FIQ;
8207 addr = 0x1c;
8208 /* Disable FIQ, IRQ and imprecise data aborts. */
8209 mask = CPSR_A | CPSR_I | CPSR_F;
8210 if (env->cp15.scr_el3 & SCR_FIQ) {
8211 /* FIQ routed to monitor mode */
8212 new_mode = ARM_CPU_MODE_MON;
8214 offset = 4;
8215 break;
8216 case EXCP_VIRQ:
8217 new_mode = ARM_CPU_MODE_IRQ;
8218 addr = 0x18;
8219 /* Disable IRQ and imprecise data aborts. */
8220 mask = CPSR_A | CPSR_I;
8221 offset = 4;
8222 break;
8223 case EXCP_VFIQ:
8224 new_mode = ARM_CPU_MODE_FIQ;
8225 addr = 0x1c;
8226 /* Disable FIQ, IRQ and imprecise data aborts. */
8227 mask = CPSR_A | CPSR_I | CPSR_F;
8228 offset = 4;
8229 break;
8230 case EXCP_SMC:
8231 new_mode = ARM_CPU_MODE_MON;
8232 addr = 0x08;
8233 mask = CPSR_A | CPSR_I | CPSR_F;
8234 offset = 0;
8235 break;
8236 default:
8237 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8238 return; /* Never happens. Keep compiler happy. */
8241 if (new_mode == ARM_CPU_MODE_MON) {
8242 addr += env->cp15.mvbar;
8243 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8244 /* High vectors. When enabled, base address cannot be remapped. */
8245 addr += 0xffff0000;
8246 } else {
8247 /* ARM v7 architectures provide a vector base address register to remap
8248 * the interrupt vector table.
8249 * This register is only followed in non-monitor mode, and is banked.
8250 * Note: only bits 31:5 are valid.
8252 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8255 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8256 env->cp15.scr_el3 &= ~SCR_NS;
8259 take_aarch32_exception(env, new_mode, mask, offset, addr);
8262 /* Handle exception entry to a target EL which is using AArch64 */
8263 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8265 ARMCPU *cpu = ARM_CPU(cs);
8266 CPUARMState *env = &cpu->env;
8267 unsigned int new_el = env->exception.target_el;
8268 target_ulong addr = env->cp15.vbar_el[new_el];
8269 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8270 unsigned int cur_el = arm_current_el(env);
8273 * Note that new_el can never be 0. If cur_el is 0, then
8274 * el0_a64 is is_a64(), else el0_a64 is ignored.
8276 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8278 if (cur_el < new_el) {
8279 /* Entry vector offset depends on whether the implemented EL
8280 * immediately lower than the target level is using AArch32 or AArch64
8282 bool is_aa64;
8284 switch (new_el) {
8285 case 3:
8286 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8287 break;
8288 case 2:
8289 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8290 break;
8291 case 1:
8292 is_aa64 = is_a64(env);
8293 break;
8294 default:
8295 g_assert_not_reached();
8298 if (is_aa64) {
8299 addr += 0x400;
8300 } else {
8301 addr += 0x600;
8303 } else if (pstate_read(env) & PSTATE_SP) {
8304 addr += 0x200;
8307 switch (cs->exception_index) {
8308 case EXCP_PREFETCH_ABORT:
8309 case EXCP_DATA_ABORT:
8310 env->cp15.far_el[new_el] = env->exception.vaddress;
8311 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8312 env->cp15.far_el[new_el]);
8313 /* fall through */
8314 case EXCP_BKPT:
8315 case EXCP_UDEF:
8316 case EXCP_SWI:
8317 case EXCP_HVC:
8318 case EXCP_HYP_TRAP:
8319 case EXCP_SMC:
8320 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8322 * QEMU internal FP/SIMD syndromes from AArch32 include the
8323 * TA and coproc fields which are only exposed if the exception
8324 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8325 * AArch64 format syndrome.
8327 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8329 env->cp15.esr_el[new_el] = env->exception.syndrome;
8330 break;
8331 case EXCP_IRQ:
8332 case EXCP_VIRQ:
8333 addr += 0x80;
8334 break;
8335 case EXCP_FIQ:
8336 case EXCP_VFIQ:
8337 addr += 0x100;
8338 break;
8339 case EXCP_SEMIHOST:
8340 qemu_log_mask(CPU_LOG_INT,
8341 "...handling as semihosting call 0x%" PRIx64 "\n",
8342 env->xregs[0]);
8343 env->xregs[0] = do_arm_semihosting(env);
8344 return;
8345 default:
8346 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8349 if (is_a64(env)) {
8350 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8351 aarch64_save_sp(env, arm_current_el(env));
8352 env->elr_el[new_el] = env->pc;
8353 } else {
8354 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8355 env->elr_el[new_el] = env->regs[15];
8357 aarch64_sync_32_to_64(env);
8359 env->condexec_bits = 0;
8361 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8362 env->elr_el[new_el]);
8364 pstate_write(env, PSTATE_DAIF | new_mode);
8365 env->aarch64 = 1;
8366 aarch64_restore_sp(env, new_el);
8367 helper_rebuild_hflags_a64(env, new_el);
8369 env->pc = addr;
8371 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8372 new_el, env->pc, pstate_read(env));
8376 * Do semihosting call and set the appropriate return value. All the
8377 * permission and validity checks have been done at translate time.
8379 * We only see semihosting exceptions in TCG only as they are not
8380 * trapped to the hypervisor in KVM.
8382 #ifdef CONFIG_TCG
8383 static void handle_semihosting(CPUState *cs)
8385 ARMCPU *cpu = ARM_CPU(cs);
8386 CPUARMState *env = &cpu->env;
8388 if (is_a64(env)) {
8389 qemu_log_mask(CPU_LOG_INT,
8390 "...handling as semihosting call 0x%" PRIx64 "\n",
8391 env->xregs[0]);
8392 env->xregs[0] = do_arm_semihosting(env);
8393 } else {
8394 qemu_log_mask(CPU_LOG_INT,
8395 "...handling as semihosting call 0x%x\n",
8396 env->regs[0]);
8397 env->regs[0] = do_arm_semihosting(env);
8400 #endif
8402 /* Handle a CPU exception for A and R profile CPUs.
8403 * Do any appropriate logging, handle PSCI calls, and then hand off
8404 * to the AArch64-entry or AArch32-entry function depending on the
8405 * target exception level's register width.
8407 void arm_cpu_do_interrupt(CPUState *cs)
8409 ARMCPU *cpu = ARM_CPU(cs);
8410 CPUARMState *env = &cpu->env;
8411 unsigned int new_el = env->exception.target_el;
8413 assert(!arm_feature(env, ARM_FEATURE_M));
8415 arm_log_exception(cs->exception_index);
8416 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8417 new_el);
8418 if (qemu_loglevel_mask(CPU_LOG_INT)
8419 && !excp_is_internal(cs->exception_index)) {
8420 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8421 syn_get_ec(env->exception.syndrome),
8422 env->exception.syndrome);
8425 if (arm_is_psci_call(cpu, cs->exception_index)) {
8426 arm_handle_psci_call(cpu);
8427 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8428 return;
8432 * Semihosting semantics depend on the register width of the code
8433 * that caused the exception, not the target exception level, so
8434 * must be handled here.
8436 #ifdef CONFIG_TCG
8437 if (cs->exception_index == EXCP_SEMIHOST) {
8438 handle_semihosting(cs);
8439 return;
8441 #endif
8443 /* Hooks may change global state so BQL should be held, also the
8444 * BQL needs to be held for any modification of
8445 * cs->interrupt_request.
8447 g_assert(qemu_mutex_iothread_locked());
8449 arm_call_pre_el_change_hook(cpu);
8451 assert(!excp_is_internal(cs->exception_index));
8452 if (arm_el_is_aa64(env, new_el)) {
8453 arm_cpu_do_interrupt_aarch64(cs);
8454 } else {
8455 arm_cpu_do_interrupt_aarch32(cs);
8458 arm_call_el_change_hook(cpu);
8460 if (!kvm_enabled()) {
8461 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8464 #endif /* !CONFIG_USER_ONLY */
8466 /* Return the exception level which controls this address translation regime */
8467 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8469 switch (mmu_idx) {
8470 case ARMMMUIdx_S2NS:
8471 case ARMMMUIdx_S1E2:
8472 return 2;
8473 case ARMMMUIdx_S1E3:
8474 return 3;
8475 case ARMMMUIdx_S1SE0:
8476 return arm_el_is_aa64(env, 3) ? 1 : 3;
8477 case ARMMMUIdx_S1SE1:
8478 case ARMMMUIdx_S1NSE0:
8479 case ARMMMUIdx_S1NSE1:
8480 case ARMMMUIdx_MPrivNegPri:
8481 case ARMMMUIdx_MUserNegPri:
8482 case ARMMMUIdx_MPriv:
8483 case ARMMMUIdx_MUser:
8484 case ARMMMUIdx_MSPrivNegPri:
8485 case ARMMMUIdx_MSUserNegPri:
8486 case ARMMMUIdx_MSPriv:
8487 case ARMMMUIdx_MSUser:
8488 return 1;
8489 default:
8490 g_assert_not_reached();
8494 #ifndef CONFIG_USER_ONLY
8496 /* Return the SCTLR value which controls this address translation regime */
8497 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8499 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8502 /* Return true if the specified stage of address translation is disabled */
8503 static inline bool regime_translation_disabled(CPUARMState *env,
8504 ARMMMUIdx mmu_idx)
8506 if (arm_feature(env, ARM_FEATURE_M)) {
8507 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8508 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8509 case R_V7M_MPU_CTRL_ENABLE_MASK:
8510 /* Enabled, but not for HardFault and NMI */
8511 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8512 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8513 /* Enabled for all cases */
8514 return false;
8515 case 0:
8516 default:
8517 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8518 * we warned about that in armv7m_nvic.c when the guest set it.
