ppc/pnv: Rework cache watch model of PnvXIVE
[qemu/ar7.git] / hw / intc / pnv_xive.c
blob4dc92ef1e3724fc523c9b96f492033ac6fe01822
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2019, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/pnv.h"
20 #include "hw/ppc/pnv_core.h"
21 #include "hw/ppc/pnv_xscom.h"
22 #include "hw/ppc/pnv_xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "hw/ppc/ppc.h"
26 #include <libfdt.h>
28 #include "pnv_xive_regs.h"
30 #define XIVE_DEBUG
33 * Virtual structures table (VST)
35 #define SBE_PER_BYTE 4
37 typedef struct XiveVstInfo {
38 const char *name;
39 uint32_t size;
40 uint32_t max_blocks;
41 } XiveVstInfo;
43 static const XiveVstInfo vst_infos[] = {
44 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
45 [VST_TSEL_SBE] = { "SBE", 1, 16 },
46 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
47 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50 * Interrupt fifo backing store table (not modeled) :
52 * 0 - IPI,
53 * 1 - HWD,
54 * 2 - First escalate,
55 * 3 - Second escalate,
56 * 4 - Redistribution,
57 * 5 - IPI cascaded queue ?
59 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
62 #define xive_error(xive, fmt, ...) \
63 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
64 (xive)->chip->chip_id, ## __VA_ARGS__);
67 * QEMU version of the GETFIELD/SETFIELD macros
69 * TODO: It might be better to use the existing extract64() and
70 * deposit64() but this means that all the register definitions will
71 * change and become incompatible with the ones found in skiboot.
73 * Keep it as it is for now until we find a common ground.
75 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
77 return (word & mask) >> ctz64(mask);
80 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
81 uint64_t value)
83 return (word & ~mask) | ((value << ctz64(mask)) & mask);
87 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
88 * of the chips is good enough.
90 * TODO: Block scope support
92 static PnvXive *pnv_xive_get_ic(uint8_t blk)
94 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
95 int i;
97 for (i = 0; i < pnv->num_chips; i++) {
98 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
99 PnvXive *xive = &chip9->xive;
101 if (xive->chip->chip_id == blk) {
102 return xive;
105 return NULL;
109 * VST accessors for SBE, EAT, ENDT, NVT
111 * Indirect VST tables are arrays of VSDs pointing to a page (of same
112 * size). Each page is a direct VST table.
115 #define XIVE_VSD_SIZE 8
117 /* Indirect page size can be 4K, 64K, 2M, 16M. */
118 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
120 return page_shift == 12 || page_shift == 16 ||
121 page_shift == 21 || page_shift == 24;
124 static uint64_t pnv_xive_vst_size(uint64_t vsd)
126 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
129 * Read the first descriptor to get the page size of the indirect
130 * table.
132 if (VSD_INDIRECT & vsd) {
133 uint32_t nr_pages = vst_tsize / XIVE_VSD_SIZE;
134 uint32_t page_shift;
136 vsd = ldq_be_dma(&address_space_memory, vsd & VSD_ADDRESS_MASK);
137 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
139 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
140 return 0;
143 return nr_pages * (1ull << page_shift);
146 return vst_tsize;
149 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
150 uint64_t vsd, uint32_t idx)
152 const XiveVstInfo *info = &vst_infos[type];
153 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
155 return vst_addr + idx * info->size;
158 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
159 uint64_t vsd, uint32_t idx)
161 const XiveVstInfo *info = &vst_infos[type];
162 uint64_t vsd_addr;
163 uint32_t vsd_idx;
164 uint32_t page_shift;
165 uint32_t vst_per_page;
167 /* Get the page size of the indirect table. */
168 vsd_addr = vsd & VSD_ADDRESS_MASK;
169 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
171 if (!(vsd & VSD_ADDRESS_MASK)) {
172 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
173 return 0;
176 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
178 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
179 xive_error(xive, "VST: invalid %s page shift %d", info->name,
180 page_shift);
181 return 0;
184 vst_per_page = (1ull << page_shift) / info->size;
185 vsd_idx = idx / vst_per_page;
187 /* Load the VSD we are looking for, if not already done */
188 if (vsd_idx) {
189 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
190 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
192 if (!(vsd & VSD_ADDRESS_MASK)) {
193 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
194 return 0;
198 * Check that the pages have a consistent size across the
199 * indirect table
201 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
202 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
203 info->name, idx);
204 return 0;
208 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
211 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
212 uint32_t idx)
214 const XiveVstInfo *info = &vst_infos[type];
215 uint64_t vsd;
216 uint32_t idx_max;
218 if (blk >= info->max_blocks) {
219 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
220 blk, info->name, idx);
221 return 0;
224 vsd = xive->vsds[type][blk];
226 /* Remote VST access */
227 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
228 xive = pnv_xive_get_ic(blk);
230 return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
233 idx_max = pnv_xive_vst_size(vsd) / info->size - 1;
234 if (idx > idx_max) {
235 #ifdef XIVE_DEBUG
236 xive_error(xive, "VST: %s entry %x/%x out of range [ 0 .. %x ] !?",
237 info->name, blk, idx, idx_max);
238 #endif
239 return 0;
242 if (VSD_INDIRECT & vsd) {
243 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
246 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
249 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
250 uint32_t idx, void *data)
252 const XiveVstInfo *info = &vst_infos[type];
253 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
255 if (!addr) {
256 return -1;
259 cpu_physical_memory_read(addr, data, info->size);
260 return 0;
263 #define XIVE_VST_WORD_ALL -1
265 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
266 uint32_t idx, void *data, uint32_t word_number)
268 const XiveVstInfo *info = &vst_infos[type];
269 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
271 if (!addr) {
272 return -1;
275 if (word_number == XIVE_VST_WORD_ALL) {
276 cpu_physical_memory_write(addr, data, info->size);
277 } else {
278 cpu_physical_memory_write(addr + word_number * 4,
279 data + word_number * 4, 4);
281 return 0;
284 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
285 XiveEND *end)
