target/arm/cpu64: max cpu: Introduce sve<N> properties
[qemu/ar7.git] / target / arm / cpu.c
blob17d1f2b2894df65386915dc13188d3a7b43fe827
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
73 static bool arm_cpu_has_work(CPUState *cs)
75 ARMCPU *cpu = ARM_CPU(cs);
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
89 entry->hook = hook;
90 entry->opaque = opaque;
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
100 entry->hook = hook;
101 entry->opaque = opaque;
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
126 if (!ri->fieldoffset) {
127 return;
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
165 acc->parent_reset(s);
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178 s->halted = cpu->start_powered_off;
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
194 /* Enable all PAC instructions */
195 env->cp15.hcr_el2 |= HCR_API;
196 env->cp15.scr_el3 |= SCR_API;
197 /* and to the FP/Neon instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199 /* and to the SVE instructions */
200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201 env->cp15.cptr_el[3] |= CPTR_EZ;
202 /* with maximum vector length */
203 env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204 cpu->sve_max_vq - 1 : 0;
205 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
208 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
209 * turning on both here will produce smaller code and otherwise
210 * make no difference to the user-level emulation.
212 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214 /* Reset into the highest available EL */
215 if (arm_feature(env, ARM_FEATURE_EL3)) {
216 env->pstate = PSTATE_MODE_EL3h;
217 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218 env->pstate = PSTATE_MODE_EL2h;
219 } else {
220 env->pstate = PSTATE_MODE_EL1h;
222 env->pc = cpu->rvbar;
223 #endif
224 } else {
225 #if defined(CONFIG_USER_ONLY)
226 /* Userspace expects access to cp10 and cp11 for FP/Neon */
227 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
231 #if defined(CONFIG_USER_ONLY)
232 env->uncached_cpsr = ARM_CPU_MODE_USR;
233 /* For user mode we must enable access to coprocessors */
234 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236 env->cp15.c15_cpar = 3;
237 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238 env->cp15.c15_cpar = 1;
240 #else
243 * If the highest available EL is EL2, AArch32 will start in Hyp
244 * mode; otherwise it starts in SVC. Note that if we start in
245 * AArch64 then these values in the uncached_cpsr will be ignored.
247 if (arm_feature(env, ARM_FEATURE_EL2) &&
248 !arm_feature(env, ARM_FEATURE_EL3)) {
249 env->uncached_cpsr = ARM_CPU_MODE_HYP;
250 } else {
251 env->uncached_cpsr = ARM_CPU_MODE_SVC;
253 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
255 if (arm_feature(env, ARM_FEATURE_M)) {
256 uint32_t initial_msp; /* Loaded from 0x0 */
257 uint32_t initial_pc; /* Loaded from 0x4 */
258 uint8_t *rom;
259 uint32_t vecbase;
261 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262 env->v7m.secure = true;
263 } else {
264 /* This bit resets to 0 if security is supported, but 1 if
265 * it is not. The bit is not present in v7M, but we set it
266 * here so we can avoid having to make checks on it conditional
267 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
269 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
271 * Set NSACR to indicate "NS access permitted to everything";
272 * this avoids having to have all the tests of it being
273 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274 * v8.1M the guest-visible value of NSACR in a CPU without the
275 * Security Extension is 0xcff.
277 env->v7m.nsacr = 0xcff;
280 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281 * that it resets to 1, so QEMU always does that rather than making
282 * it dependent on CPU model. In v8M it is RES1.
284 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286 if (arm_feature(env, ARM_FEATURE_V8)) {
287 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
291 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
296 if (arm_feature(env, ARM_FEATURE_VFP)) {
297 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
301 /* Unlike A/R profile, M profile defines the reset LR value */
302 env->regs[14] = 0xffffffff;
304 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
306 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307 vecbase = env->v7m.vecbase[env->v7m.secure];
308 rom = rom_ptr(vecbase, 8);
309 if (rom) {
310 /* Address zero is covered by ROM which hasn't yet been
311 * copied into physical memory.
313 initial_msp = ldl_p(rom);
314 initial_pc = ldl_p(rom + 4);
315 } else {
316 /* Address zero not covered by a ROM blob, or the ROM blob
317 * is in non-modifiable memory and this is a second reset after
318 * it got copied into memory. In the latter case, rom_ptr
319 * will return a NULL pointer and we should use ldl_phys instead.
321 initial_msp = ldl_phys(s->as, vecbase);
322 initial_pc = ldl_phys(s->as, vecbase + 4);
325 env->regs[13] = initial_msp & 0xFFFFFFFC;
326 env->regs[15] = initial_pc & ~1;
327 env->thumb = initial_pc & 1;
330 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
331 * executing as AArch32 then check if highvecs are enabled and
332 * adjust the PC accordingly.
334 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335 env->regs[15] = 0xFFFF0000;
338 /* M profile requires that reset clears the exclusive monitor;
339 * A profile does not, but clearing it makes more sense than having it
340 * set with an exclusive access on address zero.
342 arm_clear_exclusive(env);
344 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
347 if (arm_feature(env, ARM_FEATURE_PMSA)) {
348 if (cpu->pmsav7_dregion > 0) {
349 if (arm_feature(env, ARM_FEATURE_V8)) {
350 memset(env->pmsav8.rbar[M_REG_NS], 0,
351 sizeof(*env->pmsav8.rbar[M_REG_NS])
352 * cpu->pmsav7_dregion);
353 memset(env->pmsav8.rlar[M_REG_NS], 0,
354 sizeof(*env->pmsav8.rlar[M_REG_NS])
355 * cpu->pmsav7_dregion);
356 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357 memset(env->pmsav8.rbar[M_REG_S], 0,
358 sizeof(*env->pmsav8.rbar[M_REG_S])
359 * cpu->pmsav7_dregion);
360 memset(env->pmsav8.rlar[M_REG_S], 0,
361 sizeof(*env->pmsav8.rlar[M_REG_S])
362 * cpu->pmsav7_dregion);
364 } else if (arm_feature(env, ARM_FEATURE_V7)) {
365 memset(env->pmsav7.drbar, 0,
366 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367 memset(env->pmsav7.drsr, 0,
368 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369 memset(env->pmsav7.dracr, 0,
370 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
373 env->pmsav7.rnr[M_REG_NS] = 0;
374 env->pmsav7.rnr[M_REG_S] = 0;
375 env->pmsav8.mair0[M_REG_NS] = 0;
376 env->pmsav8.mair0[M_REG_S] = 0;
377 env->pmsav8.mair1[M_REG_NS] = 0;
378 env->pmsav8.mair1[M_REG_S] = 0;
381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382 if (cpu->sau_sregion > 0) {
383 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
386 env->sau.rnr = 0;
387 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388 * the Cortex-M33 does.
390 env->sau.ctrl = 0;
393 set_flush_to_zero(1, &env->vfp.standard_fp_status);
394 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395 set_default_nan_mode(1, &env->vfp.standard_fp_status);
396 set_float_detect_tininess(float_tininess_before_rounding,
397 &env->vfp.fp_status);
398 set_float_detect_tininess(float_tininess_before_rounding,
399 &env->vfp.standard_fp_status);
400 set_float_detect_tininess(float_tininess_before_rounding,
401 &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403 if (kvm_enabled()) {
404 kvm_arm_reset_vcpu(cpu);
406 #endif
408 hw_breakpoint_update_all(cpu);
409 hw_watchpoint_update_all(cpu);
410 arm_rebuild_hflags(env);
413 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
415 CPUClass *cc = CPU_GET_CLASS(cs);
416 CPUARMState *env = cs->env_ptr;
417 uint32_t cur_el = arm_current_el(env);
418 bool secure = arm_is_secure(env);
419 uint32_t target_el;
420 uint32_t excp_idx;
421 bool ret = false;
423 if (interrupt_request & CPU_INTERRUPT_FIQ) {
424 excp_idx = EXCP_FIQ;
425 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
426 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
427 cs->exception_index = excp_idx;
428 env->exception.target_el = target_el;
429 cc->do_interrupt(cs);
430 ret = true;
433 if (interrupt_request & CPU_INTERRUPT_HARD) {
434 excp_idx = EXCP_IRQ;
435 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
436 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
437 cs->exception_index = excp_idx;
438 env->exception.target_el = target_el;
439 cc->do_interrupt(cs);
440 ret = true;
443 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
444 excp_idx = EXCP_VIRQ;
445 target_el = 1;
446 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
447 cs->exception_index = excp_idx;
448 env->exception.target_el = target_el;
449 cc->do_interrupt(cs);
450 ret = true;
453 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
454 excp_idx = EXCP_VFIQ;
455 target_el = 1;
456 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
457 cs->exception_index = excp_idx;
458 env->exception.target_el = target_el;
459 cc->do_interrupt(cs);
460 ret = true;
464 return ret;
467 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
468 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
470 CPUClass *cc = CPU_GET_CLASS(cs);
471 ARMCPU *cpu = ARM_CPU(cs);
472 CPUARMState *env = &cpu->env;
473 bool ret = false;
475 /* ARMv7-M interrupt masking works differently than -A or -R.
476 * There is no FIQ/IRQ distinction. Instead of I and F bits
477 * masking FIQ and IRQ interrupts, an exception is taken only
478 * if it is higher priority than the current execution priority
479 * (which depends on state like BASEPRI, FAULTMASK and the
480 * currently active exception).
482 if (interrupt_request & CPU_INTERRUPT_HARD
483 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
484 cs->exception_index = EXCP_IRQ;
485 cc->do_interrupt(cs);
486 ret = true;
488 return ret;
490 #endif
492 void arm_cpu_update_virq(ARMCPU *cpu)
495 * Update the interrupt level for VIRQ, which is the logical OR of
496 * the HCR_EL2.VI bit and the input line level from the GIC.