8520 return true;
8524 if (mmu_idx == ARMMMUIdx_S2NS) {
8525 /* HCR.DC means HCR.VM behaves as 1 */
8526 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8529 if (env->cp15.hcr_el2 & HCR_TGE) {
8530 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8531 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8532 return true;
8536 if ((env->cp15.hcr_el2 & HCR_DC) &&
8537 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8538 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8539 return true;
8542 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8545 static inline bool regime_translation_big_endian(CPUARMState *env,
8546 ARMMMUIdx mmu_idx)
8548 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8551 /* Return the TTBR associated with this translation regime */
8552 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8553 int ttbrn)
8555 if (mmu_idx == ARMMMUIdx_S2NS) {
8556 return env->cp15.vttbr_el2;
8558 if (ttbrn == 0) {
8559 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8560 } else {
8561 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8565 #endif /* !CONFIG_USER_ONLY */
8567 /* Return the TCR controlling this translation regime */
8568 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8570 if (mmu_idx == ARMMMUIdx_S2NS) {
8571 return &env->cp15.vtcr_el2;
8573 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8576 /* Convert a possible stage1+2 MMU index into the appropriate
8577 * stage 1 MMU index
8579 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8581 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8582 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8584 return mmu_idx;
8587 /* Return true if the translation regime is using LPAE format page tables */
8588 static inline bool regime_using_lpae_format(CPUARMState *env,
8589 ARMMMUIdx mmu_idx)
8591 int el = regime_el(env, mmu_idx);
8592 if (el == 2 || arm_el_is_aa64(env, el)) {
8593 return true;
8595 if (arm_feature(env, ARM_FEATURE_LPAE)
8596 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8597 return true;
8599 return false;
8602 /* Returns true if the stage 1 translation regime is using LPAE format page
8603 * tables. Used when raising alignment exceptions, whose FSR changes depending
8604 * on whether the long or short descriptor format is in use. */
8605 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8607 mmu_idx = stage_1_mmu_idx(mmu_idx);
8609 return regime_using_lpae_format(env, mmu_idx);
8612 #ifndef CONFIG_USER_ONLY
8613 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8615 switch (mmu_idx) {
8616 case ARMMMUIdx_S1SE0:
8617 case ARMMMUIdx_S1NSE0:
8618 case ARMMMUIdx_MUser:
8619 case ARMMMUIdx_MSUser:
8620 case ARMMMUIdx_MUserNegPri:
8621 case ARMMMUIdx_MSUserNegPri:
8622 return true;
8623 default:
8624 return false;
8625 case ARMMMUIdx_S12NSE0:
8626 case ARMMMUIdx_S12NSE1:
8627 g_assert_not_reached();
8631 /* Translate section/page access permissions to page
8632 * R/W protection flags
8634 * @env: CPUARMState
8635 * @mmu_idx: MMU index indicating required translation regime
8636 * @ap: The 3-bit access permissions (AP[2:0])
8637 * @domain_prot: The 2-bit domain access permissions
8639 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8640 int ap, int domain_prot)
8642 bool is_user = regime_is_user(env, mmu_idx);
8644 if (domain_prot == 3) {
8645 return PAGE_READ | PAGE_WRITE;
8648 switch (ap) {
8649 case 0:
8650 if (arm_feature(env, ARM_FEATURE_V7)) {
8651 return 0;
8653 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8654 case SCTLR_S:
8655 return is_user ? 0 : PAGE_READ;
8656 case SCTLR_R:
8657 return PAGE_READ;
8658 default:
8659 return 0;
8661 case 1:
8662 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8663 case 2:
8664 if (is_user) {
8665 return PAGE_READ;
8666 } else {
8667 return PAGE_READ | PAGE_WRITE;
8669 case 3:
8670 return PAGE_READ | PAGE_WRITE;
8671 case 4: /* Reserved. */
8672 return 0;
8673 case 5:
8674 return is_user ? 0 : PAGE_READ;
8675 case 6:
8676 return PAGE_READ;
8677 case 7:
8678 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8679 return 0;
8681 return PAGE_READ;
8682 default:
8683 g_assert_not_reached();
8687 /* Translate section/page access permissions to page
8688 * R/W protection flags.
8690 * @ap: The 2-bit simple AP (AP[2:1])
8691 * @is_user: TRUE if accessing from PL0
8693 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8695 switch (ap) {
8696 case 0:
8697 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8698 case 1:
8699 return PAGE_READ | PAGE_WRITE;
8700 case 2:
8701 return is_user ? 0 : PAGE_READ;
8702 case 3:
8703 return PAGE_READ;
8704 default:
8705 g_assert_not_reached();
8709 static inline int
8710 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8712 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8715 /* Translate S2 section/page access permissions to protection flags
8717 * @env: CPUARMState
8718 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8719 * @xn: XN (execute-never) bit
8721 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8723 int prot = 0;
8725 if (s2ap & 1) {
8726 prot |= PAGE_READ;
8728 if (s2ap & 2) {
8729 prot |= PAGE_WRITE;
8731 if (!xn) {
8732 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8733 prot |= PAGE_EXEC;
8736 return prot;
8739 /* Translate section/page access permissions to protection flags
8741 * @env: CPUARMState
8742 * @mmu_idx: MMU index indicating required translation regime
8743 * @is_aa64: TRUE if AArch64
8744 * @ap: The 2-bit simple AP (AP[2:1])
8745 * @ns: NS (non-secure) bit
8746 * @xn: XN (execute-never) bit
8747 * @pxn: PXN (privileged execute-never) bit
8749 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8750 int ap, int ns, int xn, int pxn)
8752 bool is_user = regime_is_user(env, mmu_idx);
8753 int prot_rw, user_rw;
8754 bool have_wxn;
8755 int wxn = 0;
8757 assert(mmu_idx != ARMMMUIdx_S2NS);
8759 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8760 if (is_user) {
8761 prot_rw = user_rw;
8762 } else {
8763 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8766 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8767 return prot_rw;
8770 /* TODO have_wxn should be replaced with
8771 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8772 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8773 * compatible processors have EL2, which is required for [U]WXN.
8775 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8777 if (have_wxn) {
8778 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8781 if (is_aa64) {
8782 switch (regime_el(env, mmu_idx)) {
8783 case 1:
8784 if (!is_user) {
8785 xn = pxn || (user_rw & PAGE_WRITE);
8787 break;
8788 case 2:
8789 case 3:
8790 break;
8792 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8793 switch (regime_el(env, mmu_idx)) {
8794 case 1:
8795 case 3:
8796 if (is_user) {
8797 xn = xn || !(user_rw & PAGE_READ);
8798 } else {
8799 int uwxn = 0;
8800 if (have_wxn) {
8801 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8803 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8804 (uwxn && (user_rw & PAGE_WRITE));
8806 break;
8807 case 2:
8808 break;
8810 } else {
8811 xn = wxn = 0;
8814 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8815 return prot_rw;
8817 return prot_rw | PAGE_EXEC;
8820 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8821 uint32_t *table, uint32_t address)
8823 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8824 TCR *tcr = regime_tcr(env, mmu_idx);
8826 if (address & tcr->mask) {
8827 if (tcr->raw_tcr & TTBCR_PD1) {
8828 /* Translation table walk disabled for TTBR1 */
8829 return false;
8831 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8832 } else {
8833 if (tcr->raw_tcr & TTBCR_PD0) {
8834 /* Translation table walk disabled for TTBR0 */
8835 return false;
8837 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8839 *table |= (address >> 18) & 0x3ffc;
8840 return true;
8843 /* Translate a S1 pagetable walk through S2 if needed. */
8844 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8845 hwaddr addr, MemTxAttrs txattrs,
8846 ARMMMUFaultInfo *fi)
8848 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8849 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8850 target_ulong s2size;
8851 hwaddr s2pa;
8852 int s2prot;
8853 int ret;
8854 ARMCacheAttrs cacheattrs = {};
8855 ARMCacheAttrs *pcacheattrs = NULL;
8857 if (env->cp15.hcr_el2 & HCR_PTW) {
8859 * PTW means we must fault if this S1 walk touches S2 Device
8860 * memory; otherwise we don't care about the attributes and can
8861 * save the S2 translation the effort of computing them.
8863 pcacheattrs = &cacheattrs;
8866 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8867 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
8868 if (ret) {
8869 assert(fi->type != ARMFault_None);
8870 fi->s2addr = addr;
8871 fi->stage2 = true;
8872 fi->s1ptw = true;
8873 return ~0;
8875 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
8876 /* Access was to Device memory: generate Permission fault */
8877 fi->type = ARMFault_Permission;
8878 fi->s2addr = addr;
8879 fi->stage2 = true;
8880 fi->s1ptw = true;
8881 return ~0;
8883 addr = s2pa;
8885 return addr;
8888 /* All loads done in the course of a page table walk go through here. */
8889 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8890 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8892 ARMCPU *cpu = ARM_CPU(cs);
8893 CPUARMState *env = &cpu->env;
8894 MemTxAttrs attrs = {};
8895 MemTxResult result = MEMTX_OK;
8896 AddressSpace *as;
8897 uint32_t data;
8899 attrs.secure = is_secure;
8900 as = arm_addressspace(cs, attrs);
8901 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8902 if (fi->s1ptw) {
8903 return 0;
8905 if (regime_translation_big_endian(env, mmu_idx)) {
8906 data = address_space_ldl_be(as, addr, attrs, &result);
8907 } else {
8908 data = address_space_ldl_le(as, addr, attrs, &result);
8910 if (result == MEMTX_OK) {
8911 return data;
8913 fi->type = ARMFault_SyncExternalOnWalk;
8914 fi->ea = arm_extabort_type(result);
8915 return 0;
8918 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8919 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8921 ARMCPU *cpu = ARM_CPU(cs);
8922 CPUARMState *env = &cpu->env;
8923 MemTxAttrs attrs = {};
8924 MemTxResult result = MEMTX_OK;
8925 AddressSpace *as;
8926 uint64_t data;
8928 attrs.secure = is_secure;
8929 as = arm_addressspace(cs, attrs);
8930 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8931 if (fi->s1ptw) {
8932 return 0;
8934 if (regime_translation_big_endian(env, mmu_idx)) {
8935 data = address_space_ldq_be(as, addr, attrs, &result);
8936 } else {
8937 data = address_space_ldq_le(as, addr, attrs, &result);
8939 if (result == MEMTX_OK) {
8940 return data;
8942 fi->type = ARMFault_SyncExternalOnWalk;
8943 fi->ea = arm_extabort_type(result);
8944 return 0;
8947 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8948 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8949 hwaddr *phys_ptr, int *prot,
8950 target_ulong *page_size,
8951 ARMMMUFaultInfo *fi)
8953 CPUState *cs = env_cpu(env);
8954 int level = 1;
8955 uint32_t table;
8956 uint32_t desc;
8957 int type;
8958 int ap;
8959 int domain = 0;
8960 int domain_prot;
8961 hwaddr phys_addr;
8962 uint32_t dacr;
8964 /* Pagetable walk. */
8965 /* Lookup l1 descriptor. */
8966 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8967 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8968 fi->type = ARMFault_Translation;
8969 goto do_fault;
8971 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8972 mmu_idx, fi);
8973 if (fi->type != ARMFault_None) {
8974 goto do_fault;
8976 type = (desc & 3);
8977 domain = (desc >> 5) & 0x0f;
8978 if (regime_el(env, mmu_idx) == 1) {
8979 dacr = env->cp15.dacr_ns;
8980 } else {
8981 dacr = env->cp15.dacr_s;
8983 domain_prot = (dacr >> (domain * 2)) & 3;
8984 if (type == 0) {
8985 /* Section translation fault. */
8986 fi->type = ARMFault_Translation;
8987 goto do_fault;
8989 if (type != 2) {
8990 level = 2;
8992 if (domain_prot == 0 || domain_prot == 2) {
8993 fi->type = ARMFault_Domain;
8994 goto do_fault;
8996 if (type == 2) {
8997 /* 1Mb section. */
8998 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8999 ap = (desc >> 10) & 3;
9000 *page_size = 1024 * 1024;
9001 } else {
9002 /* Lookup l2 entry. */
9003 if (type == 1) {
9004 /* Coarse pagetable. */
9005 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9006 } else {
9007 /* Fine pagetable. */
9008 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9010 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9011 mmu_idx, fi);
9012 if (fi->type != ARMFault_None) {
9013 goto do_fault;
9015 switch (desc & 3) {
9016 case 0: /* Page translation fault. */
9017 fi->type = ARMFault_Translation;
9018 goto do_fault;
9019 case 1: /* 64k page. */
9020 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9021 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9022 *page_size = 0x10000;
9023 break;
9024 case 2: /* 4k page. */
9025 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9026 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9027 *page_size = 0x1000;
9028 break;
9029 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9030 if (type == 1) {
9031 /* ARMv6/XScale extended small page format */
9032 if (arm_feature(env, ARM_FEATURE_XSCALE)
9033 || arm_feature(env, ARM_FEATURE_V6)) {
9034 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9035 *page_size = 0x1000;
9036 } else {
9037 /* UNPREDICTABLE in ARMv5; we choose to take a
9038 * page translation fault.
