4 * Andrew Jeffery <andrew@aj.id.au>
6 * Copyright (C) 2016 IBM Corp.
8 * This code is licensed under the GPL version 2 or later. See
9 * the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "hw/sysbus.h"
14 #include "hw/timer/aspeed_timer.h"
15 #include "qemu-common.h"
16 #include "qemu/bitops.h"
17 #include "qemu/timer.h"
21 #define TIMER_NR_REGS 4
23 #define TIMER_CTRL_BITS 4
24 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
26 #define TIMER_CLOCK_USE_EXT true
27 #define TIMER_CLOCK_EXT_HZ 1000000
28 #define TIMER_CLOCK_USE_APB false
29 #define TIMER_CLOCK_APB_HZ 24000000
31 #define TIMER_REG_STATUS 0
32 #define TIMER_REG_RELOAD 1
33 #define TIMER_REG_MATCH_FIRST 2
34 #define TIMER_REG_MATCH_SECOND 3
36 #define TIMER_FIRST_CAP_PULSE 4
41 op_overflow_interrupt
,
46 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
47 * structs, as it's a waste of memory. The ptimer BH callback needs to know
48 * whether a specific AspeedTimer is enabled, but this information is held in
49 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
50 * arbitrary AspeedTimer to AspeedTimerCtrlState.
52 static inline AspeedTimerCtrlState
*timer_to_ctrl(AspeedTimer
*t
)
54 const AspeedTimer (*timers
)[] = (void *)t
- (t
->id
* sizeof(*t
));
55 return container_of(timers
, AspeedTimerCtrlState
, timers
);
58 static inline bool timer_ctrl_status(AspeedTimer
*t
, enum timer_ctrl_op op
)
60 return !!(timer_to_ctrl(t
)->ctrl
& BIT(t
->id
* TIMER_CTRL_BITS
+ op
));
63 static inline bool timer_enabled(AspeedTimer
*t
)
65 return timer_ctrl_status(t
, op_enable
);
68 static inline bool timer_overflow_interrupt(AspeedTimer
*t
)
70 return timer_ctrl_status(t
, op_overflow_interrupt
);
73 static inline bool timer_can_pulse(AspeedTimer
*t
)
75 return t
->id
>= TIMER_FIRST_CAP_PULSE
;
78 static inline bool timer_external_clock(AspeedTimer
*t
)
80 return timer_ctrl_status(t
, op_external_clock
);
83 static uint32_t clock_rates
[] = { TIMER_CLOCK_APB_HZ
, TIMER_CLOCK_EXT_HZ
};
85 static inline uint32_t calculate_rate(struct AspeedTimer
*t
)
87 return clock_rates
[timer_external_clock(t
)];
90 static inline uint32_t calculate_ticks(struct AspeedTimer
*t
, uint64_t now_ns
)
92 uint64_t delta_ns
= now_ns
- MIN(now_ns
, t
->start
);
93 uint32_t rate
= calculate_rate(t
);
94 uint64_t ticks
= muldiv64(delta_ns
, rate
, NANOSECONDS_PER_SECOND
);
96 return t
->reload
- MIN(t
->reload
, ticks
);
99 static inline uint64_t calculate_time(struct AspeedTimer
*t
, uint32_t ticks
)
102 uint64_t delta_ticks
;
104 delta_ticks
= t
->reload
- MIN(t
->reload
, ticks
);
105 delta_ns
= muldiv64(delta_ticks
, NANOSECONDS_PER_SECOND
, calculate_rate(t
));
107 return t
->start
+ delta_ns
;
110 static uint64_t calculate_next(struct AspeedTimer
*t
)
113 uint32_t rate
= calculate_rate(t
);
116 /* We don't know the relationship between the values in the match
117 * registers, so sort using MAX/MIN/zero. We sort in that order as the
118 * timer counts down to zero. */
120 calculate_time(t
, MAX(t
->match
[0], t
->match
[1])),
121 calculate_time(t
, MIN(t
->match
[0], t
->match
[1])),
122 calculate_time(t
, 0),
125 uint64_t now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
129 } else if (now
< seq
[1]) {
131 } else if (now
< seq
[2]) {
134 reload_ns
= muldiv64(t
->reload
, NANOSECONDS_PER_SECOND
, rate
);
135 t
->start
= now
- ((now
- t
->start
) % reload_ns
);
142 static void aspeed_timer_expire(void *opaque
)
144 AspeedTimer
*t
= opaque
