libvixl: fix 64bit constants usage
[qemu/ar7.git] / block / qed.c
blobb9ca7ac0dad40e455f2feb0b9ee20502803b355f
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
33 static const AIOCBInfo qed_aiocb_info = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
41 const QEDHeader *header = (const QEDHeader *)buf;
43 if (buf_size < sizeof(*header)) {
44 return 0;
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
49 return 100;
52 /**
53 * Check whether an image format is raw
55 * @fmt: Backing file format, may be NULL
57 static bool qed_fmt_is_raw(const char *fmt)
59 return fmt && strcmp(fmt, "raw") == 0;
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
92 int qed_write_header_sync(BDRVQEDState *s)
94 QEDHeader le;
95 int ret;
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
102 return 0;
105 typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112 } QEDWriteHeaderCB;
114 static void qed_write_header_cb(void *opaque, int ret)
116 QEDWriteHeaderCB *write_header_cb = opaque;
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
122 static void qed_write_header_read_cb(void *opaque, int ret)
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
141 * Update header in-place (does not rewrite backing filename or other strings)
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147 void *opaque)
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156 BDRV_SECTOR_SIZE;
157 size_t len = nsectors * BDRV_SECTOR_SIZE;
158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159 cb, opaque);
161 write_header_cb->s = s;
162 write_header_cb->nsectors = nsectors;
163 write_header_cb->buf = qemu_blockalign(s->bs, len);
164 write_header_cb->iov.iov_base = write_header_cb->buf;
165 write_header_cb->iov.iov_len = len;
166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169 qed_write_header_read_cb, write_header_cb);
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
174 uint64_t table_entries;
175 uint64_t l2_size;
177 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178 l2_size = table_entries * cluster_size;
180 return l2_size * table_entries;
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
185 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186 cluster_size > QED_MAX_CLUSTER_SIZE) {
187 return false;
189 if (cluster_size & (cluster_size - 1)) {
190 return false; /* not power of 2 */
192 return true;
195 static bool qed_is_table_size_valid(uint32_t table_size)
197 if (table_size < QED_MIN_TABLE_SIZE ||
198 table_size > QED_MAX_TABLE_SIZE) {
199 return false;
201 if (table_size & (table_size - 1)) {
202 return false; /* not power of 2 */
204 return true;
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208 uint32_t table_size)
210 if (image_size % BDRV_SECTOR_SIZE != 0) {
211 return false; /* not multiple of sector size */
213 if (image_size > qed_max_image_size(cluster_size, table_size)) {
214 return false; /* image is too large */
216 return true;
220 * Read a string of known length from the image file
222 * @file: Image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
229 * The string is NUL-terminated.
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232 char *buf, size_t buflen)
234 int ret;
235 if (n >= buflen) {
236 return -EINVAL;
238 ret = bdrv_pread(file, offset, buf, n);
239 if (ret < 0) {
240 return ret;
242 buf[n] = '\0';
243 return 0;
247 * Allocate new clusters
249 * @s: QED state
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
255 * file.
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
259 uint64_t offset = s->file_size;
260 s->file_size += n * s->header.cluster_size;
261 return offset;
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s->bs,
268 s->header.cluster_size * s->header.table_size);
272 * Allocate a new zeroed L2 table
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
278 l2_table->table = qed_alloc_table(s);
279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
281 memset(l2_table->table->offsets, 0,
282 s->header.cluster_size * s->header.table_size);
283 return l2_table;
286 static void qed_aio_next_io(void *opaque, int ret);
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
290 assert(!s->allocating_write_reqs_plugged);
292 s->allocating_write_reqs_plugged = true;
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
297 QEDAIOCB *acb;
299 assert(s->allocating_write_reqs_plugged);
301 s->allocating_write_reqs_plugged = false;
303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304 if (acb) {
305 qed_aio_next_io(acb, 0);
309 static void qed_finish_clear_need_check(void *opaque, int ret)
311 /* Do nothing */
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
316 BDRVQEDState *s = opaque;
318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s);
324 static void qed_clear_need_check(void *opaque, int ret)
326 BDRVQEDState *s = opaque;
328 if (ret) {
329 qed_unplug_allocating_write_reqs(s);
330 return;
333 s->header.features &= ~QED_F_NEED_CHECK;
334 qed_write_header(s, qed_flush_after_clear_need_check, s);
337 static void qed_need_check_timer_cb(void *opaque)
339 BDRVQEDState *s = opaque;
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
344 trace_qed_need_check_timer_cb(s);
346 qed_plug_allocating_write_reqs(s);
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
352 static void qed_start_need_check_timer(BDRVQEDState *s)
354 trace_qed_start_need_check_timer(s);
356 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357 * migration.