287 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
290 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
291 XiveEND *end, uint8_t word_number)
293 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
294 word_number);
297 static int pnv_xive_end_update(PnvXive *xive)
299 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
300 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
301 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
302 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
303 int i;
304 uint64_t eqc_watch[4];
306 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
307 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
310 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
311 XIVE_VST_WORD_ALL);
314 static void pnv_xive_end_cache_load(PnvXive *xive)
316 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
317 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
318 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
319 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
320 uint64_t eqc_watch[4] = { 0 };
321 int i;
323 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
324 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
327 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
328 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
332 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
333 XiveNVT *nvt)
335 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
338 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
339 XiveNVT *nvt, uint8_t word_number)
341 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
342 word_number);
345 static int pnv_xive_nvt_update(PnvXive *xive)
347 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
348 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
349 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
350 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
351 int i;
352 uint64_t vpc_watch[8];
354 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
355 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
358 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
359 XIVE_VST_WORD_ALL);
362 static void pnv_xive_nvt_cache_load(PnvXive *xive)
364 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
365 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
366 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
367 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
368 uint64_t vpc_watch[8] = { 0 };
369 int i;
371 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
372 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
375 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
376 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
380 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
381 XiveEAS *eas)
383 PnvXive *xive = PNV_XIVE(xrtr);
385 if (pnv_xive_get_ic(blk) != xive) {
386 xive_error(xive, "VST: EAS %x is remote !?", XIVE_SRCNO(blk, idx));
387 return -1;
390 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
393 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
395 PowerPCCPU *cpu = POWERPC_CPU(cs);
396 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
397 PnvXive *xive = NULL;
398 CPUPPCState *env = &cpu->env;
399 int pir = env->spr_cb[SPR_PIR].default_value;
402 * Perform an extra check on the HW thread enablement.
404 * The TIMA is shared among the chips and to identify the chip
405 * from which the access is being done, we extract the chip id
406 * from the PIR.
408 xive = pnv_xive_get_ic((pir >> 8) & 0xf);
409 if (!xive) {
410 return NULL;
413 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
414 xive_error(PNV_XIVE(xrtr), "IC: CPU %x is not enabled", pir);
417 return tctx;
421 * The internal sources (IPIs) of the interrupt controller have no
422 * knowledge of the XIVE chip on which they reside. Encode the block
423 * id in the source interrupt number before forwarding the source
424 * event notification to the Router. This is required on a multichip
425 * system.
427 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
429 PnvXive *xive = PNV_XIVE(xn);
430 uint8_t blk = xive->chip->chip_id;
432 xive_router_notify(xn, XIVE_SRCNO(blk, srcno));
436 * XIVE helpers
439 static uint64_t pnv_xive_vc_size(PnvXive *xive)
441 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
444 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
446 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
449 static uint64_t pnv_xive_pc_size(PnvXive *xive)
451 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
454 static uint32_t pnv_xive_nr_ipis(PnvXive *xive)
456 uint8_t blk = xive->chip->chip_id;
458 return pnv_xive_vst_size(xive->vsds[VST_TSEL_SBE][blk]) * SBE_PER_BYTE;
461 static uint32_t pnv_xive_nr_ends(PnvXive *xive)
463 uint8_t blk = xive->chip->chip_id;
465 return pnv_xive_vst_size(xive->vsds[VST_TSEL_EQDT][blk])
466 / vst_infos[VST_TSEL_EQDT].size;
470 * EDT Table
472 * The Virtualization Controller MMIO region containing the IPI ESB
473 * pages and END ESB pages is sub-divided into "sets" which map
474 * portions of the VC region to the different ESB pages. It is
475 * configured at runtime through the EDT "Domain Table" to let the
476 * firmware decide how to split the VC address space between IPI ESB
477 * pages and END ESB pages.
481 * Computes the overall size of the IPI or the END ESB pages
483 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
485 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
486 uint64_t size = 0;
487 int i;
489 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
490 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
492 if (edt_type == type) {
493 size += edt_size;
497 return size;
501 * Maps an offset of the VC region in the IPI or END region using the
502 * layout defined by the EDT "Domaine Table"
504 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
505 uint64_t type)
507 int i;
508 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
509 uint64_t edt_offset = vc_offset;
511 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
512 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
514 if (edt_type != type) {
515 edt_offset -= edt_size;
519 return edt_offset;
522 static void pnv_xive_edt_resize(PnvXive *xive)
524 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
525 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
527 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
528 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
530 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
531 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
535 * XIVE Table configuration. Only EDT is supported.