;
145 bool interrupt
= false;
148 if (!timer_enabled(t
)) {
152 ticks
= calculate_ticks(t
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
));
155 interrupt
= timer_overflow_interrupt(t
) || !t
->match
[0] || !t
->match
[1];
156 } else if (ticks
<= MIN(t
->match
[0], t
->match
[1])) {
158 } else if (ticks
<= MAX(t
->match
[0], t
->match
[1])) {
163 t
->level
= !t
->level
;
164 qemu_set_irq(t
->irq
, t
->level
);
167 timer_mod(&t
->timer
, calculate_next(t
));
170 static uint64_t aspeed_timer_get_value(AspeedTimer
*t
, int reg
)
175 case TIMER_REG_STATUS
:
176 value
= calculate_ticks(t
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
));
178 case TIMER_REG_RELOAD
:
181 case TIMER_REG_MATCH_FIRST
:
182 case TIMER_REG_MATCH_SECOND
:
183 value
= t
->match
[reg
- 2];
186 qemu_log_mask(LOG_UNIMP
, "%s: Programming error: unexpected reg: %d\n",
194 static uint64_t aspeed_timer_read(void *opaque
, hwaddr offset
, unsigned size
)
196 AspeedTimerCtrlState
*s
= opaque
;
197 const int reg
= (offset
& 0xf) / 4;
201 case 0x30: /* Control Register */
204 case 0x34: /* Control Register 2 */
207 case 0x00 ... 0x2c: /* Timers 1 - 4 */
208 value
= aspeed_timer_get_value(&s
->timers
[(offset
>> 4)], reg
);
210 case 0x40 ... 0x8c: /* Timers 5 - 8 */
211 value
= aspeed_timer_get_value(&s
->timers
[(offset
>> 4) - 1], reg
);
217 qemu_log_mask(LOG_GUEST_ERROR
, "%s: Bad offset 0x%" HWADDR_PRIx
"\n",
222 trace_aspeed_timer_read(offset
, size
, value
);
226 static void aspeed_timer_set_value(AspeedTimerCtrlState
*s
, int timer
, int reg
,
231 trace_aspeed_timer_set_value(timer
, reg
, value
);
232 t
= &s
->timers
[timer
];
234 case TIMER_REG_STATUS
:
235 if (timer_enabled(t
)) {
236 uint64_t now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
237 int64_t delta
= (int64_t) value
- (int64_t) calculate_ticks(t
, now
);
238 uint32_t rate
= calculate_rate(t
);
240 t
->start
+= muldiv64(delta
, NANOSECONDS_PER_SECOND
, rate
);
241 timer_mod(&t
->timer
, calculate_next(t
));
244 case TIMER_REG_RELOAD
:
247 case TIMER_REG_MATCH_FIRST
:
248 case TIMER_REG_MATCH_SECOND
:
249 t
->match
[reg
- 2] = value
;
250 if (timer_enabled(t
)) {
251 timer_mod(&t
->timer
, calculate_next(t
));
255 qemu_log_mask(LOG_UNIMP
, "%s: Programming error: unexpected reg: %d\n",
261 /* Control register operations are broken out into helpers that can be
262 * explicitly called on aspeed_timer_reset(), but also from
263 * aspeed_timer_ctrl_op().
266 static void aspeed_timer_ctrl_enable(AspeedTimer
*t
, bool enable
)
268 trace_aspeed_timer_ctrl_enable(t
->id
, enable
);
270 t
->start
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
271 timer_mod(&t
->timer
, calculate_next(t
));
273 timer_del(&t
->timer
);
277 static void aspeed_timer_ctrl_external_clock(AspeedTimer
*t
, bool enable
)
279 trace_aspeed_timer_ctrl_external_clock(t
->id
, enable
);
282 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer
*t
, bool enable
)
284 trace_aspeed_timer_ctrl_overflow_interrupt(t
->id
, enable
);
287 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer
*t
, bool enable
)
289 if (timer_can_pulse(t
)) {
290 trace_aspeed_timer_ctrl_pulse_enable(t
->id
, enable
);
292 qemu_log_mask(LOG_GUEST_ERROR
,
293 "%s: Timer does not support pulse mode\n", __func__
);
298 * Given the actions are fixed in number and completely described in helper
299 * functions, dispatch with a lookup table rather than manage control flow with
300 * a switch statement.