9040 fi->type = ARMFault_Translation;
9041 goto do_fault;
9043 } else {
9044 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9045 *page_size = 0x400;
9047 ap = (desc >> 4) & 3;
9048 break;
9049 default:
9050 /* Never happens, but compiler isn't smart enough to tell. */
9051 abort();
9054 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9055 *prot |= *prot ? PAGE_EXEC : 0;
9056 if (!(*prot & (1 << access_type))) {
9057 /* Access permission fault. */
9058 fi->type = ARMFault_Permission;
9059 goto do_fault;
9061 *phys_ptr = phys_addr;
9062 return false;
9063 do_fault:
9064 fi->domain = domain;
9065 fi->level = level;
9066 return true;
9069 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9070 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9071 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9072 target_ulong *page_size, ARMMMUFaultInfo *fi)
9074 CPUState *cs = env_cpu(env);
9075 int level = 1;
9076 uint32_t table;
9077 uint32_t desc;
9078 uint32_t xn;
9079 uint32_t pxn = 0;
9080 int type;
9081 int ap;
9082 int domain = 0;
9083 int domain_prot;
9084 hwaddr phys_addr;
9085 uint32_t dacr;
9086 bool ns;
9088 /* Pagetable walk. */
9089 /* Lookup l1 descriptor. */
9090 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9091 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9092 fi->type = ARMFault_Translation;
9093 goto do_fault;
9095 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9096 mmu_idx, fi);
9097 if (fi->type != ARMFault_None) {
9098 goto do_fault;
9100 type = (desc & 3);
9101 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9102 /* Section translation fault, or attempt to use the encoding
9103 * which is Reserved on implementations without PXN.
9105 fi->type = ARMFault_Translation;
9106 goto do_fault;
9108 if ((type == 1) || !(desc & (1 << 18))) {
9109 /* Page or Section. */
9110 domain = (desc >> 5) & 0x0f;
9112 if (regime_el(env, mmu_idx) == 1) {
9113 dacr = env->cp15.dacr_ns;
9114 } else {
9115 dacr = env->cp15.dacr_s;
9117 if (type == 1) {
9118 level = 2;
9120 domain_prot = (dacr >> (domain * 2)) & 3;
9121 if (domain_prot == 0 || domain_prot == 2) {
9122 /* Section or Page domain fault */
9123 fi->type = ARMFault_Domain;
9124 goto do_fault;
9126 if (type != 1) {
9127 if (desc & (1 << 18)) {
9128 /* Supersection. */
9129 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9130 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9131 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9132 *page_size = 0x1000000;
9133 } else {
9134 /* Section. */
9135 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9136 *page_size = 0x100000;
9138 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9139 xn = desc & (1 << 4);
9140 pxn = desc & 1;
9141 ns = extract32(desc, 19, 1);
9142 } else {
9143 if (arm_feature(env, ARM_FEATURE_PXN)) {
9144 pxn = (desc >> 2) & 1;
9146 ns = extract32(desc, 3, 1);
9147 /* Lookup l2 entry. */
9148 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9149 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9150 mmu_idx, fi);
9151 if (fi->type != ARMFault_None) {
9152 goto do_fault;
9154 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9155 switch (desc & 3) {
9156 case 0: /* Page translation fault. */
9157 fi->type = ARMFault_Translation;
9158 goto do_fault;
9159 case 1: /* 64k page. */
9160 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9161 xn = desc & (1 << 15);
9162 *page_size = 0x10000;
9163 break;
9164 case 2: case 3: /* 4k page. */
9165 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9166 xn = desc & 1;
9167 *page_size = 0x1000;
9168 break;
9169 default:
9170 /* Never happens, but compiler isn't smart enough to tell. */
9171 abort();
9174 if (domain_prot == 3) {
9175 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9176 } else {
9177 if (pxn && !regime_is_user(env, mmu_idx)) {
9178 xn = 1;
9180 if (xn && access_type == MMU_INST_FETCH) {
9181 fi->type = ARMFault_Permission;
9182 goto do_fault;
9185 if (arm_feature(env, ARM_FEATURE_V6K) &&
9186 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9187 /* The simplified model uses AP[0] as an access control bit. */
9188 if ((ap & 1) == 0) {
9189 /* Access flag fault. */
9190 fi->type = ARMFault_AccessFlag;
9191 goto do_fault;
9193 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9194 } else {
9195 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9197 if (*prot && !xn) {
9198 *prot |= PAGE_EXEC;
9200 if (!(*prot & (1 << access_type))) {
9201 /* Access permission fault. */
9202 fi->type = ARMFault_Permission;
9203 goto do_fault;
9206 if (ns) {
9207 /* The NS bit will (as required by the architecture) have no effect if
9208 * the CPU doesn't support TZ or this is a non-secure translation
9209 * regime, because the attribute will already be non-secure.
9211 attrs->secure = false;
9213 *phys_ptr = phys_addr;
9214 return false;
9215 do_fault:
9216 fi->domain = domain;
9217 fi->level = level;
9218 return true;
9222 * check_s2_mmu_setup
9223 * @cpu: ARMCPU
9224 * @is_aa64: True if the translation regime is in AArch64 state
9225 * @startlevel: Suggested starting level
9226 * @inputsize: Bitsize of IPAs
9227 * @stride: Page-table stride (See the ARM ARM)
9229 * Returns true if the suggested S2 translation parameters are OK and
9230 * false otherwise.
9232 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9233 int inputsize, int stride)
9235 const int grainsize = stride + 3;
9236 int startsizecheck;
9238 /* Negative levels are never allowed. */
9239 if (level < 0) {
9240 return false;
9243 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9244 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9245 return false;
9248 if (is_aa64) {
9249 CPUARMState *env = &cpu->env;
9250 unsigned int pamax = arm_pamax(cpu);
9252 switch (stride) {
9253 case 13: /* 64KB Pages. */
9254 if (level == 0 || (level == 1 && pamax <= 42)) {
9255 return false;
9257 break;
9258 case 11: /* 16KB Pages. */
9259 if (level == 0 || (level == 1 && pamax <= 40)) {
9260 return false;
9262 break;
9263 case 9: /* 4KB Pages. */
9264 if (level == 0 && pamax <= 42) {
9265 return false;
9267 break;
9268 default:
9269 g_assert_not_reached();
9272 /* Inputsize checks. */
9273 if (inputsize > pamax &&
9274 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9275 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9276 return false;
9278 } else {
9279 /* AArch32 only supports 4KB pages. Assert on that. */
9280 assert(stride == 9);
9282 if (level == 0) {
9283 return false;
9286 return true;
9289 /* Translate from the 4-bit stage 2 representation of
9290 * memory attributes (without cache-allocation hints) to
9291 * the 8-bit representation of the stage 1 MAIR registers
9292 * (which includes allocation hints).
9294 * ref: shared/translation/attrs/S2AttrDecode()
9295 * .../S2ConvertAttrsHints()
9297 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9299 uint8_t hiattr = extract32(s2attrs, 2, 2);
9300 uint8_t loattr = extract32(s2attrs, 0, 2);
9301 uint8_t hihint = 0, lohint = 0;
9303 if (hiattr != 0) { /* normal memory */
9304 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9305 hiattr = loattr = 1; /* non-cacheable */
9306 } else {
9307 if (hiattr != 1) { /* Write-through or write-back */
9308 hihint = 3; /* RW allocate */
9310 if (loattr != 1) { /* Write-through or write-back */
9311 lohint = 3; /* RW allocate */
9316 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9318 #endif /* !CONFIG_USER_ONLY */
9320 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9321 ARMMMUIdx mmu_idx)
9323 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9324 uint32_t el = regime_el(env, mmu_idx);
9325 bool tbi, tbid, epd, hpd, using16k, using64k;
9326 int select, tsz;
9329 * Bit 55 is always between the two regions, and is canonical for
9330 * determining if address tagging is enabled.
9332 select = extract64(va, 55, 1);
9334 if (el > 1) {
9335 tsz = extract32(tcr, 0, 6);
9336 using64k = extract32(tcr, 14, 1);
9337 using16k = extract32(tcr, 15, 1);
9338 if (mmu_idx == ARMMMUIdx_S2NS) {
9339 /* VTCR_EL2 */
9340 tbi = tbid = hpd = false;
9341 } else {
9342 tbi = extract32(tcr, 20, 1);
9343 hpd = extract32(tcr, 24, 1);
9344 tbid = extract32(tcr, 29, 1);
9346 epd = false;
9347 } else if (!select) {
9348 tsz = extract32(tcr, 0, 6);
9349 epd = extract32(tcr, 7, 1);
9350 using64k = extract32(tcr, 14, 1);
9351 using16k = extract32(tcr, 15, 1);
9352 tbi = extract64(tcr, 37, 1);
9353 hpd = extract64(tcr, 41, 1);
9354 tbid = extract64(tcr, 51, 1);
9355 } else {
9356 int tg = extract32(tcr, 30, 2);
9357 using16k = tg == 1;
9358 using64k = tg == 3;
9359 tsz = extract32(tcr, 16, 6);
9360 epd = extract32(tcr, 23, 1);
9361 tbi = extract64(tcr, 38, 1);
9362 hpd = extract64(tcr, 42, 1);
9363 tbid = extract64(tcr, 52, 1);
9365 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
9366 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
9368 return (ARMVAParameters) {
9369 .tsz = tsz,
9370 .select = select,
9371 .tbi = tbi,
9372 .tbid = tbid,
9373 .epd = epd,
9374 .hpd = hpd,
9375 .using16k = using16k,
9376 .using64k = using64k,
9380 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9381 ARMMMUIdx mmu_idx, bool data)
9383 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9385 /* Present TBI as a composite with TBID. */
9386 ret.tbi &= (data || !ret.tbid);
9387 return ret;
9390 #ifndef CONFIG_USER_ONLY
9391 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9392 ARMMMUIdx mmu_idx)
9394 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9395 uint32_t el = regime_el(env, mmu_idx);
9396 int select, tsz;
9397 bool epd, hpd;
9399 if (mmu_idx == ARMMMUIdx_S2NS) {
9400 /* VTCR */
9401 bool sext = extract32(tcr, 4, 1);
9402 bool sign = extract32(tcr, 3, 1);
9405 * If the sign-extend bit is not the same as t0sz[3], the result
9406 * is unpredictable. Flag this as a guest error.