359 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
366 trace_qed_cancel_need_check_timer(s);
367 timer_del(s->need_check_timer);
370 static void bdrv_qed_rebind(BlockDriverState *bs)
372 BDRVQEDState *s = bs->opaque;
373 s->bs = bs;
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
377 Error **errp)
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
391 qed_header_le_to_cpu(&le_header, &s->header);
393 if (s->header.magic != QED_MAGIC) {
394 return -EMEDIUMTYPE;
396 if (s->header.features & ~QED_FEATURE_MASK) {
397 /* image uses unsupported feature bits */
398 char buf[64];
399 snprintf(buf, sizeof(buf), "%" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
401 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
402 bs->device_name, "QED", buf);
403 return -ENOTSUP;
405 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
406 return -EINVAL;
409 /* Round down file size to the last cluster */
410 file_size = bdrv_getlength(bs->file);
411 if (file_size < 0) {
412 return file_size;
414 s->file_size = qed_start_of_cluster(s, file_size);
416 if (!qed_is_table_size_valid(s->header.table_size)) {
417 return -EINVAL;
419 if (!qed_is_image_size_valid(s->header.image_size,
420 s->header.cluster_size,
421 s->header.table_size)) {
422 return -EINVAL;
424 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
425 return -EINVAL;
428 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
429 sizeof(uint64_t);
430 s->l2_shift = ffs(s->header.cluster_size) - 1;
431 s->l2_mask = s->table_nelems - 1;
432 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434 if ((s->header.features & QED_F_BACKING_FILE)) {
435 if ((uint64_t)s->header.backing_filename_offset +
436 s->header.backing_filename_size >
437 s->header.cluster_size * s->header.header_size) {
438 return -EINVAL;
441 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
442 s->header.backing_filename_size, bs->backing_file,
443 sizeof(bs->backing_file));
444 if (ret < 0) {
445 return ret;
448 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
449 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
453 /* Reset unknown autoclear feature bits. This is a backwards
454 * compatibility mechanism that allows images to be opened by older
455 * programs, which "knock out" unknown feature bits. When an image is
456 * opened by a newer program again it can detect that the autoclear
457 * feature is no longer valid.
459 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
460 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
461 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463 ret = qed_write_header_sync(s);
464 if (ret) {
465 return ret;
468 /* From here on only known autoclear feature bits are valid */
469 bdrv_flush(bs->file);
472 s->l1_table = qed_alloc_table(s);
473 qed_init_l2_cache(&s->l2_cache);
475 ret = qed_read_l1_table_sync(s);
476 if (ret) {
477 goto out;
480 /* If image was not closed cleanly, check consistency */
481 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
482 /* Read-only images cannot be fixed. There is no risk of corruption
483 * since write operations are not possible. Therefore, allow
484 * potentially inconsistent images to be opened read-only. This can
485 * aid data recovery from an otherwise inconsistent image.
487 if (!bdrv_is_read_only(bs->file) &&
488 !(flags & BDRV_O_INCOMING)) {
489 BdrvCheckResult result = {0};
491 ret = qed_check(s, &result, true);
492 if (ret) {
493 goto out;
498 s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
499 qed_need_check_timer_cb, s);
501 out:
502 if (ret) {
503 qed_free_l2_cache(&s->l2_cache);
504 qemu_vfree(s->l1_table);
506 return ret;
509 static int bdrv_qed_refresh_limits(BlockDriverState *bs)
511 BDRVQEDState *s = bs->opaque;
513 bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
515 return 0;
518 /* We have nothing to do for QED reopen, stubs just return
519 * success */
520 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
521 BlockReopenQueue *queue, Error **errp)
523 return 0;
526 static void bdrv_qed_close(BlockDriverState *bs)
528 BDRVQEDState *s = bs->opaque;
530 qed_cancel_need_check_timer(s);
531 timer_free(s->need_check_timer);
533 /* Ensure writes reach stable storage */
534 bdrv_flush(bs->file);
536 /* Clean shutdown, no check required on next open */
537 if (s->header.features & QED_F_NEED_CHECK) {
538 s->header.features &= ~QED_F_NEED_CHECK;
539 qed_write_header_sync(s);
542 qed_free_l2_cache(&s->l2_cache);
543 qemu_vfree(s->l1_table);
546 static int qed_create(const char *filename, uint32_t cluster_size,
547 uint64_t image_size, uint32_t table_size,
548 const char *backing_file, const char *backing_fmt)
550 QEDHeader header = {
551 .magic = QED_MAGIC,
552 .cluster_size = cluster_size,
553 .table_size = table_size,
554 .header_size = 1,
555 .features = 0,
556 .compat_features = 0,
557 .l1_table_offset = cluster_size,
558 .image_size = image_size,
560 QEDHeader le_header;