498 CPUARMState *env = &cpu->env;
499 CPUState *cs = CPU(cpu);
501 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
502 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
504 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
505 if (new_state) {
506 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
507 } else {
508 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
513 void arm_cpu_update_vfiq(ARMCPU *cpu)
516 * Update the interrupt level for VFIQ, which is the logical OR of
517 * the HCR_EL2.VF bit and the input line level from the GIC.
519 CPUARMState *env = &cpu->env;
520 CPUState *cs = CPU(cpu);
522 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
523 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
525 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
526 if (new_state) {
527 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
528 } else {
529 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
534 #ifndef CONFIG_USER_ONLY
535 static void arm_cpu_set_irq(void *opaque, int irq, int level)
537 ARMCPU *cpu = opaque;
538 CPUARMState *env = &cpu->env;
539 CPUState *cs = CPU(cpu);
540 static const int mask[] = {
541 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
542 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
543 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
544 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
547 if (level) {
548 env->irq_line_state |= mask[irq];
549 } else {
550 env->irq_line_state &= ~mask[irq];
553 switch (irq) {
554 case ARM_CPU_VIRQ:
555 assert(arm_feature(env, ARM_FEATURE_EL2));
556 arm_cpu_update_virq(cpu);
557 break;
558 case ARM_CPU_VFIQ:
559 assert(arm_feature(env, ARM_FEATURE_EL2));
560 arm_cpu_update_vfiq(cpu);
561 break;
562 case ARM_CPU_IRQ:
563 case ARM_CPU_FIQ:
564 if (level) {
565 cpu_interrupt(cs, mask[irq]);
566 } else {
567 cpu_reset_interrupt(cs, mask[irq]);
569 break;
570 default:
571 g_assert_not_reached();
575 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
577 #ifdef CONFIG_KVM
578 ARMCPU *cpu = opaque;
579 CPUARMState *env = &cpu->env;
580 CPUState *cs = CPU(cpu);
581 uint32_t linestate_bit;
582 int irq_id;
584 switch (irq) {
585 case ARM_CPU_IRQ:
586 irq_id = KVM_ARM_IRQ_CPU_IRQ;
587 linestate_bit = CPU_INTERRUPT_HARD;
588 break;
589 case ARM_CPU_FIQ:
590 irq_id = KVM_ARM_IRQ_CPU_FIQ;
591 linestate_bit = CPU_INTERRUPT_FIQ;
592 break;
593 default:
594 g_assert_not_reached();
597 if (level) {
598 env->irq_line_state |= linestate_bit;
599 } else {
600 env->irq_line_state &= ~linestate_bit;
602 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
603 #endif
606 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
608 ARMCPU *cpu = ARM_CPU(cs);
609 CPUARMState *env = &cpu->env;
611 cpu_synchronize_state(cs);
612 return arm_cpu_data_is_big_endian(env);
615 #endif
617 static inline void set_feature(CPUARMState *env, int feature)
619 env->features |= 1ULL << feature;
622 static inline void unset_feature(CPUARMState *env, int feature)
624 env->features &= ~(1ULL << feature);
627 static int
628 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
630 return print_insn_arm(pc | 1, info);
633 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
635 ARMCPU *ac = ARM_CPU(cpu);
636 CPUARMState *env = &ac->env;
637 bool sctlr_b;
639 if (is_a64(env)) {
640 /* We might not be compiled with the A64 disassembler
641 * because it needs a C++ compiler. Leave print_insn
642 * unset in this case to use the caller default behaviour.
644 #if defined(CONFIG_ARM_A64_DIS)
645 info->print_insn = print_insn_arm_a64;
646 #endif
647 info->cap_arch = CS_ARCH_ARM64;
648 info->cap_insn_unit = 4;
649 info->cap_insn_split = 4;
650 } else {
651 int cap_mode;
652 if (env->thumb) {
653 info->print_insn = print_insn_thumb1;
654 info->cap_insn_unit = 2;
655 info->cap_insn_split = 4;
656 cap_mode = CS_MODE_THUMB;
657 } else {
658 info->print_insn = print_insn_arm;
659 info->cap_insn_unit = 4;
660 info->cap_insn_split = 4;
661 cap_mode = CS_MODE_ARM;
663 if (arm_feature(env, ARM_FEATURE_V8)) {
664 cap_mode |= CS_MODE_V8;
666 if (arm_feature(env, ARM_FEATURE_M)) {
667 cap_mode |= CS_MODE_MCLASS;
669 info->cap_arch = CS_ARCH_ARM;
670 info->cap_mode = cap_mode;
673 sctlr_b = arm_sctlr_b(env);
674 if (bswap_code(sctlr_b)) {
675 #ifdef TARGET_WORDS_BIGENDIAN
676 info->endian = BFD_ENDIAN_LITTLE;
677 #else
678 info->endian = BFD_ENDIAN_BIG;
679 #endif
681 info->flags &= ~INSN_ARM_BE32;
682 #ifndef CONFIG_USER_ONLY
683 if (sctlr_b) {
684 info->flags |= INSN_ARM_BE32;
686 #endif
689 #ifdef TARGET_AARCH64
691 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
693 ARMCPU *cpu = ARM_CPU(cs);
694 CPUARMState *env = &cpu->env;
695 uint32_t psr = pstate_read(env);
696 int i;
697 int el = arm_current_el(env);
698 const char *ns_status;
700 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
701 for (i = 0; i < 32; i++) {
702 if (i == 31) {
703 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
704 } else {
705 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
706 (i + 2) % 3 ? " " : "\n");
710 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
711 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
712 } else {
713 ns_status = "";
715 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
716 psr,
717 psr & PSTATE_N ? 'N' : '-',
718 psr & PSTATE_Z ? 'Z' : '-',
719 psr & PSTATE_C ? 'C' : '-',
720 psr & PSTATE_V ? 'V' : '-',
721 ns_status,
723 psr & PSTATE_SP ? 'h' : 't');
725 if (cpu_isar_feature(aa64_bti, cpu)) {
726 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
728 if (!(flags & CPU_DUMP_FPU)) {
729 qemu_fprintf(f, "\n");
730 return;
732 if (fp_exception_el(env, el) != 0) {
733 qemu_fprintf(f, " FPU disabled\n");
734 return;
736 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
737 vfp_get_fpcr(env), vfp_get_fpsr(env));
739 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
740 int j, zcr_len = sve_zcr_len_for_el(env, el);
742 for (i = 0; i <= FFR_PRED_NUM; i++) {
743 bool eol;
744 if (i == FFR_PRED_NUM) {
745 qemu_fprintf(f, "FFR=");
746 /* It's last, so end the line. */
747 eol = true;
748 } else {
749 qemu_fprintf(f, "P%02d=", i);
750 switch (zcr_len) {
751 case 0:
752 eol = i % 8 == 7;
753 break;
754 case 1:
755 eol = i % 6 == 5;
756 break;
757 case 2:
758 case 3:
759 eol = i % 3 == 2;
760 break;
761 default:
762 /* More than one quadword per predicate. */
763 eol = true;
764 break;
767 for (j = zcr_len / 4; j >= 0; j--) {
768 int digits;
769 if (j * 4 + 4 <= zcr_len + 1) {
770 digits = 16;
771 } else {
772 digits = (zcr_len % 4 + 1) * 4;
774 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
775 env->vfp.pregs[i].p[j],
776 j ? ":" : eol ? "\n" : " ");
780 for (i = 0; i < 32; i++) {
781 if (zcr_len == 0) {
782 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
783 i, env->vfp.zregs[i].d[1],
784 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
785 } else if (zcr_len == 1) {
786 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
787 ":%016" PRIx64 ":%016" PRIx64 "\n",
788 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
789 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
790 } else {
791 for (j = zcr_len; j >= 0; j--) {
792 bool odd = (zcr_len - j) % 2 != 0;
793 if (j == zcr_len) {
794 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
795 } else if (!odd) {
796 if (j > 0) {
797 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
798 } else {
799 qemu_fprintf(f, " [%x]=", j);
802 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
803 env->vfp.zregs[i].d[j * 2 + 1],
804 env->vfp.zregs[i].d[j * 2],
805 odd || j == 0 ? "\n" : ":");
809 } else {
810 for (i = 0; i < 32; i++) {
811 uint64_t *q = aa64_vfp_qreg(env, i);
812 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
813 i, q[1], q[0], (i & 1 ? "\n" : " "));
818 #else
820 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
822 g_assert_not_reached();
825 #endif
827 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
829 ARMCPU *cpu = ARM_CPU(cs);
830 CPUARMState *env = &cpu->env;
831 int i;
833 if (is_a64(env)) {
834 aarch64_cpu_dump_state(cs, f, flags);
835 return;
838 for (i = 0; i < 16; i++) {
839 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
840 if ((i % 4) == 3) {
841 qemu_fprintf(f, "\n");
842 } else {
843 qemu_fprintf(f, " ");
847 if (arm_feature(env, ARM_FEATURE_M)) {
848 uint32_t xpsr = xpsr_read(env);
849 const char *mode;
850 const char *ns_status = "";
852 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
853 ns_status = env->v7m.secure ? "S " : "NS ";
856 if (xpsr & XPSR_EXCP) {
857 mode = "handler";
858 } else {
859 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
860 mode = "unpriv-thread";
861 } else {
862 mode = "priv-thread";
866 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
867 xpsr,
868 xpsr & XPSR_N ? 'N' : '-',
869 xpsr & XPSR_Z ? 'Z' : '-',
870 xpsr & XPSR_C ? 'C' : '-',
871 xpsr & XPSR_V ? 'V' : '-',
872 xpsr & XPSR_T ? 'T' : 'A',
873 ns_status,
874 mode);
875 } else {
876 uint32_t psr = cpsr_read(env);
877 const char *ns_status = "";
879 if (arm_feature(env, ARM_FEATURE_EL3) &&
880 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
881 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
884 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
885 psr,
886 psr & CPSR_N ? 'N' : '-',
887 psr & CPSR_Z ? 'Z' : '-',
888 psr & CPSR_C ? 'C' : '-',
889 psr & CPSR_V ? 'V' : '-',
890 psr & CPSR_T ? 'T' : 'A',
891 ns_status,
892 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
895 if (flags & CPU_DUMP_FPU) {
896 int numvfpregs = 0;
897 if (arm_feature(env, ARM_FEATURE_VFP)) {
898 numvfpregs += 16;
900 if (arm_feature(env, ARM_FEATURE_VFP3)) {
901 numvfpregs += 16;
903 for (i = 0; i < numvfpregs; i++) {
904 uint64_t v = *aa32_vfp_dreg(env, i);
905 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
906 i * 2, (uint32_t)v,
907 i * 2 + 1, (uint32_t)(v >> 32),
908 i, v);
910 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
914 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
916 uint32_t Aff1 = idx / clustersz;
917 uint32_t Aff0 = idx % clustersz;
918 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
921 static void cpreg_hashtable_data_destroy(gpointer data)
924 * Destroy function for cpu->cp_regs hashtable data entries.