9408 if (sign != sext) {
9409 qemu_log_mask(LOG_GUEST_ERROR,
9410 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9412 tsz = sextract32(tcr, 0, 4) + 8;
9413 select = 0;
9414 hpd = false;
9415 epd = false;
9416 } else if (el == 2) {
9417 /* HTCR */
9418 tsz = extract32(tcr, 0, 3);
9419 select = 0;
9420 hpd = extract64(tcr, 24, 1);
9421 epd = false;
9422 } else {
9423 int t0sz = extract32(tcr, 0, 3);
9424 int t1sz = extract32(tcr, 16, 3);
9426 if (t1sz == 0) {
9427 select = va > (0xffffffffu >> t0sz);
9428 } else {
9429 /* Note that we will detect errors later. */
9430 select = va >= ~(0xffffffffu >> t1sz);
9432 if (!select) {
9433 tsz = t0sz;
9434 epd = extract32(tcr, 7, 1);
9435 hpd = extract64(tcr, 41, 1);
9436 } else {
9437 tsz = t1sz;
9438 epd = extract32(tcr, 23, 1);
9439 hpd = extract64(tcr, 42, 1);
9441 /* For aarch32, hpd0 is not enabled without t2e as well. */
9442 hpd &= extract32(tcr, 6, 1);
9445 return (ARMVAParameters) {
9446 .tsz = tsz,
9447 .select = select,
9448 .epd = epd,
9449 .hpd = hpd,
9453 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9454 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9455 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9456 target_ulong *page_size_ptr,
9457 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9459 ARMCPU *cpu = env_archcpu(env);
9460 CPUState *cs = CPU(cpu);
9461 /* Read an LPAE long-descriptor translation table. */
9462 ARMFaultType fault_type = ARMFault_Translation;
9463 uint32_t level;
9464 ARMVAParameters param;
9465 uint64_t ttbr;
9466 hwaddr descaddr, indexmask, indexmask_grainsize;
9467 uint32_t tableattrs;
9468 target_ulong page_size;
9469 uint32_t attrs;
9470 int32_t stride;
9471 int addrsize, inputsize;
9472 TCR *tcr = regime_tcr(env, mmu_idx);
9473 int ap, ns, xn, pxn;
9474 uint32_t el = regime_el(env, mmu_idx);
9475 bool ttbr1_valid;
9476 uint64_t descaddrmask;
9477 bool aarch64 = arm_el_is_aa64(env, el);
9478 bool guarded = false;
9480 /* TODO:
9481 * This code does not handle the different format TCR for VTCR_EL2.
9482 * This code also does not support shareability levels.
9483 * Attribute and permission bit handling should also be checked when adding
9484 * support for those page table walks.
9486 if (aarch64) {
9487 param = aa64_va_parameters(env, address, mmu_idx,
9488 access_type != MMU_INST_FETCH);
9489 level = 0;
9490 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9491 * invalid.
9493 ttbr1_valid = (el < 2);
9494 addrsize = 64 - 8 * param.tbi;
9495 inputsize = 64 - param.tsz;
9496 } else {
9497 param = aa32_va_parameters(env, address, mmu_idx);
9498 level = 1;
9499 /* There is no TTBR1 for EL2 */
9500 ttbr1_valid = (el != 2);
9501 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9502 inputsize = addrsize - param.tsz;
9506 * We determined the region when collecting the parameters, but we
9507 * have not yet validated that the address is valid for the region.
9508 * Extract the top bits and verify that they all match select.
9510 * For aa32, if inputsize == addrsize, then we have selected the
9511 * region by exclusion in aa32_va_parameters and there is no more
9512 * validation to do here.
9514 if (inputsize < addrsize) {
9515 target_ulong top_bits = sextract64(address, inputsize,
9516 addrsize - inputsize);
9517 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9518 /* The gap between the two regions is a Translation fault */
9519 fault_type = ARMFault_Translation;
9520 goto do_fault;
9524 if (param.using64k) {
9525 stride = 13;
9526 } else if (param.using16k) {
9527 stride = 11;
9528 } else {
9529 stride = 9;
9532 /* Note that QEMU ignores shareability and cacheability attributes,
9533 * so we don't need to do anything with the SH, ORGN, IRGN fields
9534 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9535 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9536 * implement any ASID-like capability so we can ignore it (instead
9537 * we will always flush the TLB any time the ASID is changed).
9539 ttbr = regime_ttbr(env, mmu_idx, param.select);
9541 /* Here we should have set up all the parameters for the translation:
9542 * inputsize, ttbr, epd, stride, tbi
9545 if (param.epd) {
9546 /* Translation table walk disabled => Translation fault on TLB miss
9547 * Note: This is always 0 on 64-bit EL2 and EL3.
9549 goto do_fault;
9552 if (mmu_idx != ARMMMUIdx_S2NS) {
9553 /* The starting level depends on the virtual address size (which can
9554 * be up to 48 bits) and the translation granule size. It indicates
9555 * the number of strides (stride bits at a time) needed to
9556 * consume the bits of the input address. In the pseudocode this is:
9557 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9558 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9559 * our 'stride + 3' and 'stride' is our 'stride'.
9560 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9561 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9562 * = 4 - (inputsize - 4) / stride;
9564 level = 4 - (inputsize - 4) / stride;
9565 } else {
9566 /* For stage 2 translations the starting level is specified by the
9567 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9569 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9570 uint32_t startlevel;
9571 bool ok;
9573 if (!aarch64 || stride == 9) {
9574 /* AArch32 or 4KB pages */
9575 startlevel = 2 - sl0;
9576 } else {
9577 /* 16KB or 64KB pages */
9578 startlevel = 3 - sl0;
9581 /* Check that the starting level is valid. */
9582 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9583 inputsize, stride);
9584 if (!ok) {
9585 fault_type = ARMFault_Translation;
9586 goto do_fault;
9588 level = startlevel;
9591 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9592 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9594 /* Now we can extract the actual base address from the TTBR */
9595 descaddr = extract64(ttbr, 0, 48);
9596 descaddr &= ~indexmask;
9598 /* The address field in the descriptor goes up to bit 39 for ARMv7
9599 * but up to bit 47 for ARMv8, but we use the descaddrmask
9600 * up to bit 39 for AArch32, because we don't need other bits in that case
9601 * to construct next descriptor address (anyway they should be all zeroes).
9603 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9604 ~indexmask_grainsize;
9606 /* Secure accesses start with the page table in secure memory and
9607 * can be downgraded to non-secure at any step. Non-secure accesses
9608 * remain non-secure. We implement this by just ORing in the NSTable/NS
9609 * bits at each step.
9611 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9612 for (;;) {
9613 uint64_t descriptor;
9614 bool nstable;
9616 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9617 descaddr &= ~7ULL;
9618 nstable = extract32(tableattrs, 4, 1);
9619 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9620 if (fi->type != ARMFault_None) {
9621 goto do_fault;
9624 if (!(descriptor & 1) ||
9625 (!(descriptor & 2) && (level == 3))) {
9626 /* Invalid, or the Reserved level 3 encoding */
9627 goto do_fault;
9629 descaddr = descriptor & descaddrmask;
9631 if ((descriptor & 2) && (level < 3)) {
9632 /* Table entry. The top five bits are attributes which may
9633 * propagate down through lower levels of the table (and
9634 * which are all arranged so that 0 means "no effect", so
9635 * we can gather them up by ORing in the bits at each level).
9637 tableattrs |= extract64(descriptor, 59, 5);
9638 level++;
9639 indexmask = indexmask_grainsize;
9640 continue;
9642 /* Block entry at level 1 or 2, or page entry at level 3.
9643 * These are basically the same thing, although the number
9644 * of bits we pull in from the vaddr varies.
9646 page_size = (1ULL << ((stride * (4 - level)) + 3));
9647 descaddr |= (address & (page_size - 1));
9648 /* Extract attributes from the descriptor */
9649 attrs = extract64(descriptor, 2, 10)
9650 | (extract64(descriptor, 52, 12) << 10);
9652 if (mmu_idx == ARMMMUIdx_S2NS) {
9653 /* Stage 2 table descriptors do not include any attribute fields */
9654 break;
9656 /* Merge in attributes from table descriptors */
9657 attrs |= nstable << 3; /* NS */
9658 guarded = extract64(descriptor, 50, 1); /* GP */
9659 if (param.hpd) {
9660 /* HPD disables all the table attributes except NSTable. */
9661 break;
9663 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9664 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9665 * means "force PL1 access only", which means forcing AP[1] to 0.
9667 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
9668 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
9669 break;
9671 /* Here descaddr is the final physical address, and attributes
9672 * are all in attrs.
9674 fault_type = ARMFault_AccessFlag;
9675 if ((attrs & (1 << 8)) == 0) {
9676 /* Access flag */
9677 goto do_fault;
9680 ap = extract32(attrs, 4, 2);
9681 xn = extract32(attrs, 12, 1);
9683 if (mmu_idx == ARMMMUIdx_S2NS) {
9684 ns = true;
9685 *prot = get_S2prot(env, ap, xn);
9686 } else {
9687 ns = extract32(attrs, 3, 1);
9688 pxn = extract32(attrs, 11, 1);
9689 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9692 fault_type = ARMFault_Permission;
9693 if (!(*prot & (1 << access_type))) {
9694 goto do_fault;
9697 if (ns) {
9698 /* The NS bit will (as required by the architecture) have no effect if
9699 * the CPU doesn't support TZ or this is a non-secure translation
9700 * regime, because the attribute will already be non-secure.
