target/arm/cpu64: max cpu: Introduce sve<N> properties
[qemu/ar7.git] / target / arm / cpu.h
bloba044d6028b6a6fecc7ef681007d0d9021a800bb9
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO (0)
31 #define EXCP_UDEF 1 /* undefined instruction */
32 #define EXCP_SWI 2 /* software interrupt */
33 #define EXCP_PREFETCH_ABORT 3
34 #define EXCP_DATA_ABORT 4
35 #define EXCP_IRQ 5
36 #define EXCP_FIQ 6
37 #define EXCP_BKPT 7
38 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
39 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
40 #define EXCP_HVC 11 /* HyperVisor Call */
41 #define EXCP_HYP_TRAP 12
42 #define EXCP_SMC 13 /* Secure Monitor Call */
43 #define EXCP_VIRQ 14
44 #define EXCP_VFIQ 15
45 #define EXCP_SEMIHOST 16 /* semihosting call */
46 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
54 #define ARMV7M_EXCP_RESET 1
55 #define ARMV7M_EXCP_NMI 2
56 #define ARMV7M_EXCP_HARD 3
57 #define ARMV7M_EXCP_MEM 4
58 #define ARMV7M_EXCP_BUS 5
59 #define ARMV7M_EXCP_USAGE 6
60 #define ARMV7M_EXCP_SECURE 7
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
66 /* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
75 enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
81 /* ARM-specific interrupt pending bits. */
82 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
86 /* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
106 /* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
110 #define TARGET_INSN_START_EXTRA_WORDS 2
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
120 /* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
135 typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
144 uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
147 #define GTIMER_PHYS 0
148 #define GTIMER_VIRT 1
149 #define GTIMER_HYP 2
150 #define GTIMER_SEC 3
151 #define NUM_GTIMERS 4
153 typedef struct {
154 uint64_t raw_tcr;
155 uint32_t mask;
156 uint32_t base_mask;
157 } TCR;
159 /* Define a maximum sized vector register.
160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161 * For 64-bit, this is a 2048-bit SVE register.
163 * Note that the mapping between S, D, and Q views of the register bank
164 * differs between AArch64 and AArch32.
165 * In AArch32:
166 * Qn = regs[n].d[1]:regs[n].d[0]
167 * Dn = regs[n / 2].d[n & 1]
168 * Sn = regs[n / 4].d[n % 4 / 2],
169 * bits 31..0 for even n, and bits 63..32 for odd n
170 * (and regs[16] to regs[31] are inaccessible)
171 * In AArch64:
172 * Zn = regs[n].d[*]
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n].d[0]
175 * Sn = regs[n].d[0] bits 31..0
176 * Hn = regs[n].d[0] bits 15..0
178 * This corresponds to the architecturally defined mapping between
179 * the two execution states, and means we do not need to explicitly
180 * map these registers when changing states.
182 * Align the data for use with TCG host vector operations.
185 #ifdef TARGET_AARCH64
186 # define ARM_MAX_VQ 16
187 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
188 uint32_t arm_cpu_vq_map_next_smaller(ARMCPU *cpu, uint32_t vq);
189 #else
190 # define ARM_MAX_VQ 1
191 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
192 static inline uint32_t arm_cpu_vq_map_next_smaller(ARMCPU *cpu, uint32_t vq)
193 { return 0; }
194 #endif
196 typedef struct ARMVectorReg {
197 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
198 } ARMVectorReg;
200 #ifdef TARGET_AARCH64
201 /* In AArch32 mode, predicate registers do not exist at all. */
202 typedef struct ARMPredicateReg {
203 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
204 } ARMPredicateReg;
206 /* In AArch32 mode, PAC keys do not exist at all. */
207 typedef struct ARMPACKey {
208 uint64_t lo, hi;
209 } ARMPACKey;
210 #endif
213 typedef struct CPUARMState {
214 /* Regs for current mode. */
215 uint32_t regs[16];
217 /* 32/64 switch only happens when taking and returning from
218 * exceptions so the overlap semantics are taken care of then
219 * instead of having a complicated union.
221 /* Regs for A64 mode. */
222 uint64_t xregs[32];
223 uint64_t pc;
224 /* PSTATE isn't an architectural register for ARMv8. However, it is
225 * convenient for us to assemble the underlying state into a 32 bit format
226 * identical to the architectural format used for the SPSR. (This is also
227 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
228 * 'pstate' register are.) Of the PSTATE bits:
229 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
230 * semantics as for AArch32, as described in the comments on each field)
231 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
232 * DAIF (exception masks) are kept in env->daif
233 * BTYPE is kept in env->btype
234 * all other bits are stored in their correct places in env->pstate
236 uint32_t pstate;
237 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
239 /* Cached TBFLAGS state. See below for which bits are included. */
240 uint32_t hflags;
242 /* Frequently accessed CPSR bits are stored separately for efficiency.
243 This contains all the other bits. Use cpsr_{read,write} to access
244 the whole CPSR. */
245 uint32_t uncached_cpsr;
246 uint32_t spsr;
248 /* Banked registers. */
249 uint64_t banked_spsr[8];
250 uint32_t banked_r13[8];
251 uint32_t banked_r14[8];
253 /* These hold r8-r12. */
254 uint32_t usr_regs[5];
255 uint32_t fiq_regs[5];
257 /* cpsr flag cache for faster execution */
258 uint32_t CF; /* 0 or 1 */
259 uint32_t VF; /* V is the bit 31. All other bits are undefined */
260 uint32_t NF; /* N is bit 31. All other bits are undefined. */
261 uint32_t ZF; /* Z set if zero. */
262 uint32_t QF; /* 0 or 1 */
263 uint32_t GE; /* cpsr[19:16] */
264 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
265 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
266 uint32_t btype; /* BTI branch type. spsr[11:10]. */
267 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
269 uint64_t elr_el[4]; /* AArch64 exception link regs */
270 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
272 /* System control coprocessor (cp15) */
273 struct {
274 uint32_t c0_cpuid;
275 union { /* Cache size selection */
276 struct {
277 uint64_t _unused_csselr0;
278 uint64_t csselr_ns;
279 uint64_t _unused_csselr1;
280 uint64_t csselr_s;
282 uint64_t csselr_el[4];
284 union { /* System control register. */
285 struct {
286 uint64_t _unused_sctlr;
287 uint64_t sctlr_ns;
288 uint64_t hsctlr;
289 uint64_t sctlr_s;
291 uint64_t sctlr_el[4];
293 uint64_t cpacr_el1; /* Architectural feature access control register */
294 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
295 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
296 uint64_t sder; /* Secure debug enable register. */
297 uint32_t nsacr; /* Non-secure access control register. */
298 union { /* MMU translation table base 0. */
299 struct {
300 uint64_t _unused_ttbr0_0;
301 uint64_t ttbr0_ns;
302 uint64_t _unused_ttbr0_1;
303 uint64_t ttbr0_s;
305 uint64_t ttbr0_el[4];
307 union { /* MMU translation table base 1. */
308 struct {
309 uint64_t _unused_ttbr1_0;
310 uint64_t ttbr1_ns;
311 uint64_t _unused_ttbr1_1;
312 uint64_t ttbr1_s;
314 uint64_t ttbr1_el[4];
316 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
317 /* MMU translation table base control. */
318 TCR tcr_el[4];
319 TCR vtcr_el2; /* Virtualization Translation Control. */
320 uint32_t c2_data; /* MPU data cacheable bits. */
321 uint32_t c2_insn; /* MPU instruction cacheable bits. */
322 union { /* MMU domain access control register
323 * MPU write buffer control.
325 struct {
326 uint64_t dacr_ns;
327 uint64_t dacr_s;
329 struct {
330 uint64_t dacr32_el2;
333 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
334 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
335 uint64_t hcr_el2; /* Hypervisor configuration register */
336 uint64_t scr_el3; /* Secure configuration register. */
337 union { /* Fault status registers. */
338 struct {
339 uint64_t ifsr_ns;
340 uint64_t ifsr_s;
342 struct {
343 uint64_t ifsr32_el2;
346 union {
347 struct {
348 uint64_t _unused_dfsr;
349 uint64_t dfsr_ns;
350 uint64_t hsr;
351 uint64_t dfsr_s;
353 uint64_t esr_el[4];
355 uint32_t c6_region[8]; /* MPU base/size registers. */
356 union { /* Fault address registers. */
357 struct {
358 uint64_t _unused_far0;
359 #ifdef HOST_WORDS_BIGENDIAN
360 uint32_t ifar_ns;
361 uint32_t dfar_ns;
362 uint32_t ifar_s;
363 uint32_t dfar_s;
364 #else
365 uint32_t dfar_ns;
366 uint32_t ifar_ns;
367 uint32_t dfar_s;
368 uint32_t ifar_s;
369 #endif
370 uint64_t _unused_far3;
372 uint64_t far_el[4];
374 uint64_t hpfar_el2;
375 uint64_t hstr_el2;
376 union { /* Translation result. */
377 struct {
378 uint64_t _unused_par_0;
379 uint64_t par_ns;
380 uint64_t _unused_par_1;
381 uint64_t par_s;
383 uint64_t par_el[4];
386 uint32_t c9_insn; /* Cache lockdown registers. */
387 uint32_t c9_data;
388 uint64_t c9_pmcr; /* performance monitor control register */
389 uint64_t c9_pmcnten; /* perf monitor counter enables */
390 uint64_t c9_pmovsr; /* perf monitor overflow status */
391 uint64_t c9_pmuserenr; /* perf monitor user enable */
392 uint64_t c9_pmselr; /* perf monitor counter selection register */
393 uint64_t c9_pminten; /* perf monitor interrupt enables */
394 union { /* Memory attribute redirection */
395 struct {
396 #ifdef HOST_WORDS_BIGENDIAN
397 uint64_t _unused_mair_0;
398 uint32_t mair1_ns;
399 uint32_t mair0_ns;
400 uint64_t _unused_mair_1;
401 uint32_t mair1_s;
402 uint32_t mair0_s;
403 #else
404 uint64_t _unused_mair_0;
405 uint32_t mair0_ns;
406 uint32_t mair1_ns;
407 uint64_t _unused_mair_1;
408 uint32_t mair0_s;
409 uint32_t mair1_s;
410 #endif
412 uint64_t mair_el[4];
414 union { /* vector base address register */
415 struct {
416 uint64_t _unused_vbar;
417 uint64_t vbar_ns;
418 uint64_t hvbar;
419 uint64_t vbar_s;
421 uint64_t vbar_el[4];
423 uint32_t mvbar; /* (monitor) vector base address register */
424 struct { /* FCSE PID. */
425 uint32_t fcseidr_ns;
426 uint32_t fcseidr_s;
428 union { /* Context ID. */
429 struct {
430 uint64_t _unused_contextidr_0;
431 uint64_t contextidr_ns;
432 uint64_t _unused_contextidr_1;
433 uint64_t contextidr_s;
435 uint64_t contextidr_el[4];
437 union { /* User RW Thread register. */
438 struct {
439 uint64_t tpidrurw_ns;
440 uint64_t tpidrprw_ns;
441 uint64_t htpidr;
442 uint64_t _tpidr_el3;
444 uint64_t tpidr_el[4];
446 /* The secure banks of these registers don't map anywhere */
447 uint64_t tpidrurw_s;
448 uint64_t tpidrprw_s;
449 uint64_t tpidruro_s;
451 union { /* User RO Thread register. */
452 uint64_t tpidruro_ns;
453 uint64_t tpidrro_el[1];
455 uint64_t c14_cntfrq; /* Counter Frequency register */
456 uint64_t c14_cntkctl; /* Timer Control register */
457 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
458 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
459 ARMGenericTimer c14_timer[NUM_GTIMERS];
460 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
461 uint32_t c15_ticonfig; /* TI925T configuration byte. */
462 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
463 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
464 uint32_t c15_threadid; /* TI debugger thread-ID. */
465 uint32_t c15_config_base_address; /* SCU base address. */
466 uint32_t c15_diagnostic; /* diagnostic register */
467 uint32_t c15_power_diagnostic;
468 uint32_t c15_power_control; /* power control */
469 uint64_t dbgbvr[16]; /* breakpoint value registers */
470 uint64_t dbgbcr[16]; /* breakpoint control registers */
471 uint64_t dbgwvr[16]; /* watchpoint value registers */
472 uint64_t dbgwcr[16]; /* watchpoint control registers */
473 uint64_t mdscr_el1;
474 uint64_t oslsr_el1; /* OS Lock Status */
475 uint64_t mdcr_el2;
476 uint64_t mdcr_el3;
477 /* Stores the architectural value of the counter *the last time it was
478 * updated* by pmccntr_op_start. Accesses should always be surrounded
479 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
480 * architecturally-correct value is being read/set.