302 static void (*const ctrl_ops
[])(AspeedTimer
*, bool) = {
303 [op_enable
] = aspeed_timer_ctrl_enable
,
304 [op_external_clock
] = aspeed_timer_ctrl_external_clock
,
305 [op_overflow_interrupt
] = aspeed_timer_ctrl_overflow_interrupt
,
306 [op_pulse_enable
] = aspeed_timer_ctrl_pulse_enable
,
310 * Conditionally affect changes chosen by a timer's control bit.
312 * The aspeed_timer_ctrl_op() interface is convenient for the
313 * aspeed_timer_set_ctrl() function as the "no change" early exit can be
314 * calculated for all operations, which cleans up the caller code. However the
315 * interface isn't convenient for the reset function where we want to enter a
316 * specific state without artificially constructing old and new values that
317 * will fall through the change guard (and motivates extracting the actions
318 * out to helper functions).
320 * @t: The timer to manipulate
321 * @op: The type of operation to be performed
322 * @old: The old state of the timer's control bits
323 * @new: The incoming state for the timer's control bits
325 static void aspeed_timer_ctrl_op(AspeedTimer
*t
, enum timer_ctrl_op op
,
326 uint8_t old
, uint8_t new)
328 const uint8_t mask
= BIT(op
);
329 const bool enable
= !!(new & mask
);
330 const bool changed
= ((old
^ new) & mask
);
334 ctrl_ops
[op
](t
, enable
);
337 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState
*s
, uint32_t reg
)
341 uint8_t t_old
, t_new
;
343 const uint8_t enable_mask
= BIT(op_enable
);
345 /* Handle a dependency between the 'enable' and remaining three
346 * configuration bits - i.e. if more than one bit in the control set has
347 * changed, including the 'enable' bit, then we want either disable the
348 * timer and perform configuration, or perform configuration and then
351 for (i
= 0; i
< ASPEED_TIMER_NR_TIMERS
; i
++) {
353 shift
= (i
* TIMER_CTRL_BITS
);
354 t_old
= (s
->ctrl
>> shift
) & TIMER_CTRL_MASK
;
355 t_new
= (reg
>> shift
) & TIMER_CTRL_MASK
;
357 /* If we are disabling, do so first */
358 if ((t_old
& enable_mask
) && !(t_new
& enable_mask
)) {
359 aspeed_timer_ctrl_enable(t
, false);
361 aspeed_timer_ctrl_op(t
, op_external_clock
, t_old
, t_new
);
362 aspeed_timer_ctrl_op(t
, op_overflow_interrupt
, t_old
, t_new
);
363 aspeed_timer_ctrl_op(t
, op_pulse_enable
, t_old
, t_new
);
364 /* If we are enabling, do so last */
365 if (!(t_old
& enable_mask
) && (t_new
& enable_mask
)) {
366 aspeed_timer_ctrl_enable(t
, true);
372 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState
*s
, uint32_t value
)
374 trace_aspeed_timer_set_ctrl2(value
);
377 static void aspeed_timer_write(void *opaque
, hwaddr offset
, uint64_t value
,
380 const uint32_t tv
= (uint32_t)(value
& 0xFFFFFFFF);
381 const int reg
= (offset
& 0xf) / 4;
382 AspeedTimerCtrlState
*s
= opaque
;
385 /* Control Registers */
387 aspeed_timer_set_ctrl(s
, tv
);
390 aspeed_timer_set_ctrl2(s
, tv
);
392 /* Timer Registers */
394 aspeed_timer_set_value(s
, (offset
>> TIMER_NR_REGS
), reg