925 * We must free the name string because it was g_strdup()ed in
926 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
927 * from r->name because we know we definitely allocated it.
929 ARMCPRegInfo *r = data;
931 g_free((void *)r->name);
932 g_free(r);
935 static void arm_cpu_initfn(Object *obj)
937 ARMCPU *cpu = ARM_CPU(obj);
939 cpu_set_cpustate_pointers(cpu);
940 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
941 g_free, cpreg_hashtable_data_destroy);
943 QLIST_INIT(&cpu->pre_el_change_hooks);
944 QLIST_INIT(&cpu->el_change_hooks);
946 #ifndef CONFIG_USER_ONLY
947 /* Our inbound IRQ and FIQ lines */
948 if (kvm_enabled()) {
949 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
950 * the same interface as non-KVM CPUs.
952 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
953 } else {
954 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
957 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
958 ARRAY_SIZE(cpu->gt_timer_outputs));
960 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
961 "gicv3-maintenance-interrupt", 1);
962 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
963 "pmu-interrupt", 1);
964 #endif
966 /* DTB consumers generally don't in fact care what the 'compatible'
967 * string is, so always provide some string and trust that a hypothetical
968 * picky DTB consumer will also provide a helpful error message.
970 cpu->dtb_compatible = "qemu,unknown";
971 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
972 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
974 if (tcg_enabled()) {
975 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
979 static Property arm_cpu_reset_cbar_property =
980 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
982 static Property arm_cpu_reset_hivecs_property =
983 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
985 static Property arm_cpu_rvbar_property =
986 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
988 static Property arm_cpu_has_el2_property =
989 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
991 static Property arm_cpu_has_el3_property =
992 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
994 static Property arm_cpu_cfgend_property =
995 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
997 static Property arm_cpu_has_vfp_property =
998 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1000 static Property arm_cpu_has_neon_property =
1001 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1003 static Property arm_cpu_has_dsp_property =
1004 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1006 static Property arm_cpu_has_mpu_property =
1007 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1009 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1010 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1011 * the right value for that particular CPU type, and we don't want
1012 * to override that with an incorrect constant value.
1014 static Property arm_cpu_pmsav7_dregion_property =
1015 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1016 pmsav7_dregion,
1017 qdev_prop_uint32, uint32_t);
1019 static bool arm_get_pmu(Object *obj, Error **errp)
1021 ARMCPU *cpu = ARM_CPU(obj);
1023 return cpu->has_pmu;
1026 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1028 ARMCPU *cpu = ARM_CPU(obj);
1030 if (value) {
1031 if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1032 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1033 return;
1035 set_feature(&cpu->env, ARM_FEATURE_PMU);
1036 } else {
1037 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1039 cpu->has_pmu = value;
1042 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1043 void *opaque, Error **errp)
1045 ARMCPU *cpu = ARM_CPU(obj);
1047 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1050 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1051 void *opaque, Error **errp)
1053 ARMCPU *cpu = ARM_CPU(obj);
1055 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1058 void arm_cpu_post_init(Object *obj)
1060 ARMCPU *cpu = ARM_CPU(obj);
1062 /* M profile implies PMSA. We have to do this here rather than
1063 * in realize with the other feature-implication checks because
1064 * we look at the PMSA bit to see if we should add some properties.
1066 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1067 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1069 /* Similarly for the VFP feature bits */
1070 if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1071 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1073 if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1074 set_feature(&cpu->env, ARM_FEATURE_VFP);
1077 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1078 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1079 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1080 &error_abort);
1083 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1084 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1085 &error_abort);
1088 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1089 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1090 &error_abort);
1093 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1094 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1095 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1097 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1098 &error_abort);
1100 #ifndef CONFIG_USER_ONLY
1101 object_property_add_link(obj, "secure-memory",
1102 TYPE_MEMORY_REGION,
1103 (Object **)&cpu->secure_memory,
1104 qdev_prop_allow_set_link_before_realize,
1105 OBJ_PROP_LINK_STRONG,
1106 &error_abort);
1107 #endif
1110 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1111 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1112 &error_abort);
1115 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1116 cpu->has_pmu = true;
1117 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1118 &error_abort);
1122 * Allow user to turn off VFP and Neon support, but only for TCG --
1123 * KVM does not currently allow us to lie to the guest about its
1124 * ID/feature registers, so the guest always sees what the host has.
1126 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1127 cpu->has_vfp = true;
1128 if (!kvm_enabled()) {
1129 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1130 &error_abort);
1134 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1135 cpu->has_neon = true;
1136 if (!kvm_enabled()) {
1137 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1138 &error_abort);
1142 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1143 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1144 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1145 &error_abort);
1148 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1149 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1150 &error_abort);
1151 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1152 qdev_property_add_static(DEVICE(obj),
1153 &arm_cpu_pmsav7_dregion_property,
1154 &error_abort);
1158 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1159 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1160 qdev_prop_allow_set_link_before_realize,
1161 OBJ_PROP_LINK_STRONG,
1162 &error_abort);
1164 * M profile: initial value of the Secure VTOR. We can't just use
1165 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1166 * the property to be set after realize.
1168 object_property_add(obj, "init-svtor", "uint32",
1169 arm_get_init_svtor, arm_set_init_svtor,
1170 NULL, NULL, &error_abort);
1173 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1174 &error_abort);
1177 static void arm_cpu_finalizefn(Object *obj)
1179 ARMCPU *cpu = ARM_CPU(obj);
1180 ARMELChangeHook *hook, *next;
1182 g_hash_table_destroy(cpu->cp_regs);
1184 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1185 QLIST_REMOVE(hook, node);
1186 g_free(hook);
1188 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1189 QLIST_REMOVE(hook, node);
1190 g_free(hook);
1192 #ifndef CONFIG_USER_ONLY
1193 if (cpu->pmu_timer) {
1194 timer_del(cpu->pmu_timer);
1195 timer_deinit(cpu->pmu_timer);
1196 timer_free(cpu->pmu_timer);
1198 #endif
1201 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1203 Error *local_err = NULL;
1205 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1206 arm_cpu_sve_finalize(cpu, &local_err);
1207 if (local_err != NULL) {
1208 error_propagate(errp, local_err);
1209 return;
1214 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1216 CPUState *cs = CPU(dev);
1217 ARMCPU *cpu = ARM_CPU(dev);
1218 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1219 CPUARMState *env = &cpu->env;
1220 int pagebits;
1221 Error *local_err = NULL;
1222 bool no_aa32 = false;
1224 /* If we needed to query the host kernel for the CPU features
1225 * then it's possible that might have failed in the initfn, but
1226 * this is the first point where we can report it.
1228 if (cpu->host_cpu_probe_failed) {
1229 if (!kvm_enabled()) {
1230 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1231 } else {
1232 error_setg(errp, "Failed to retrieve host CPU features");
1234 return;
1237 #ifndef CONFIG_USER_ONLY
1238 /* The NVIC and M-profile CPU are two halves of a single piece of
1239 * hardware; trying to use one without the other is a command line
1240 * error and will result in segfaults if not caught here.