537 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
539 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
540 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
541 uint64_t *xive_table;
542 uint8_t max_index;
544 switch (tsel) {
545 case CQ_TAR_TSEL_BLK:
546 max_index = ARRAY_SIZE(xive->blk);
547 xive_table = xive->blk;
548 break;
549 case CQ_TAR_TSEL_MIG:
550 max_index = ARRAY_SIZE(xive->mig);
551 xive_table = xive->mig;
552 break;
553 case CQ_TAR_TSEL_EDT:
554 max_index = ARRAY_SIZE(xive->edt);
555 xive_table = xive->edt;
556 break;
557 case CQ_TAR_TSEL_VDT:
558 max_index = ARRAY_SIZE(xive->vdt);
559 xive_table = xive->vdt;
560 break;
561 default:
562 xive_error(xive, "IC: invalid table %d", (int) tsel);
563 return -1;
566 if (tsel_index >= max_index) {
567 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
568 return -1;
571 xive_table[tsel_index] = val;
573 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
574 xive->regs[CQ_TAR >> 3] =
575 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
579 * EDT configuration is complete. Resize the MMIO windows exposing
580 * the IPI and the END ESBs in the VC region.
582 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
583 pnv_xive_edt_resize(xive);
586 return 0;
590 * Virtual Structure Tables (VST) configuration
592 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
593 uint8_t blk, uint64_t vsd)
595 XiveENDSource *end_xsrc = &xive->end_source;
596 XiveSource *xsrc = &xive->ipi_source;
597 const XiveVstInfo *info = &vst_infos[type];
598 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
599 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
601 /* Basic checks */
603 if (VSD_INDIRECT & vsd) {
604 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
605 xive_error(xive, "VST: %s indirect tables are not enabled",
606 info->name);
607 return;
610 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
611 xive_error(xive, "VST: invalid %s page shift %d", info->name,
612 page_shift);
613 return;
617 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
618 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
619 " page shift %d", info->name, vst_addr, page_shift);
620 return;
623 /* Record the table configuration (in SRAM on HW) */
624 xive->vsds[type][blk] = vsd;
626 /* Now tune the models with the configuration provided by the FW */
628 switch (type) {
629 case VST_TSEL_IVT: /* Nothing to be done */
630 break;
632 case VST_TSEL_EQDT:
634 * Backing store pages for the END. Compute the number of ENDs
635 * provisioned by FW and resize the END ESB window accordingly.
637 memory_region_set_size(&end_xsrc->esb_mmio, pnv_xive_nr_ends(xive) *
638 (1ull << (end_xsrc->esb_shift + 1)));
639 memory_region_add_subregion(&xive->end_edt_mmio, 0,
640 &end_xsrc->esb_mmio);
641 break;
643 case VST_TSEL_SBE:
645 * Backing store pages for the source PQ bits. The model does
646 * not use these PQ bits backed in RAM because the XiveSource
647 * model has its own. Compute the number of IRQs provisioned
648 * by FW and resize the IPI ESB window accordingly.
650 memory_region_set_size(&xsrc->esb_mmio, pnv_xive_nr_ipis(xive) *
651 (1ull << xsrc->esb_shift));
652 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
653 break;
655 case VST_TSEL_VPDT: /* Not modeled */
656 case VST_TSEL_IRQ: /* Not modeled */
658 * These tables contains the backing store pages for the
659 * interrupt fifos of the VC sub-engine in case of overflow.
661 break;
663 default:
664 g_assert_not_reached();
669 * Both PC and VC sub-engines are configured as each use the Virtual
670 * Structure Tables : SBE, EAS, END and NVT.
672 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
674 uint8_t mode = GETFIELD(VSD_MODE, vsd);
675 uint8_t type = GETFIELD(VST_TABLE_SELECT,
676 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
677 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
678 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
679 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
681 if (type > VST_TSEL_IRQ) {
682 xive_error(xive, "VST: invalid table type %d", type);
683 return;
686 if (blk >= vst_infos[type].max_blocks) {
687 xive_error(xive, "VST: invalid block id %d for"
688 " %s table", blk, vst_infos[type].name);
689 return;
693 * Only take the VC sub-engine configuration into account because
694 * the XiveRouter model combines both VC and PC sub-engines
696 if (pc_engine) {
697 return;
700 if (!vst_addr) {
701 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
702 return;
705 switch (mode) {
706 case VSD_MODE_FORWARD:
707 xive->vsds[type][blk] = vsd;
708 break;
710 case VSD_MODE_EXCLUSIVE:
711 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
712 break;
714 default:
715 xive_error(xive, "VST: unsupported table mode %d", mode);
716 return;
721 * Interrupt controller MMIO region. The layout is compatible between
722 * 4K and 64K pages :
724 * Page 0 sub-engine BARs
725 * 0x000 - 0x3FF IC registers
726 * 0x400 - 0x7FF PC registers
727 * 0x800 - 0xFFF VC registers
729 * Page 1 Notify page (writes only)
730 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
731 * 0x800 - 0xFFF forwards and syncs
733 * Page 2 LSI Trigger page (writes only) (not modeled)
734 * Page 3 LSI SB EOI page (reads only) (not modeled)
736 * Page 4-7 indirect TIMA
740 * IC - registers MMIO
742 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
743 uint64_t val, unsigned size)
745 PnvXive *xive = PNV_XIVE(opaque);
746 MemoryRegion *sysmem = get_system_memory();
747 uint32_t reg = offset >> 3;
748 bool is_chip0 = xive->chip->chip_id == 0;
750 switch (offset) {
753 * XIVE CQ (PowerBus bridge) settings
755 case CQ_MSGSND: /* msgsnd for doorbells */
756 case CQ_FIRMASK_OR: /* FIR error reporting */
757 break;
758 case CQ_PBI_CTL:
759 if (val & CQ_PBI_PC_64K) {
760 xive->pc_shift = 16;
762 if (val & CQ_PBI_VC_64K) {
763 xive->vc_shift = 16;
765 break;
766 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
768 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
770 break;
773 * XIVE Virtualization Controller settings
775 case VC_GLOBAL_CONFIG:
776 break;
779 * XIVE Presenter Controller settings
781 case PC_GLOBAL_CONFIG:
783 * PC_GCONF_CHIPID_OVR
784 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
786 break;
787 case PC_TCTXT_CFG:
789 * TODO: block group support
791 * PC_TCTXT_CFG_BLKGRP_EN
792 * PC_TCTXT_CFG_HARD_CHIPID_BLK :
793 * Moves the chipid into block field for hardwired CAM compares.