561 uint8_t *l1_table = NULL;
562 size_t l1_size = header.cluster_size * header.table_size;
563 Error *local_err = NULL;
564 int ret = 0;
565 BlockDriverState *bs = NULL;
567 ret = bdrv_create_file(filename, NULL, &local_err);
568 if (ret < 0) {
569 qerror_report_err(local_err);
570 error_free(local_err);
571 return ret;
574 ret = bdrv_file_open(&bs, filename, NULL, NULL,
575 BDRV_O_RDWR | BDRV_O_CACHE_WB, &local_err);
576 if (ret < 0) {
577 qerror_report_err(local_err);
578 error_free(local_err);
579 return ret;
582 /* File must start empty and grow, check truncate is supported */
583 ret = bdrv_truncate(bs, 0);
584 if (ret < 0) {
585 goto out;
588 if (backing_file) {
589 header.features |= QED_F_BACKING_FILE;
590 header.backing_filename_offset = sizeof(le_header);
591 header.backing_filename_size = strlen(backing_file);
593 if (qed_fmt_is_raw(backing_fmt)) {
594 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
598 qed_header_cpu_to_le(&header, &le_header);
599 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
600 if (ret < 0) {
601 goto out;
603 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
604 header.backing_filename_size);
605 if (ret < 0) {
606 goto out;
609 l1_table = g_malloc0(l1_size);
610 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
611 if (ret < 0) {
612 goto out;
615 ret = 0; /* success */
616 out:
617 g_free(l1_table);
618 bdrv_unref(bs);
619 return ret;
622 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options,
623 Error **errp)
625 uint64_t image_size = 0;
626 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
627 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
628 const char *backing_file = NULL;
629 const char *backing_fmt = NULL;
631 while (options && options->name) {
632 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
633 image_size = options->value.n;
634 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
635 backing_file = options->value.s;
636 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
637 backing_fmt = options->value.s;
638 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
639 if (options->value.n) {
640 cluster_size = options->value.n;
642 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
643 if (options->value.n) {
644 table_size = options->value.n;
647 options++;
650 if (!qed_is_cluster_size_valid(cluster_size)) {
651 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
652 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
653 return -EINVAL;
655 if (!qed_is_table_size_valid(table_size)) {
656 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
657 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
658 return -EINVAL;
660 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
661 fprintf(stderr, "QED image size must be a non-zero multiple of "
662 "cluster size and less than %" PRIu64 " bytes\n",
663 qed_max_image_size(cluster_size, table_size));
664 return -EINVAL;
667 return qed_create(filename, cluster_size, image_size, table_size,
668 backing_file, backing_fmt);
671 typedef struct {
672 BlockDriverState *bs;
673 Coroutine *co;
674 uint64_t pos;
675 int64_t status;
676 int *pnum;
677 } QEDIsAllocatedCB;
679 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
681 QEDIsAllocatedCB *cb = opaque;
682 BDRVQEDState *s = cb->bs->opaque;
683 *cb->pnum = len / BDRV_SECTOR_SIZE;
684 switch (ret) {
685 case QED_CLUSTER_FOUND:
686 offset |= qed_offset_into_cluster(s, cb->pos);
687 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
688 break;
689 case QED_CLUSTER_ZERO:
690 cb->status = BDRV_BLOCK_ZERO;
691 break;
692 case QED_CLUSTER_L2:
693 case QED_CLUSTER_L1:
694 cb->status = 0;
695 break;
696 default:
697 assert(ret < 0);
698 cb->status = ret;
699 break;
702 if (cb->co) {
703 qemu_coroutine_enter(cb->co, NULL);
707 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
708 int64_t sector_num,
709 int nb_sectors, int *pnum)
711 BDRVQEDState *s = bs->opaque;
712 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
713 QEDIsAllocatedCB cb = {
714 .bs = bs,
715 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
716 .status = BDRV_BLOCK_OFFSET_MASK,
717 .pnum = pnum,
719 QEDRequest request = { .l2_table = NULL };
721 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
723 /* Now sleep if the callback wasn't invoked immediately */
724 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
725 cb.co = qemu_coroutine_self();
726 qemu_coroutine_yield();
729 qed_unref_l2_cache_entry(request.l2_table);
731 return cb.status;
734 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
736 return acb->common.bs->opaque;
740 * Read from the backing file or zero-fill if no backing file
742 * @s: QED state
743 * @pos: Byte position in device
744 * @qiov: Destination I/O vector
745 * @cb: Completion function
746 * @opaque: User data for completion function
748 * This function reads qiov->size bytes starting at pos from the backing file.