1242 if (arm_feature(env, ARM_FEATURE_M)) {
1243 if (!env->nvic) {
1244 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1245 return;
1247 } else {
1248 if (env->nvic) {
1249 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1250 return;
1254 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1255 arm_gt_ptimer_cb, cpu);
1256 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1257 arm_gt_vtimer_cb, cpu);
1258 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1259 arm_gt_htimer_cb, cpu);
1260 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1261 arm_gt_stimer_cb, cpu);
1262 #endif
1264 cpu_exec_realizefn(cs, &local_err);
1265 if (local_err != NULL) {
1266 error_propagate(errp, local_err);
1267 return;
1270 arm_cpu_finalize_features(cpu, &local_err);
1271 if (local_err != NULL) {
1272 error_propagate(errp, local_err);
1273 return;
1276 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1277 cpu->has_vfp != cpu->has_neon) {
1279 * This is an architectural requirement for AArch64; AArch32 is
1280 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1282 error_setg(errp,
1283 "AArch64 CPUs must have both VFP and Neon or neither");
1284 return;
1287 if (!cpu->has_vfp) {
1288 uint64_t t;
1289 uint32_t u;
1291 unset_feature(env, ARM_FEATURE_VFP);
1292 unset_feature(env, ARM_FEATURE_VFP3);
1293 unset_feature(env, ARM_FEATURE_VFP4);
1295 t = cpu->isar.id_aa64isar1;
1296 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1297 cpu->isar.id_aa64isar1 = t;
1299 t = cpu->isar.id_aa64pfr0;
1300 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1301 cpu->isar.id_aa64pfr0 = t;
1303 u = cpu->isar.id_isar6;
1304 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1305 cpu->isar.id_isar6 = u;
1307 u = cpu->isar.mvfr0;
1308 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1309 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1310 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1311 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1312 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1313 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1314 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1315 cpu->isar.mvfr0 = u;
1317 u = cpu->isar.mvfr1;
1318 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1319 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1320 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1321 cpu->isar.mvfr1 = u;
1323 u = cpu->isar.mvfr2;
1324 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1325 cpu->isar.mvfr2 = u;
1328 if (!cpu->has_neon) {
1329 uint64_t t;
1330 uint32_t u;
1332 unset_feature(env, ARM_FEATURE_NEON);
1334 t = cpu->isar.id_aa64isar0;
1335 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1336 cpu->isar.id_aa64isar0 = t;
1338 t = cpu->isar.id_aa64isar1;
1339 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1340 cpu->isar.id_aa64isar1 = t;
1342 t = cpu->isar.id_aa64pfr0;
1343 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1344 cpu->isar.id_aa64pfr0 = t;
1346 u = cpu->isar.id_isar5;
1347 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1348 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1349 cpu->isar.id_isar5 = u;
1351 u = cpu->isar.id_isar6;
1352 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1353 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1354 cpu->isar.id_isar6 = u;
1356 u = cpu->isar.mvfr1;
1357 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1358 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1359 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1360 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1361 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1362 cpu->isar.mvfr1 = u;
1364 u = cpu->isar.mvfr2;
1365 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1366 cpu->isar.mvfr2 = u;
1369 if (!cpu->has_neon && !cpu->has_vfp) {
1370 uint64_t t;
1371 uint32_t u;
1373 t = cpu->isar.id_aa64isar0;
1374 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1375 cpu->isar.id_aa64isar0 = t;
1377 t = cpu->isar.id_aa64isar1;
1378 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1379 cpu->isar.id_aa64isar1 = t;
1381 u = cpu->isar.mvfr0;
1382 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1383 cpu->isar.mvfr0 = u;
1386 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1387 uint32_t u;
1389 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1391 u = cpu->isar.id_isar1;
1392 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1393 cpu->isar.id_isar1 = u;
1395 u = cpu->isar.id_isar2;
1396 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1397 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1398 cpu->isar.id_isar2 = u;
1400 u = cpu->isar.id_isar3;
1401 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1402 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1403 cpu->isar.id_isar3 = u;
1406 /* Some features automatically imply others: */
1407 if (arm_feature(env, ARM_FEATURE_V8)) {
1408 if (arm_feature(env, ARM_FEATURE_M)) {
1409 set_feature(env, ARM_FEATURE_V7);
1410 } else {
1411 set_feature(env, ARM_FEATURE_V7VE);
1416 * There exist AArch64 cpus without AArch32 support. When KVM
1417 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1418 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1419 * As a general principle, we also do not make ID register
1420 * consistency checks anywhere unless using TCG, because only
1421 * for TCG would a consistency-check failure be a QEMU bug.
1423 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1424 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1427 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1428 /* v7 Virtualization Extensions. In real hardware this implies
1429 * EL2 and also the presence of the Security Extensions.
1430 * For QEMU, for backwards-compatibility we implement some
1431 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1432 * include the various other features that V7VE implies.
1433 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1434 * Security Extensions is ARM_FEATURE_EL3.
1436 assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1437 set_feature(env, ARM_FEATURE_LPAE);
1438 set_feature(env, ARM_FEATURE_V7);
1440 if (arm_feature(env, ARM_FEATURE_V7)) {
1441 set_feature(env, ARM_FEATURE_VAPA);
1442 set_feature(env, ARM_FEATURE_THUMB2);
1443 set_feature(env, ARM_FEATURE_MPIDR);
1444 if (!arm_feature(env, ARM_FEATURE_M)) {
1445 set_feature(env, ARM_FEATURE_V6K);
1446 } else {
1447 set_feature(env, ARM_FEATURE_V6);
1450 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1451 * non-EL3 configs. This is needed by some legacy boards.
1453 set_feature(env, ARM_FEATURE_VBAR);
1455 if (arm_feature(env, ARM_FEATURE_V6K)) {
1456 set_feature(env, ARM_FEATURE_V6);
1457 set_feature(env, ARM_FEATURE_MVFR);
1459 if (arm_feature(env, ARM_FEATURE_V6)) {
1460 set_feature(env, ARM_FEATURE_V5);
1461 if (!arm_feature(env, ARM_FEATURE_M)) {
1462 assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1463 set_feature(env, ARM_FEATURE_AUXCR);
1466 if (arm_feature(env, ARM_FEATURE_V5)) {
1467 set_feature(env, ARM_FEATURE_V4T);
1469 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1470 set_feature(env, ARM_FEATURE_V7MP);
1471 set_feature(env, ARM_FEATURE_PXN);
1473 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1474 set_feature(env, ARM_FEATURE_CBAR);
1476 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1477 !arm_feature(env, ARM_FEATURE_M)) {
1478 set_feature(env, ARM_FEATURE_THUMB_DSP);
1482 * We rely on no XScale CPU having VFP so we can use the same bits in the
1483 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1485 assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1486 arm_feature(env, ARM_FEATURE_XSCALE)));
1488 if (arm_feature(env, ARM_FEATURE_V7) &&
1489 !arm_feature(env, ARM_FEATURE_M) &&
1490 !arm_feature(env, ARM_FEATURE_PMSA)) {
1491 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1492 * can use 4K pages.
1494 pagebits = 12;
1495 } else {
1496 /* For CPUs which might have tiny 1K pages, or which have an
1497 * MPU and might have small region sizes, stick with 1K pages.
1499 pagebits = 10;
1501 if (!set_preferred_target_page_bits(pagebits)) {
1502 /* This can only ever happen for hotplugging a CPU, or if
1503 * the board code incorrectly creates a CPU which it has
1504 * promised via minimum_page_size that it will not.
1506 error_setg(errp, "This CPU requires a smaller page size than the "
1507 "system is using");
1508 return;
1511 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1512 * We don't support setting cluster ID ([16..23]) (known as Aff2
1513 * in later ARM ARM versions), or any of the higher affinity level fields,
1514 * so these bits always RAZ.
1516 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1517 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1518 ARM_DEFAULT_CPUS_PER_CLUSTER);
1521 if (cpu->reset_hivecs) {
1522 cpu->reset_sctlr |= (1 << 13);
1525 if (cpu->cfgend) {
1526 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1527 cpu->reset_sctlr |= SCTLR_EE;
1528 } else {
1529 cpu->reset_sctlr |= SCTLR_B;
1533 if (!cpu->has_el3) {
1534 /* If the has_el3 CPU property is disabled then we need to disable the
1535 * feature.
1537 unset_feature(env, ARM_FEATURE_EL3);
1539 /* Disable the security extension feature bits in the processor feature
1540 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1542 cpu->id_pfr1 &= ~0xf0;
1543 cpu->isar.id_aa64pfr0 &= ~0xf000;
1546 if (!cpu->has_el2) {
1547 unset_feature(env, ARM_FEATURE_EL2);
1550 if (!cpu->has_pmu) {
1551 unset_feature(env, ARM_FEATURE_PMU);
1553 if (arm_feature(env, ARM_FEATURE_PMU)) {
1554 pmu_init(cpu);
1556 if (!kvm_enabled()) {
1557 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1558 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1561 #ifndef CONFIG_USER_ONLY
1562 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1563 cpu);
1564 #endif
1565 } else {
1566 cpu->id_aa64dfr0 &= ~0xf00;
1567 cpu->id_dfr0 &= ~(0xf << 24);
1568 cpu->pmceid0 = 0;
1569 cpu->pmceid1 = 0;
1572 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1573 /* Disable the hypervisor feature bits in the processor feature
1574 * registers if we don't have EL2. These are id_pfr1[15:12] and
1575 * id_aa64pfr0_el1[11:8].
1577 cpu->isar.id_aa64pfr0 &= ~0xf00;
1578 cpu->id_pfr1 &= ~0xf000;
1581 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1582 * to false or by setting pmsav7-dregion to 0.
1584 if (!cpu->has_mpu) {
1585 cpu->pmsav7_dregion = 0;
1587 if (cpu->pmsav7_dregion == 0) {
1588 cpu->has_mpu = false;
1591 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1592 arm_feature(env, ARM_FEATURE_V7)) {
1593 uint32_t nr = cpu->pmsav7_dregion;
1595 if (nr > 0xff) {
1596 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1597 return;
1600 if (nr) {
1601 if (arm_feature(env, ARM_FEATURE_V8)) {
1602 /* PMSAv8 */
1603 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1604 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1605 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1606 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1607 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1609 } else {
1610 env->pmsav7.drbar = g_new0(uint32_t, nr);
1611 env->pmsav7.drsr = g_new0(uint32_t, nr);
1612 env->pmsav7.dracr = g_new0(uint32_t, nr);
1617 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1618 uint32_t nr = cpu->sau_sregion;
1620 if (nr > 0xff) {
1621 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1622 return;
1625 if (nr) {
1626 env->sau.rbar = g_new0(uint32_t, nr);
1627 env->sau.rlar = g_new0(uint32_t, nr);
1631 if (arm_feature(env, ARM_FEATURE_EL3)) {
1632 set_feature(env, ARM_FEATURE_VBAR);
1635 register_cp_regs_for_features(cpu);
1636 arm_cpu_register_gdb_regs_for_features(cpu);
1638 init_cpreg_list(cpu);
1640 #ifndef CONFIG_USER_ONLY
1641 MachineState *ms = MACHINE(qdev_get_machine());
1642 unsigned int smp_cpus = ms->smp.cpus;
1644 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1645 cs->num_ases = 2;
1647 if (!cpu->secure_memory) {
1648 cpu->secure_memory = cs->memory;
1650 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1651 cpu->secure_memory);
1652 } else {
1653 cs->num_ases = 1;
1655 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1657 /* No core_count specified, default to smp_cpus. */
1658 if (cpu->core_count == -1) {
1659 cpu->core_count = smp_cpus;
1661 #endif
1663 qemu_init_vcpu(cs);
1664 cpu_reset(cs);
1666 acc->parent_realize(dev, errp);
1669 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1671 ObjectClass *oc;
1672 char *typename;
1673 char **cpuname;
1674 const char *cpunamestr;
1676 cpuname = g_strsplit(cpu_model, ",", 1);
1677 cpunamestr = cpuname[0];
1678 #ifdef CONFIG_USER_ONLY
1679 /* For backwards compatibility usermode emulation allows "-cpu any",
1680 * which has the same semantics as "-cpu max".