9702 txattrs->secure = false;
9704 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
9705 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9706 txattrs->target_tlb_bit0 = true;
9709 if (cacheattrs != NULL) {
9710 if (mmu_idx == ARMMMUIdx_S2NS) {
9711 cacheattrs->attrs = convert_stage2_attrs(env,
9712 extract32(attrs, 0, 4));
9713 } else {
9714 /* Index into MAIR registers for cache attributes */
9715 uint8_t attrindx = extract32(attrs, 0, 3);
9716 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9717 assert(attrindx <= 7);
9718 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9720 cacheattrs->shareability = extract32(attrs, 6, 2);
9723 *phys_ptr = descaddr;
9724 *page_size_ptr = page_size;
9725 return false;
9727 do_fault:
9728 fi->type = fault_type;
9729 fi->level = level;
9730 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9731 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9732 return true;
9735 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9736 ARMMMUIdx mmu_idx,
9737 int32_t address, int *prot)
9739 if (!arm_feature(env, ARM_FEATURE_M)) {
9740 *prot = PAGE_READ | PAGE_WRITE;
9741 switch (address) {
9742 case 0xF0000000 ... 0xFFFFFFFF:
9743 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9744 /* hivecs execing is ok */
9745 *prot |= PAGE_EXEC;
9747 break;
9748 case 0x00000000 ... 0x7FFFFFFF:
9749 *prot |= PAGE_EXEC;
9750 break;
9752 } else {
9753 /* Default system address map for M profile cores.
9754 * The architecture specifies which regions are execute-never;
9755 * at the MPU level no other checks are defined.
9757 switch (address) {
9758 case 0x00000000 ... 0x1fffffff: /* ROM */
9759 case 0x20000000 ... 0x3fffffff: /* SRAM */
9760 case 0x60000000 ... 0x7fffffff: /* RAM */
9761 case 0x80000000 ... 0x9fffffff: /* RAM */
9762 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9763 break;
9764 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9765 case 0xa0000000 ... 0xbfffffff: /* Device */
9766 case 0xc0000000 ... 0xdfffffff: /* Device */
9767 case 0xe0000000 ... 0xffffffff: /* System */
9768 *prot = PAGE_READ | PAGE_WRITE;
9769 break;
9770 default:
9771 g_assert_not_reached();
9776 static bool pmsav7_use_background_region(ARMCPU *cpu,
9777 ARMMMUIdx mmu_idx, bool is_user)
9779 /* Return true if we should use the default memory map as a
9780 * "background" region if there are no hits against any MPU regions.
9782 CPUARMState *env = &cpu->env;
9784 if (is_user) {
9785 return false;
9788 if (arm_feature(env, ARM_FEATURE_M)) {
9789 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9790 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9791 } else {
9792 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9796 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9798 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9799 return arm_feature(env, ARM_FEATURE_M) &&
9800 extract32(address, 20, 12) == 0xe00;
9803 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9805 /* True if address is in the M profile system region
9806 * 0xe0000000 - 0xffffffff
9808 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9811 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9812 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9813 hwaddr *phys_ptr, int *prot,
9814 target_ulong *page_size,
9815 ARMMMUFaultInfo *fi)
9817 ARMCPU *cpu = env_archcpu(env);
9818 int n;
9819 bool is_user = regime_is_user(env, mmu_idx);
9821 *phys_ptr = address;
9822 *page_size = TARGET_PAGE_SIZE;
9823 *prot = 0;
9825 if (regime_translation_disabled(env, mmu_idx) ||
9826 m_is_ppb_region(env, address)) {
9827 /* MPU disabled or M profile PPB access: use default memory map.
9828 * The other case which uses the default memory map in the
9829 * v7M ARM ARM pseudocode is exception vector reads from the vector
9830 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9831 * which always does a direct read using address_space_ldl(), rather
9832 * than going via this function, so we don't need to check that here.
9834 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9835 } else { /* MPU enabled */
9836 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9837 /* region search */
9838 uint32_t base = env->pmsav7.drbar[n];
9839 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9840 uint32_t rmask;
9841 bool srdis = false;
9843 if (!(env->pmsav7.drsr[n] & 0x1)) {
9844 continue;
9847 if (!rsize) {
9848 qemu_log_mask(LOG_GUEST_ERROR,
9849 "DRSR[%d]: Rsize field cannot be 0\n", n);
9850 continue;
9852 rsize++;
9853 rmask = (1ull << rsize) - 1;
9855 if (base & rmask) {
9856 qemu_log_mask(LOG_GUEST_ERROR,
9857 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9858 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9859 n, base, rmask);
9860 continue;
9863 if (address < base || address > base + rmask) {
9865 * Address not in this region. We must check whether the
9866 * region covers addresses in the same page as our address.
9867 * In that case we must not report a size that covers the
9868 * whole page for a subsequent hit against a different MPU
9869 * region or the background region, because it would result in
9870 * incorrect TLB hits for subsequent accesses to addresses that
9871 * are in this MPU region.
9873 if (ranges_overlap(base, rmask,
9874 address & TARGET_PAGE_MASK,
9875 TARGET_PAGE_SIZE)) {
9876 *page_size = 1;
9878 continue;
9881 /* Region matched */
9883 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9884 int i, snd;
9885 uint32_t srdis_mask;
9887 rsize -= 3; /* sub region size (power of 2) */
9888 snd = ((address - base) >> rsize) & 0x7;
9889 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9891 srdis_mask = srdis ? 0x3 : 0x0;
9892 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9893 /* This will check in groups of 2, 4 and then 8, whether
9894 * the subregion bits are consistent. rsize is incremented
9895 * back up to give the region size, considering consistent
9896 * adjacent subregions as one region. Stop testing if rsize
9897 * is already big enough for an entire QEMU page.
9899 int snd_rounded = snd & ~(i - 1);
9900 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9901 snd_rounded + 8, i);
9902 if (srdis_mask ^ srdis_multi) {
9903 break;
9905 srdis_mask = (srdis_mask << i) | srdis_mask;
9906 rsize++;
9909 if (srdis) {
9910 continue;
9912 if (rsize < TARGET_PAGE_BITS) {
9913 *page_size = 1 << rsize;
9915 break;
9918 if (n == -1) { /* no hits */
9919 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9920 /* background fault */
9921 fi->type = ARMFault_Background;
9922 return true;
9924 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9925 } else { /* a MPU hit! */
9926 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9927 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9929 if (m_is_system_region(env, address)) {
9930 /* System space is always execute never */
9931 xn = 1;
9934 if (is_user) { /* User mode AP bit decoding */
9935 switch (ap) {
9936 case 0:
9937 case 1:
9938 case 5:
9939 break; /* no access */
9940 case 3:
9941 *prot |= PAGE_WRITE;
9942 /* fall through */
9943 case 2:
9944 case 6:
9945 *prot |= PAGE_READ | PAGE_EXEC;
9946 break;
9947 case 7:
9948 /* for v7M, same as 6; for R profile a reserved value */
9949 if (arm_feature(env, ARM_FEATURE_M)) {
9950 *prot |= PAGE_READ | PAGE_EXEC;
9951 break;
9953 /* fall through */
9954 default:
9955 qemu_log_mask(LOG_GUEST_ERROR,
9956 "DRACR[%d]: Bad value for AP bits: 0x%"
9957 PRIx32 "\n", n, ap);
9959 } else { /* Priv. mode AP bits decoding */
9960 switch (ap) {
9961 case 0:
9962 break; /* no access */
9963 case 1:
9964 case 2:
9965 case 3:
9966 *prot |= PAGE_WRITE;
9967 /* fall through */
9968 case 5:
9969 case 6:
9970 *prot |= PAGE_READ | PAGE_EXEC;
9971 break;
9972 case 7:
9973 /* for v7M, same as 6; for R profile a reserved value */
9974 if (arm_feature(env, ARM_FEATURE_M)) {
9975 *prot |= PAGE_READ | PAGE_EXEC;
9976 break;
9978 /* fall through */
9979 default:
9980 qemu_log_mask(LOG_GUEST_ERROR,
9981 "DRACR[%d]: Bad value for AP bits: 0x%"
9982 PRIx32 "\n", n, ap);
9986 /* execute never */
9987 if (xn) {
9988 *prot &= ~PAGE_EXEC;
9993 fi->type = ARMFault_Permission;
9994 fi->level = 1;
9995 return !(*prot & (1 << access_type));
9998 static bool v8m_is_sau_exempt(CPUARMState *env,
9999 uint32_t address, MMUAccessType access_type)
10001 /* The architecture specifies that certain address ranges are
10002 * exempt from v8M SAU/IDAU checks.
10004 return
10005 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10006 (address >= 0xe0000000 && address <= 0xe0002fff) ||
10007 (address >= 0xe000e000 && address <= 0xe000efff) ||
10008 (address >= 0xe002e000 && address <= 0xe002efff) ||
10009 (address >= 0xe0040000 && address <= 0xe0041fff) ||
10010 (address >= 0xe00ff000 && address <= 0xe00fffff);
10013 void v8m_security_lookup(CPUARMState *env, uint32_t address,
10014 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10015 V8M_SAttributes *sattrs)
10017 /* Look up the security attributes for this address. Compare the
10018 * pseudocode SecurityCheck() function.
10019 * We assume the caller has zero-initialized *sattrs.
10021 ARMCPU *cpu = env_archcpu(env);
10022 int r;
10023 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10024 int idau_region = IREGION_NOTVALID;
10025 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10026 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10028 if (cpu->idau) {
10029 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10030 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10032 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10033 &idau_nsc);
10036 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10037 /* 0xf0000000..0xffffffff is always S for insn fetches */
10038 return;
10041 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10042 sattrs->ns = !regime_is_secure(env, mmu_idx);
10043 return;
10046 if (idau_region != IREGION_NOTVALID) {
10047 sattrs->irvalid = true;
10048 sattrs->iregion = idau_region;
10051 switch (env->sau.ctrl & 3) {
10052 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10053 break;
10054 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10055 sattrs->ns = true;
10056 break;
10057 default: /* SAU.ENABLE == 1 */
10058 for (r = 0; r < cpu->sau_sregion; r++) {
10059 if (env->sau.rlar[r] & 1) {
10060 uint32_t base = env->sau.rbar[r] & ~0x1f;
10061 uint32_t limit = env->sau.rlar[r] | 0x1f;
10063 if (base <= address && limit >= address) {
10064 if (base > addr_page_base || limit < addr_page_limit) {
10065 sattrs->subpage = true;
10067 if (sattrs->srvalid) {
10068 /* If we hit in more than one region then we must report
10069 * as Secure, not NS-Callable, with no valid region
10070 * number info.
10072 sattrs->ns = false;
10073 sattrs->nsc = false;
10074 sattrs->sregion = 0;
10075 sattrs->srvalid = false;
10076 break;
10077 } else {
10078 if (env->sau.rlar[r] & 2) {
10079 sattrs->nsc = true;
10080 } else {
10081 sattrs->ns = true;
10083 sattrs->srvalid = true;
10084 sattrs->sregion = r;
10086 } else {
10088 * Address not in this region. We must check whether the
10089 * region covers addresses in the same page as our address.
10090 * In that case we must not report a size that covers the
10091 * whole page for a subsequent hit against a different MPU
10092 * region or the background region, because it would result
10093 * in incorrect TLB hits for subsequent accesses to
10094 * addresses that are in this MPU region.
10096 if (limit >= base &&
10097 ranges_overlap(base, limit - base + 1,
10098 addr_page_base,
10099 TARGET_PAGE_SIZE)) {
10100 sattrs->subpage = true;
10105 break;
10109 * The IDAU will override the SAU lookup results if it specifies
10110 * higher security than the SAU does.