794 * Block offset value is adjusted to 0b0..01 & ThrdId
796 * Will require changes in xive_presenter_tctx_match(). I am
797 * not sure how to handle that yet.
800 /* Overrides hardwired chip ID with the chip ID field */
801 if (val & PC_TCTXT_CHIPID_OVERRIDE) {
802 xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val);
804 break;
805 case PC_TCTXT_TRACK:
807 * PC_TCTXT_TRACK_EN:
808 * enable block tracking and exchange of block ownership
809 * information between Interrupt controllers
811 break;
814 * Misc settings
816 case VC_SBC_CONFIG: /* Store EOI configuration */
818 * Configure store EOI if required by firwmare (skiboot has removed
819 * support recently though)
821 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
822 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
824 break;
826 case VC_EQC_CONFIG: /* TODO: silent escalation */
827 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
828 break;
831 * XIVE BAR settings (XSCOM only)
833 case CQ_RST_CTL:
834 /* bit4: resets all BAR registers */
835 break;
837 case CQ_IC_BAR: /* IC BAR. 8 pages */
838 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
839 if (!(val & CQ_IC_BAR_VALID)) {
840 xive->ic_base = 0;
841 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
842 memory_region_del_subregion(&xive->ic_mmio,
843 &xive->ic_reg_mmio);
844 memory_region_del_subregion(&xive->ic_mmio,
845 &xive->ic_notify_mmio);
846 memory_region_del_subregion(&xive->ic_mmio,
847 &xive->ic_lsi_mmio);
848 memory_region_del_subregion(&xive->ic_mmio,
849 &xive->tm_indirect_mmio);
851 memory_region_del_subregion(sysmem, &xive->ic_mmio);
853 } else {
854 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
855 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
856 memory_region_add_subregion(sysmem, xive->ic_base,
857 &xive->ic_mmio);
859 memory_region_add_subregion(&xive->ic_mmio, 0,
860 &xive->ic_reg_mmio);
861 memory_region_add_subregion(&xive->ic_mmio,
862 1ul << xive->ic_shift,
863 &xive->ic_notify_mmio);
864 memory_region_add_subregion(&xive->ic_mmio,
865 2ul << xive->ic_shift,
866 &xive->ic_lsi_mmio);
867 memory_region_add_subregion(&xive->ic_mmio,
868 4ull << xive->ic_shift,
869 &xive->tm_indirect_mmio);
872 break;
874 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
875 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
876 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
877 if (!(val & CQ_TM_BAR_VALID)) {
878 xive->tm_base = 0;
879 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
880 memory_region_del_subregion(sysmem, &xive->tm_mmio);
882 } else {
883 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
884 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
885 memory_region_add_subregion(sysmem, xive->tm_base,
886 &xive->tm_mmio);
889 break;
891 case CQ_PC_BARM:
892 xive->regs[reg] = val;
893 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
894 break;
895 case CQ_PC_BAR: /* From 32M to 512G */
896 if (!(val & CQ_PC_BAR_VALID)) {
897 xive->pc_base = 0;
898 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
899 memory_region_del_subregion(sysmem, &xive->pc_mmio);
901 } else {
902 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
903 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
904 memory_region_add_subregion(sysmem, xive->pc_base,
905 &xive->pc_mmio);
908 break;
910 case CQ_VC_BARM:
911 xive->regs[reg] = val;
912 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
913 break;
914 case CQ_VC_BAR: /* From 64M to 4TB */
915 if (!(val & CQ_VC_BAR_VALID)) {
916 xive->vc_base = 0;
917 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
918 memory_region_del_subregion(sysmem, &xive->vc_mmio);
920 } else {
921 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
922 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
923 memory_region_add_subregion(sysmem, xive->vc_base,
924 &xive->vc_mmio);
927 break;
930 * XIVE Table settings.
932 case CQ_TAR: /* Table Address */
933 break;
934 case CQ_TDR: /* Table Data */
935 pnv_xive_table_set_data(xive, val);
936 break;
939 * XIVE VC & PC Virtual Structure Table settings
941 case VC_VSD_TABLE_ADDR:
942 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
943 break;
944 case VC_VSD_TABLE_DATA: /* Virtual table setting */
945 case PC_VSD_TABLE_DATA:
946 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
947 break;
950 * Interrupt fifo overflow in memory backing store (Not modeled)
952 case VC_IRQ_CONFIG_IPI:
953 case VC_IRQ_CONFIG_HW:
954 case VC_IRQ_CONFIG_CASCADE1:
955 case VC_IRQ_CONFIG_CASCADE2:
956 case VC_IRQ_CONFIG_REDIST:
957 case VC_IRQ_CONFIG_IPI_CASC:
958 break;
961 * XIVE hardware thread enablement
963 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
964 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
965 break;
967 case PC_THREAD_EN_REG0_SET:
968 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
969 break;
970 case PC_THREAD_EN_REG1_SET:
971 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
972 break;
973 case PC_THREAD_EN_REG0_CLR:
974 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
975 break;
976 case PC_THREAD_EN_REG1_CLR:
977 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
978 break;
981 * Indirect TIMA access set up. Defines the PIR of the HW thread
982 * to use.