749 * If there is no backing file then zeroes are read.
751 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
752 QEMUIOVector *qiov,
753 BlockDriverCompletionFunc *cb, void *opaque)
755 uint64_t backing_length = 0;
756 size_t size;
758 /* If there is a backing file, get its length. Treat the absence of a
759 * backing file like a zero length backing file.
761 if (s->bs->backing_hd) {
762 int64_t l = bdrv_getlength(s->bs->backing_hd);
763 if (l < 0) {
764 cb(opaque, l);
765 return;
767 backing_length = l;
770 /* Zero all sectors if reading beyond the end of the backing file */
771 if (pos >= backing_length ||
772 pos + qiov->size > backing_length) {
773 qemu_iovec_memset(qiov, 0, 0, qiov->size);
776 /* Complete now if there are no backing file sectors to read */
777 if (pos >= backing_length) {
778 cb(opaque, 0);
779 return;
782 /* If the read straddles the end of the backing file, shorten it */
783 size = MIN((uint64_t)backing_length - pos, qiov->size);
785 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
786 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
787 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
790 typedef struct {
791 GenericCB gencb;
792 BDRVQEDState *s;
793 QEMUIOVector qiov;
794 struct iovec iov;
795 uint64_t offset;
796 } CopyFromBackingFileCB;
798 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
800 CopyFromBackingFileCB *copy_cb = opaque;
801 qemu_vfree(copy_cb->iov.iov_base);
802 gencb_complete(&copy_cb->gencb, ret);
805 static void qed_copy_from_backing_file_write(void *opaque, int ret)
807 CopyFromBackingFileCB *copy_cb = opaque;
808 BDRVQEDState *s = copy_cb->s;
810 if (ret) {
811 qed_copy_from_backing_file_cb(copy_cb, ret);
812 return;
815 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
816 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
817 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
818 qed_copy_from_backing_file_cb, copy_cb);
822 * Copy data from backing file into the image
824 * @s: QED state
825 * @pos: Byte position in device
826 * @len: Number of bytes
827 * @offset: Byte offset in image file
828 * @cb: Completion function
829 * @opaque: User data for completion function
831 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
832 uint64_t len, uint64_t offset,
833 BlockDriverCompletionFunc *cb,
834 void *opaque)
836 CopyFromBackingFileCB *copy_cb;
838 /* Skip copy entirely if there is no work to do */
839 if (len == 0) {
840 cb(opaque, 0);
841 return;
844 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
845 copy_cb->s = s;
846 copy_cb->offset = offset;
847 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
848 copy_cb->iov.iov_len = len;
849 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
851 qed_read_backing_file(s, pos, &copy_cb->qiov,
852 qed_copy_from_backing_file_write, copy_cb);
856 * Link one or more contiguous clusters into a table
858 * @s: QED state
859 * @table: L2 table
860 * @index: First cluster index
861 * @n: Number of contiguous clusters
862 * @cluster: First cluster offset
864 * The cluster offset may be an allocated byte offset in the image file, the
865 * zero cluster marker, or the unallocated cluster marker.
867 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
868 unsigned int n, uint64_t cluster)
870 int i;
871 for (i = index; i < index + n; i++) {
872 table->offsets[i] = cluster;
873 if (!qed_offset_is_unalloc_cluster(cluster) &&
874 !qed_offset_is_zero_cluster(cluster)) {
875 cluster += s->header.cluster_size;
880 static void qed_aio_complete_bh(void *opaque)
882 QEDAIOCB *acb = opaque;
883 BlockDriverCompletionFunc *cb = acb->common.cb;
884 void *user_opaque = acb->common.opaque;
885 int ret = acb->bh_ret;
886 bool *finished = acb->finished;
888 qemu_bh_delete(acb->bh);
889 qemu_aio_release(acb);
891 /* Invoke callback */
892 cb(user_opaque, ret);
894 /* Signal cancel completion */
895 if (finished) {
896 *finished = true;
900 static void qed_aio_complete(QEDAIOCB *acb, int ret)
902 BDRVQEDState *s = acb_to_s(acb);
904 trace_qed_aio_complete(s, acb, ret);
906 /* Free resources */
907 qemu_iovec_destroy(&acb->cur_qiov);
908 qed_unref_l2_cache_entry(acb->request.l2_table);
910 /* Free the buffer we may have allocated for zero writes */
911 if (acb->flags & QED_AIOCB_ZERO) {
912 qemu_vfree(acb->qiov->iov[0].iov_base);
913 acb->qiov->iov[0].iov_base = NULL;
916 /* Arrange for a bh to invoke the completion function */
917 acb->bh_ret = ret;
918 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
919 qemu_bh_schedule(acb->bh);
921 /* Start next allocating write request waiting behind this one. Note that
922 * requests enqueue themselves when they first hit an unallocated cluster
923 * but they wait until the entire request is finished before waking up the
924 * next request in the queue. This ensures that we don't cycle through
925 * requests multiple times but rather finish one at a time completely.