1682 if (!strcmp(cpunamestr, "any")) {
1683 cpunamestr = "max";
1685 #endif
1686 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1687 oc = object_class_by_name(typename);
1688 g_strfreev(cpuname);
1689 g_free(typename);
1690 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1691 object_class_is_abstract(oc)) {
1692 return NULL;
1694 return oc;
1697 /* CPU models. These are not needed for the AArch64 linux-user build. */
1698 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1700 static void arm926_initfn(Object *obj)
1702 ARMCPU *cpu = ARM_CPU(obj);
1704 cpu->dtb_compatible = "arm,arm926";
1705 set_feature(&cpu->env, ARM_FEATURE_V5);
1706 set_feature(&cpu->env, ARM_FEATURE_VFP);
1707 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1708 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1709 cpu->midr = 0x41069265;
1710 cpu->reset_fpsid = 0x41011090;
1711 cpu->ctr = 0x1dd20d2;
1712 cpu->reset_sctlr = 0x00090078;
1715 * ARMv5 does not have the ID_ISAR registers, but we can still
1716 * set the field to indicate Jazelle support within QEMU.
1718 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1720 * Similarly, we need to set MVFR0 fields to enable double precision
1721 * and short vector support even though ARMv5 doesn't have this register.
1723 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1724 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1727 static void arm946_initfn(Object *obj)
1729 ARMCPU *cpu = ARM_CPU(obj);
1731 cpu->dtb_compatible = "arm,arm946";
1732 set_feature(&cpu->env, ARM_FEATURE_V5);
1733 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1734 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1735 cpu->midr = 0x41059461;
1736 cpu->ctr = 0x0f004006;
1737 cpu->reset_sctlr = 0x00000078;
1740 static void arm1026_initfn(Object *obj)
1742 ARMCPU *cpu = ARM_CPU(obj);
1744 cpu->dtb_compatible = "arm,arm1026";
1745 set_feature(&cpu->env, ARM_FEATURE_V5);
1746 set_feature(&cpu->env, ARM_FEATURE_VFP);
1747 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1748 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1749 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1750 cpu->midr = 0x4106a262;
1751 cpu->reset_fpsid = 0x410110a0;
1752 cpu->ctr = 0x1dd20d2;
1753 cpu->reset_sctlr = 0x00090078;
1754 cpu->reset_auxcr = 1;
1757 * ARMv5 does not have the ID_ISAR registers, but we can still
1758 * set the field to indicate Jazelle support within QEMU.
1760 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1762 * Similarly, we need to set MVFR0 fields to enable double precision
1763 * and short vector support even though ARMv5 doesn't have this register.
1765 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1766 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1769 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1770 ARMCPRegInfo ifar = {
1771 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1772 .access = PL1_RW,
1773 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1774 .resetvalue = 0
1776 define_one_arm_cp_reg(cpu, &ifar);
1780 static void arm1136_r2_initfn(Object *obj)
1782 ARMCPU *cpu = ARM_CPU(obj);
1783 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1784 * older core than plain "arm1136". In particular this does not
1785 * have the v6K features.
1786 * These ID register values are correct for 1136 but may be wrong
1787 * for 1136_r2 (in particular r0p2 does not actually implement most
1788 * of the ID registers).
1791 cpu->dtb_compatible = "arm,arm1136";
1792 set_feature(&cpu->env, ARM_FEATURE_V6);
1793 set_feature(&cpu->env, ARM_FEATURE_VFP);
1794 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1795 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1796 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1797 cpu->midr = 0x4107b362;
1798 cpu->reset_fpsid = 0x410120b4;
1799 cpu->isar.mvfr0 = 0x11111111;
1800 cpu->isar.mvfr1 = 0x00000000;
1801 cpu->ctr = 0x1dd20d2;
1802 cpu->reset_sctlr = 0x00050078;
1803 cpu->id_pfr0 = 0x111;
1804 cpu->id_pfr1 = 0x1;
1805 cpu->id_dfr0 = 0x2;
1806 cpu->id_afr0 = 0x3;
1807 cpu->id_mmfr0 = 0x01130003;
1808 cpu->id_mmfr1 = 0x10030302;
1809 cpu->id_mmfr2 = 0x01222110;
1810 cpu->isar.id_isar0 = 0x00140011;
1811 cpu->isar.id_isar1 = 0x12002111;
1812 cpu->isar.id_isar2 = 0x11231111;
1813 cpu->isar.id_isar3 = 0x01102131;
1814 cpu->isar.id_isar4 = 0x141;
1815 cpu->reset_auxcr = 7;
1818 static void arm1136_initfn(Object *obj)
1820 ARMCPU *cpu = ARM_CPU(obj);
1822 cpu->dtb_compatible = "arm,arm1136";
1823 set_feature(&cpu->env, ARM_FEATURE_V6K);
1824 set_feature(&cpu->env, ARM_FEATURE_V6);
1825 set_feature(&cpu->env, ARM_FEATURE_VFP);
1826 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1827 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1828 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1829 cpu->midr = 0x4117b363;
1830 cpu->reset_fpsid = 0x410120b4;
1831 cpu->isar.mvfr0 = 0x11111111;
1832 cpu->isar.mvfr1 = 0x00000000;
1833 cpu->ctr = 0x1dd20d2;
1834 cpu->reset_sctlr = 0x00050078;
1835 cpu->id_pfr0 = 0x111;
1836 cpu->id_pfr1 = 0x1;
1837 cpu->id_dfr0 = 0x2;
1838 cpu->id_afr0 = 0x3;
1839 cpu->id_mmfr0 = 0x01130003;
1840 cpu->id_mmfr1 = 0x10030302;
1841 cpu->id_mmfr2 = 0x01222110;
1842 cpu->isar.id_isar0 = 0x00140011;
1843 cpu->isar.id_isar1 = 0x12002111;
1844 cpu->isar.id_isar2 = 0x11231111;
1845 cpu->isar.id_isar3 = 0x01102131;
1846 cpu->isar.id_isar4 = 0x141;
1847 cpu->reset_auxcr = 7;
1850 static void arm1176_initfn(Object *obj)
1852 ARMCPU *cpu = ARM_CPU(obj);
1854 cpu->dtb_compatible = "arm,arm1176";
1855 set_feature(&cpu->env, ARM_FEATURE_V6K);
1856 set_feature(&cpu->env, ARM_FEATURE_VFP);
1857 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1858 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1859 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1860 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1861 set_feature(&cpu->env, ARM_FEATURE_EL3);
1862 cpu->midr = 0x410fb767;
1863 cpu->reset_fpsid = 0x410120b5;
1864 cpu->isar.mvfr0 = 0x11111111;
1865 cpu->isar.mvfr1 = 0x00000000;
1866 cpu->ctr = 0x1dd20d2;
1867 cpu->reset_sctlr = 0x00050078;
1868 cpu->id_pfr0 = 0x111;
1869 cpu->id_pfr1 = 0x11;
1870 cpu->id_dfr0 = 0x33;
1871 cpu->id_afr0 = 0;
1872 cpu->id_mmfr0 = 0x01130003;
1873 cpu->id_mmfr1 = 0x10030302;
1874 cpu->id_mmfr2 = 0x01222100;
1875 cpu->isar.id_isar0 = 0x0140011;
1876 cpu->isar.id_isar1 = 0x12002111;
1877 cpu->isar.id_isar2 = 0x11231121;
1878 cpu->isar.id_isar3 = 0x01102131;
1879 cpu->isar.id_isar4 = 0x01141;
1880 cpu->reset_auxcr = 7;
1883 static void arm11mpcore_initfn(Object *obj)
1885 ARMCPU *cpu = ARM_CPU(obj);
1887 cpu->dtb_compatible = "arm,arm11mpcore";
1888 set_feature(&cpu->env, ARM_FEATURE_V6K);
1889 set_feature(&cpu->env, ARM_FEATURE_VFP);
1890 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1891 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1892 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1893 cpu->midr = 0x410fb022;
1894 cpu->reset_fpsid = 0x410120b4;
1895 cpu->isar.mvfr0 = 0x11111111;
1896 cpu->isar.mvfr1 = 0x00000000;
1897 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1898 cpu->id_pfr0 = 0x111;
1899 cpu->id_pfr1 = 0x1;
1900 cpu->id_dfr0 = 0;
1901 cpu->id_afr0 = 0x2;
1902 cpu->id_mmfr0 = 0x01100103;
1903 cpu->id_mmfr1 = 0x10020302;
1904 cpu->id_mmfr2 = 0x01222000;
1905 cpu->isar.id_isar0 = 0x00100011;
1906 cpu->isar.id_isar1 = 0x12002111;
1907 cpu->isar.id_isar2 = 0x11221011;
1908 cpu->isar.id_isar3 = 0x01102131;
1909 cpu->isar.id_isar4 = 0x141;
1910 cpu->reset_auxcr = 1;
1913 static void cortex_m0_initfn(Object *obj)
1915 ARMCPU *cpu = ARM_CPU(obj);
1916 set_feature(&cpu->env, ARM_FEATURE_V6);
1917 set_feature(&cpu->env, ARM_FEATURE_M);
1919 cpu->midr = 0x410cc200;
1922 static void cortex_m3_initfn(Object *obj)
1924 ARMCPU *cpu = ARM_CPU(obj);
1925 set_feature(&cpu->env, ARM_FEATURE_V7);
1926 set_feature(&cpu->env, ARM_FEATURE_M);
1927 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1928 cpu->midr = 0x410fc231;
1929 cpu->pmsav7_dregion = 8;
1930 cpu->id_pfr0 = 0x00000030;
1931 cpu->id_pfr1 = 0x00000200;
1932 cpu->id_dfr0 = 0x00100000;
1933 cpu->id_afr0 = 0x00000000;