984 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
985 break;
988 * XIVE PC & VC cache updates for EAS, NVT and END
990 case VC_IVC_SCRUB_MASK:
991 case VC_IVC_SCRUB_TRIG:
992 break;
994 case VC_EQC_CWATCH_SPEC:
995 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
996 break;
997 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
998 break;
999 case VC_EQC_CWATCH_DAT0:
1000 /* writing to DATA0 triggers the cache write */
1001 xive->regs[reg] = val;
1002 pnv_xive_end_update(xive);
1003 break;
1004 case VC_EQC_SCRUB_MASK:
1005 case VC_EQC_SCRUB_TRIG:
1007 * The scrubbing registers flush the cache in RAM and can also
1008 * invalidate.
1010 break;
1012 case PC_VPC_CWATCH_SPEC:
1013 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1014 break;
1015 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1016 break;
1017 case PC_VPC_CWATCH_DAT0:
1018 /* writing to DATA0 triggers the cache write */
1019 xive->regs[reg] = val;
1020 pnv_xive_nvt_update(xive);
1021 break;
1022 case PC_VPC_SCRUB_MASK:
1023 case PC_VPC_SCRUB_TRIG:
1025 * The scrubbing registers flush the cache in RAM and can also
1026 * invalidate.
1028 break;
1032 * XIVE PC & VC cache invalidation
1034 case PC_AT_KILL:
1035 break;
1036 case VC_AT_MACRO_KILL:
1037 break;
1038 case PC_AT_KILL_MASK:
1039 case VC_AT_MACRO_KILL_MASK:
1040 break;
1042 default:
1043 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1044 return;
1047 xive->regs[reg] = val;
1050 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1052 PnvXive *xive = PNV_XIVE(opaque);
1053 uint64_t val = 0;
1054 uint32_t reg = offset >> 3;
1056 switch (offset) {
1057 case CQ_CFG_PB_GEN:
1058 case CQ_IC_BAR:
1059 case CQ_TM1_BAR:
1060 case CQ_TM2_BAR:
1061 case CQ_PC_BAR:
1062 case CQ_PC_BARM:
1063 case CQ_VC_BAR:
1064 case CQ_VC_BARM:
1065 case CQ_TAR:
1066 case CQ_TDR:
1067 case CQ_PBI_CTL:
1069 case PC_TCTXT_CFG:
1070 case PC_TCTXT_TRACK:
1071 case PC_TCTXT_INDIR0:
1072 case PC_TCTXT_INDIR1:
1073 case PC_TCTXT_INDIR2:
1074 case PC_TCTXT_INDIR3:
1075 case PC_GLOBAL_CONFIG:
1077 case PC_VPC_SCRUB_MASK:
1079 case VC_GLOBAL_CONFIG:
1080 case VC_AIB_TX_ORDER_TAG2:
1082 case VC_IRQ_CONFIG_IPI:
1083 case VC_IRQ_CONFIG_HW:
1084 case VC_IRQ_CONFIG_CASCADE1:
1085 case VC_IRQ_CONFIG_CASCADE2:
1086 case VC_IRQ_CONFIG_REDIST:
1087 case VC_IRQ_CONFIG_IPI_CASC:
1089 case VC_EQC_SCRUB_MASK:
1090 case VC_IVC_SCRUB_MASK:
1091 case VC_SBC_CONFIG:
1092 case VC_AT_MACRO_KILL_MASK:
1093 case VC_VSD_TABLE_ADDR:
1094 case PC_VSD_TABLE_ADDR:
1095 case VC_VSD_TABLE_DATA:
1096 case PC_VSD_TABLE_DATA:
1097 case PC_THREAD_EN_REG0:
1098 case PC_THREAD_EN_REG1:
1099 val = xive->regs[reg];
1100 break;
1103 * XIVE hardware thread enablement
1105 case PC_THREAD_EN_REG0_SET:
1106 case PC_THREAD_EN_REG0_CLR:
1107 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1108 break;
1109 case PC_THREAD_EN_REG1_SET:
1110 case PC_THREAD_EN_REG1_CLR:
1111 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1112 break;
1114 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1115 val = 0xffffff0000000000;
1116 break;
1119 * XIVE PC & VC cache updates for EAS, NVT and END
1121 case VC_EQC_CWATCH_SPEC:
1122 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1123 val = xive->regs[reg];
1124 break;
1125 case VC_EQC_CWATCH_DAT0:
1127 * Load DATA registers from cache with data requested by the
1128 * SPEC register
1130 pnv_xive_end_cache_load(xive);
1131 val = xive->regs[reg];
1132 break;
1133 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1134 val = xive->regs[reg];
1135 break;
1137 case PC_VPC_CWATCH_SPEC:
1138 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1139 val = xive->regs[reg];
1140 break;
1141 case PC_VPC_CWATCH_DAT0:
1143 * Load DATA registers from cache with data requested by the
1144 * SPEC register
1146 pnv_xive_nvt_cache_load(xive);
1147 val = xive->regs[reg];
1148 break;
1149 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1150 val = xive->regs[reg];
1151 break;
1153 case PC_VPC_SCRUB_TRIG:
1154 case VC_IVC_SCRUB_TRIG:
1155 case VC_EQC_SCRUB_TRIG:
1156 xive->regs[reg] &= ~VC_SCRUB_VALID;
1157 val = xive->regs[reg];
1158 break;
1161 * XIVE PC & VC cache invalidation
1163 case PC_AT_KILL:
1164 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1165 val = xive->regs[reg];
1166 break;
1167 case VC_AT_MACRO_KILL:
1168 xive->regs[reg] &= ~VC_KILL_VALID;
1169 val = xive->regs[reg];
1170 break;
1173 * XIVE synchronisation
1175 case VC_EQC_CONFIG:
1176 val = VC_EQC_SYNC_MASK;
1177 break;
1179 default:
1180 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1183 return val;
1186 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1187 .read = pnv_xive_ic_reg_read,
1188 .write = pnv_xive_ic_reg_write,
1189 .endianness = DEVICE_BIG_ENDIAN,
1190 .valid = {
1191 .min_access_size = 8,
1192 .max_access_size = 8,
1194 .impl = {
1195 .min_access_size = 8,
1196 .max_access_size = 8,
1201 * IC - Notify MMIO port page (write only)
1203 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1204 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1205 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1206 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1207 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1208 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1209 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1210 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1212 /* VC synchronisation */
1213 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1214 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1215 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1216 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1217 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1219 /* PC synchronisation */
1220 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1221 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1222 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1224 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1227 * Forward the source event notification directly to the Router.