482 uint64_t c15_ccnt;
483 /* Stores the delta between the architectural value and the underlying
484 * cycle count during normal operation. It is used to update c15_ccnt
485 * to be the correct architectural value before accesses. During
486 * accesses, c15_ccnt_delta contains the underlying count being used
487 * for the access, after which it reverts to the delta value in
488 * pmccntr_op_finish.
490 uint64_t c15_ccnt_delta;
491 uint64_t c14_pmevcntr[31];
492 uint64_t c14_pmevcntr_delta[31];
493 uint64_t c14_pmevtyper[31];
494 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
495 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
496 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
497 } cp15;
499 struct {
500 /* M profile has up to 4 stack pointers:
501 * a Main Stack Pointer and a Process Stack Pointer for each
502 * of the Secure and Non-Secure states. (If the CPU doesn't support
503 * the security extension then it has only two SPs.)
504 * In QEMU we always store the currently active SP in regs[13],
505 * and the non-active SP for the current security state in
506 * v7m.other_sp. The stack pointers for the inactive security state
507 * are stored in other_ss_msp and other_ss_psp.
508 * switch_v7m_security_state() is responsible for rearranging them
509 * when we change security state.
511 uint32_t other_sp;
512 uint32_t other_ss_msp;
513 uint32_t other_ss_psp;
514 uint32_t vecbase[M_REG_NUM_BANKS];
515 uint32_t basepri[M_REG_NUM_BANKS];
516 uint32_t control[M_REG_NUM_BANKS];
517 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
518 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
519 uint32_t hfsr; /* HardFault Status */
520 uint32_t dfsr; /* Debug Fault Status Register */
521 uint32_t sfsr; /* Secure Fault Status Register */
522 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
523 uint32_t bfar; /* BusFault Address */
524 uint32_t sfar; /* Secure Fault Address Register */
525 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
526 int exception;
527 uint32_t primask[M_REG_NUM_BANKS];
528 uint32_t faultmask[M_REG_NUM_BANKS];
529 uint32_t aircr; /* only holds r/w state if security extn implemented */
530 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
531 uint32_t csselr[M_REG_NUM_BANKS];
532 uint32_t scr[M_REG_NUM_BANKS];
533 uint32_t msplim[M_REG_NUM_BANKS];
534 uint32_t psplim[M_REG_NUM_BANKS];
535 uint32_t fpcar[M_REG_NUM_BANKS];
536 uint32_t fpccr[M_REG_NUM_BANKS];
537 uint32_t fpdscr[M_REG_NUM_BANKS];
538 uint32_t cpacr[M_REG_NUM_BANKS];
539 uint32_t nsacr;
540 } v7m;
542 /* Information associated with an exception about to be taken:
543 * code which raises an exception must set cs->exception_index and
544 * the relevant parts of this structure; the cpu_do_interrupt function
545 * will then set the guest-visible registers as part of the exception
546 * entry process.
548 struct {
549 uint32_t syndrome; /* AArch64 format syndrome register */
550 uint32_t fsr; /* AArch32 format fault status register info */
551 uint64_t vaddress; /* virtual addr associated with exception, if any */
552 uint32_t target_el; /* EL the exception should be targeted for */
553 /* If we implement EL2 we will also need to store information
554 * about the intermediate physical address for stage 2 faults.
556 } exception;
558 /* Information associated with an SError */
559 struct {
560 uint8_t pending;
561 uint8_t has_esr;
562 uint64_t esr;
563 } serror;
565 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
566 uint32_t irq_line_state;
568 /* Thumb-2 EE state. */
569 uint32_t teecr;
570 uint32_t teehbr;
572 /* VFP coprocessor state. */
573 struct {
574 ARMVectorReg zregs[32];
576 #ifdef TARGET_AARCH64
577 /* Store FFR as pregs[16] to make it easier to treat as any other. */
578 #define FFR_PRED_NUM 16
579 ARMPredicateReg pregs[17];
580 /* Scratch space for aa64 sve predicate temporary. */
581 ARMPredicateReg preg_tmp;
582 #endif
584 /* We store these fpcsr fields separately for convenience. */
585 uint32_t qc[4] QEMU_ALIGNED(16);
586 int vec_len;
587 int vec_stride;
589 uint32_t xregs[16];
591 /* Scratch space for aa32 neon expansion. */
592 uint32_t scratch[8];
594 /* There are a number of distinct float control structures:
596 * fp_status: is the "normal" fp status.
597 * fp_status_fp16: used for half-precision calculations
598 * standard_fp_status : the ARM "Standard FPSCR Value"
600 * Half-precision operations are governed by a separate
601 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
602 * status structure to control this.
604 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
605 * round-to-nearest and is used by any operations (generally
606 * Neon) which the architecture defines as controlled by the
607 * standard FPSCR value rather than the FPSCR.
609 * To avoid having to transfer exception bits around, we simply
610 * say that the FPSCR cumulative exception flags are the logical
611 * OR of the flags in the three fp statuses. This relies on the
612 * only thing which needs to read the exception flags being
613 * an explicit FPSCR read.
615 float_status fp_status;
616 float_status fp_status_f16;
617 float_status standard_fp_status;
619 /* ZCR_EL[1-3] */
620 uint64_t zcr_el[4];
621 } vfp;
622 uint64_t exclusive_addr;
623 uint64_t exclusive_val;
624 uint64_t exclusive_high;
626 /* iwMMXt coprocessor state. */
627 struct {
628 uint64_t regs[16];
629 uint64_t val;
631 uint32_t cregs[16];
632 } iwmmxt;
634 #ifdef TARGET_AARCH64
635 struct {
636 ARMPACKey apia;
637 ARMPACKey apib;
638 ARMPACKey apda;
639 ARMPACKey apdb;
640 ARMPACKey apga;
641 } keys;
642 #endif
644 #if defined(CONFIG_USER_ONLY)
645 /* For usermode syscall translation. */
646 int eabi;
647 #endif
649 struct CPUBreakpoint *cpu_breakpoint[16];
650 struct CPUWatchpoint *cpu_watchpoint[16];
652 /* Fields up to this point are cleared by a CPU reset */
653 struct {} end_reset_fields;
655 /* Fields after this point are preserved across CPU reset. */
657 /* Internal CPU feature flags. */
658 uint64_t features;
660 /* PMSAv7 MPU */
661 struct {
662 uint32_t *drbar;
663 uint32_t *drsr;
664 uint32_t *dracr;
665 uint32_t rnr[M_REG_NUM_BANKS];
666 } pmsav7;
668 /* PMSAv8 MPU */
669 struct {
670 /* The PMSAv8 implementation also shares some PMSAv7 config
671 * and state:
672 * pmsav7.rnr (region number register)
673 * pmsav7_dregion (number of configured regions)
675 uint32_t *rbar[M_REG_NUM_BANKS];
676 uint32_t *rlar[M_REG_NUM_BANKS];
677 uint32_t mair0[M_REG_NUM_BANKS];
678 uint32_t mair1[M_REG_NUM_BANKS];
679 } pmsav8;
681 /* v8M SAU */
682 struct {
683 uint32_t *rbar;
684 uint32_t *rlar;
685 uint32_t rnr;
686 uint32_t ctrl;
687 } sau;
689 void *nvic;
690 const struct arm_boot_info *boot_info;
691 /* Store GICv3CPUState to access from this struct */
692 void *gicv3state;
693 } CPUARMState;
696 * ARMELChangeHookFn:
697 * type of a function which can be registered via arm_register_el_change_hook()
698 * to get callbacks when the CPU changes its exception level or mode.
700 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
701 typedef struct ARMELChangeHook ARMELChangeHook;
702 struct ARMELChangeHook {
703 ARMELChangeHookFn *hook;
704 void *opaque;
705 QLIST_ENTRY(ARMELChangeHook) node;
708 /* These values map onto the return values for
709 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
710 typedef enum ARMPSCIState {
711 PSCI_ON = 0,
712 PSCI_OFF = 1,
713 PSCI_ON_PENDING = 2
714 } ARMPSCIState;
716 typedef struct ARMISARegisters ARMISARegisters;
719 * ARMCPU:
720 * @env: #CPUARMState
722 * An ARM CPU core.
724 struct ARMCPU {
725 /*< private >*/
726 CPUState parent_obj;
727 /*< public >*/
729 CPUNegativeOffsetState neg;
730 CPUARMState env;
732 /* Coprocessor information */
733 GHashTable *cp_regs;
734 /* For marshalling (mostly coprocessor) register state between the
735 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
736 * we use these arrays.
738 /* List of register indexes managed via these arrays; (full KVM style
739 * 64 bit indexes, not CPRegInfo 32 bit indexes)
741 uint64_t *cpreg_indexes;
742 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
743 uint64_t *cpreg_values;
744 /* Length of the indexes, values, reset_values arrays */
745 int32_t cpreg_array_len;
746 /* These are used only for migration: incoming data arrives in
747 * these fields and is sanity checked in post_load before copying
748 * to the working data structures above.
750 uint64_t *cpreg_vmstate_indexes;
751 uint64_t *cpreg_vmstate_values;
752 int32_t cpreg_vmstate_array_len;
754 DynamicGDBXMLInfo dyn_xml;
756 /* Timers used by the generic (architected) timer */
757 QEMUTimer *gt_timer[NUM_GTIMERS];
759 * Timer used by the PMU. Its state is restored after migration by
760 * pmu_op_finish() - it does not need other handling during migration
762 QEMUTimer *pmu_timer;
763 /* GPIO outputs for generic timer */
764 qemu_irq gt_timer_outputs[NUM_GTIMERS];
765 /* GPIO output for GICv3 maintenance interrupt signal */
766 qemu_irq gicv3_maintenance_interrupt;
767 /* GPIO output for the PMU interrupt */
768 qemu_irq pmu_interrupt;
770 /* MemoryRegion to use for secure physical accesses */
771 MemoryRegion *secure_memory;
773 /* For v8M, pointer to the IDAU interface provided by board/SoC */
774 Object *idau;
776 /* 'compatible' string for this CPU for Linux device trees */
777 const char *dtb_compatible;
779 /* PSCI version for this CPU
780 * Bits[31:16] = Major Version
781 * Bits[15:0] = Minor Version
783 uint32_t psci_version;
785 /* Should CPU start in PSCI powered-off state? */
786 bool start_powered_off;
788 /* Current power state, access guarded by BQL */
789 ARMPSCIState power_state;
791 /* CPU has virtualization extension */
792 bool has_el2;
793 /* CPU has security extension */
794 bool has_el3;
795 /* CPU has PMU (Performance Monitor Unit) */
796 bool has_pmu;
797 /* CPU has VFP */
798 bool has_vfp;
799 /* CPU has Neon */
800 bool has_neon;
801 /* CPU has M-profile DSP extension */
802 bool has_dsp;
804 /* CPU has memory protection unit */
805 bool has_mpu;
806 /* PMSAv7 MPU number of supported regions */
807 uint32_t pmsav7_dregion;
808 /* v8M SAU number of supported regions */
809 uint32_t sau_sregion;
811 /* PSCI conduit used to invoke PSCI methods
812 * 0 - disabled, 1 - smc, 2 - hvc
814 uint32_t psci_conduit;
816 /* For v8M, initial value of the Secure VTOR */
817 uint32_t init_svtor;
819 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
820 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
822 uint32_t kvm_target;
824 /* KVM init features for this CPU */
825 uint32_t kvm_init_features[7];
827 /* Uniprocessor system with MP extensions */
828 bool mp_is_up;
830 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
831 * and the probe failed (so we need to report the error in realize)
833 bool host_cpu_probe_failed;
835 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
836 * register.
838 int32_t core_count;
840 /* The instance init functions for implementation-specific subclasses
841 * set these fields to specify the implementation-dependent values of
842 * various constant registers and reset values of non-constant
843 * registers.
844 * Some of these might become QOM properties eventually.
845 * Field names match the official register names as defined in the
846 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
847 * is used for reset values of non-constant registers; no reset_
848 * prefix means a constant register.
849 * Some of these registers are split out into a substructure that
850 * is shared with the translators to control the ISA.