927 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
928 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
929 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
930 if (acb) {
931 qed_aio_next_io(acb, 0);
932 } else if (s->header.features & QED_F_NEED_CHECK) {
933 qed_start_need_check_timer(s);
939 * Commit the current L2 table to the cache
941 static void qed_commit_l2_update(void *opaque, int ret)
943 QEDAIOCB *acb = opaque;
944 BDRVQEDState *s = acb_to_s(acb);
945 CachedL2Table *l2_table = acb->request.l2_table;
946 uint64_t l2_offset = l2_table->offset;
948 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
950 /* This is guaranteed to succeed because we just committed the entry to the
951 * cache.
953 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
954 assert(acb->request.l2_table != NULL);
956 qed_aio_next_io(opaque, ret);
960 * Update L1 table with new L2 table offset and write it out
962 static void qed_aio_write_l1_update(void *opaque, int ret)
964 QEDAIOCB *acb = opaque;
965 BDRVQEDState *s = acb_to_s(acb);
966 int index;
968 if (ret) {
969 qed_aio_complete(acb, ret);
970 return;
973 index = qed_l1_index(s, acb->cur_pos);
974 s->l1_table->offsets[index] = acb->request.l2_table->offset;
976 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
980 * Update L2 table with new cluster offsets and write them out
982 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
984 BDRVQEDState *s = acb_to_s(acb);
985 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
986 int index;
988 if (ret) {
989 goto err;
992 if (need_alloc) {
993 qed_unref_l2_cache_entry(acb->request.l2_table);
994 acb->request.l2_table = qed_new_l2_table(s);
997 index = qed_l2_index(s, acb->cur_pos);
998 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
999 offset);
1001 if (need_alloc) {
1002 /* Write out the whole new L2 table */
1003 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1004 qed_aio_write_l1_update, acb);
1005 } else {
1006 /* Write out only the updated part of the L2 table */
1007 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1008 qed_aio_next_io, acb);
1010 return;
1012 err:
1013 qed_aio_complete(acb, ret);
1016 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1018 QEDAIOCB *acb = opaque;
1019 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1023 * Flush new data clusters before updating the L2 table
1025 * This flush is necessary when a backing file is in use. A crash during an
1026 * allocating write could result in empty clusters in the image. If the write
1027 * only touched a subregion of the cluster, then backing image sectors have
1028 * been lost in the untouched region. The solution is to flush after writing a
1029 * new data cluster and before updating the L2 table.
1031 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1033 QEDAIOCB *acb = opaque;
1034 BDRVQEDState *s = acb_to_s(acb);
1036 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1037 qed_aio_complete(acb, -EIO);
1042 * Write data to the image file
1044 static void qed_aio_write_main(void *opaque, int ret)
1046 QEDAIOCB *acb = opaque;
1047 BDRVQEDState *s = acb_to_s(acb);
1048 uint64_t offset = acb->cur_cluster +
1049 qed_offset_into_cluster(s, acb->cur_pos);
1050 BlockDriverCompletionFunc *next_fn;
1052 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1054 if (ret) {
1055 qed_aio_complete(acb, ret);
1056 return;
1059 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1060 next_fn = qed_aio_next_io;
1061 } else {
1062 if (s->bs->backing_hd) {
1063 next_fn = qed_aio_write_flush_before_l2_update;
1064 } else {
1065 next_fn = qed_aio_write_l2_update_cb;
1069 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1070 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1071 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1072 next_fn, acb);
1076 * Populate back untouched region of new data cluster
1078 static void qed_aio_write_postfill(void *opaque, int ret)
1080 QEDAIOCB *acb = opaque;
1081 BDRVQEDState *s = acb_to_s(acb);
1082 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1083 uint64_t len =
1084 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1085 uint64_t offset = acb->cur_cluster +
1086 qed_offset_into_cluster(s, acb->cur_pos) +
1087 acb->cur_qiov.size;
1089 if (ret) {
1090 qed_aio_complete(acb, ret);
1091 return;
1094 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1095 qed_copy_from_backing_file(s, start, len, offset,
1096 qed_aio_write_main, acb);
1100 * Populate front untouched region of new data cluster
1102 static void qed_aio_write_prefill(void *opaque, int ret)
1104 QEDAIOCB *acb = opaque;
1105 BDRVQEDState *s = acb_to_s(acb);
1106 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1107 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1109 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1110 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1111 qed_aio_write_postfill, acb);
1115 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1117 static bool qed_should_set_need_check(BDRVQEDState *s)
1119 /* The flush before L2 update path ensures consistency */
1120 if (s->bs->backing_hd) {
1121 return false;
1124 return !(s->header.features & QED_F_NEED_CHECK);
1127 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1129 QEDAIOCB *acb = opaque;
1131 if (ret) {
1132 qed_aio_complete(acb, ret);
1133 return;
1136 qed_aio_write_l2_update(acb, 0, 1);
1140 * Write new data cluster
1142 * @acb: Write request
1143 * @len: Length in bytes
1145 * This path is taken when writing to previously unallocated clusters.