1228 * The source interrupt number should already be correctly encoded
1229 * with the chip block id by the sending device (PHB, PSI).
1231 xive_router_notify(XIVE_NOTIFIER(xive), val);
1234 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1235 unsigned size)
1237 PnvXive *xive = PNV_XIVE(opaque);
1239 /* VC: HW triggers */
1240 switch (addr) {
1241 case 0x000 ... 0x7FF:
1242 pnv_xive_ic_hw_trigger(opaque, addr, val);
1243 break;
1245 /* VC: Forwarded IRQs */
1246 case PNV_XIVE_FORWARD_IPI:
1247 case PNV_XIVE_FORWARD_HW:
1248 case PNV_XIVE_FORWARD_OS_ESC:
1249 case PNV_XIVE_FORWARD_HW_ESC:
1250 case PNV_XIVE_FORWARD_REDIS:
1251 /* TODO: forwarded IRQs. Should be like HW triggers */
1252 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1253 addr, val);
1254 break;
1256 /* VC syncs */
1257 case PNV_XIVE_SYNC_IPI:
1258 case PNV_XIVE_SYNC_HW:
1259 case PNV_XIVE_SYNC_OS_ESC:
1260 case PNV_XIVE_SYNC_HW_ESC:
1261 case PNV_XIVE_SYNC_REDIS:
1262 break;
1264 /* PC syncs */
1265 case PNV_XIVE_SYNC_PULL:
1266 case PNV_XIVE_SYNC_PUSH:
1267 case PNV_XIVE_SYNC_VPC:
1268 break;
1270 default:
1271 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1275 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1276 unsigned size)
1278 PnvXive *xive = PNV_XIVE(opaque);
1280 /* loads are invalid */
1281 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1282 return -1;
1285 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1286 .read = pnv_xive_ic_notify_read,
1287 .write = pnv_xive_ic_notify_write,
1288 .endianness = DEVICE_BIG_ENDIAN,
1289 .valid = {
1290 .min_access_size = 8,
1291 .max_access_size = 8,
1293 .impl = {
1294 .min_access_size = 8,
1295 .max_access_size = 8,
1300 * IC - LSI MMIO handlers (not modeled)
1303 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1304 uint64_t val, unsigned size)
1306 PnvXive *xive = PNV_XIVE(opaque);
1308 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1311 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1313 PnvXive *xive = PNV_XIVE(opaque);
1315 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1316 return -1;
1319 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1320 .read = pnv_xive_ic_lsi_read,
1321 .write = pnv_xive_ic_lsi_write,
1322 .endianness = DEVICE_BIG_ENDIAN,
1323 .valid = {
1324 .min_access_size = 8,
1325 .max_access_size = 8,
1327 .impl = {
1328 .min_access_size = 8,
1329 .max_access_size = 8,
1334 * IC - Indirect TIMA MMIO handlers
1338 * When the TIMA is accessed from the indirect page, the thread id
1339 * (PIR) has to be configured in the IC registers before. This is used
1340 * for resets and for debug purpose also.
1342 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1344 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1345 PowerPCCPU *cpu = NULL;
1346 int pir;
1348 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1349 xive_error(xive, "IC: no indirect TIMA access in progress");
1350 return NULL;
1353 pir = GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir) & 0xff;
1354 cpu = ppc_get_vcpu_by_pir(pir);
1355 if (!cpu) {
1356 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1357 return NULL;
1360 /* Check that HW thread is XIVE enabled */
1361 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
1362 xive_error(xive, "IC: CPU %x is not enabled", pir);
1365 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1368 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1369 uint64_t value, unsigned size)
1371 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1373 xive_tctx_tm_write(tctx, offset, value, size);
1376 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1377 unsigned size)
1379 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1381 return xive_tctx_tm_read(tctx, offset, size);
1384 static const MemoryRegionOps xive_tm_indirect_ops = {
1385 .read = xive_tm_indirect_read,
1386 .write = xive_tm_indirect_write,
1387 .endianness = DEVICE_BIG_ENDIAN,
1388 .valid = {
1389 .min_access_size = 1,
1390 .max_access_size = 8,
1392 .impl = {
1393 .min_access_size = 1,
1394 .max_access_size = 8,
1399 * Interrupt controller XSCOM region.