852 struct ARMISARegisters {
853 uint32_t id_isar0;
854 uint32_t id_isar1;
855 uint32_t id_isar2;
856 uint32_t id_isar3;
857 uint32_t id_isar4;
858 uint32_t id_isar5;
859 uint32_t id_isar6;
860 uint32_t mvfr0;
861 uint32_t mvfr1;
862 uint32_t mvfr2;
863 uint64_t id_aa64isar0;
864 uint64_t id_aa64isar1;
865 uint64_t id_aa64pfr0;
866 uint64_t id_aa64pfr1;
867 uint64_t id_aa64mmfr0;
868 uint64_t id_aa64mmfr1;
869 } isar;
870 uint32_t midr;
871 uint32_t revidr;
872 uint32_t reset_fpsid;
873 uint32_t ctr;
874 uint32_t reset_sctlr;
875 uint32_t id_pfr0;
876 uint32_t id_pfr1;
877 uint32_t id_dfr0;
878 uint64_t pmceid0;
879 uint64_t pmceid1;
880 uint32_t id_afr0;
881 uint32_t id_mmfr0;
882 uint32_t id_mmfr1;
883 uint32_t id_mmfr2;
884 uint32_t id_mmfr3;
885 uint32_t id_mmfr4;
886 uint64_t id_aa64dfr0;
887 uint64_t id_aa64dfr1;
888 uint64_t id_aa64afr0;
889 uint64_t id_aa64afr1;
890 uint32_t dbgdidr;
891 uint32_t clidr;
892 uint64_t mp_affinity; /* MP ID without feature bits */
893 /* The elements of this array are the CCSIDR values for each cache,
894 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
896 uint32_t ccsidr[16];
897 uint64_t reset_cbar;
898 uint32_t reset_auxcr;
899 bool reset_hivecs;
900 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
901 uint32_t dcz_blocksize;
902 uint64_t rvbar;
904 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
905 int gic_num_lrs; /* number of list registers */
906 int gic_vpribits; /* number of virtual priority bits */
907 int gic_vprebits; /* number of virtual preemption bits */
909 /* Whether the cfgend input is high (i.e. this CPU should reset into
910 * big-endian mode). This setting isn't used directly: instead it modifies
911 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
912 * architecture version.
914 bool cfgend;
916 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
917 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
919 int32_t node_id; /* NUMA node this CPU belongs to */
921 /* Used to synchronize KVM and QEMU in-kernel device levels */
922 uint8_t device_irq_level;
924 /* Used to set the maximum vector length the cpu will support. */
925 uint32_t sve_max_vq;
928 * In sve_vq_map each set bit is a supported vector length of
929 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
930 * length in quadwords.
932 * While processing properties during initialization, corresponding
933 * sve_vq_init bits are set for bits in sve_vq_map that have been
934 * set by properties.
936 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
937 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
940 void arm_cpu_post_init(Object *obj);
942 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
944 #ifndef CONFIG_USER_ONLY
945 extern const VMStateDescription vmstate_arm_cpu;
946 #endif
948 void arm_cpu_do_interrupt(CPUState *cpu);
949 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
950 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
952 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
953 MemTxAttrs *attrs);
955 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
956 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
958 /* Dynamically generates for gdb stub an XML description of the sysregs from
959 * the cp_regs hashtable. Returns the registered sysregs number.
961 int arm_gen_dynamic_xml(CPUState *cpu);
963 /* Returns the dynamically generated XML for the gdb stub.
964 * Returns a pointer to the XML contents for the specified XML file or NULL
965 * if the XML name doesn't match the predefined one.
967 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
969 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
970 int cpuid, void *opaque);
971 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
972 int cpuid, void *opaque);
974 #ifdef TARGET_AARCH64
975 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
976 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
977 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
978 void aarch64_sve_change_el(CPUARMState *env, int old_el,
979 int new_el, bool el0_a64);
980 #else
981 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
982 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
983 int n, bool a)
985 #endif
987 #if !defined(CONFIG_TCG)
988 static inline target_ulong do_arm_semihosting(CPUARMState *env)
990 g_assert_not_reached();
992 #else
993 target_ulong do_arm_semihosting(CPUARMState *env);
994 #endif
995 void aarch64_sync_32_to_64(CPUARMState *env);
996 void aarch64_sync_64_to_32(CPUARMState *env);
998 int fp_exception_el(CPUARMState *env, int cur_el);
999 int sve_exception_el(CPUARMState *env, int cur_el);
1000 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1002 static inline bool is_a64(CPUARMState *env)
1004 return env->aarch64;
1007 /* you can call this signal handler from your SIGBUS and SIGSEGV
1008 signal handlers to inform the virtual CPU of exceptions. non zero
1009 is returned if the signal was handled by the virtual CPU. */
1010 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1011 void *puc);
1014 * pmu_op_start/finish
1015 * @env: CPUARMState
1017 * Convert all PMU counters between their delta form (the typical mode when
1018 * they are enabled) and the guest-visible values. These two calls must
1019 * surround any action which might affect the counters.
1021 void pmu_op_start(CPUARMState *env);
1022 void pmu_op_finish(CPUARMState *env);
1025 * Called when a PMU counter is due to overflow
1027 void arm_pmu_timer_cb(void *opaque);
1030 * Functions to register as EL change hooks for PMU mode filtering
1032 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1033 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1036 * pmu_init
1037 * @cpu: ARMCPU
1039 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1040 * for the current configuration
1042 void pmu_init(ARMCPU *cpu);
1044 /* SCTLR bit meanings. Several bits have been reused in newer
1045 * versions of the architecture; in that case we define constants
1046 * for both old and new bit meanings. Code which tests against those
1047 * bits should probably check or otherwise arrange that the CPU
1048 * is the architectural version it expects.
1050 #define SCTLR_M (1U << 0)
1051 #define SCTLR_A (1U << 1)
1052 #define SCTLR_C (1U << 2)
1053 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1054 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1055 #define SCTLR_SA (1U << 3) /* AArch64 only */
1056 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1057 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1058 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1059 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1060 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1061 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1062 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1063 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1064 #define SCTLR_ITD (1U << 7) /* v8 onward */
1065 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1066 #define SCTLR_SED (1U << 8) /* v8 onward */
1067 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1068 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1069 #define SCTLR_F (1U << 10) /* up to v6 */
1070 #define SCTLR_SW (1U << 10) /* v7 */
1071 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1072 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1073 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1074 #define SCTLR_I (1U << 12)
1075 #define SCTLR_V (1U << 13) /* AArch32 only */
1076 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1077 #define SCTLR_RR (1U << 14) /* up to v7 */
1078 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1079 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1080 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1081 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1082 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1083 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1084 #define SCTLR_BR (1U << 17) /* PMSA only */
1085 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1086 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1087 #define SCTLR_WXN (1U << 19)
1088 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1089 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1090 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1091 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1092 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1093 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1094 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1095 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1096 #define SCTLR_VE (1U << 24) /* up to v7 */
1097 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1098 #define SCTLR_EE (1U << 25)
1099 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1100 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1101 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1102 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1103 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1104 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1105 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1106 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1107 #define SCTLR_TE (1U << 30) /* AArch32 only */
1108 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1109 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1110 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1111 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1112 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1113 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1114 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1115 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1116 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1117 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
1119 #define CPTR_TCPAC (1U << 31)
1120 #define CPTR_TTA (1U << 20)
1121 #define CPTR_TFP (1U << 10)
1122 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1123 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1125 #define MDCR_EPMAD (1U << 21)
1126 #define MDCR_EDAD (1U << 20)
1127 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1128 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1129 #define MDCR_SDD (1U << 16)
1130 #define MDCR_SPD (3U << 14)
1131 #define MDCR_TDRA (1U << 11)
1132 #define MDCR_TDOSA (1U << 10)
1133 #define MDCR_TDA (1U << 9)
1134 #define MDCR_TDE (1U << 8)
1135 #define MDCR_HPME (1U << 7)
1136 #define MDCR_TPM (1U << 6)
1137 #define MDCR_TPMCR (1U << 5)
1138 #define MDCR_HPMN (0x1fU)
1140 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1141 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1143 #define CPSR_M (0x1fU)
1144 #define CPSR_T (1U << 5)
1145 #define CPSR_F (1U << 6)
1146 #define CPSR_I (1U << 7)
1147 #define CPSR_A (1U << 8)
1148 #define CPSR_E (1U << 9)
1149 #define CPSR_IT_2_7 (0xfc00U)
1150 #define CPSR_GE (0xfU << 16)
1151 #define CPSR_IL (1U << 20)
1152 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1153 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1154 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1155 * where it is live state but not accessible to the AArch32 code.
1157 #define CPSR_RESERVED (0x7U << 21)
1158 #define CPSR_J (1U << 24)
1159 #define CPSR_IT_0_1 (3U << 25)
1160 #define CPSR_Q (1U << 27)
1161 #define CPSR_V (1U << 28)
1162 #define CPSR_C (1U << 29)
1163 #define CPSR_Z (1U << 30)
1164 #define CPSR_N (1U << 31)
1165 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1166 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1168 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1169 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1170 | CPSR_NZCV)
1171 /* Bits writable in user mode. */
1172 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1173 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1174 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1175 /* Mask of bits which may be set by exception return copying them from SPSR */
1176 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1178 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1179 #define XPSR_EXCP 0x1ffU
1180 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1181 #define XPSR_IT_2_7 CPSR_IT_2_7
1182 #define XPSR_GE CPSR_GE
1183 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1184 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1185 #define XPSR_IT_0_1 CPSR_IT_0_1
1186 #define XPSR_Q CPSR_Q
1187 #define XPSR_V CPSR_V
1188 #define XPSR_C CPSR_C
1189 #define XPSR_Z CPSR_Z
1190 #define XPSR_N CPSR_N
1191 #define XPSR_NZCV CPSR_NZCV
1192 #define XPSR_IT CPSR_IT
1194 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1195 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1196 #define TTBCR_PD0 (1U << 4)
1197 #define TTBCR_PD1 (1U << 5)
1198 #define TTBCR_EPD0 (1U << 7)
1199 #define TTBCR_IRGN0 (3U << 8)
1200 #define TTBCR_ORGN0 (3U << 10)
1201 #define TTBCR_SH0 (3U << 12)
1202 #define TTBCR_T1SZ (3U << 16)
1203 #define TTBCR_A1 (1U << 22)
1204 #define TTBCR_EPD1 (1U << 23)
1205 #define TTBCR_IRGN1 (3U << 24)
1206 #define TTBCR_ORGN1 (3U << 26)
1207 #define TTBCR_SH1 (1U << 28)
1208 #define TTBCR_EAE (1U << 31)
1210 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1211 * Only these are valid when in AArch64 mode; in
1212 * AArch32 mode SPSRs are basically CPSR-format.
1214 #define PSTATE_SP (1U)
1215 #define PSTATE_M (0xFU)
1216 #define PSTATE_nRW (1U << 4)
1217 #define PSTATE_F (1U << 6)
1218 #define PSTATE_I (1U << 7)
1219 #define PSTATE_A (1U << 8)
1220 #define PSTATE_D (1U << 9)
1221 #define PSTATE_BTYPE (3U << 10)
1222 #define PSTATE_IL (1U << 20)
1223 #define PSTATE_SS (1U << 21)
1224 #define PSTATE_V (1U << 28)
1225 #define PSTATE_C (1U << 29)
1226 #define PSTATE_Z (1U << 30)
1227 #define PSTATE_N (1U << 31)
1228 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1229 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1230 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1231 /* Mode values for AArch64 */
1232 #define PSTATE_MODE_EL3h 13
1233 #define PSTATE_MODE_EL3t 12
1234 #define PSTATE_MODE_EL2h 9
1235 #define PSTATE_MODE_EL2t 8
1236 #define PSTATE_MODE_EL1h 5
1237 #define PSTATE_MODE_EL1t 4
1238 #define PSTATE_MODE_EL0t 0
1240 /* Write a new value to v7m.exception, thus transitioning into or out
1241 * of Handler mode; this may result in a change of active stack pointer.
1243 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1245 /* Map EL and handler into a PSTATE_MODE. */
1246 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1248 return (el << 2) | handler;
1251 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1252 * interprocessing, so we don't attempt to sync with the cpsr state used by
1253 * the 32 bit decoder.