10112 if (!idau_ns) {
10113 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10114 sattrs->ns = false;
10115 sattrs->nsc = idau_nsc;
10120 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10121 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10122 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10123 int *prot, bool *is_subpage,
10124 ARMMMUFaultInfo *fi, uint32_t *mregion)
10126 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10127 * that a full phys-to-virt translation does).
10128 * mregion is (if not NULL) set to the region number which matched,
10129 * or -1 if no region number is returned (MPU off, address did not
10130 * hit a region, address hit in multiple regions).
10131 * We set is_subpage to true if the region hit doesn't cover the
10132 * entire TARGET_PAGE the address is within.
10134 ARMCPU *cpu = env_archcpu(env);
10135 bool is_user = regime_is_user(env, mmu_idx);
10136 uint32_t secure = regime_is_secure(env, mmu_idx);
10137 int n;
10138 int matchregion = -1;
10139 bool hit = false;
10140 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10141 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10143 *is_subpage = false;
10144 *phys_ptr = address;
10145 *prot = 0;
10146 if (mregion) {
10147 *mregion = -1;
10150 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10151 * was an exception vector read from the vector table (which is always
10152 * done using the default system address map), because those accesses
10153 * are done in arm_v7m_load_vector(), which always does a direct
10154 * read using address_space_ldl(), rather than going via this function.
10156 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10157 hit = true;
10158 } else if (m_is_ppb_region(env, address)) {
10159 hit = true;
10160 } else {
10161 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10162 hit = true;
10165 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10166 /* region search */
10167 /* Note that the base address is bits [31:5] from the register
10168 * with bits [4:0] all zeroes, but the limit address is bits
10169 * [31:5] from the register with bits [4:0] all ones.
10171 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10172 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10174 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10175 /* Region disabled */
10176 continue;
10179 if (address < base || address > limit) {
10181 * Address not in this region. We must check whether the
10182 * region covers addresses in the same page as our address.
10183 * In that case we must not report a size that covers the
10184 * whole page for a subsequent hit against a different MPU
10185 * region or the background region, because it would result in
10186 * incorrect TLB hits for subsequent accesses to addresses that
10187 * are in this MPU region.
10189 if (limit >= base &&
10190 ranges_overlap(base, limit - base + 1,
10191 addr_page_base,
10192 TARGET_PAGE_SIZE)) {
10193 *is_subpage = true;
10195 continue;
10198 if (base > addr_page_base || limit < addr_page_limit) {
10199 *is_subpage = true;
10202 if (matchregion != -1) {
10203 /* Multiple regions match -- always a failure (unlike
10204 * PMSAv7 where highest-numbered-region wins)
10206 fi->type = ARMFault_Permission;
10207 fi->level = 1;
10208 return true;
10211 matchregion = n;
10212 hit = true;
10216 if (!hit) {
10217 /* background fault */
10218 fi->type = ARMFault_Background;
10219 return true;
10222 if (matchregion == -1) {
10223 /* hit using the background region */
10224 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10225 } else {
10226 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10227 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10229 if (m_is_system_region(env, address)) {
10230 /* System space is always execute never */
10231 xn = 1;
10234 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10235 if (*prot && !xn) {
10236 *prot |= PAGE_EXEC;
10238 /* We don't need to look the attribute up in the MAIR0/MAIR1
10239 * registers because that only tells us about cacheability.
10241 if (mregion) {
10242 *mregion = matchregion;
10246 fi->type = ARMFault_Permission;
10247 fi->level = 1;
10248 return !(*prot & (1 << access_type));
10252 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10253 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10254 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10255 int *prot, target_ulong *page_size,
10256 ARMMMUFaultInfo *fi)
10258 uint32_t secure = regime_is_secure(env, mmu_idx);
10259 V8M_SAttributes sattrs = {};
10260 bool ret;
10261 bool mpu_is_subpage;
10263 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10264 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10265 if (access_type == MMU_INST_FETCH) {
10266 /* Instruction fetches always use the MMU bank and the
10267 * transaction attribute determined by the fetch address,
10268 * regardless of CPU state. This is painful for QEMU
10269 * to handle, because it would mean we need to encode
10270 * into the mmu_idx not just the (user, negpri) information
10271 * for the current security state but also that for the
10272 * other security state, which would balloon the number
10273 * of mmu_idx values needed alarmingly.
10274 * Fortunately we can avoid this because it's not actually
10275 * possible to arbitrarily execute code from memory with
10276 * the wrong security attribute: it will always generate
10277 * an exception of some kind or another, apart from the
10278 * special case of an NS CPU executing an SG instruction
10279 * in S&NSC memory. So we always just fail the translation
10280 * here and sort things out in the exception handler
10281 * (including possibly emulating an SG instruction).
10283 if (sattrs.ns != !secure) {
10284 if (sattrs.nsc) {
10285 fi->type = ARMFault_QEMU_NSCExec;
10286 } else {
10287 fi->type = ARMFault_QEMU_SFault;
10289 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10290 *phys_ptr = address;
10291 *prot = 0;
10292 return true;
10294 } else {
10295 /* For data accesses we always use the MMU bank indicated
10296 * by the current CPU state, but the security attributes
10297 * might downgrade a secure access to nonsecure.
10299 if (sattrs.ns) {
10300 txattrs->secure = false;
10301 } else if (!secure) {
10302 /* NS access to S memory must fault.
10303 * Architecturally we should first check whether the
10304 * MPU information for this address indicates that we
10305 * are doing an unaligned access to Device memory, which
10306 * should generate a UsageFault instead. QEMU does not
10307 * currently check for that kind of unaligned access though.
10308 * If we added it we would need to do so as a special case
10309 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10311 fi->type = ARMFault_QEMU_SFault;
10312 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10313 *phys_ptr = address;
10314 *prot = 0;
10315 return true;
10320 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10321 txattrs, prot, &mpu_is_subpage, fi, NULL);
10322 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10323 return ret;
10326 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10327 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10328 hwaddr *phys_ptr, int *prot,
10329 ARMMMUFaultInfo *fi)
10331 int n;
10332 uint32_t mask;
10333 uint32_t base;
10334 bool is_user = regime_is_user(env, mmu_idx);
10336 if (regime_translation_disabled(env, mmu_idx)) {
10337 /* MPU disabled. */
10338 *phys_ptr = address;
10339 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10340 return false;
10343 *phys_ptr = address;
10344 for (n = 7; n >= 0; n--) {
10345 base = env->cp15.c6_region[n];
10346 if ((base & 1) == 0) {
10347 continue;
10349 mask = 1 << ((base >> 1) & 0x1f);
10350 /* Keep this shift separate from the above to avoid an
10351 (undefined) << 32. */
10352 mask = (mask << 1) - 1;
10353 if (((base ^ address) & ~mask) == 0) {
10354 break;
10357 if (n < 0) {
10358 fi->type = ARMFault_Background;
10359 return true;
10362 if (access_type == MMU_INST_FETCH) {
10363 mask = env->cp15.pmsav5_insn_ap;
10364 } else {
10365 mask = env->cp15.pmsav5_data_ap;
10367 mask = (mask >> (n * 4)) & 0xf;
10368 switch (mask) {
10369 case 0:
10370 fi->type = ARMFault_Permission;
10371 fi->level = 1;
10372 return true;
10373 case 1:
10374 if (is_user) {
10375 fi->type = ARMFault_Permission;
10376 fi->level = 1;
10377 return true;
10379 *prot = PAGE_READ | PAGE_WRITE;
10380 break;
10381 case 2:
10382 *prot = PAGE_READ;
10383 if (!is_user) {
10384 *prot |= PAGE_WRITE;
10386 break;
10387 case 3:
10388 *prot = PAGE_READ | PAGE_WRITE;
10389 break;
10390 case 5:
10391 if (is_user) {
10392 fi->type = ARMFault_Permission;
10393 fi->level = 1;
10394 return true;
10396 *prot = PAGE_READ;
10397 break;
10398 case 6:
10399 *prot = PAGE_READ;
10400 break;
10401 default:
10402 /* Bad permission. */
10403 fi->type = ARMFault_Permission;
10404 fi->level = 1;
10405 return true;
10407 *prot |= PAGE_EXEC;
10408 return false;
10411 /* Combine either inner or outer cacheability attributes for normal
10412 * memory, according to table D4-42 and pseudocode procedure
10413 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10415 * NB: only stage 1 includes allocation hints (RW bits), leading to
10416 * some asymmetry.
10418 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10420 if (s1 == 4 || s2 == 4) {
10421 /* non-cacheable has precedence */
10422 return 4;
10423 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10424 /* stage 1 write-through takes precedence */
10425 return s1;
10426 } else if (extract32(s2, 2, 2) == 2) {
10427 /* stage 2 write-through takes precedence, but the allocation hint
10428 * is still taken from stage 1
10430 return (2 << 2) | extract32(s1, 0, 2);
10431 } else { /* write-back */
10432 return s1;
10436 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10437 * and CombineS1S2Desc()
10439 * @s1: Attributes from stage 1 walk
10440 * @s2: Attributes from stage 2 walk
10442 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10444 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10445 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10446 ARMCacheAttrs ret;
10448 /* Combine shareability attributes (table D4-43) */
10449 if (s1.shareability == 2 || s2.shareability == 2) {
10450 /* if either are outer-shareable, the result is outer-shareable */
10451 ret.shareability = 2;
10452 } else if (s1.shareability == 3 || s2.shareability == 3) {
10453 /* if either are inner-shareable, the result is inner-shareable */
10454 ret.shareability = 3;
10455 } else {
10456 /* both non-shareable */
10457 ret.shareability = 0;
10460 /* Combine memory type and cacheability attributes */
10461 if (s1hi == 0 || s2hi == 0) {
10462 /* Device has precedence over normal */
10463 if (s1lo == 0 || s2lo == 0) {
10464 /* nGnRnE has precedence over anything */
10465 ret.attrs = 0;
10466 } else if (s1lo == 4 || s2lo == 4) {
10467 /* non-Reordering has precedence over Reordering */
10468 ret.attrs = 4; /* nGnRE */
10469 } else if (s1lo == 8 || s2lo == 8) {
10470 /* non-Gathering has precedence over Gathering */
10471 ret.attrs = 8; /* nGRE */
10472 } else {
10473 ret.attrs = 0xc; /* GRE */
10476 /* Any location for which the resultant memory type is any
10477 * type of Device memory is always treated as Outer Shareable.
10479 ret.shareability = 2;
10480 } else { /* Normal memory */
10481 /* Outer/inner cacheability combine independently */
10482 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10483 | combine_cacheattr_nibble(s1lo, s2lo);
10485 if (ret.attrs == 0x44) {
10486 /* Any location for which the resultant memory type is Normal
10487 * Inner Non-cacheable, Outer Non-cacheable is always treated
10488 * as Outer Shareable.