, tv
);
397 aspeed_timer_set_value(s
, (offset
>> TIMER_NR_REGS
) - 1, reg
, tv
);
403 qemu_log_mask(LOG_GUEST_ERROR
, "%s: Bad offset 0x%" HWADDR_PRIx
"\n",
409 static const MemoryRegionOps aspeed_timer_ops
= {
410 .read
= aspeed_timer_read
,
411 .write
= aspeed_timer_write
,
412 .endianness
= DEVICE_LITTLE_ENDIAN
,
413 .valid
.min_access_size
= 4,
414 .valid
.max_access_size
= 4,
415 .valid
.unaligned
= false,
418 static void aspeed_init_one_timer(AspeedTimerCtrlState
*s
, uint8_t id
)
420 AspeedTimer
*t
= &s
->timers
[id
];
423 timer_init_ns(&t
->timer
, QEMU_CLOCK_VIRTUAL
, aspeed_timer_expire
, t
);
426 static void aspeed_timer_realize(DeviceState
*dev
, Error
**errp
)
429 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
430 AspeedTimerCtrlState
*s
= ASPEED_TIMER(dev
);
432 for (i
= 0; i
< ASPEED_TIMER_NR_TIMERS
; i
++) {
433 aspeed_init_one_timer(s
, i
);
434 sysbus_init_irq(sbd
, &s
->timers
[i
].irq
);
436 memory_region_init_io(&s
->iomem
, OBJECT(s
), &aspeed_timer_ops
, s
,
437 TYPE_ASPEED_TIMER
, 0x1000);
438 sysbus_init_mmio(sbd
, &s
->iomem
);
441 static void aspeed_timer_reset(DeviceState
*dev
)
444 AspeedTimerCtrlState
*s
= ASPEED_TIMER(dev
);
446 for (i
= 0; i
< ASPEED_TIMER_NR_TIMERS
; i
++) {
447 AspeedTimer
*t
= &s
->timers
[i
];
448 /* Explicitly call helpers to avoid any conditional behaviour through
449 * aspeed_timer_set_ctrl().
451 aspeed_timer_ctrl_enable(t
, false);
452 aspeed_timer_ctrl_external_clock(t
, TIMER_CLOCK_USE_APB
);
453 aspeed_timer_ctrl_overflow_interrupt(t
, false);
454 aspeed_timer_ctrl_pulse_enable(t
, false);
464 static const VMStateDescription vmstate_aspeed_timer
= {
465 .name
= "aspeed.timer",
467 .minimum_version_id
= 2,
468 .fields
= (VMStateField
[]) {
469 VMSTATE_UINT8(id
, AspeedTimer
),
470 VMSTATE_INT32(level
, AspeedTimer
),
471 VMSTATE_TIMER(timer
, AspeedTimer
),
472 VMSTATE_UINT32(reload
, AspeedTimer
),
473 VMSTATE_UINT32_ARRAY(match
, AspeedTimer
, 2),
474 VMSTATE_END_OF_LIST()
478 static const VMStateDescription vmstate_aspeed_timer_state
= {
479 .name
= "aspeed.timerctrl",
481 .minimum_version_id
= 1,
482 .fields
= (VMStateField
[]) {
483 VMSTATE_UINT32(ctrl
, AspeedTimerCtrlState
),
484 VMSTATE_UINT32(ctrl2
, AspeedTimerCtrlState
),
485 VMSTATE_STRUCT_ARRAY(timers
, AspeedTimerCtrlState
,
486 ASPEED_TIMER_NR_TIMERS
, 2, vmstate_aspeed_timer
,
488 VMSTATE_END_OF_LIST()
492 static void timer_class_init(ObjectClass
*klass
, void *data
)
494 DeviceClass
*dc
= DEVICE_CLASS(klass
);
496 dc
->realize
= aspeed_timer_realize
;
497 dc
->reset
= aspeed_timer_reset
;
498 dc
->desc
= "ASPEED Timer";
499 dc
->vmsd
= &vmstate_aspeed_timer_state
;
502 static const TypeInfo aspeed_timer_info
= {
503 .name
= TYPE_ASPEED_TIMER
,
504 .parent
= TYPE_SYS_BUS_DEVICE
,
505 .instance_size
= sizeof(AspeedTimerCtrlState
),
506 .class_init
= timer_class_init
,
509 static void aspeed_timer_register_types(void)
511 type_register_static(&aspeed_timer_info
);
514 type_init(aspeed_timer_register_types
)