1255 static inline uint32_t pstate_read(CPUARMState *env)
1257 int ZF;
1259 ZF = (env->ZF == 0);
1260 return (env->NF & 0x80000000) | (ZF << 30)
1261 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1262 | env->pstate | env->daif | (env->btype << 10);
1265 static inline void pstate_write(CPUARMState *env, uint32_t val)
1267 env->ZF = (~val) & PSTATE_Z;
1268 env->NF = val;
1269 env->CF = (val >> 29) & 1;
1270 env->VF = (val << 3) & 0x80000000;
1271 env->daif = val & PSTATE_DAIF;
1272 env->btype = (val >> 10) & 3;
1273 env->pstate = val & ~CACHED_PSTATE_BITS;
1276 /* Return the current CPSR value. */
1277 uint32_t cpsr_read(CPUARMState *env);
1279 typedef enum CPSRWriteType {
1280 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1281 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1282 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1283 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1284 } CPSRWriteType;
1286 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1287 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1288 CPSRWriteType write_type);
1290 /* Return the current xPSR value. */
1291 static inline uint32_t xpsr_read(CPUARMState *env)
1293 int ZF;
1294 ZF = (env->ZF == 0);
1295 return (env->NF & 0x80000000) | (ZF << 30)
1296 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1297 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1298 | ((env->condexec_bits & 0xfc) << 8)
1299 | (env->GE << 16)
1300 | env->v7m.exception;
1303 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1304 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1306 if (mask & XPSR_NZCV) {
1307 env->ZF = (~val) & XPSR_Z;
1308 env->NF = val;
1309 env->CF = (val >> 29) & 1;
1310 env->VF = (val << 3) & 0x80000000;
1312 if (mask & XPSR_Q) {
1313 env->QF = ((val & XPSR_Q) != 0);
1315 if (mask & XPSR_GE) {
1316 env->GE = (val & XPSR_GE) >> 16;
1318 if (mask & XPSR_T) {
1319 env->thumb = ((val & XPSR_T) != 0);
1321 if (mask & XPSR_IT_0_1) {
1322 env->condexec_bits &= ~3;
1323 env->condexec_bits |= (val >> 25) & 3;
1325 if (mask & XPSR_IT_2_7) {
1326 env->condexec_bits &= 3;
1327 env->condexec_bits |= (val >> 8) & 0xfc;
1329 if (mask & XPSR_EXCP) {
1330 /* Note that this only happens on exception exit */
1331 write_v7m_exception(env, val & XPSR_EXCP);
1335 #define HCR_VM (1ULL << 0)
1336 #define HCR_SWIO (1ULL << 1)
1337 #define HCR_PTW (1ULL << 2)
1338 #define HCR_FMO (1ULL << 3)
1339 #define HCR_IMO (1ULL << 4)
1340 #define HCR_AMO (1ULL << 5)
1341 #define HCR_VF (1ULL << 6)
1342 #define HCR_VI (1ULL << 7)
1343 #define HCR_VSE (1ULL << 8)
1344 #define HCR_FB (1ULL << 9)
1345 #define HCR_BSU_MASK (3ULL << 10)
1346 #define HCR_DC (1ULL << 12)
1347 #define HCR_TWI (1ULL << 13)
1348 #define HCR_TWE (1ULL << 14)
1349 #define HCR_TID0 (1ULL << 15)
1350 #define HCR_TID1 (1ULL << 16)
1351 #define HCR_TID2 (1ULL << 17)
1352 #define HCR_TID3 (1ULL << 18)
1353 #define HCR_TSC (1ULL << 19)
1354 #define HCR_TIDCP (1ULL << 20)
1355 #define HCR_TACR (1ULL << 21)
1356 #define HCR_TSW (1ULL << 22)
1357 #define HCR_TPCP (1ULL << 23)
1358 #define HCR_TPU (1ULL << 24)
1359 #define HCR_TTLB (1ULL << 25)
1360 #define HCR_TVM (1ULL << 26)
1361 #define HCR_TGE (1ULL << 27)
1362 #define HCR_TDZ (1ULL << 28)
1363 #define HCR_HCD (1ULL << 29)
1364 #define HCR_TRVM (1ULL << 30)
1365 #define HCR_RW (1ULL << 31)
1366 #define HCR_CD (1ULL << 32)
1367 #define HCR_ID (1ULL << 33)
1368 #define HCR_E2H (1ULL << 34)
1369 #define HCR_TLOR (1ULL << 35)
1370 #define HCR_TERR (1ULL << 36)
1371 #define HCR_TEA (1ULL << 37)
1372 #define HCR_MIOCNCE (1ULL << 38)
1373 #define HCR_APK (1ULL << 40)
1374 #define HCR_API (1ULL << 41)
1375 #define HCR_NV (1ULL << 42)
1376 #define HCR_NV1 (1ULL << 43)
1377 #define HCR_AT (1ULL << 44)
1378 #define HCR_NV2 (1ULL << 45)
1379 #define HCR_FWB (1ULL << 46)
1380 #define HCR_FIEN (1ULL << 47)
1381 #define HCR_TID4 (1ULL << 49)
1382 #define HCR_TICAB (1ULL << 50)
1383 #define HCR_TOCU (1ULL << 52)
1384 #define HCR_TTLBIS (1ULL << 54)
1385 #define HCR_TTLBOS (1ULL << 55)
1386 #define HCR_ATA (1ULL << 56)
1387 #define HCR_DCT (1ULL << 57)
1390 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1391 * HCR_MASK and then clear it again if the feature bit is not set in
1392 * hcr_write().
1394 #define HCR_MASK ((1ULL << 34) - 1)
1396 #define SCR_NS (1U << 0)
1397 #define SCR_IRQ (1U << 1)
1398 #define SCR_FIQ (1U << 2)
1399 #define SCR_EA (1U << 3)
1400 #define SCR_FW (1U << 4)
1401 #define SCR_AW (1U << 5)
1402 #define SCR_NET (1U << 6)
1403 #define SCR_SMD (1U << 7)
1404 #define SCR_HCE (1U << 8)
1405 #define SCR_SIF (1U << 9)
1406 #define SCR_RW (1U << 10)
1407 #define SCR_ST (1U << 11)
1408 #define SCR_TWI (1U << 12)
1409 #define SCR_TWE (1U << 13)
1410 #define SCR_TLOR (1U << 14)
1411 #define SCR_TERR (1U << 15)
1412 #define SCR_APK (1U << 16)
1413 #define SCR_API (1U << 17)
1414 #define SCR_EEL2 (1U << 18)
1415 #define SCR_EASE (1U << 19)
1416 #define SCR_NMEA (1U << 20)
1417 #define SCR_FIEN (1U << 21)
1418 #define SCR_ENSCXT (1U << 25)
1419 #define SCR_ATA (1U << 26)
1421 /* Return the current FPSCR value. */
1422 uint32_t vfp_get_fpscr(CPUARMState *env);
1423 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1425 /* FPCR, Floating Point Control Register
1426 * FPSR, Floating Poiht Status Register
1428 * For A64 the FPSCR is split into two logically distinct registers,
1429 * FPCR and FPSR. However since they still use non-overlapping bits
1430 * we store the underlying state in fpscr and just mask on read/write.
1432 #define FPSR_MASK 0xf800009f
1433 #define FPCR_MASK 0x07ff9f00
1435 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1436 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1437 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1438 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1439 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1440 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1441 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1442 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1443 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1444 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1446 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1448 return vfp_get_fpscr(env) & FPSR_MASK;
1451 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1453 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1454 vfp_set_fpscr(env, new_fpscr);
1457 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1459 return vfp_get_fpscr(env) & FPCR_MASK;
1462 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1464 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1465 vfp_set_fpscr(env, new_fpscr);
1468 enum arm_cpu_mode {
1469 ARM_CPU_MODE_USR = 0x10,
1470 ARM_CPU_MODE_FIQ = 0x11,
1471 ARM_CPU_MODE_IRQ = 0x12,
1472 ARM_CPU_MODE_SVC = 0x13,
1473 ARM_CPU_MODE_MON = 0x16,
1474 ARM_CPU_MODE_ABT = 0x17,
1475 ARM_CPU_MODE_HYP = 0x1a,
1476 ARM_CPU_MODE_UND = 0x1b,
1477 ARM_CPU_MODE_SYS = 0x1f
1480 /* VFP system registers. */
1481 #define ARM_VFP_FPSID 0
1482 #define ARM_VFP_FPSCR 1
1483 #define ARM_VFP_MVFR2 5
1484 #define ARM_VFP_MVFR1 6
1485 #define ARM_VFP_MVFR0 7
1486 #define ARM_VFP_FPEXC 8
1487 #define ARM_VFP_FPINST 9
1488 #define ARM_VFP_FPINST2 10
1490 /* iwMMXt coprocessor control registers. */
1491 #define ARM_IWMMXT_wCID 0
1492 #define ARM_IWMMXT_wCon 1
1493 #define ARM_IWMMXT_wCSSF 2
1494 #define ARM_IWMMXT_wCASF 3
1495 #define ARM_IWMMXT_wCGR0 8
1496 #define ARM_IWMMXT_wCGR1 9
1497 #define ARM_IWMMXT_wCGR2 10
1498 #define ARM_IWMMXT_wCGR3 11
1500 /* V7M CCR bits */
1501 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1502 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1503 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1504 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1505 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1506 FIELD(V7M_CCR, STKALIGN, 9, 1)
1507 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1508 FIELD(V7M_CCR, DC, 16, 1)
1509 FIELD(V7M_CCR, IC, 17, 1)
1510 FIELD(V7M_CCR, BP, 18, 1)
1512 /* V7M SCR bits */
1513 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1514 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1515 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1516 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1518 /* V7M AIRCR bits */
1519 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1520 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1521 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1522 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1523 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1524 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1525 FIELD(V7M_AIRCR, PRIS, 14, 1)
1526 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1527 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1529 /* V7M CFSR bits for MMFSR */
1530 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1531 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1532 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1533 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1534 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1535 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1537 /* V7M CFSR bits for BFSR */
1538 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1539 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1540 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1541 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1542 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1543 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1544 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1546 /* V7M CFSR bits for UFSR */
1547 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1548 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1549 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1550 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1551 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1552 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1553 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1555 /* V7M CFSR bit masks covering all of the subregister bits */
1556 FIELD(V7M_CFSR, MMFSR, 0, 8)
1557 FIELD(V7M_CFSR, BFSR, 8, 8)
1558 FIELD(V7M_CFSR, UFSR, 16, 16)
1560 /* V7M HFSR bits */
1561 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1562 FIELD(V7M_HFSR, FORCED, 30, 1)
1563 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1565 /* V7M DFSR bits */
1566 FIELD(V7M_DFSR, HALTED, 0, 1)
1567 FIELD(V7M_DFSR, BKPT, 1, 1)
1568 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1569 FIELD(V7M_DFSR, VCATCH, 3, 1)
1570 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1572 /* V7M SFSR bits */
1573 FIELD(V7M_SFSR, INVEP, 0, 1)
1574 FIELD(V7M_SFSR, INVIS, 1, 1)
1575 FIELD(V7M_SFSR, INVER, 2, 1)
1576 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1577 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1578 FIELD(V7M_SFSR, LSPERR, 5, 1)
1579 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1580 FIELD(V7M_SFSR, LSERR, 7, 1)
1582 /* v7M MPU_CTRL bits */
1583 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1584 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1585 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1587 /* v7M CLIDR bits */
1588 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1589 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1590 FIELD(V7M_CLIDR, LOC, 24, 3)
1591 FIELD(V7M_CLIDR, LOUU, 27, 3)
1592 FIELD(V7M_CLIDR, ICB, 30, 2)
1594 FIELD(V7M_CSSELR, IND, 0, 1)
1595 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1596 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1597 * define a mask for this and check that it doesn't permit running off
1598 * the end of the array.
1600 FIELD(V7M_CSSELR, INDEX, 0, 4)
1602 /* v7M FPCCR bits */
1603 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1604 FIELD(V7M_FPCCR, USER, 1, 1)
1605 FIELD(V7M_FPCCR, S, 2, 1)
1606 FIELD(V7M_FPCCR, THREAD, 3, 1)
1607 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1608 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1609 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1610 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1611 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1612 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1613 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1614 FIELD(V7M_FPCCR, RES0, 11, 15)
1615 FIELD(V7M_FPCCR, TS, 26, 1)
1616 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1617 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1618 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1619 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1620 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1621 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1622 #define R_V7M_FPCCR_BANKED_MASK \
1623 (R_V7M_FPCCR_LSPACT_MASK | \
1624 R_V7M_FPCCR_USER_MASK | \
1625 R_V7M_FPCCR_THREAD_MASK | \
1626 R_V7M_FPCCR_MMRDY_MASK | \
1627 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1628 R_V7M_FPCCR_UFRDY_MASK | \
1629 R_V7M_FPCCR_ASPEN_MASK)
1632 * System register ID fields.