10490 ret.shareability = 2;
10494 return ret;
10498 /* get_phys_addr - get the physical address for this virtual address
10500 * Find the physical address corresponding to the given virtual address,
10501 * by doing a translation table walk on MMU based systems or using the
10502 * MPU state on MPU based systems.
10504 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10505 * prot and page_size may not be filled in, and the populated fsr value provides
10506 * information on why the translation aborted, in the format of a
10507 * DFSR/IFSR fault register, with the following caveats:
10508 * * we honour the short vs long DFSR format differences.
10509 * * the WnR bit is never set (the caller must do this).
10510 * * for PSMAv5 based systems we don't bother to return a full FSR format
10511 * value.
10513 * @env: CPUARMState
10514 * @address: virtual address to get physical address for
10515 * @access_type: 0 for read, 1 for write, 2 for execute
10516 * @mmu_idx: MMU index indicating required translation regime
10517 * @phys_ptr: set to the physical address corresponding to the virtual address
10518 * @attrs: set to the memory transaction attributes to use
10519 * @prot: set to the permissions for the page containing phys_ptr
10520 * @page_size: set to the size of the page containing phys_ptr
10521 * @fi: set to fault info if the translation fails
10522 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10524 bool get_phys_addr(CPUARMState *env, target_ulong address,
10525 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10526 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10527 target_ulong *page_size,
10528 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10530 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10531 /* Call ourselves recursively to do the stage 1 and then stage 2
10532 * translations.
10534 if (arm_feature(env, ARM_FEATURE_EL2)) {
10535 hwaddr ipa;
10536 int s2_prot;
10537 int ret;
10538 ARMCacheAttrs cacheattrs2 = {};
10540 ret = get_phys_addr(env, address, access_type,
10541 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10542 prot, page_size, fi, cacheattrs);
10544 /* If S1 fails or S2 is disabled, return early. */
10545 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10546 *phys_ptr = ipa;
10547 return ret;
10550 /* S1 is done. Now do S2 translation. */
10551 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10552 phys_ptr, attrs, &s2_prot,
10553 page_size, fi,
10554 cacheattrs != NULL ? &cacheattrs2 : NULL);
10555 fi->s2addr = ipa;
10556 /* Combine the S1 and S2 perms. */
10557 *prot &= s2_prot;
10559 /* Combine the S1 and S2 cache attributes, if needed */
10560 if (!ret && cacheattrs != NULL) {
10561 if (env->cp15.hcr_el2 & HCR_DC) {
10563 * HCR.DC forces the first stage attributes to
10564 * Normal Non-Shareable,
10565 * Inner Write-Back Read-Allocate Write-Allocate,
10566 * Outer Write-Back Read-Allocate Write-Allocate.
10568 cacheattrs->attrs = 0xff;
10569 cacheattrs->shareability = 0;
10571 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10574 return ret;
10575 } else {
10577 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10579 mmu_idx = stage_1_mmu_idx(mmu_idx);
10583 /* The page table entries may downgrade secure to non-secure, but
10584 * cannot upgrade an non-secure translation regime's attributes
10585 * to secure.
10587 attrs->secure = regime_is_secure(env, mmu_idx);
10588 attrs->user = regime_is_user(env, mmu_idx);
10590 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10591 * In v7 and earlier it affects all stage 1 translations.
10593 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10594 && !arm_feature(env, ARM_FEATURE_V8)) {
10595 if (regime_el(env, mmu_idx) == 3) {
10596 address += env->cp15.fcseidr_s;
10597 } else {
10598 address += env->cp15.fcseidr_ns;
10602 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10603 bool ret;
10604 *page_size = TARGET_PAGE_SIZE;
10606 if (arm_feature(env, ARM_FEATURE_V8)) {
10607 /* PMSAv8 */
10608 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10609 phys_ptr, attrs, prot, page_size, fi);
10610 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10611 /* PMSAv7 */
10612 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10613 phys_ptr, prot, page_size, fi);
10614 } else {
10615 /* Pre-v7 MPU */
10616 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10617 phys_ptr, prot, fi);
10619 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10620 " mmu_idx %u -> %s (prot %c%c%c)\n",
10621 access_type == MMU_DATA_LOAD ? "reading" :
10622 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10623 (uint32_t)address, mmu_idx,
10624 ret ? "Miss" : "Hit",
10625 *prot & PAGE_READ ? 'r' : '-',
10626 *prot & PAGE_WRITE ? 'w' : '-',
10627 *prot & PAGE_EXEC ? 'x' : '-');
10629 return ret;
10632 /* Definitely a real MMU, not an MPU */
10634 if (regime_translation_disabled(env, mmu_idx)) {
10635 /* MMU disabled. */
10636 *phys_ptr = address;
10637 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10638 *page_size = TARGET_PAGE_SIZE;
10639 return 0;
10642 if (regime_using_lpae_format(env, mmu_idx)) {
10643 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10644 phys_ptr, attrs, prot, page_size,
10645 fi, cacheattrs);
10646 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10647 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10648 phys_ptr, attrs, prot, page_size, fi);
10649 } else {
10650 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10651 phys_ptr, prot, page_size, fi);
10655 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10656 MemTxAttrs *attrs)
10658 ARMCPU *cpu = ARM_CPU(cs);
10659 CPUARMState *env = &cpu->env;
10660 hwaddr phys_addr;
10661 target_ulong page_size;
10662 int prot;
10663 bool ret;
10664 ARMMMUFaultInfo fi = {};
10665 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
10667 *attrs = (MemTxAttrs) {};
10669 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10670 attrs, &prot, &page_size, &fi, NULL);
10672 if (ret) {
10673 return -1;
10675 return phys_addr;
10678 #endif
10680 /* Note that signed overflow is undefined in C. The following routines are
10681 careful to use unsigned types where modulo arithmetic is required.
10682 Failure to do so _will_ break on newer gcc. */
10684 /* Signed saturating arithmetic. */
10686 /* Perform 16-bit signed saturating addition. */
10687 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10689 uint16_t res;
10691 res = a + b;
10692 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10693 if (a & 0x8000)
10694 res = 0x8000;
10695 else
10696 res = 0x7fff;
10698 return res;
10701 /* Perform 8-bit signed saturating addition. */
10702 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10704 uint8_t res;
10706 res = a + b;
10707 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10708 if (a & 0x80)
10709 res = 0x80;
10710 else
10711 res = 0x7f;
10713 return res;
10716 /* Perform 16-bit signed saturating subtraction. */
10717 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10719 uint16_t res;
10721 res = a - b;
10722 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10723 if (a & 0x8000)
10724 res = 0x8000;
10725 else
10726 res = 0x7fff;
10728 return res;
10731 /* Perform 8-bit signed saturating subtraction. */
10732 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10734 uint8_t res;
10736 res = a - b;
10737 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10738 if (a & 0x80)
10739 res = 0x80;
10740 else
10741 res = 0x7f;
10743 return res;
10746 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10747 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10748 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10749 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10750 #define PFX q
10752 #include "op_addsub.h"
10754 /* Unsigned saturating arithmetic. */
10755 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10757 uint16_t res;
10758 res = a + b;
10759 if (res < a)
10760 res = 0xffff;
10761 return res;
10764 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10766 if (a > b)
10767 return a - b;
10768 else
10769 return 0;
10772 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10774 uint8_t res;
10775 res = a + b;
10776 if (res < a)
10777 res = 0xff;
10778 return res;
10781 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10783 if (a > b)
10784 return a - b;
10785 else
10786 return 0;
10789 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10790 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10791 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10792 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10793 #define PFX uq
10795 #include "op_addsub.h"
10797 /* Signed modulo arithmetic. */
10798 #define SARITH16(a, b, n, op) do { \
10799 int32_t sum; \
10800 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10801 RESULT(sum, n, 16); \
10802 if (sum >= 0) \
10803 ge |= 3 << (n * 2); \
10804 } while(0)
10806 #define SARITH8(a, b, n, op) do { \
10807 int32_t sum; \
10808 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10809 RESULT(sum, n, 8); \
10810 if (sum >= 0) \
10811 ge |= 1 << n; \
10812 } while(0)
10815 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10816 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10817 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10818 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10819 #define PFX s
10820 #define ARITH_GE
10822 #include "op_addsub.h"
10824 /* Unsigned modulo arithmetic. */
10825 #define ADD16(a, b, n) do { \
10826 uint32_t sum; \
10827 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10828 RESULT(sum, n, 16); \
10829 if ((sum >> 16) == 1) \
10830 ge |= 3 << (n * 2); \
10831 } while(0)
10833 #define ADD8(a, b, n) do { \
10834 uint32_t sum; \
10835 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10836 RESULT(sum, n, 8); \
10837 if ((sum >> 8) == 1) \
10838 ge |= 1 << n; \
10839 } while(0)
10841 #define SUB16(a, b, n) do { \
10842 uint32_t sum; \
10843 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10844 RESULT(sum, n, 16); \
10845 if ((sum >> 16) == 0) \
10846 ge |= 3 << (n * 2); \
10847 } while(0)
10849 #define SUB8(a, b, n) do { \
10850 uint32_t sum; \
10851 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10852 RESULT(sum, n, 8); \
10853 if ((sum >> 8) == 0) \
10854 ge |= 1 << n; \
10855 } while(0)
10857 #define PFX u
10858 #define ARITH_GE
10860 #include "op_addsub.h"
10862 /* Halved signed arithmetic. */
10863 #define ADD16(a, b, n) \
10864 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10865 #define SUB16(a, b, n) \
10866 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10867 #define ADD8(a, b, n) \
10868 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10869 #define SUB8(a, b, n) \
10870 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10871 #define PFX sh
10873 #include "op_addsub.h"
10875 /* Halved unsigned arithmetic. */
10876 #define ADD16(a, b, n) \
10877 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10878 #define SUB16(a, b, n) \
10879 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10880 #define ADD8(a, b, n) \
10881 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10882 #define SUB8(a, b, n) \
10883 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10884 #define PFX uh
10886 #include "op_addsub.h"
10888 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10890 if (a > b)
10891 return a - b;
10892 else
10893 return b - a;
10896 /* Unsigned sum of absolute byte differences. */
10897 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10899 uint32_t sum;
10900 sum = do_usad(a, b);
10901 sum += do_usad(a >> 8, b >> 8);
10902 sum += do_usad(a >> 16, b >>16);
10903 sum += do_usad(a >> 24, b >> 24);
10904 return sum;
10907 /* For ARMv6 SEL instruction. */
10908 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10910 uint32_t mask;
10912 mask = 0;
10913 if (flags & 1)
10914 mask |= 0xff;
10915 if (flags & 2)
10916 mask |= 0xff00;
10917 if (flags & 4)
10918 mask |= 0xff0000;
10919 if (flags & 8)
10920 mask |= 0xff000000;
10921 return (a & mask) | (b & ~mask);
10924 /* CRC helpers.