1147 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1149 BDRVQEDState *s = acb_to_s(acb);
1150 BlockDriverCompletionFunc *cb;
1152 /* Cancel timer when the first allocating request comes in */
1153 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1154 qed_cancel_need_check_timer(s);
1157 /* Freeze this request if another allocating write is in progress */
1158 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1159 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1161 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1162 s->allocating_write_reqs_plugged) {
1163 return; /* wait for existing request to finish */
1166 acb->cur_nclusters = qed_bytes_to_clusters(s,
1167 qed_offset_into_cluster(s, acb->cur_pos) + len);
1168 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1170 if (acb->flags & QED_AIOCB_ZERO) {
1171 /* Skip ahead if the clusters are already zero */
1172 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1173 qed_aio_next_io(acb, 0);
1174 return;
1177 cb = qed_aio_write_zero_cluster;
1178 } else {
1179 cb = qed_aio_write_prefill;
1180 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1183 if (qed_should_set_need_check(s)) {
1184 s->header.features |= QED_F_NEED_CHECK;
1185 qed_write_header(s, cb, acb);
1186 } else {
1187 cb(acb, 0);
1192 * Write data cluster in place
1194 * @acb: Write request
1195 * @offset: Cluster offset in bytes
1196 * @len: Length in bytes
1198 * This path is taken when writing to already allocated clusters.
1200 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1202 /* Allocate buffer for zero writes */
1203 if (acb->flags & QED_AIOCB_ZERO) {
1204 struct iovec *iov = acb->qiov->iov;
1206 if (!iov->iov_base) {
1207 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1208 memset(iov->iov_base, 0, iov->iov_len);
1212 /* Calculate the I/O vector */
1213 acb->cur_cluster = offset;
1214 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1216 /* Do the actual write */
1217 qed_aio_write_main(acb, 0);
1221 * Write data cluster
1223 * @opaque: Write request
1224 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1225 * or -errno
1226 * @offset: Cluster offset in bytes
1227 * @len: Length in bytes
1229 * Callback from qed_find_cluster().
1231 static void qed_aio_write_data(void *opaque, int ret,
1232 uint64_t offset, size_t len)
1234 QEDAIOCB *acb = opaque;
1236 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1238 acb->find_cluster_ret = ret;
1240 switch (ret) {
1241 case QED_CLUSTER_FOUND:
1242 qed_aio_write_inplace(acb, offset, len);
1243 break;
1245 case QED_CLUSTER_L2:
1246 case QED_CLUSTER_L1:
1247 case QED_CLUSTER_ZERO:
1248 qed_aio_write_alloc(acb, len);
1249 break;
1251 default:
1252 qed_aio_complete(acb, ret);
1253 break;
1258 * Read data cluster
1260 * @opaque: Read request
1261 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1262 * or -errno
1263 * @offset: Cluster offset in bytes
1264 * @len: Length in bytes
1266 * Callback from qed_find_cluster().