1401 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1403 switch (addr >> 3) {
1404 case X_VC_EQC_CONFIG:
1405 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1406 return VC_EQC_SYNC_MASK;
1407 default:
1408 return pnv_xive_ic_reg_read(opaque, addr, size);
1412 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1413 uint64_t val, unsigned size)
1415 pnv_xive_ic_reg_write(opaque, addr, val, size);
1418 static const MemoryRegionOps pnv_xive_xscom_ops = {
1419 .read = pnv_xive_xscom_read,
1420 .write = pnv_xive_xscom_write,
1421 .endianness = DEVICE_BIG_ENDIAN,
1422 .valid = {
1423 .min_access_size = 8,
1424 .max_access_size = 8,
1426 .impl = {
1427 .min_access_size = 8,
1428 .max_access_size = 8,
1433 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1435 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1436 unsigned size)
1438 PnvXive *xive = PNV_XIVE(opaque);
1439 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1440 uint64_t edt_type = 0;
1441 uint64_t edt_offset;
1442 MemTxResult result;
1443 AddressSpace *edt_as = NULL;
1444 uint64_t ret = -1;
1446 if (edt_index < XIVE_TABLE_EDT_MAX) {
1447 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1450 switch (edt_type) {
1451 case CQ_TDR_EDT_IPI:
1452 edt_as = &xive->ipi_as;
1453 break;
1454 case CQ_TDR_EDT_EQ:
1455 edt_as = &xive->end_as;
1456 break;
1457 default:
1458 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1459 return -1;
1462 /* Remap the offset for the targeted address space */
1463 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1465 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1466 &result);
1468 if (result != MEMTX_OK) {
1469 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1470 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1471 offset, edt_offset);
1472 return -1;
1475 return ret;
1478 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1479 uint64_t val, unsigned size)
1481 PnvXive *xive = PNV_XIVE(opaque);
1482 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1483 uint64_t edt_type = 0;
1484 uint64_t edt_offset;
1485 MemTxResult result;
1486 AddressSpace *edt_as = NULL;
1488 if (edt_index < XIVE_TABLE_EDT_MAX) {
1489 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1492 switch (edt_type) {
1493 case CQ_TDR_EDT_IPI:
1494 edt_as = &xive->ipi_as;
1495 break;
1496 case CQ_TDR_EDT_EQ:
1497 edt_as = &xive->end_as;
1498 break;
1499 default:
1500 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1501 offset);
1502 return;
1505 /* Remap the offset for the targeted address space */
1506 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1508 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1509 if (result != MEMTX_OK) {
1510 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1514 static const MemoryRegionOps pnv_xive_vc_ops = {
1515 .read = pnv_xive_vc_read,
1516 .write = pnv_xive_vc_write,
1517 .endianness = DEVICE_BIG_ENDIAN,
1518 .valid = {
1519 .min_access_size = 8,
1520 .max_access_size = 8,
1522 .impl = {
1523 .min_access_size = 8,
1524 .max_access_size = 8,
1529 * Presenter Controller MMIO region. The Virtualization Controller
1530 * updates the IPB in the NVT table when required. Not modeled.
1532 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1533 unsigned size)
1535 PnvXive *xive = PNV_XIVE(opaque);
1537 xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1538 return -1;
1541 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1542 uint64_t value, unsigned size)
1544 PnvXive *xive = PNV_XIVE(opaque);
1546 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1549 static const MemoryRegionOps pnv_xive_pc_ops = {
1550 .read = pnv_xive_pc_read,
1551 .write = pnv_xive_pc_write,
1552 .endianness = DEVICE_BIG_ENDIAN,
1553 .valid = {
1554 .min_access_size = 8,
1555 .max_access_size = 8,
1557 .impl = {
1558 .min_access_size = 8,
1559 .max_access_size = 8,
1563 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1565 XiveRouter *xrtr = XIVE_ROUTER(xive);
1566 uint8_t blk = xive->chip->chip_id;
1567 uint32_t srcno0 = XIVE_SRCNO(blk, 0);
1568 uint32_t nr_ipis = pnv_xive_nr_ipis(xive);
1569 uint32_t nr_ends = pnv_xive_nr_ends(xive);
1570 XiveEAS eas;
1571 XiveEND end;
1572 int i;
1574 monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1575 srcno0 + nr_ipis - 1);
1576 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1578 monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1579 srcno0 + nr_ipis - 1);
1580 for (i = 0; i < nr_ipis; i++) {
1581 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1582 break;
1584 if (!xive_eas_is_masked(&eas)) {
1585 xive_eas_pic_print_info(&eas, i, mon);
1589 monitor_printf(mon, "XIVE[%x] ENDT %08x .. %08x\n", blk, 0, nr_ends - 1);
1590 for (i = 0; i < nr_ends; i++) {
1591 if (xive_router_get_end(xrtr, blk, i, &end)) {
1592 break;
1594 xive_end_pic_print_info(&end, i, mon);
1598 static void pnv_xive_reset(void *dev)
1600 PnvXive *xive = PNV_XIVE(dev);
1601 XiveSource *xsrc = &xive->ipi_source;
1602 XiveENDSource *end_xsrc = &xive->end_source;
1605 * Use the PnvChip id to identify the XIVE interrupt controller.
1606 * It can be overriden by configuration at runtime.