1934 cpu->id_mmfr0 = 0x00000030;
1935 cpu->id_mmfr1 = 0x00000000;
1936 cpu->id_mmfr2 = 0x00000000;
1937 cpu->id_mmfr3 = 0x00000000;
1938 cpu->isar.id_isar0 = 0x01141110;
1939 cpu->isar.id_isar1 = 0x02111000;
1940 cpu->isar.id_isar2 = 0x21112231;
1941 cpu->isar.id_isar3 = 0x01111110;
1942 cpu->isar.id_isar4 = 0x01310102;
1943 cpu->isar.id_isar5 = 0x00000000;
1944 cpu->isar.id_isar6 = 0x00000000;
1947 static void cortex_m4_initfn(Object *obj)
1949 ARMCPU *cpu = ARM_CPU(obj);
1951 set_feature(&cpu->env, ARM_FEATURE_V7);
1952 set_feature(&cpu->env, ARM_FEATURE_M);
1953 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1954 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1955 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1956 cpu->midr = 0x410fc240; /* r0p0 */
1957 cpu->pmsav7_dregion = 8;
1958 cpu->isar.mvfr0 = 0x10110021;
1959 cpu->isar.mvfr1 = 0x11000011;
1960 cpu->isar.mvfr2 = 0x00000000;
1961 cpu->id_pfr0 = 0x00000030;
1962 cpu->id_pfr1 = 0x00000200;
1963 cpu->id_dfr0 = 0x00100000;
1964 cpu->id_afr0 = 0x00000000;
1965 cpu->id_mmfr0 = 0x00000030;
1966 cpu->id_mmfr1 = 0x00000000;
1967 cpu->id_mmfr2 = 0x00000000;
1968 cpu->id_mmfr3 = 0x00000000;
1969 cpu->isar.id_isar0 = 0x01141110;
1970 cpu->isar.id_isar1 = 0x02111000;
1971 cpu->isar.id_isar2 = 0x21112231;
1972 cpu->isar.id_isar3 = 0x01111110;
1973 cpu->isar.id_isar4 = 0x01310102;
1974 cpu->isar.id_isar5 = 0x00000000;
1975 cpu->isar.id_isar6 = 0x00000000;
1978 static void cortex_m33_initfn(Object *obj)
1980 ARMCPU *cpu = ARM_CPU(obj);
1982 set_feature(&cpu->env, ARM_FEATURE_V8);
1983 set_feature(&cpu->env, ARM_FEATURE_M);
1984 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1985 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1986 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1987 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1988 cpu->midr = 0x410fd213; /* r0p3 */
1989 cpu->pmsav7_dregion = 16;
1990 cpu->sau_sregion = 8;
1991 cpu->isar.mvfr0 = 0x10110021;
1992 cpu->isar.mvfr1 = 0x11000011;
1993 cpu->isar.mvfr2 = 0x00000040;
1994 cpu->id_pfr0 = 0x00000030;
1995 cpu->id_pfr1 = 0x00000210;
1996 cpu->id_dfr0 = 0x00200000;
1997 cpu->id_afr0 = 0x00000000;
1998 cpu->id_mmfr0 = 0x00101F40;
1999 cpu->id_mmfr1 = 0x00000000;
2000 cpu->id_mmfr2 = 0x01000000;
2001 cpu->id_mmfr3 = 0x00000000;
2002 cpu->isar.id_isar0 = 0x01101110;
2003 cpu->isar.id_isar1 = 0x02212000;
2004 cpu->isar.id_isar2 = 0x20232232;
2005 cpu->isar.id_isar3 = 0x01111131;
2006 cpu->isar.id_isar4 = 0x01310132;
2007 cpu->isar.id_isar5 = 0x00000000;
2008 cpu->isar.id_isar6 = 0x00000000;
2009 cpu->clidr = 0x00000000;
2010 cpu->ctr = 0x8000c000;
2013 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2015 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2016 CPUClass *cc = CPU_CLASS(oc);
2018 acc->info = data;
2019 #ifndef CONFIG_USER_ONLY
2020 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2021 #endif
2023 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2026 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2027 /* Dummy the TCM region regs for the moment */
2028 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2029 .access = PL1_RW, .type = ARM_CP_CONST },
2030 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2031 .access = PL1_RW, .type = ARM_CP_CONST },
2032 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2033 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2034 REGINFO_SENTINEL
2037 static void cortex_r5_initfn(Object *obj)
2039 ARMCPU *cpu = ARM_CPU(obj);
2041 set_feature(&cpu->env, ARM_FEATURE_V7);
2042 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2043 set_feature(&cpu->env, ARM_FEATURE_PMSA);
2044 cpu->midr = 0x411fc153; /* r1p3 */
2045 cpu->id_pfr0 = 0x0131;
2046 cpu->id_pfr1 = 0x001;
2047 cpu->id_dfr0 = 0x010400;
2048 cpu->id_afr0 = 0x0;
2049 cpu->id_mmfr0 = 0x0210030;
2050 cpu->id_mmfr1 = 0x00000000;
2051 cpu->id_mmfr2 = 0x01200000;
2052 cpu->id_mmfr3 = 0x0211;
2053 cpu->isar.id_isar0 = 0x02101111;
2054 cpu->isar.id_isar1 = 0x13112111;
2055 cpu->isar.id_isar2 = 0x21232141;
2056 cpu->isar.id_isar3 = 0x01112131;
2057 cpu->isar.id_isar4 = 0x0010142;
2058 cpu->isar.id_isar5 = 0x0;
2059 cpu->isar.id_isar6 = 0x0;
2060 cpu->mp_is_up = true;
2061 cpu->pmsav7_dregion = 16;
2062 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2065 static void cortex_r5f_initfn(Object *obj)
2067 ARMCPU *cpu = ARM_CPU(obj);
2069 cortex_r5_initfn(obj);
2070 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2071 cpu->isar.mvfr0 = 0x10110221;
2072 cpu->isar.mvfr1 = 0x00000011;
2075 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2076 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2077 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2078 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2079 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2080 REGINFO_SENTINEL
2083 static void cortex_a8_initfn(Object *obj)
2085 ARMCPU *cpu = ARM_CPU(obj);
2087 cpu->dtb_compatible = "arm,cortex-a8";
2088 set_feature(&cpu->env, ARM_FEATURE_V7);
2089 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2090 set_feature(&cpu->env, ARM_FEATURE_NEON);
2091 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2092 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2093 set_feature(&cpu->env, ARM_FEATURE_EL3);
2094 cpu->midr = 0x410fc080;
2095 cpu->reset_fpsid = 0x410330c0;
2096 cpu->isar.mvfr0 = 0x11110222;
2097 cpu->isar.mvfr1 = 0x00011111;
2098 cpu->ctr = 0x82048004;
2099 cpu->reset_sctlr = 0x00c50078;
2100 cpu->id_pfr0 = 0x1031;
2101 cpu->id_pfr1 = 0x11;
2102 cpu->id_dfr0 = 0x400;
2103 cpu->id_afr0 = 0;
2104 cpu->id_mmfr0 = 0x31100003;
2105 cpu->id_mmfr1 = 0x20000000;
2106 cpu->id_mmfr2 = 0x01202000;
2107 cpu->id_mmfr3 = 0x11;
2108 cpu->isar.id_isar0 = 0x00101111;
2109 cpu->isar.id_isar1 = 0x12112111;
2110 cpu->isar.id_isar2 = 0x21232031;
2111 cpu->isar.id_isar3 = 0x11112131;
2112 cpu->isar.id_isar4 = 0x00111142;
2113 cpu->dbgdidr = 0x15141000;
2114 cpu->clidr = (1 << 27) | (2 << 24) | 3;
2115 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2116 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2117 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2118 cpu->reset_auxcr = 2;
2119 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2122 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2123 /* power_control should be set to maximum latency. Again,
2124 * default to 0 and set by private hook
2126 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2127 .access = PL1_RW, .resetvalue = 0,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2129 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2130 .access = PL1_RW, .resetvalue = 0,
2131 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2132 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2133 .access = PL1_RW, .resetvalue = 0,
2134 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2135 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2136 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2137 /* TLB lockdown control */
2138 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2139 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2140 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2141 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2142 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2143 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2144 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2145 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2146 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2147 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2148 REGINFO_SENTINEL
2151 static void cortex_a9_initfn(Object *obj)
2153 ARMCPU *cpu = ARM_CPU(obj);
2155 cpu->dtb_compatible = "arm,cortex-a9";
2156 set_feature(&cpu->env, ARM_FEATURE_V7);
2157 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2158 set_feature(&cpu->env, ARM_FEATURE_NEON);
2159 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2160 set_feature(&cpu->env, ARM_FEATURE_EL3);
2161 /* Note that A9 supports the MP extensions even for
2162 * A9UP and single-core A9MP (which are both different
2163 * and valid configurations; we don't model A9UP).