1634 FIELD(MIDR_EL1, REVISION, 0, 4)
1635 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1636 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1637 FIELD(MIDR_EL1, VARIANT, 20, 4)
1638 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1640 FIELD(ID_ISAR0, SWAP, 0, 4)
1641 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1642 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1643 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1644 FIELD(ID_ISAR0, COPROC, 16, 4)
1645 FIELD(ID_ISAR0, DEBUG, 20, 4)
1646 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1648 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1649 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1650 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1651 FIELD(ID_ISAR1, EXTEND, 12, 4)
1652 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1653 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1654 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1655 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1657 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1658 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1659 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1660 FIELD(ID_ISAR2, MULT, 12, 4)
1661 FIELD(ID_ISAR2, MULTS, 16, 4)
1662 FIELD(ID_ISAR2, MULTU, 20, 4)
1663 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1664 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1666 FIELD(ID_ISAR3, SATURATE, 0, 4)
1667 FIELD(ID_ISAR3, SIMD, 4, 4)
1668 FIELD(ID_ISAR3, SVC, 8, 4)
1669 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1670 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1671 FIELD(ID_ISAR3, T32COPY, 20, 4)
1672 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1673 FIELD(ID_ISAR3, T32EE, 28, 4)
1675 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1676 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1677 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1678 FIELD(ID_ISAR4, SMC, 12, 4)
1679 FIELD(ID_ISAR4, BARRIER, 16, 4)
1680 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1681 FIELD(ID_ISAR4, PSR_M, 24, 4)
1682 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1684 FIELD(ID_ISAR5, SEVL, 0, 4)
1685 FIELD(ID_ISAR5, AES, 4, 4)
1686 FIELD(ID_ISAR5, SHA1, 8, 4)
1687 FIELD(ID_ISAR5, SHA2, 12, 4)
1688 FIELD(ID_ISAR5, CRC32, 16, 4)
1689 FIELD(ID_ISAR5, RDM, 24, 4)
1690 FIELD(ID_ISAR5, VCMA, 28, 4)
1692 FIELD(ID_ISAR6, JSCVT, 0, 4)
1693 FIELD(ID_ISAR6, DP, 4, 4)
1694 FIELD(ID_ISAR6, FHM, 8, 4)
1695 FIELD(ID_ISAR6, SB, 12, 4)
1696 FIELD(ID_ISAR6, SPECRES, 16, 4)
1698 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1699 FIELD(ID_MMFR4, AC2, 4, 4)
1700 FIELD(ID_MMFR4, XNX, 8, 4)
1701 FIELD(ID_MMFR4, CNP, 12, 4)
1702 FIELD(ID_MMFR4, HPDS, 16, 4)
1703 FIELD(ID_MMFR4, LSM, 20, 4)
1704 FIELD(ID_MMFR4, CCIDX, 24, 4)
1705 FIELD(ID_MMFR4, EVT, 28, 4)
1707 FIELD(ID_AA64ISAR0, AES, 4, 4)
1708 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1709 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1710 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1711 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1712 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1713 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1714 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1715 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1716 FIELD(ID_AA64ISAR0, DP, 44, 4)
1717 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1718 FIELD(ID_AA64ISAR0, TS, 52, 4)
1719 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1720 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1722 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1723 FIELD(ID_AA64ISAR1, APA, 4, 4)
1724 FIELD(ID_AA64ISAR1, API, 8, 4)
1725 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1726 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1727 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1728 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1729 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1730 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1731 FIELD(ID_AA64ISAR1, SB, 36, 4)
1732 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1734 FIELD(ID_AA64PFR0, EL0, 0, 4)
1735 FIELD(ID_AA64PFR0, EL1, 4, 4)
1736 FIELD(ID_AA64PFR0, EL2, 8, 4)
1737 FIELD(ID_AA64PFR0, EL3, 12, 4)
1738 FIELD(ID_AA64PFR0, FP, 16, 4)
1739 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1740 FIELD(ID_AA64PFR0, GIC, 24, 4)
1741 FIELD(ID_AA64PFR0, RAS, 28, 4)
1742 FIELD(ID_AA64PFR0, SVE, 32, 4)
1744 FIELD(ID_AA64PFR1, BT, 0, 4)
1745 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1746 FIELD(ID_AA64PFR1, MTE, 8, 4)
1747 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1749 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1750 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1751 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1752 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1753 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1754 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1755 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1756 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1757 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1758 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1759 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1760 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1762 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1763 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1764 FIELD(ID_AA64MMFR1, VH, 8, 4)
1765 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1766 FIELD(ID_AA64MMFR1, LO, 16, 4)
1767 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1768 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1769 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1771 FIELD(ID_DFR0, COPDBG, 0, 4)
1772 FIELD(ID_DFR0, COPSDBG, 4, 4)
1773 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1774 FIELD(ID_DFR0, COPTRC, 12, 4)
1775 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1776 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1777 FIELD(ID_DFR0, PERFMON, 24, 4)
1778 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1780 FIELD(MVFR0, SIMDREG, 0, 4)
1781 FIELD(MVFR0, FPSP, 4, 4)
1782 FIELD(MVFR0, FPDP, 8, 4)
1783 FIELD(MVFR0, FPTRAP, 12, 4)
1784 FIELD(MVFR0, FPDIVIDE, 16, 4)
1785 FIELD(MVFR0, FPSQRT, 20, 4)
1786 FIELD(MVFR0, FPSHVEC, 24, 4)
1787 FIELD(MVFR0, FPROUND, 28, 4)
1789 FIELD(MVFR1, FPFTZ, 0, 4)
1790 FIELD(MVFR1, FPDNAN, 4, 4)
1791 FIELD(MVFR1, SIMDLS, 8, 4)
1792 FIELD(MVFR1, SIMDINT, 12, 4)
1793 FIELD(MVFR1, SIMDSP, 16, 4)
1794 FIELD(MVFR1, SIMDHP, 20, 4)
1795 FIELD(MVFR1, FPHP, 24, 4)
1796 FIELD(MVFR1, SIMDFMAC, 28, 4)
1798 FIELD(MVFR2, SIMDMISC, 0, 4)
1799 FIELD(MVFR2, FPMISC, 4, 4)
1801 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1803 /* If adding a feature bit which corresponds to a Linux ELF
1804 * HWCAP bit, remember to update the feature-bit-to-hwcap
1805 * mapping in linux-user/elfload.c:get_elf_hwcap().
1807 enum arm_features {
1808 ARM_FEATURE_VFP,
1809 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1810 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1811 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1812 ARM_FEATURE_V6,
1813 ARM_FEATURE_V6K,
1814 ARM_FEATURE_V7,
1815 ARM_FEATURE_THUMB2,
1816 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1817 ARM_FEATURE_VFP3,
1818 ARM_FEATURE_NEON,
1819 ARM_FEATURE_M, /* Microcontroller profile. */
1820 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1821 ARM_FEATURE_THUMB2EE,
1822 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1823 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1824 ARM_FEATURE_V4T,
1825 ARM_FEATURE_V5,
1826 ARM_FEATURE_STRONGARM,
1827 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1828 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1829 ARM_FEATURE_GENERIC_TIMER,
1830 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1831 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1832 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1833 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1834 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1835 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1836 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1837 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1838 ARM_FEATURE_V8,
1839 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1840 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1841 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1842 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1843 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1844 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1845 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1846 ARM_FEATURE_PMU, /* has PMU support */
1847 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1848 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1849 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1852 static inline int arm_feature(CPUARMState *env, int feature)
1854 return (env->features & (1ULL << feature)) != 0;
1857 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1859 #if !defined(CONFIG_USER_ONLY)
1860 /* Return true if exception levels below EL3 are in secure state,
1861 * or would be following an exception return to that level.
1862 * Unlike arm_is_secure() (which is always a question about the
1863 * _current_ state of the CPU) this doesn't care about the current
1864 * EL or mode.
1866 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1868 if (arm_feature(env, ARM_FEATURE_EL3)) {
1869 return !(env->cp15.scr_el3 & SCR_NS);
1870 } else {
1871 /* If EL3 is not supported then the secure state is implementation
1872 * defined, in which case QEMU defaults to non-secure.
1874 return false;
1878 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1879 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1881 if (arm_feature(env, ARM_FEATURE_EL3)) {
1882 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1883 /* CPU currently in AArch64 state and EL3 */
1884 return true;
1885 } else if (!is_a64(env) &&
1886 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1887 /* CPU currently in AArch32 state and monitor mode */
1888 return true;
1891 return false;
1894 /* Return true if the processor is in secure state */
1895 static inline bool arm_is_secure(CPUARMState *env)
1897 if (arm_is_el3_or_mon(env)) {
1898 return true;
1900 return arm_is_secure_below_el3(env);
1903 #else
1904 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1906 return false;
1909 static inline bool arm_is_secure(CPUARMState *env)
1911 return false;
1913 #endif
1916 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1917 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1918 * "for all purposes other than a direct read or write access of HCR_EL2."
1919 * Not included here is HCR_RW.
1921 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1923 /* Return true if the specified exception level is running in AArch64 state. */
1924 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1926 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1927 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1929 assert(el >= 1 && el <= 3);
1930 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1932 /* The highest exception level is always at the maximum supported
1933 * register width, and then lower levels have a register width controlled
1934 * by bits in the SCR or HCR registers.
1936 if (el == 3) {
1937 return aa64;
1940 if (arm_feature(env, ARM_FEATURE_EL3)) {
1941 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1944 if (el == 2) {
1945 return aa64;
1948 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1949 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1952 return aa64;
1955 /* Function for determing whether guest cp register reads and writes should
1956 * access the secure or non-secure bank of a cp register. When EL3 is
1957 * operating in AArch32 state, the NS-bit determines whether the secure
1958 * instance of a cp register should be used. When EL3 is AArch64 (or if
1959 * it doesn't exist at all) then there is no register banking, and all
1960 * accesses are to the non-secure version.
1962 static inline bool access_secure_reg(CPUARMState *env)
1964 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1965 !arm_el_is_aa64(env, 3) &&
1966 !(env->cp15.scr_el3 & SCR_NS));
1968 return ret;
1971 /* Macros for accessing a specified CP register bank */
1972 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1973 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1975 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1976 do { \
1977 if (_secure) { \
1978 (_env)->cp15._regname##_s = (_val); \
1979 } else { \
1980 (_env)->cp15._regname##_ns = (_val); \
1982 } while (0)
1984 /* Macros for automatically accessing a specific CP register bank depending on
1985 * the current secure state of the system. These macros are not intended for
1986 * supporting instruction translation reads/writes as these are dependent
1987 * solely on the SCR.NS bit and not the mode.
1989 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1990 A32_BANKED_REG_GET((_env), _regname, \
1991 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1993 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1994 A32_BANKED_REG_SET((_env), _regname, \
1995 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1996 (_val))
1998 void arm_cpu_list(void);
1999 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2000 uint32_t cur_el, bool secure);
2002 /* Interface between CPU and Interrupt controller. */
2003 #ifndef CONFIG_USER_ONLY
2004 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2005 #else
2006 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2008 return true;
2010 #endif
2012 * armv7m_nvic_set_pending: mark the specified exception as pending
2013 * @opaque: the NVIC
2014 * @irq: the exception number to mark pending
2015 * @secure: false for non-banked exceptions or for the nonsecure
2016 * version of a banked exception, true for the secure version of a banked
2017 * exception.
2019 * Marks the specified exception as pending. Note that we will assert()
2020 * if @secure is true and @irq does not specify one of the fixed set
2021 * of architecturally banked exceptions.
2023 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2025 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2026 * @opaque: the NVIC
2027 * @irq: the exception number to mark pending
2028 * @secure: false for non-banked exceptions or for the nonsecure
2029 * version of a banked exception, true for the secure version of a banked
2030 * exception.
2032 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2033 * exceptions (exceptions generated in the course of trying to take
2034 * a different exception).
2036 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2038 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2039 * @opaque: the NVIC
2040 * @irq: the exception number to mark pending
2041 * @secure: false for non-banked exceptions or for the nonsecure
2042 * version of a banked exception, true for the secure version of a banked
2043 * exception.
2045 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2046 * generated in the course of lazy stacking of FP registers.
2048 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2050 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2051 * exception, and whether it targets Secure state
2052 * @opaque: the NVIC
2053 * @pirq: set to pending exception number
2054 * @ptargets_secure: set to whether pending exception targets Secure
2056 * This function writes the number of the highest priority pending
2057 * exception (the one which would be made active by
2058 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2059 * to true if the current highest priority pending exception should
2060 * be taken to Secure state, false for NS.
2062 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2063 bool *ptargets_secure);
2065 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2066 * @opaque: the NVIC
2068 * Move the current highest priority pending exception from the pending
2069 * state to the active state, and update v7m.exception to indicate that
2070 * it is the exception currently being handled.
2072 void armv7m_nvic_acknowledge_irq(void *opaque);
2074 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2075 * @opaque: the NVIC
2076 * @irq: the exception number to complete
2077 * @secure: true if this exception was secure
2079 * Returns: -1 if the irq was not active
2080 * 1 if completing this irq brought us back to base (no active irqs)
2081 * 0 if there is still an irq active after this one was completed
2082 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2084 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2086 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2087 * @opaque: the NVIC
2088 * @irq: the exception number to mark pending
2089 * @secure: false for non-banked exceptions or for the nonsecure
2090 * version of a banked exception, true for the secure version of a banked
2091 * exception.
2093 * Return whether an exception is "ready", i.e. whether the exception is
2094 * enabled and is configured at a priority which would allow it to
2095 * interrupt the current execution priority. This controls whether the
2096 * RDY bit for it in the FPCCR is set.
2098 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2100 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2101 * @opaque: the NVIC
2103 * Returns: the raw execution priority as defined by the v8M architecture.
2104 * This is the execution priority minus the effects of AIRCR.PRIS,
2105 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2106 * (v8M ARM ARM I_PKLD.)
2108 int armv7m_nvic_raw_execution_priority(void *opaque);
2110 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2111 * priority is negative for the specified security state.