1268 static void qed_aio_read_data(void *opaque, int ret,
1269 uint64_t offset, size_t len)
1271 QEDAIOCB *acb = opaque;
1272 BDRVQEDState *s = acb_to_s(acb);
1273 BlockDriverState *bs = acb->common.bs;
1275 /* Adjust offset into cluster */
1276 offset += qed_offset_into_cluster(s, acb->cur_pos);
1278 trace_qed_aio_read_data(s, acb, ret, offset, len);
1280 if (ret < 0) {
1281 goto err;
1284 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1286 /* Handle zero cluster and backing file reads */
1287 if (ret == QED_CLUSTER_ZERO) {
1288 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1289 qed_aio_next_io(acb, 0);
1290 return;
1291 } else if (ret != QED_CLUSTER_FOUND) {
1292 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1293 qed_aio_next_io, acb);
1294 return;
1297 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1298 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1299 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1300 qed_aio_next_io, acb);
1301 return;
1303 err:
1304 qed_aio_complete(acb, ret);
1308 * Begin next I/O or complete the request
1310 static void qed_aio_next_io(void *opaque, int ret)
1312 QEDAIOCB *acb = opaque;
1313 BDRVQEDState *s = acb_to_s(acb);
1314 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1315 qed_aio_write_data : qed_aio_read_data;
1317 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1319 /* Handle I/O error */
1320 if (ret) {
1321 qed_aio_complete(acb, ret);
1322 return;
1325 acb->qiov_offset += acb->cur_qiov.size;
1326 acb->cur_pos += acb->cur_qiov.size;
1327 qemu_iovec_reset(&acb->cur_qiov);
1329 /* Complete request */
1330 if (acb->cur_pos >= acb->end_pos) {
1331 qed_aio_complete(acb, 0);
1332 return;
1335 /* Find next cluster and start I/O */
1336 qed_find_cluster(s, &acb->request,
1337 acb->cur_pos, acb->end_pos - acb->cur_pos,
1338 io_fn, acb);
1341 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1342 int64_t sector_num,
1343 QEMUIOVector *qiov, int nb_sectors,
1344 BlockDriverCompletionFunc *cb,
1345 void *opaque, int flags)
1347 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1349 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1350 opaque, flags);
1352 acb->flags = flags;
1353 acb->finished = NULL;
1354 acb->qiov = qiov;
1355 acb->qiov_offset = 0;
1356 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1357 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1358 acb->request.l2_table = NULL;
1359 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1361 /* Start request */
1362 qed_aio_next_io(acb, 0);
1363 return &acb->common;
1366 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1367 int64_t sector_num,
1368 QEMUIOVector *qiov, int nb_sectors,
1369 BlockDriverCompletionFunc *cb,
1370 void *opaque)
1372 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1375 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1376 int64_t sector_num,
1377 QEMUIOVector *qiov, int nb_sectors,
1378 BlockDriverCompletionFunc *cb,
1379 void *opaque)
1381 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1382 opaque, QED_AIOCB_WRITE);
1385 typedef struct {
1386 Coroutine *co;
1387 int ret;
1388 bool done;
1389 } QEDWriteZeroesCB;
1391 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1393 QEDWriteZeroesCB *cb = opaque;
1395 cb->done = true;
1396 cb->ret = ret;
1397 if (cb->co) {
1398 qemu_coroutine_enter(cb->co, NULL);
1402 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1403 int64_t sector_num,
1404 int nb_sectors,
1405 BdrvRequestFlags flags)
1407 BlockDriverAIOCB *blockacb;
1408 BDRVQEDState *s = bs->opaque;
1409 QEDWriteZeroesCB cb = { .done = false };
1410 QEMUIOVector qiov;
1411 struct iovec iov;
1413 /* Refuse if there are untouched backing file sectors */
1414 if (bs->backing_hd) {
1415 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1416 return -ENOTSUP;
1418 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1419 return -ENOTSUP;
1423 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1424 * then it will be allocated during request processing.
1426 iov.iov_base = NULL,
1427 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1429 qemu_iovec_init_external(&qiov, &iov, 1);
1430 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1431 qed_co_write_zeroes_cb, &cb,
1432 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1433 if (!blockacb) {
1434 return -EIO;
1436 if (!cb.done) {
1437 cb.co = qemu_coroutine_self();
1438 qemu_coroutine_yield();
1440 assert(cb.done);
1441 return cb.ret;
1444 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1446 BDRVQEDState *s = bs->opaque;
1447 uint64_t old_image_size;
1448 int ret;
1450 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1451 s->header.table_size)) {
1452 return -EINVAL;
1455 /* Shrinking is currently not supported */
1456 if ((uint64_t)offset < s->header.image_size) {
1457 return -ENOTSUP;
1460 old_image_size = s->header.image_size;
1461 s->header.image_size = offset;
1462 ret = qed_write_header_sync(s);
1463 if (ret < 0) {
1464 s->header.image_size = old_image_size;
1466 return ret;
1469 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1471 BDRVQEDState *s = bs->opaque;
1472 return s->header.image_size;
1475 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1477 BDRVQEDState *s = bs->opaque;
1479 memset(bdi, 0, sizeof(*bdi));
1480 bdi->cluster_size = s->header.cluster_size;
1481 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1482 bdi->unallocated_blocks_are_zero = true;
1483 bdi->can_write_zeroes_with_unmap = true;
1484 return 0;
1487 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1488 const char *backing_file,
1489 const char *backing_fmt)
1491 BDRVQEDState *s = bs->opaque;
1492 QEDHeader new_header, le_header;
1493 void *buffer;
1494 size_t buffer_len, backing_file_len;
1495 int ret;
1497 /* Refuse to set backing filename if unknown compat feature bits are
1498 * active. If the image uses an unknown compat feature then we may not
1499 * know the layout of data following the header structure and cannot safely
1500 * add a new string.