2165 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2166 set_feature(&cpu->env, ARM_FEATURE_CBAR);
2167 cpu->midr = 0x410fc090;
2168 cpu->reset_fpsid = 0x41033090;
2169 cpu->isar.mvfr0 = 0x11110222;
2170 cpu->isar.mvfr1 = 0x01111111;
2171 cpu->ctr = 0x80038003;
2172 cpu->reset_sctlr = 0x00c50078;
2173 cpu->id_pfr0 = 0x1031;
2174 cpu->id_pfr1 = 0x11;
2175 cpu->id_dfr0 = 0x000;
2176 cpu->id_afr0 = 0;
2177 cpu->id_mmfr0 = 0x00100103;
2178 cpu->id_mmfr1 = 0x20000000;
2179 cpu->id_mmfr2 = 0x01230000;
2180 cpu->id_mmfr3 = 0x00002111;
2181 cpu->isar.id_isar0 = 0x00101111;
2182 cpu->isar.id_isar1 = 0x13112111;
2183 cpu->isar.id_isar2 = 0x21232041;
2184 cpu->isar.id_isar3 = 0x11112131;
2185 cpu->isar.id_isar4 = 0x00111142;
2186 cpu->dbgdidr = 0x35141000;
2187 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2188 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2189 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2190 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2193 #ifndef CONFIG_USER_ONLY
2194 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2196 MachineState *ms = MACHINE(qdev_get_machine());
2198 /* Linux wants the number of processors from here.
2199 * Might as well set the interrupt-controller bit too.
2201 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2203 #endif
2205 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2206 #ifndef CONFIG_USER_ONLY
2207 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2208 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2209 .writefn = arm_cp_write_ignore, },
2210 #endif
2211 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2212 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2213 REGINFO_SENTINEL
2216 static void cortex_a7_initfn(Object *obj)
2218 ARMCPU *cpu = ARM_CPU(obj);
2220 cpu->dtb_compatible = "arm,cortex-a7";
2221 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2222 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2223 set_feature(&cpu->env, ARM_FEATURE_NEON);
2224 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2225 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2226 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2227 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2228 set_feature(&cpu->env, ARM_FEATURE_EL2);
2229 set_feature(&cpu->env, ARM_FEATURE_EL3);
2230 set_feature(&cpu->env, ARM_FEATURE_PMU);
2231 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2232 cpu->midr = 0x410fc075;
2233 cpu->reset_fpsid = 0x41023075;
2234 cpu->isar.mvfr0 = 0x10110222;
2235 cpu->isar.mvfr1 = 0x11111111;
2236 cpu->ctr = 0x84448003;
2237 cpu->reset_sctlr = 0x00c50078;
2238 cpu->id_pfr0 = 0x00001131;
2239 cpu->id_pfr1 = 0x00011011;
2240 cpu->id_dfr0 = 0x02010555;
2241 cpu->id_afr0 = 0x00000000;
2242 cpu->id_mmfr0 = 0x10101105;
2243 cpu->id_mmfr1 = 0x40000000;
2244 cpu->id_mmfr2 = 0x01240000;
2245 cpu->id_mmfr3 = 0x02102211;
2246 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2247 * table 4-41 gives 0x02101110, which includes the arm div insns.
2249 cpu->isar.id_isar0 = 0x02101110;
2250 cpu->isar.id_isar1 = 0x13112111;
2251 cpu->isar.id_isar2 = 0x21232041;
2252 cpu->isar.id_isar3 = 0x11112131;
2253 cpu->isar.id_isar4 = 0x10011142;
2254 cpu->dbgdidr = 0x3515f005;
2255 cpu->clidr = 0x0a200023;
2256 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2257 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2258 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2259 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2262 static void cortex_a15_initfn(Object *obj)
2264 ARMCPU *cpu = ARM_CPU(obj);
2266 cpu->dtb_compatible = "arm,cortex-a15";
2267 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2268 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2269 set_feature(&cpu->env, ARM_FEATURE_NEON);
2270 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2271 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2272 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2273 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2274 set_feature(&cpu->env, ARM_FEATURE_EL2);
2275 set_feature(&cpu->env, ARM_FEATURE_EL3);
2276 set_feature(&cpu->env, ARM_FEATURE_PMU);
2277 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2278 cpu->midr = 0x412fc0f1;
2279 cpu->reset_fpsid = 0x410430f0;
2280 cpu->isar.mvfr0 = 0x10110222;
2281 cpu->isar.mvfr1 = 0x11111111;
2282 cpu->ctr = 0x8444c004;
2283 cpu->reset_sctlr = 0x00c50078;
2284 cpu->id_pfr0 = 0x00001131;
2285 cpu->id_pfr1 = 0x00011011;
2286 cpu->id_dfr0 = 0x02010555;
2287 cpu->id_afr0 = 0x00000000;
2288 cpu->id_mmfr0 = 0x10201105;
2289 cpu->id_mmfr1 = 0x20000000;
2290 cpu->id_mmfr2 = 0x01240000;
2291 cpu->id_mmfr3 = 0x02102211;
2292 cpu->isar.id_isar0 = 0x02101110;
2293 cpu->isar.id_isar1 = 0x13112111;
2294 cpu->isar.id_isar2 = 0x21232041;
2295 cpu->isar.id_isar3 = 0x11112131;
2296 cpu->isar.id_isar4 = 0x10011142;
2297 cpu->dbgdidr = 0x3515f021;
2298 cpu->clidr = 0x0a200023;
2299 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2300 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2301 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2302 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2305 static void ti925t_initfn(Object *obj)
2307 ARMCPU *cpu = ARM_CPU(obj);
2308 set_feature(&cpu->env, ARM_FEATURE_V4T);
2309 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2310 cpu->midr = ARM_CPUID_TI925T;
2311 cpu->ctr = 0x5109149;
2312 cpu->reset_sctlr = 0x00000070;
2315 static void sa1100_initfn(Object *obj)
2317 ARMCPU *cpu = ARM_CPU(obj);
2319 cpu->dtb_compatible = "intel,sa1100";
2320 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2321 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2322 cpu->midr = 0x4401A11B;
2323 cpu->reset_sctlr = 0x00000070;
2326 static void sa1110_initfn(Object *obj)
2328 ARMCPU *cpu = ARM_CPU(obj);
2329 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2330 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2331 cpu->midr = 0x6901B119;
2332 cpu->reset_sctlr = 0x00000070;
2335 static void pxa250_initfn(Object *obj)
2337 ARMCPU *cpu = ARM_CPU(obj);
2339 cpu->dtb_compatible = "marvell,xscale";
2340 set_feature(&cpu->env, ARM_FEATURE_V5);
2341 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2342 cpu->midr = 0x69052100;
2343 cpu->ctr = 0xd172172;
2344 cpu->reset_sctlr = 0x00000078;
2347 static void pxa255_initfn(Object *obj)
2349 ARMCPU *cpu = ARM_CPU(obj);
2351 cpu->dtb_compatible = "marvell,xscale";
2352 set_feature(&cpu->env, ARM_FEATURE_V5);
2353 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2354 cpu->midr = 0x69052d00;
2355 cpu->ctr = 0xd172172;
2356 cpu->reset_sctlr = 0x00000078;
2359 static void pxa260_initfn(Object *obj)
2361 ARMCPU *cpu = ARM_CPU(obj);
2363 cpu->dtb_compatible = "marvell,xscale";
2364 set_feature(&cpu->env, ARM_FEATURE_V5);
2365 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2366 cpu->midr = 0x69052903;
2367 cpu->ctr = 0xd172172;
2368 cpu->reset_sctlr = 0x00000078;
2371 static void pxa261_initfn(Object *obj)
2373 ARMCPU *cpu = ARM_CPU(obj);
2375 cpu->dtb_compatible = "marvell,xscale";
2376 set_feature(&cpu->env, ARM_FEATURE_V5);
2377 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2378 cpu->midr = 0x69052d05;
2379 cpu->ctr = 0xd172172;
2380 cpu->reset_sctlr = 0x00000078;
2383 static void pxa262_initfn(Object *obj)
2385 ARMCPU *cpu = ARM_CPU(obj);
2387 cpu->dtb_compatible = "marvell,xscale";
2388 set_feature(&cpu->env, ARM_FEATURE_V5);
2389 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2390 cpu->midr = 0x69052d06;
2391 cpu->ctr = 0xd172172;
2392 cpu->reset_sctlr = 0x00000078;
2395 static void pxa270a0_initfn(Object *obj)
2397 ARMCPU *cpu = ARM_CPU(obj);
2399 cpu->dtb_compatible = "marvell,xscale";
2400 set_feature(&cpu->env, ARM_FEATURE_V5);
2401 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2402 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2403 cpu->midr = 0x69054110;
2404 cpu->ctr = 0xd172172;
2405 cpu->reset_sctlr = 0x00000078;
2408 static void pxa270a1_initfn(Object *obj)
2410 ARMCPU *cpu = ARM_CPU(obj);
2412 cpu->dtb_compatible = "marvell,xscale";
2413 set_feature(&cpu->env, ARM_FEATURE_V5);
2414 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2415 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2416 cpu->midr = 0x69054111;
2417 cpu->ctr = 0xd172172;
2418 cpu->reset_sctlr = 0x00000078;
2421 static void pxa270b0_initfn(Object *obj)
2423 ARMCPU *cpu = ARM_CPU(obj);
2425 cpu->dtb_compatible = "marvell,xscale";
2426 set_feature(&cpu->env, ARM_FEATURE_V5);
2427 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2428 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2429 cpu->midr = 0x69054112;
2430 cpu->ctr = 0xd172172;
2431 cpu->reset_sctlr = 0x00000078;
2434 static void pxa270b1_initfn(Object *obj)
2436 ARMCPU *cpu = ARM_CPU(obj);
2438 cpu->dtb_compatible = "marvell,xscale";
2439 set_feature(&cpu->env, ARM_FEATURE_V5);
2440 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2441 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2442 cpu->midr = 0x69054113;
2443 cpu->ctr = 0xd172172;
2444 cpu->reset_sctlr = 0x00000078;
2447 static void pxa270c0_initfn(Object *obj)
2449 ARMCPU *cpu = ARM_CPU(obj);
2451 cpu->dtb_compatible = "marvell,xscale";
2452 set_feature(&cpu->env, ARM_FEATURE_V5);
2453 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2454 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2455 cpu->midr = 0x69054114;
2456 cpu->ctr = 0xd172172;
2457 cpu->reset_sctlr = 0x00000078;
2460 static void pxa270c5_initfn(Object *obj)
2462 ARMCPU *cpu = ARM_CPU(obj);
2464 cpu->dtb_compatible = "marvell,xscale";
2465 set_feature(&cpu->env, ARM_FEATURE_V5);
2466 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2467 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2468 cpu->midr = 0x69054117;
2469 cpu->ctr = 0xd172172;
2470 cpu->reset_sctlr = 0x00000078;
2473 #ifndef TARGET_AARCH64
2474 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2475 * otherwise, a CPU with as many features enabled as our emulation supports.