2112 * @opaque: the NVIC
2113 * @secure: the security state to test
2114 * This corresponds to the pseudocode IsReqExecPriNeg().
2116 #ifndef CONFIG_USER_ONLY
2117 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2118 #else
2119 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2121 return false;
2123 #endif
2125 /* Interface for defining coprocessor registers.
2126 * Registers are defined in tables of arm_cp_reginfo structs
2127 * which are passed to define_arm_cp_regs().
2130 /* When looking up a coprocessor register we look for it
2131 * via an integer which encodes all of:
2132 * coprocessor number
2133 * Crn, Crm, opc1, opc2 fields
2134 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2135 * or via MRRC/MCRR?)
2136 * non-secure/secure bank (AArch32 only)
2137 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2138 * (In this case crn and opc2 should be zero.)
2139 * For AArch64, there is no 32/64 bit size distinction;
2140 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2141 * and 4 bit CRn and CRm. The encoding patterns are chosen
2142 * to be easy to convert to and from the KVM encodings, and also
2143 * so that the hashtable can contain both AArch32 and AArch64
2144 * registers (to allow for interprocessing where we might run
2145 * 32 bit code on a 64 bit core).
2147 /* This bit is private to our hashtable cpreg; in KVM register
2148 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2149 * in the upper bits of the 64 bit ID.
2151 #define CP_REG_AA64_SHIFT 28
2152 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2154 /* To enable banking of coprocessor registers depending on ns-bit we
2155 * add a bit to distinguish between secure and non-secure cpregs in the
2156 * hashtable.
2158 #define CP_REG_NS_SHIFT 29
2159 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2161 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2162 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2163 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2165 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2166 (CP_REG_AA64_MASK | \
2167 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2168 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2169 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2170 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2171 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2172 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2174 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2175 * version used as a key for the coprocessor register hashtable
2177 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2179 uint32_t cpregid = kvmid;
2180 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2181 cpregid |= CP_REG_AA64_MASK;
2182 } else {
2183 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2184 cpregid |= (1 << 15);
2187 /* KVM is always non-secure so add the NS flag on AArch32 register
2188 * entries.
2190 cpregid |= 1 << CP_REG_NS_SHIFT;
2192 return cpregid;
2195 /* Convert a truncated 32 bit hashtable key into the full
2196 * 64 bit KVM register ID.
2198 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2200 uint64_t kvmid;
2202 if (cpregid & CP_REG_AA64_MASK) {
2203 kvmid = cpregid & ~CP_REG_AA64_MASK;
2204 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2205 } else {
2206 kvmid = cpregid & ~(1 << 15);
2207 if (cpregid & (1 << 15)) {
2208 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2209 } else {
2210 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2213 return kvmid;
2216 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2217 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2218 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2219 * TCG can assume the value to be constant (ie load at translate time)
2220 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2221 * indicates that the TB should not be ended after a write to this register
2222 * (the default is that the TB ends after cp writes). OVERRIDE permits
2223 * a register definition to override a previous definition for the
2224 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2225 * old must have the OVERRIDE bit set.
2226 * ALIAS indicates that this register is an alias view of some underlying
2227 * state which is also visible via another register, and that the other
2228 * register is handling migration and reset; registers marked ALIAS will not be
2229 * migrated but may have their state set by syncing of register state from KVM.
2230 * NO_RAW indicates that this register has no underlying state and does not
2231 * support raw access for state saving/loading; it will not be used for either
2232 * migration or KVM state synchronization. (Typically this is for "registers"
2233 * which are actually used as instructions for cache maintenance and so on.)
2234 * IO indicates that this register does I/O and therefore its accesses
2235 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2236 * registers which implement clocks or timers require this.
2237 * RAISES_EXC is for when the read or write hook might raise an exception;
2238 * the generated code will synchronize the CPU state before calling the hook
2239 * so that it is safe for the hook to call raise_exception().
2241 #define ARM_CP_SPECIAL 0x0001
2242 #define ARM_CP_CONST 0x0002
2243 #define ARM_CP_64BIT 0x0004
2244 #define ARM_CP_SUPPRESS_TB_END 0x0008
2245 #define ARM_CP_OVERRIDE 0x0010
2246 #define ARM_CP_ALIAS 0x0020
2247 #define ARM_CP_IO 0x0040
2248 #define ARM_CP_NO_RAW 0x0080
2249 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2250 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2251 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2252 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2253 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2254 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2255 #define ARM_CP_FPU 0x1000
2256 #define ARM_CP_SVE 0x2000
2257 #define ARM_CP_NO_GDB 0x4000
2258 #define ARM_CP_RAISES_EXC 0x8000
2259 /* Used only as a terminator for ARMCPRegInfo lists */
2260 #define ARM_CP_SENTINEL 0xffff
2261 /* Mask of only the flag bits in a type field */
2262 #define ARM_CP_FLAG_MASK 0xf0ff
2264 /* Valid values for ARMCPRegInfo state field, indicating which of
2265 * the AArch32 and AArch64 execution states this register is visible in.
2266 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2267 * If the reginfo is declared to be visible in both states then a second
2268 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2269 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2270 * Note that we rely on the values of these enums as we iterate through
2271 * the various states in some places.
2273 enum {
2274 ARM_CP_STATE_AA32 = 0,
2275 ARM_CP_STATE_AA64 = 1,
2276 ARM_CP_STATE_BOTH = 2,
2279 /* ARM CP register secure state flags. These flags identify security state
2280 * attributes for a given CP register entry.
2281 * The existence of both or neither secure and non-secure flags indicates that
2282 * the register has both a secure and non-secure hash entry. A single one of
2283 * these flags causes the register to only be hashed for the specified
2284 * security state.
2285 * Although definitions may have any combination of the S/NS bits, each
2286 * registered entry will only have one to identify whether the entry is secure
2287 * or non-secure.
2289 enum {
2290 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2291 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2294 /* Return true if cptype is a valid type field. This is used to try to
2295 * catch errors where the sentinel has been accidentally left off the end
2296 * of a list of registers.
2298 static inline bool cptype_valid(int cptype)
2300 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2301 || ((cptype & ARM_CP_SPECIAL) &&
2302 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2305 /* Access rights:
2306 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2307 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2308 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2309 * (ie any of the privileged modes in Secure state, or Monitor mode).
2310 * If a register is accessible in one privilege level it's always accessible
2311 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2312 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2313 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2314 * terminology a little and call this PL3.
2315 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2316 * with the ELx exception levels.
2318 * If access permissions for a register are more complex than can be
2319 * described with these bits, then use a laxer set of restrictions, and
2320 * do the more restrictive/complex check inside a helper function.
2322 #define PL3_R 0x80
2323 #define PL3_W 0x40
2324 #define PL2_R (0x20 | PL3_R)
2325 #define PL2_W (0x10 | PL3_W)
2326 #define PL1_R (0x08 | PL2_R)
2327 #define PL1_W (0x04 | PL2_W)
2328 #define PL0_R (0x02 | PL1_R)
2329 #define PL0_W (0x01 | PL1_W)
2332 * For user-mode some registers are accessible to EL0 via a kernel
2333 * trap-and-emulate ABI. In this case we define the read permissions
2334 * as actually being PL0_R. However some bits of any given register
2335 * may still be masked.
2337 #ifdef CONFIG_USER_ONLY
2338 #define PL0U_R PL0_R
2339 #else
2340 #define PL0U_R PL1_R
2341 #endif
2343 #define PL3_RW (PL3_R | PL3_W)
2344 #define PL2_RW (PL2_R | PL2_W)
2345 #define PL1_RW (PL1_R | PL1_W)
2346 #define PL0_RW (PL0_R | PL0_W)
2348 /* Return the highest implemented Exception Level */
2349 static inline int arm_highest_el(CPUARMState *env)
2351 if (arm_feature(env, ARM_FEATURE_EL3)) {
2352 return 3;
2354 if (arm_feature(env, ARM_FEATURE_EL2)) {
2355 return 2;
2357 return 1;
2360 /* Return true if a v7M CPU is in Handler mode */
2361 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2363 return env->v7m.exception != 0;
2366 /* Return the current Exception Level (as per ARMv8; note that this differs
2367 * from the ARMv7 Privilege Level).
2369 static inline int arm_current_el(CPUARMState *env)
2371 if (arm_feature(env, ARM_FEATURE_M)) {
2372 return arm_v7m_is_handler_mode(env) ||
2373 !(env->v7m.control[env->v7m.secure] & 1);
2376 if (is_a64(env)) {
2377 return extract32(env->pstate, 2, 2);
2380 switch (env->uncached_cpsr & 0x1f) {
2381 case ARM_CPU_MODE_USR:
2382 return 0;
2383 case ARM_CPU_MODE_HYP:
2384 return 2;
2385 case ARM_CPU_MODE_MON:
2386 return 3;
2387 default:
2388 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2389 /* If EL3 is 32-bit then all secure privileged modes run in
2390 * EL3
2392 return 3;
2395 return 1;
2399 typedef struct ARMCPRegInfo ARMCPRegInfo;
2401 typedef enum CPAccessResult {
2402 /* Access is permitted */
2403 CP_ACCESS_OK = 0,
2404 /* Access fails due to a configurable trap or enable which would
2405 * result in a categorized exception syndrome giving information about
2406 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2407 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2408 * PL1 if in EL0, otherwise to the current EL).
2410 CP_ACCESS_TRAP = 1,
2411 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2412 * Note that this is not a catch-all case -- the set of cases which may
2413 * result in this failure is specifically defined by the architecture.
2415 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2416 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2417 CP_ACCESS_TRAP_EL2 = 3,
2418 CP_ACCESS_TRAP_EL3 = 4,
2419 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2420 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2421 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2422 /* Access fails and results in an exception syndrome for an FP access,
2423 * trapped directly to EL2 or EL3
2425 CP_ACCESS_TRAP_FP_EL2 = 7,
2426 CP_ACCESS_TRAP_FP_EL3 = 8,
2427 } CPAccessResult;
2429 /* Access functions for coprocessor registers. These cannot fail and
2430 * may not raise exceptions.
2432 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2433 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2434 uint64_t value);
2435 /* Access permission check functions for coprocessor registers. */
2436 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2437 const ARMCPRegInfo *opaque,
2438 bool isread);
2439 /* Hook function for register reset */
2440 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2442 #define CP_ANY 0xff
2444 /* Definition of an ARM coprocessor register */
2445 struct ARMCPRegInfo {
2446 /* Name of register (useful mainly for debugging, need not be unique) */
2447 const char *name;
2448 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2449 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2450 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2451 * will be decoded to this register. The register read and write
2452 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2453 * used by the program, so it is possible to register a wildcard and
2454 * then behave differently on read/write if necessary.
2455 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2456 * must both be zero.
2457 * For AArch64-visible registers, opc0 is also used.
2458 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2459 * way to distinguish (for KVM's benefit) guest-visible system registers
2460 * from demuxed ones provided to preserve the "no side effects on
2461 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2462 * visible (to match KVM's encoding); cp==0 will be converted to
2463 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2465 uint8_t cp;
2466 uint8_t crn;
2467 uint8_t crm;
2468 uint8_t opc0;
2469 uint8_t opc1;
2470 uint8_t opc2;
2471 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2472 int state;
2473 /* Register type: ARM_CP_* bits/values */
2474 int type;
2475 /* Access rights: PL*_[RW] */
2476 int access;
2477 /* Security state: ARM_CP_SECSTATE_* bits/values */
2478 int secure;
2479 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2480 * this register was defined: can be used to hand data through to the
2481 * register read/write functions, since they are passed the ARMCPRegInfo*.
2483 void *opaque;
2484 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2485 * fieldoffset is non-zero, the reset value of the register.
2487 uint64_t resetvalue;
2488 /* Offset of the field in CPUARMState for this register.
2490 * This is not needed if either:
2491 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2492 * 2. both readfn and writefn are specified
2494 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2496 /* Offsets of the secure and non-secure fields in CPUARMState for the
2497 * register if it is banked. These fields are only used during the static
2498 * registration of a register. During hashing the bank associated
2499 * with a given security state is copied to fieldoffset which is used from
2500 * there on out.
2502 * It is expected that register definitions use either fieldoffset or
2503 * bank_fieldoffsets in the definition but not both. It is also expected
2504 * that both bank offsets are set when defining a banked register. This
2505 * use indicates that a register is banked.
2507 ptrdiff_t bank_fieldoffsets[2];
2509 /* Function for making any access checks for this register in addition to
2510 * those specified by the 'access' permissions bits. If NULL, no extra
2511 * checks required. The access check is performed at runtime, not at
2512 * translate time.
2514 CPAccessFn *accessfn;
2515 /* Function for handling reads of this register. If NULL, then reads
2516 * will be done by loading from the offset into CPUARMState specified
2517 * by fieldoffset.