1502 if (backing_file && (s->header.compat_features &
1503 ~QED_COMPAT_FEATURE_MASK)) {
1504 return -ENOTSUP;
1507 memcpy(&new_header, &s->header, sizeof(new_header));
1509 new_header.features &= ~(QED_F_BACKING_FILE |
1510 QED_F_BACKING_FORMAT_NO_PROBE);
1512 /* Adjust feature flags */
1513 if (backing_file) {
1514 new_header.features |= QED_F_BACKING_FILE;
1516 if (qed_fmt_is_raw(backing_fmt)) {
1517 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1521 /* Calculate new header size */
1522 backing_file_len = 0;
1524 if (backing_file) {
1525 backing_file_len = strlen(backing_file);
1528 buffer_len = sizeof(new_header);
1529 new_header.backing_filename_offset = buffer_len;
1530 new_header.backing_filename_size = backing_file_len;
1531 buffer_len += backing_file_len;
1533 /* Make sure we can rewrite header without failing */
1534 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1535 return -ENOSPC;
1538 /* Prepare new header */
1539 buffer = g_malloc(buffer_len);
1541 qed_header_cpu_to_le(&new_header, &le_header);
1542 memcpy(buffer, &le_header, sizeof(le_header));
1543 buffer_len = sizeof(le_header);
1545 if (backing_file) {
1546 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1547 buffer_len += backing_file_len;
1550 /* Write new header */
1551 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1552 g_free(buffer);
1553 if (ret == 0) {
1554 memcpy(&s->header, &new_header, sizeof(new_header));
1556 return ret;
1559 static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1561 BDRVQEDState *s = bs->opaque;
1563 bdrv_qed_close(bs);
1564 memset(s, 0, sizeof(BDRVQEDState));
1565 bdrv_qed_open(bs, NULL, bs->open_flags, NULL);
1568 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1569 BdrvCheckMode fix)
1571 BDRVQEDState *s = bs->opaque;
1573 return qed_check(s, result, !!fix);
1576 static QEMUOptionParameter qed_create_options[] = {
1578 .name = BLOCK_OPT_SIZE,
1579 .type = OPT_SIZE,
1580 .help = "Virtual disk size (in bytes)"
1581 }, {
1582 .name = BLOCK_OPT_BACKING_FILE,
1583 .type = OPT_STRING,
1584 .help = "File name of a base image"
1585 }, {
1586 .name = BLOCK_OPT_BACKING_FMT,
1587 .type = OPT_STRING,
1588 .help = "Image format of the base image"
1589 }, {
1590 .name = BLOCK_OPT_CLUSTER_SIZE,
1591 .type = OPT_SIZE,
1592 .help = "Cluster size (in bytes)",
1593 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1594 }, {
1595 .name = BLOCK_OPT_TABLE_SIZE,
1596 .type = OPT_SIZE,
1597 .help = "L1/L2 table size (in clusters)"
1599 { /* end of list */ }
1602 static BlockDriver bdrv_qed = {
1603 .format_name = "qed",
1604 .instance_size = sizeof(BDRVQEDState),
1605 .create_options = qed_create_options,
1607 .bdrv_probe = bdrv_qed_probe,
1608 .bdrv_rebind = bdrv_qed_rebind,
1609 .bdrv_open = bdrv_qed_open,
1610 .bdrv_close = bdrv_qed_close,
1611 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1612 .bdrv_create = bdrv_qed_create,
1613 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1614 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1615 .bdrv_aio_readv = bdrv_qed_aio_readv,
1616 .bdrv_aio_writev = bdrv_qed_aio_writev,
1617 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1618 .bdrv_truncate = bdrv_qed_truncate,
1619 .bdrv_getlength = bdrv_qed_getlength,
1620 .bdrv_get_info = bdrv_qed_get_info,
1621 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1622 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1623 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1624 .bdrv_check = bdrv_qed_check,
1627 static void bdrv_qed_init(void)
1629 bdrv_register(&bdrv_qed);
1632 block_init(bdrv_qed_init);