10925 * The upper bytes of val (above the number specified by 'bytes') must have
10926 * been zeroed out by the caller.
10928 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10930 uint8_t buf[4];
10932 stl_le_p(buf, val);
10934 /* zlib crc32 converts the accumulator and output to one's complement. */
10935 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10938 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10940 uint8_t buf[4];
10942 stl_le_p(buf, val);
10944 /* Linux crc32c converts the output to one's complement. */
10945 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10948 /* Return the exception level to which FP-disabled exceptions should
10949 * be taken, or 0 if FP is enabled.
10951 int fp_exception_el(CPUARMState *env, int cur_el)
10953 #ifndef CONFIG_USER_ONLY
10954 int fpen;
10956 /* CPACR and the CPTR registers don't exist before v6, so FP is
10957 * always accessible
10959 if (!arm_feature(env, ARM_FEATURE_V6)) {
10960 return 0;
10963 if (arm_feature(env, ARM_FEATURE_M)) {
10964 /* CPACR can cause a NOCP UsageFault taken to current security state */
10965 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10966 return 1;
10969 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10970 if (!extract32(env->v7m.nsacr, 10, 1)) {
10971 /* FP insns cause a NOCP UsageFault taken to Secure */
10972 return 3;
10976 return 0;
10979 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10980 * 0, 2 : trap EL0 and EL1/PL1 accesses
10981 * 1 : trap only EL0 accesses
10982 * 3 : trap no accesses
10984 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
10985 switch (fpen) {
10986 case 0:
10987 case 2:
10988 if (cur_el == 0 || cur_el == 1) {
10989 /* Trap to PL1, which might be EL1 or EL3 */
10990 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
10991 return 3;
10993 return 1;
10995 if (cur_el == 3 && !is_a64(env)) {
10996 /* Secure PL1 running at EL3 */
10997 return 3;
10999 break;
11000 case 1:
11001 if (cur_el == 0) {
11002 return 1;
11004 break;
11005 case 3:
11006 break;
11010 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11011 * to control non-secure access to the FPU. It doesn't have any
11012 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11014 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11015 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11016 if (!extract32(env->cp15.nsacr, 10, 1)) {
11017 /* FP insns act as UNDEF */
11018 return cur_el == 2 ? 2 : 1;
11022 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11023 * check because zero bits in the registers mean "don't trap".
11026 /* CPTR_EL2 : present in v7VE or v8 */
11027 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11028 && !arm_is_secure_below_el3(env)) {
11029 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11030 return 2;
11033 /* CPTR_EL3 : present in v8 */
11034 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11035 /* Trap all FP ops to EL3 */
11036 return 3;
11038 #endif
11039 return 0;
11042 #ifndef CONFIG_TCG
11043 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11045 g_assert_not_reached();
11047 #endif
11049 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11051 if (arm_feature(env, ARM_FEATURE_M)) {
11052 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11055 if (el < 2 && arm_is_secure_below_el3(env)) {
11056 return ARMMMUIdx_S1SE0 + el;
11057 } else {
11058 return ARMMMUIdx_S12NSE0 + el;
11062 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11064 return arm_mmu_idx_el(env, arm_current_el(env));
11067 int cpu_mmu_index(CPUARMState *env, bool ifetch)
11069 return arm_to_core_mmu_idx(arm_mmu_idx(env));
11072 #ifndef CONFIG_USER_ONLY
11073 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11075 return stage_1_mmu_idx(arm_mmu_idx(env));
11077 #endif
11079 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
11080 ARMMMUIdx mmu_idx, uint32_t flags)
11082 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11083 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
11084 arm_to_core_mmu_idx(mmu_idx));
11086 if (arm_singlestep_active(env)) {
11087 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11089 return flags;
11092 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11093 ARMMMUIdx mmu_idx, uint32_t flags)
11095 bool sctlr_b = arm_sctlr_b(env);
11097 if (sctlr_b) {
11098 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
11100 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11101 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11103 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11105 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11108 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
11109 ARMMMUIdx mmu_idx)
11111 uint32_t flags = 0;
11113 /* v8M always enables the fpu. */
11114 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11116 if (arm_v7m_is_handler_mode(env)) {
11117 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11121 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11122 * is suppressing them because the requested execution priority
11123 * is less than 0.
11125 if (arm_feature(env, ARM_FEATURE_V8) &&
11126 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11127 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11128 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11131 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11134 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
11136 int flags = 0;
11138 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
11139 arm_debug_target_el(env));
11140 return flags;
11143 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
11144 ARMMMUIdx mmu_idx)
11146 uint32_t flags = rebuild_hflags_aprofile(env);
11148 if (arm_el_is_aa64(env, 1)) {
11149 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11151 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11154 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11155 ARMMMUIdx mmu_idx)
11157 uint32_t flags = rebuild_hflags_aprofile(env);
11158 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11159 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11160 uint64_t sctlr;
11161 int tbii, tbid;
11163 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11165 /* FIXME: ARMv8.1-VHE S2 translation regime. */
11166 if (regime_el(env, stage1) < 2) {
11167 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11168 tbid = (p1.tbi << 1) | p0.tbi;
11169 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11170 } else {
11171 tbid = p0.tbi;
11172 tbii = tbid & !p0.tbid;
11175 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11176 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11178 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11179 int sve_el = sve_exception_el(env, el);
11180 uint32_t zcr_len;
11183 * If SVE is disabled, but FP is enabled,
11184 * then the effective len is 0.
11186 if (sve_el != 0 && fp_el == 0) {
11187 zcr_len = 0;
11188 } else {
11189 zcr_len = sve_zcr_len_for_el(env, el);
11191 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11192 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11195 sctlr = arm_sctlr(env, el);
11197 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11198 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11201 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11203 * In order to save space in flags, we record only whether
11204 * pauth is "inactive", meaning all insns are implemented as
11205 * a nop, or "active" when some action must be performed.
11206 * The decision of which action to take is left to a helper.
11208 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11209 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
11213 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11214 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11215 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11216 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
11220 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11223 static uint32_t rebuild_hflags_internal(CPUARMState *env)
11225 int el = arm_current_el(env);
11226 int fp_el = fp_exception_el(env, el);
11227 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11229 if (is_a64(env)) {
11230 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11231 } else if (arm_feature(env, ARM_FEATURE_M)) {
11232 return rebuild_hflags_m32(env, fp_el, mmu_idx);
11233 } else {
11234 return rebuild_hflags_a32(env, fp_el, mmu_idx);
11238 void arm_rebuild_hflags(CPUARMState *env)
11240 env->hflags = rebuild_hflags_internal(env);
11243 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11245 int fp_el = fp_exception_el(env, el);
11246 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11248 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11251 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11253 int fp_el = fp_exception_el(env, el);
11254 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11256 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11259 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11261 int fp_el = fp_exception_el(env, el);
11262 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11264 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11267 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11268 target_ulong *cs_base, uint32_t *pflags)
11270 uint32_t flags = env->hflags;
11271 uint32_t pstate_for_ss;
11273 *cs_base = 0;
11274 #ifdef CONFIG_DEBUG_TCG
11275 assert(flags == rebuild_hflags_internal(env));
11276 #endif
11278 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
11279 *pc = env->pc;
11280 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11281 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11283 pstate_for_ss = env->pstate;
11284 } else {
11285 *pc = env->regs[15];
11287 if (arm_feature(env, ARM_FEATURE_M)) {
11288 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11289 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11290 != env->v7m.secure) {
11291 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11294 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11295 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11296 (env->v7m.secure &&
11297 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11299 * ASPEN is set, but FPCA/SFPA indicate that there is no
11300 * active FP context; we must create a new FP context before
11301 * executing any FP insn.
11303 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11306 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11307 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11308 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11310 } else {
11312 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11313 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11315 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11316 flags = FIELD_DP32(flags, TBFLAG_A32,
11317 XSCALE_CPAR, env->cp15.c15_cpar);
11318 } else {
11319 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
11320 env->vfp.vec_len);
11321 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
11322 env->vfp.vec_stride);
11324 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11325 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11329 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
11330 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
11331 pstate_for_ss = env->uncached_cpsr;
11335 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11336 * states defined in the ARM ARM for software singlestep:
11337 * SS_ACTIVE PSTATE.SS State
11338 * 0 x Inactive (the TB flag for SS is always 0)
11339 * 1 0 Active-pending
11340 * 1 1 Active-not-pending
11341 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
11343 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
11344 (pstate_for_ss & PSTATE_SS)) {
11345 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11348 *pflags = flags;
11351 #ifdef TARGET_AARCH64
11353 * The manual says that when SVE is enabled and VQ is widened the
11354 * implementation is allowed to zero the previously inaccessible
11355 * portion of the registers. The corollary to that is that when
11356 * SVE is enabled and VQ is narrowed we are also allowed to zero
11357 * the now inaccessible portion of the registers.
11359 * The intent of this is that no predicate bit beyond VQ is ever set.
11360 * Which means that some operations on predicate registers themselves
11361 * may operate on full uint64_t or even unrolled across the maximum
11362 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11363 * may well be cheaper than conditionals to restrict the operation
11364 * to the relevant portion of a uint16_t[16].
11366 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11368 int i, j;
11369 uint64_t pmask;
11371 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11372 assert(vq <= env_archcpu(env)->sve_max_vq);
11374 /* Zap the high bits of the zregs. */
11375 for (i = 0; i < 32; i++) {
11376 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11379 /* Zap the high bits of the pregs and ffr. */
11380 pmask = 0;
11381 if (vq & 3) {
11382 pmask = ~(-1ULL << (16 * (vq & 3)));
11384 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11385 for (i = 0; i < 17; ++i) {
11386 env->vfp.pregs[i].p[j] &= pmask;
11388 pmask = 0;
11393 * Notice a change in SVE vector size when changing EL.
11395 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11396 int new_el, bool el0_a64)
11398 ARMCPU *cpu = env_archcpu(env);
11399 int old_len, new_len;
11400 bool old_a64, new_a64;
11402 /* Nothing to do if no SVE. */
11403 if (!cpu_isar_feature(aa64_sve, cpu)) {
11404 return;
11407 /* Nothing to do if FP is disabled in either EL. */
11408 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11409 return;
11413 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11414 * at ELx, or not available because the EL is in AArch32 state, then
11415 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11416 * has an effective value of 0".
11418 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11419 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11420 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11421 * we already have the correct register contents when encountering the
11422 * vq0->vq0 transition between EL0->EL1.
11424 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11425 old_len = (old_a64 && !sve_exception_el(env, old_el)
11426 ? sve_zcr_len_for_el(env, old_el) : 0);
11427 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11428 new_len = (new_a64 && !sve_exception_el(env, new_el)
11429 ? sve_zcr_len_for_el(env, new_el) : 0);
11431 /* When changing vector length, clear inaccessible state. */
11432 if (new_len < old_len) {
11433 aarch64_sve_narrow_vq(env, new_len + 1);
11436 #endif