2519 CPReadFn *readfn;
2520 /* Function for handling writes of this register. If NULL, then writes
2521 * will be done by writing to the offset into CPUARMState specified
2522 * by fieldoffset.
2524 CPWriteFn *writefn;
2525 /* Function for doing a "raw" read; used when we need to copy
2526 * coprocessor state to the kernel for KVM or out for
2527 * migration. This only needs to be provided if there is also a
2528 * readfn and it has side effects (for instance clear-on-read bits).
2530 CPReadFn *raw_readfn;
2531 /* Function for doing a "raw" write; used when we need to copy KVM
2532 * kernel coprocessor state into userspace, or for inbound
2533 * migration. This only needs to be provided if there is also a
2534 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2535 * or similar behaviour.
2537 CPWriteFn *raw_writefn;
2538 /* Function for resetting the register. If NULL, then reset will be done
2539 * by writing resetvalue to the field specified in fieldoffset. If
2540 * fieldoffset is 0 then no reset will be done.
2542 CPResetFn *resetfn;
2545 /* Macros which are lvalues for the field in CPUARMState for the
2546 * ARMCPRegInfo *ri.
2548 #define CPREG_FIELD32(env, ri) \
2549 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2550 #define CPREG_FIELD64(env, ri) \
2551 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2553 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2555 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2556 const ARMCPRegInfo *regs, void *opaque);
2557 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2558 const ARMCPRegInfo *regs, void *opaque);
2559 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2561 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2563 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2565 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2567 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2570 * Definition of an ARM co-processor register as viewed from
2571 * userspace. This is used for presenting sanitised versions of
2572 * registers to userspace when emulating the Linux AArch64 CPU
2573 * ID/feature ABI (advertised as HWCAP_CPUID).
2575 typedef struct ARMCPRegUserSpaceInfo {
2576 /* Name of register */
2577 const char *name;
2579 /* Is the name actually a glob pattern */
2580 bool is_glob;
2582 /* Only some bits are exported to user space */
2583 uint64_t exported_bits;
2585 /* Fixed bits are applied after the mask */
2586 uint64_t fixed_bits;
2587 } ARMCPRegUserSpaceInfo;
2589 #define REGUSERINFO_SENTINEL { .name = NULL }
2591 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2593 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2594 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2595 uint64_t value);
2596 /* CPReadFn that can be used for read-as-zero behaviour */
2597 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2599 /* CPResetFn that does nothing, for use if no reset is required even
2600 * if fieldoffset is non zero.
2602 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2604 /* Return true if this reginfo struct's field in the cpu state struct
2605 * is 64 bits wide.
2607 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2609 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2612 static inline bool cp_access_ok(int current_el,
2613 const ARMCPRegInfo *ri, int isread)
2615 return (ri->access >> ((current_el * 2) + isread)) & 1;
2618 /* Raw read of a coprocessor register (as needed for migration, etc) */
2619 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2622 * write_list_to_cpustate
2623 * @cpu: ARMCPU
2625 * For each register listed in the ARMCPU cpreg_indexes list, write
2626 * its value from the cpreg_values list into the ARMCPUState structure.
2627 * This updates TCG's working data structures from KVM data or
2628 * from incoming migration state.
2630 * Returns: true if all register values were updated correctly,
2631 * false if some register was unknown or could not be written.
2632 * Note that we do not stop early on failure -- we will attempt
2633 * writing all registers in the list.
2635 bool write_list_to_cpustate(ARMCPU *cpu);
2638 * write_cpustate_to_list:
2639 * @cpu: ARMCPU
2640 * @kvm_sync: true if this is for syncing back to KVM
2642 * For each register listed in the ARMCPU cpreg_indexes list, write
2643 * its value from the ARMCPUState structure into the cpreg_values list.
2644 * This is used to copy info from TCG's working data structures into
2645 * KVM or for outbound migration.
2647 * @kvm_sync is true if we are doing this in order to sync the
2648 * register state back to KVM. In this case we will only update
2649 * values in the list if the previous list->cpustate sync actually
2650 * successfully wrote the CPU state. Otherwise we will keep the value
2651 * that is in the list.
2653 * Returns: true if all register values were read correctly,
2654 * false if some register was unknown or could not be read.
2655 * Note that we do not stop early on failure -- we will attempt
2656 * reading all registers in the list.
2658 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2660 #define ARM_CPUID_TI915T 0x54029152
2661 #define ARM_CPUID_TI925T 0x54029252
2663 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2664 unsigned int target_el)
2666 CPUARMState *env = cs->env_ptr;
2667 unsigned int cur_el = arm_current_el(env);
2668 bool secure = arm_is_secure(env);
2669 bool pstate_unmasked;
2670 int8_t unmasked = 0;
2671 uint64_t hcr_el2;
2673 /* Don't take exceptions if they target a lower EL.
2674 * This check should catch any exceptions that would not be taken but left
2675 * pending.
2677 if (cur_el > target_el) {
2678 return false;
2681 hcr_el2 = arm_hcr_el2_eff(env);
2683 switch (excp_idx) {
2684 case EXCP_FIQ:
2685 pstate_unmasked = !(env->daif & PSTATE_F);
2686 break;
2688 case EXCP_IRQ:
2689 pstate_unmasked = !(env->daif & PSTATE_I);
2690 break;
2692 case EXCP_VFIQ:
2693 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2694 /* VFIQs are only taken when hypervized and non-secure. */
2695 return false;
2697 return !(env->daif & PSTATE_F);
2698 case EXCP_VIRQ:
2699 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2700 /* VIRQs are only taken when hypervized and non-secure. */
2701 return false;
2703 return !(env->daif & PSTATE_I);
2704 default:
2705 g_assert_not_reached();
2708 /* Use the target EL, current execution state and SCR/HCR settings to
2709 * determine whether the corresponding CPSR bit is used to mask the
2710 * interrupt.
2712 if ((target_el > cur_el) && (target_el != 1)) {
2713 /* Exceptions targeting a higher EL may not be maskable */
2714 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2715 /* 64-bit masking rules are simple: exceptions to EL3
2716 * can't be masked, and exceptions to EL2 can only be
2717 * masked from Secure state. The HCR and SCR settings
2718 * don't affect the masking logic, only the interrupt routing.
2720 if (target_el == 3 || !secure) {
2721 unmasked = 1;
2723 } else {
2724 /* The old 32-bit-only environment has a more complicated
2725 * masking setup. HCR and SCR bits not only affect interrupt
2726 * routing but also change the behaviour of masking.
2728 bool hcr, scr;
2730 switch (excp_idx) {
2731 case EXCP_FIQ:
2732 /* If FIQs are routed to EL3 or EL2 then there are cases where
2733 * we override the CPSR.F in determining if the exception is
2734 * masked or not. If neither of these are set then we fall back
2735 * to the CPSR.F setting otherwise we further assess the state
2736 * below.
2738 hcr = hcr_el2 & HCR_FMO;
2739 scr = (env->cp15.scr_el3 & SCR_FIQ);
2741 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2742 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2743 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2744 * when non-secure but only when FIQs are only routed to EL3.
2746 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2747 break;
2748 case EXCP_IRQ:
2749 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2750 * we may override the CPSR.I masking when in non-secure state.
2751 * The SCR.IRQ setting has already been taken into consideration
2752 * when setting the target EL, so it does not have a further
2753 * affect here.
2755 hcr = hcr_el2 & HCR_IMO;
2756 scr = false;
2757 break;
2758 default:
2759 g_assert_not_reached();
2762 if ((scr || hcr) && !secure) {
2763 unmasked = 1;
2768 /* The PSTATE bits only mask the interrupt if we have not overriden the
2769 * ability above.
2771 return unmasked || pstate_unmasked;
2774 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2775 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2776 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2778 #define cpu_signal_handler cpu_arm_signal_handler
2779 #define cpu_list arm_cpu_list
2781 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2783 * If EL3 is 64-bit:
2784 * + NonSecure EL1 & 0 stage 1
2785 * + NonSecure EL1 & 0 stage 2
2786 * + NonSecure EL2
2787 * + Secure EL1 & EL0
2788 * + Secure EL3
2789 * If EL3 is 32-bit:
2790 * + NonSecure PL1 & 0 stage 1
2791 * + NonSecure PL1 & 0 stage 2
2792 * + NonSecure PL2
2793 * + Secure PL0 & PL1
2794 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2796 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2797 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2798 * may differ in access permissions even if the VA->PA map is the same
2799 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2800 * translation, which means that we have one mmu_idx that deals with two
2801 * concatenated translation regimes [this sort of combined s1+2 TLB is
2802 * architecturally permitted]
2803 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2804 * handling via the TLB. The only way to do a stage 1 translation without
2805 * the immediate stage 2 translation is via the ATS or AT system insns,
2806 * which can be slow-pathed and always do a page table walk.
2807 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2808 * translation regimes, because they map reasonably well to each other
2809 * and they can't both be active at the same time.
2810 * This gives us the following list of mmu_idx values:
2812 * NS EL0 (aka NS PL0) stage 1+2
2813 * NS EL1 (aka NS PL1) stage 1+2
2814 * NS EL2 (aka NS PL2)
2815 * S EL3 (aka S PL1)
2816 * S EL0 (aka S PL0)
2817 * S EL1 (not used if EL3 is 32 bit)
2818 * NS EL0+1 stage 2
2820 * (The last of these is an mmu_idx because we want to be able to use the TLB
2821 * for the accesses done as part of a stage 1 page table walk, rather than
2822 * having to walk the stage 2 page table over and over.)
2824 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2825 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2826 * NS EL2 if we ever model a Cortex-R52).
2828 * M profile CPUs are rather different as they do not have a true MMU.
2829 * They have the following different MMU indexes:
2830 * User
2831 * Privileged
2832 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2833 * Privileged, execution priority negative (ditto)
2834 * If the CPU supports the v8M Security Extension then there are also:
2835 * Secure User
2836 * Secure Privileged
2837 * Secure User, execution priority negative
2838 * Secure Privileged, execution priority negative
2840 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2841 * are not quite the same -- different CPU types (most notably M profile
2842 * vs A/R profile) would like to use MMU indexes with different semantics,
2843 * but since we don't ever need to use all of those in a single CPU we
2844 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2845 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2846 * the same for any particular CPU.
2847 * Variables of type ARMMUIdx are always full values, and the core
2848 * index values are in variables of type 'int'.
2850 * Our enumeration includes at the end some entries which are not "true"
2851 * mmu_idx values in that they don't have corresponding TLBs and are only
2852 * valid for doing slow path page table walks.
2854 * The constant names here are patterned after the general style of the names
2855 * of the AT/ATS operations.
2856 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2857 * For M profile we arrange them to have a bit for priv, a bit for negpri
2858 * and a bit for secure.
2860 #define ARM_MMU_IDX_A 0x10 /* A profile */
2861 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2862 #define ARM_MMU_IDX_M 0x40 /* M profile */
2864 /* meanings of the bits for M profile mmu idx values */
2865 #define ARM_MMU_IDX_M_PRIV 0x1
2866 #define ARM_MMU_IDX_M_NEGPRI 0x2
2867 #define ARM_MMU_IDX_M_S 0x4
2869 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2870 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2872 typedef enum ARMMMUIdx {
2873 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2874 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2875 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2876 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2877 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2878 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2879 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2880 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2881 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2882 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2883 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2884 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2885 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2886 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2887 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2888 /* Indexes below here don't have TLBs and are used only for AT system
2889 * instructions or for the first stage of an S12 page table walk.
2891 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2892 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2893 } ARMMMUIdx;
2895 /* Bit macros for the core-mmu-index values for each index,
2896 * for use when calling tlb_flush_by_mmuidx() and friends.
2898 typedef enum ARMMMUIdxBit {
2899 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2900 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2901 ARMMMUIdxBit_S1E2 = 1 << 2,
2902 ARMMMUIdxBit_S1E3 = 1 << 3,
2903 ARMMMUIdxBit_S1SE0 = 1 << 4,
2904 ARMMMUIdxBit_S1SE1 = 1 << 5,
2905 ARMMMUIdxBit_S2NS = 1 << 6,
2906 ARMMMUIdxBit_MUser = 1 << 0,
2907 ARMMMUIdxBit_MPriv = 1 << 1,
2908 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2909 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2910 ARMMMUIdxBit_MSUser = 1 << 4,
2911 ARMMMUIdxBit_MSPriv = 1 << 5,
2912 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2913 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2914 } ARMMMUIdxBit;
2916 #define MMU_USER_IDX 0
2918 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2920 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2923 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2925 if (arm_feature(env, ARM_FEATURE_M)) {
2926 return mmu_idx | ARM_MMU_IDX_M;
2927 } else {
2928 return mmu_idx | ARM_MMU_IDX_A;
2932 /* Return the exception level we're running at if this is our mmu_idx */
2933 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2935 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2936 case ARM_MMU_IDX_A:
2937 return mmu_idx & 3;
2938 case ARM_MMU_IDX_M:
2939 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2940 default:
2941 g_assert_not_reached();
2946 * Return the MMU index for a v7M CPU with all relevant information
2947 * manually specified.