1608 xive->tctx_chipid = xive->chip->chip_id;
1610 /* Default page size (Should be changed at runtime to 64k) */
1611 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1613 /* Clear subregions */
1614 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1615 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1618 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1619 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1622 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1623 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1626 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1627 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1631 static void pnv_xive_init(Object *obj)
1633 PnvXive *xive = PNV_XIVE(obj);
1635 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1636 sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1637 &error_abort, NULL);
1638 object_initialize_child(obj, "end_source", &xive->end_source,
1639 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1640 &error_abort, NULL);
1644 * Maximum number of IRQs and ENDs supported by HW
1646 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1647 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1649 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1651 PnvXive *xive = PNV_XIVE(dev);
1652 XiveSource *xsrc = &xive->ipi_source;
1653 XiveENDSource *end_xsrc = &xive->end_source;
1654 Error *local_err = NULL;
1655 Object *obj;
1657 obj = object_property_get_link(OBJECT(dev), "chip", &local_err);
1658 if (!obj) {
1659 error_propagate(errp, local_err);
1660 error_prepend(errp, "required link 'chip' not found: ");
1661 return;
1664 /* The PnvChip id identifies the XIVE interrupt controller. */
1665 xive->chip = PNV_CHIP(obj);
1668 * The XiveSource and XiveENDSource objects are realized with the
1669 * maximum allowed HW configuration. The ESB MMIO regions will be
1670 * resized dynamically when the controller is configured by the FW
1671 * to limit accesses to resources not provisioned.
1673 object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1674 &error_fatal);
1675 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
1676 &error_fatal);
1677 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1678 if (local_err) {
1679 error_propagate(errp, local_err);
1680 return;
1683 object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1684 &error_fatal);
1685 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1686 &error_fatal);
1687 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1688 if (local_err) {
1689 error_propagate(errp, local_err);
1690 return;
1693 /* Default page size. Generally changed at runtime to 64k */
1694 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1696 /* XSCOM region, used for initial configuration of the BARs */
1697 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1698 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1700 /* Interrupt controller MMIO regions */
1701 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1702 PNV9_XIVE_IC_SIZE);
1704 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1705 xive, "xive-ic-reg", 1 << xive->ic_shift);
1706 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1707 &pnv_xive_ic_notify_ops,
1708 xive, "xive-ic-notify", 1 << xive->ic_shift);
1710 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1711 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1712 xive, "xive-ic-lsi", 2 << xive->ic_shift);
1714 /* Thread Interrupt Management Area (Indirect) */
1715 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1716 &xive_tm_indirect_ops,
1717 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1719 * Overall Virtualization Controller MMIO region containing the
1720 * IPI ESB pages and END ESB pages. The layout is defined by the
1721 * EDT "Domain table" and the accesses are dispatched using
1722 * address spaces for each.
1724 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1725 "xive-vc", PNV9_XIVE_VC_SIZE);
1727 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1728 PNV9_XIVE_VC_SIZE);
1729 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1730 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1731 PNV9_XIVE_VC_SIZE);
1732 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1735 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1736 * VC region. Their size is configured by the FW in the EDT table.
1738 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1739 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1741 /* Presenter Controller MMIO region (not modeled) */
1742 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1743 "xive-pc", PNV9_XIVE_PC_SIZE);
1745 /* Thread Interrupt Management Area (Direct) */
1746 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops,
1747 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1749 qemu_register_reset(pnv_xive_reset, dev);
1752 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1753 int xscom_offset)
1755 const char compat[] = "ibm,power9-xive-x";
1756 char *name;
1757 int offset;
1758 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1759 uint32_t reg[] = {
1760 cpu_to_be32(lpc_pcba),
1761 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1764 name = g_strdup_printf("xive@%x", lpc_pcba);
1765 offset = fdt_add_subnode(fdt, xscom_offset, name);
1766 _FDT(offset);
1767 g_free(name);
1769 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1770 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1771 sizeof(compat))));
1772 return 0;
1775 static Property pnv_xive_properties[] = {
1776 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1777 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1778 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1779 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1780 DEFINE_PROP_END_OF_LIST(),
1783 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1785 DeviceClass *dc = DEVICE_CLASS(klass);
1786 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1787 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1788 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1790 xdc->dt_xscom = pnv_xive_dt_xscom;
1792 dc->desc = "PowerNV XIVE Interrupt Controller";
1793 dc->realize = pnv_xive_realize;
1794 dc->props = pnv_xive_properties;
1796 xrc->get_eas = pnv_xive_get_eas;
1797 xrc->get_end = pnv_xive_get_end;
1798 xrc->write_end = pnv_xive_write_end;
1799 xrc->get_nvt = pnv_xive_get_nvt;
1800 xrc->write_nvt = pnv_xive_write_nvt;
1801 xrc->get_tctx = pnv_xive_get_tctx;
1803 xnc->notify = pnv_xive_notify;
1806 static const TypeInfo pnv_xive_info = {
1807 .name = TYPE_PNV_XIVE,
1808 .parent = TYPE_XIVE_ROUTER,
1809 .instance_init = pnv_xive_init,
1810 .instance_size = sizeof(PnvXive),
1811 .class_init = pnv_xive_class_init,
1812 .interfaces = (InterfaceInfo[]) {
1813 { TYPE_PNV_XSCOM_INTERFACE },
1818 static void pnv_xive_register_types(void)
1820 type_register_static(&pnv_xive_info);
1823 type_init(pnv_xive_register_types)