2476 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2477 * this only needs to handle 32 bits.
2479 static void arm_max_initfn(Object *obj)
2481 ARMCPU *cpu = ARM_CPU(obj);
2483 if (kvm_enabled()) {
2484 kvm_arm_set_cpu_features_from_host(cpu);
2485 } else {
2486 cortex_a15_initfn(obj);
2488 /* old-style VFP short-vector support */
2489 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2491 #ifdef CONFIG_USER_ONLY
2492 /* We don't set these in system emulation mode for the moment,
2493 * since we don't correctly set (all of) the ID registers to
2494 * advertise them.
2496 set_feature(&cpu->env, ARM_FEATURE_V8);
2498 uint32_t t;
2500 t = cpu->isar.id_isar5;
2501 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2502 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2503 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2504 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2505 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2506 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2507 cpu->isar.id_isar5 = t;
2509 t = cpu->isar.id_isar6;
2510 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2511 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2512 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2513 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2514 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2515 cpu->isar.id_isar6 = t;
2517 t = cpu->isar.mvfr1;
2518 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2519 cpu->isar.mvfr1 = t;
2521 t = cpu->isar.mvfr2;
2522 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2523 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2524 cpu->isar.mvfr2 = t;
2526 t = cpu->id_mmfr4;
2527 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2528 cpu->id_mmfr4 = t;
2530 #endif
2533 #endif
2535 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2537 struct ARMCPUInfo {
2538 const char *name;
2539 void (*initfn)(Object *obj);
2540 void (*class_init)(ObjectClass *oc, void *data);
2543 static const ARMCPUInfo arm_cpus[] = {
2544 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2545 { .name = "arm926", .initfn = arm926_initfn },
2546 { .name = "arm946", .initfn = arm946_initfn },
2547 { .name = "arm1026", .initfn = arm1026_initfn },
2548 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2549 * older core than plain "arm1136". In particular this does not
2550 * have the v6K features.
2552 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2553 { .name = "arm1136", .initfn = arm1136_initfn },
2554 { .name = "arm1176", .initfn = arm1176_initfn },
2555 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2556 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2557 .class_init = arm_v7m_class_init },
2558 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2559 .class_init = arm_v7m_class_init },
2560 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2561 .class_init = arm_v7m_class_init },
2562 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2563 .class_init = arm_v7m_class_init },
2564 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2565 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2566 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2567 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2568 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2569 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2570 { .name = "ti925t", .initfn = ti925t_initfn },
2571 { .name = "sa1100", .initfn = sa1100_initfn },
2572 { .name = "sa1110", .initfn = sa1110_initfn },
2573 { .name = "pxa250", .initfn = pxa250_initfn },
2574 { .name = "pxa255", .initfn = pxa255_initfn },
2575 { .name = "pxa260", .initfn = pxa260_initfn },
2576 { .name = "pxa261", .initfn = pxa261_initfn },
2577 { .name = "pxa262", .initfn = pxa262_initfn },
2578 /* "pxa270" is an alias for "pxa270-a0" */
2579 { .name = "pxa270", .initfn = pxa270a0_initfn },
2580 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2581 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2582 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2583 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2584 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2585 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2586 #ifndef TARGET_AARCH64
2587 { .name = "max", .initfn = arm_max_initfn },
2588 #endif
2589 #ifdef CONFIG_USER_ONLY
2590 { .name = "any", .initfn = arm_max_initfn },
2591 #endif
2592 #endif
2593 { .name = NULL }
2596 static Property arm_cpu_properties[] = {
2597 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2598 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2599 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2600 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2601 mp_affinity, ARM64_AFFINITY_INVALID),
2602 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2603 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2604 DEFINE_PROP_END_OF_LIST()
2607 static gchar *arm_gdb_arch_name(CPUState *cs)
2609 ARMCPU *cpu = ARM_CPU(cs);
2610 CPUARMState *env = &cpu->env;
2612 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2613 return g_strdup("iwmmxt");
2615 return g_strdup("arm");
2618 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2620 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2621 CPUClass *cc = CPU_CLASS(acc);
2622 DeviceClass *dc = DEVICE_CLASS(oc);
2624 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2625 &acc->parent_realize);
2626 dc->props = arm_cpu_properties;
2628 acc->parent_reset = cc->reset;
2629 cc->reset = arm_cpu_reset;
2631 cc->class_by_name = arm_cpu_class_by_name;
2632 cc->has_work = arm_cpu_has_work;
2633 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2634 cc->dump_state = arm_cpu_dump_state;
2635 cc->set_pc = arm_cpu_set_pc;
2636 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2637 cc->gdb_read_register = arm_cpu_gdb_read_register;
2638 cc->gdb_write_register = arm_cpu_gdb_write_register;
2639 #ifndef CONFIG_USER_ONLY
2640 cc->do_interrupt = arm_cpu_do_interrupt;
2641 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2642 cc->asidx_from_attrs = arm_asidx_from_attrs;
2643 cc->vmsd = &vmstate_arm_cpu;
2644 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2645 cc->write_elf64_note = arm_cpu_write_elf64_note;
2646 cc->write_elf32_note = arm_cpu_write_elf32_note;
2647 #endif
2648 cc->gdb_num_core_regs = 26;
2649 cc->gdb_core_xml_file = "arm-core.xml";
2650 cc->gdb_arch_name = arm_gdb_arch_name;
2651 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2652 cc->gdb_stop_before_watchpoint = true;
2653 cc->disas_set_info = arm_disas_set_info;
2654 #ifdef CONFIG_TCG
2655 cc->tcg_initialize = arm_translate_init;
2656 cc->tlb_fill = arm_cpu_tlb_fill;
2657 cc->debug_excp_handler = arm_debug_excp_handler;
2658 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2659 #if !defined(CONFIG_USER_ONLY)
2660 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2661 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2662 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2663 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2664 #endif
2667 #ifdef CONFIG_KVM
2668 static void arm_host_initfn(Object *obj)
2670 ARMCPU *cpu = ARM_CPU(obj);
2672 kvm_arm_set_cpu_features_from_host(cpu);
2673 arm_cpu_post_init(obj);
2676 static const TypeInfo host_arm_cpu_type_info = {
2677 .name = TYPE_ARM_HOST_CPU,
2678 #ifdef TARGET_AARCH64
2679 .parent = TYPE_AARCH64_CPU,
2680 #else
2681 .parent = TYPE_ARM_CPU,
2682 #endif
2683 .instance_init = arm_host_initfn,
2686 #endif
2688 static void arm_cpu_instance_init(Object *obj)
2690 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2692 acc->info->initfn(obj);
2693 arm_cpu_post_init(obj);
2696 static void cpu_register_class_init(ObjectClass *oc, void *data)
2698 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2700 acc->info = data;
2703 static void cpu_register(const ARMCPUInfo *info)
2705 TypeInfo type_info = {
2706 .parent = TYPE_ARM_CPU,
2707 .instance_size = sizeof(ARMCPU),
2708 .instance_init = arm_cpu_instance_init,
2709 .class_size = sizeof(ARMCPUClass),
2710 .class_init = info->class_init ?: cpu_register_class_init,
2711 .class_data = (void *)info,
2714 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2715 type_register(&type_info);
2716 g_free((void *)type_info.name);
2719 static const TypeInfo arm_cpu_type_info = {
2720 .name = TYPE_ARM_CPU,
2721 .parent = TYPE_CPU,
2722 .instance_size = sizeof(ARMCPU),
2723 .instance_init = arm_cpu_initfn,
2724 .instance_finalize = arm_cpu_finalizefn,
2725 .abstract = true,
2726 .class_size = sizeof(ARMCPUClass),
2727 .class_init = arm_cpu_class_init,
2730 static const TypeInfo idau_interface_type_info = {
2731 .name = TYPE_IDAU_INTERFACE,
2732 .parent = TYPE_INTERFACE,
2733 .class_size = sizeof(IDAUInterfaceClass),
2736 static void arm_cpu_register_types(void)
2738 const ARMCPUInfo *info = arm_cpus;
2740 type_register_static(&arm_cpu_type_info);
2741 type_register_static(&idau_interface_type_info);
2743 while (info->name) {
2744 cpu_register(info);
2745 info++;
2748 #ifdef CONFIG_KVM
2749 type_register_static(&host_arm_cpu_type_info);
2750 #endif
2753 type_init(arm_cpu_register_types)