2949 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2950 bool secstate, bool priv, bool negpri);
2952 /* Return the MMU index for a v7M CPU in the specified security and
2953 * privilege state.
2955 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2956 bool secstate, bool priv);
2958 /* Return the MMU index for a v7M CPU in the specified security state */
2959 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2962 * cpu_mmu_index:
2963 * @env: The cpu environment
2964 * @ifetch: True for code access, false for data access.
2966 * Return the core mmu index for the current translation regime.
2967 * This function is used by generic TCG code paths.
2969 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2971 /* Indexes used when registering address spaces with cpu_address_space_init */
2972 typedef enum ARMASIdx {
2973 ARMASIdx_NS = 0,
2974 ARMASIdx_S = 1,
2975 } ARMASIdx;
2977 /* Return the Exception Level targeted by debug exceptions. */
2978 static inline int arm_debug_target_el(CPUARMState *env)
2980 bool secure = arm_is_secure(env);
2981 bool route_to_el2 = false;
2983 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2984 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2985 env->cp15.mdcr_el2 & MDCR_TDE;
2988 if (route_to_el2) {
2989 return 2;
2990 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2991 !arm_el_is_aa64(env, 3) && secure) {
2992 return 3;
2993 } else {
2994 return 1;
2998 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3000 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3001 * CSSELR is RAZ/WI.
3003 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3006 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3007 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3009 int cur_el = arm_current_el(env);
3010 int debug_el;
3012 if (cur_el == 3) {
3013 return false;
3016 /* MDCR_EL3.SDD disables debug events from Secure state */
3017 if (arm_is_secure_below_el3(env)
3018 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3019 return false;
3023 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3024 * while not masking the (D)ebug bit in DAIF.
3026 debug_el = arm_debug_target_el(env);
3028 if (cur_el == debug_el) {
3029 return extract32(env->cp15.mdscr_el1, 13, 1)
3030 && !(env->daif & PSTATE_D);
3033 /* Otherwise the debug target needs to be a higher EL */
3034 return debug_el > cur_el;
3037 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3039 int el = arm_current_el(env);
3041 if (el == 0 && arm_el_is_aa64(env, 1)) {
3042 return aa64_generate_debug_exceptions(env);
3045 if (arm_is_secure(env)) {
3046 int spd;
3048 if (el == 0 && (env->cp15.sder & 1)) {
3049 /* SDER.SUIDEN means debug exceptions from Secure EL0
3050 * are always enabled. Otherwise they are controlled by
3051 * SDCR.SPD like those from other Secure ELs.
3053 return true;
3056 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3057 switch (spd) {
3058 case 1:
3059 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3060 case 0:
3061 /* For 0b00 we return true if external secure invasive debug
3062 * is enabled. On real hardware this is controlled by external
3063 * signals to the core. QEMU always permits debug, and behaves
3064 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3066 return true;
3067 case 2:
3068 return false;
3069 case 3:
3070 return true;
3074 return el != 2;
3077 /* Return true if debugging exceptions are currently enabled.
3078 * This corresponds to what in ARM ARM pseudocode would be
3079 * if UsingAArch32() then
3080 * return AArch32.GenerateDebugExceptions()
3081 * else
3082 * return AArch64.GenerateDebugExceptions()
3083 * We choose to push the if() down into this function for clarity,
3084 * since the pseudocode has it at all callsites except for the one in
3085 * CheckSoftwareStep(), where it is elided because both branches would
3086 * always return the same value.
3088 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3090 if (env->aarch64) {
3091 return aa64_generate_debug_exceptions(env);
3092 } else {
3093 return aa32_generate_debug_exceptions(env);
3097 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3098 * implicitly means this always returns false in pre-v8 CPUs.)
3100 static inline bool arm_singlestep_active(CPUARMState *env)
3102 return extract32(env->cp15.mdscr_el1, 0, 1)
3103 && arm_el_is_aa64(env, arm_debug_target_el(env))
3104 && arm_generate_debug_exceptions(env);
3107 static inline bool arm_sctlr_b(CPUARMState *env)
3109 return
3110 /* We need not implement SCTLR.ITD in user-mode emulation, so
3111 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3112 * This lets people run BE32 binaries with "-cpu any".
3114 #ifndef CONFIG_USER_ONLY
3115 !arm_feature(env, ARM_FEATURE_V7) &&
3116 #endif
3117 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3120 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3122 if (el == 0) {
3123 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3124 return env->cp15.sctlr_el[1];
3125 } else {
3126 return env->cp15.sctlr_el[el];
3130 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3131 bool sctlr_b)
3133 #ifdef CONFIG_USER_ONLY
3135 * In system mode, BE32 is modelled in line with the
3136 * architecture (as word-invariant big-endianness), where loads
3137 * and stores are done little endian but from addresses which
3138 * are adjusted by XORing with the appropriate constant. So the
3139 * endianness to use for the raw data access is not affected by
3140 * SCTLR.B.
3141 * In user mode, however, we model BE32 as byte-invariant
3142 * big-endianness (because user-only code cannot tell the
3143 * difference), and so we need to use a data access endianness
3144 * that depends on SCTLR.B.
3146 if (sctlr_b) {
3147 return true;
3149 #endif
3150 /* In 32bit endianness is determined by looking at CPSR's E bit */
3151 return env->uncached_cpsr & CPSR_E;
3154 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3156 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3159 /* Return true if the processor is in big-endian mode. */
3160 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3162 if (!is_a64(env)) {
3163 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3164 } else {
3165 int cur_el = arm_current_el(env);
3166 uint64_t sctlr = arm_sctlr(env, cur_el);
3167 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3171 typedef CPUARMState CPUArchState;
3172 typedef ARMCPU ArchCPU;
3174 #include "exec/cpu-all.h"
3177 * Bit usage in the TB flags field: bit 31 indicates whether we are
3178 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3179 * We put flags which are shared between 32 and 64 bit mode at the top
3180 * of the word, and flags which apply to only one mode at the bottom.
3182 * Unless otherwise noted, these bits are cached in env->hflags.
3184 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3185 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3186 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3187 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) /* Not cached. */
3188 /* Target EL if we take a floating-point-disabled exception */
3189 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3190 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3192 * For A-profile only, target EL for debug exceptions.
3193 * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
3195 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)
3197 /* Bit usage when in AArch32 state: */
3198 FIELD(TBFLAG_A32, THUMB, 0, 1) /* Not cached. */
3199 FIELD(TBFLAG_A32, VECLEN, 1, 3) /* Not cached. */
3200 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) /* Not cached. */
3202 * We store the bottom two bits of the CPAR as TB flags and handle
3203 * checks on the other bits at runtime. This shares the same bits as
3204 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3205 * Not cached, because VECLEN+VECSTRIDE are not cached.
3207 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3209 * Indicates whether cp register reads and writes by guest code should access
3210 * the secure or nonsecure bank of banked registers; note that this is not
3211 * the same thing as the current security state of the processor!
3213 FIELD(TBFLAG_A32, NS, 6, 1)
3214 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3215 FIELD(TBFLAG_A32, CONDEXEC, 8, 8) /* Not cached. */
3216 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3217 /* For M profile only, set if FPCCR.LSPACT is set */
3218 FIELD(TBFLAG_A32, LSPACT, 18, 1) /* Not cached. */
3219 /* For M profile only, set if we must create a new FP context */
3220 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */
3221 /* For M profile only, set if FPCCR.S does not match current security state */
3222 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */
3223 /* For M profile only, Handler (ie not Thread) mode */
3224 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3225 /* For M profile only, whether we should generate stack-limit checks */
3226 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3228 /* Bit usage when in AArch64 state */
3229 FIELD(TBFLAG_A64, TBII, 0, 2)
3230 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3231 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3232 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3233 FIELD(TBFLAG_A64, BT, 9, 1)
3234 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3235 FIELD(TBFLAG_A64, TBID, 12, 2)
3237 static inline bool bswap_code(bool sctlr_b)
3239 #ifdef CONFIG_USER_ONLY
3240 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3241 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3242 * would also end up as a mixed-endian mode with BE code, LE data.
3244 return
3245 #ifdef TARGET_WORDS_BIGENDIAN
3247 #endif
3248 sctlr_b;
3249 #else
3250 /* All code access in ARM is little endian, and there are no loaders
3251 * doing swaps that need to be reversed
3253 return 0;
3254 #endif
3257 #ifdef CONFIG_USER_ONLY
3258 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3260 return
3261 #ifdef TARGET_WORDS_BIGENDIAN
3263 #endif
3264 arm_cpu_data_is_big_endian(env);
3266 #endif
3268 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3269 target_ulong *cs_base, uint32_t *flags);
3271 enum {
3272 QEMU_PSCI_CONDUIT_DISABLED = 0,
3273 QEMU_PSCI_CONDUIT_SMC = 1,
3274 QEMU_PSCI_CONDUIT_HVC = 2,
3277 #ifndef CONFIG_USER_ONLY
3278 /* Return the address space index to use for a memory access */
3279 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3281 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3284 /* Return the AddressSpace to use for a memory access
3285 * (which depends on whether the access is S or NS, and whether
3286 * the board gave us a separate AddressSpace for S accesses).
3288 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3290 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3292 #endif
3295 * arm_register_pre_el_change_hook:
3296 * Register a hook function which will be called immediately before this
3297 * CPU changes exception level or mode. The hook function will be
3298 * passed a pointer to the ARMCPU and the opaque data pointer passed
3299 * to this function when the hook was registered.
3301 * Note that if a pre-change hook is called, any registered post-change hooks
3302 * are guaranteed to subsequently be called.
3304 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3305 void *opaque);
3307 * arm_register_el_change_hook:
3308 * Register a hook function which will be called immediately after this
3309 * CPU changes exception level or mode. The hook function will be
3310 * passed a pointer to the ARMCPU and the opaque data pointer passed
3311 * to this function when the hook was registered.
3313 * Note that any registered hooks registered here are guaranteed to be called
3314 * if pre-change hooks have been.
3316 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3317 *opaque);
3320 * arm_rebuild_hflags:
3321 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3323 void arm_rebuild_hflags(CPUARMState *env);
3326 * aa32_vfp_dreg:
3327 * Return a pointer to the Dn register within env in 32-bit mode.
3329 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3331 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3335 * aa32_vfp_qreg:
3336 * Return a pointer to the Qn register within env in 32-bit mode.
3338 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3340 return &env->vfp.zregs[regno].d[0];
3344 * aa64_vfp_qreg:
3345 * Return a pointer to the Qn register within env in 64-bit mode.
3347 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3349 return &env->vfp.zregs[regno].d[0];
3352 /* Shared between translate-sve.c and sve_helper.c. */
3353 extern const uint64_t pred_esz_masks[4];
3356 * 32-bit feature tests via id registers.
3358 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3360 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3363 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3365 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3368 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3370 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3373 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3375 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3378 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3380 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3383 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3385 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3388 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3390 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3393 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3395 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3398 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3400 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3403 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3405 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3408 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3410 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3413 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3415 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3418 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3420 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3423 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3425 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3428 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3430 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3433 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3436 * This is a placeholder for use by VCMA until the rest of
3437 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3438 * At which point we can properly set and check MVFR1.FPHP.
3440 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3443 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3445 /* Return true if D16-D31 are implemented */
3446 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3449 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3451 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3454 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3456 /* Return true if CPU supports double precision floating point */
3457 return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3461 * We always set the FP and SIMD FP16 fields to indicate identical
3462 * levels of support (assuming SIMD is implemented at all), so
3463 * we only need one set of accessors.
3465 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3467 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3470 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3472 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3475 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3477 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3480 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3482 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3485 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3487 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3490 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3492 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3496 * 64-bit feature tests via id registers.
3498 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3500 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3503 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3505 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3508 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3510 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3513 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3515 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3518 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3520 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3523 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3525 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3528 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3530 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3533 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3535 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3538 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3540 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3543 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3545 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3548 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3550 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3553 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3555 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3558 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3560 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3563 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3565 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3568 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3570 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3573 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3575 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3578 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3580 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3583 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3585 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3588 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3591 * Note that while QEMU will only implement the architected algorithm
3592 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3593 * defined algorithms, and thus API+GPI, and this predicate controls
3594 * migration of the 128-bit keys.
3596 return (id->id_aa64isar1 &
3597 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3598 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3599 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3600 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3603 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3605 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3608 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3610 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3613 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3615 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3618 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3620 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3621 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3624 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3626 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3629 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3631 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3634 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3636 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3639 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3641 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3645 * Forward to the above feature tests given an ARMCPU pointer.
3647 #define cpu_isar_feature(name, cpu) \
3648 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3650 #endif