s390x/kvm: fix cmma reset for KVM
[qemu/ar7.git] / include / qemu / host-utils.h
blob96288d0bcef561134e8fec41658693cd8ebb96e4
1 /*
2 * Utility compute operations used by translated code.
4 * Copyright (c) 2007 Thiemo Seufer
5 * Copyright (c) 2007 Jocelyn Mayer
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #ifndef HOST_UTILS_H
27 #define HOST_UTILS_H
29 #include "qemu/bswap.h"
31 #ifdef CONFIG_INT128
32 static inline void mulu64(uint64_t *plow, uint64_t *phigh,
33 uint64_t a, uint64_t b)
35 __uint128_t r = (__uint128_t)a * b;
36 *plow = r;
37 *phigh = r >> 64;
40 static inline void muls64(uint64_t *plow, uint64_t *phigh,
41 int64_t a, int64_t b)
43 __int128_t r = (__int128_t)a * b;
44 *plow = r;
45 *phigh = r >> 64;
48 /* compute with 96 bit intermediate result: (a*b)/c */
49 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
51 return (__int128_t)a * b / c;
54 static inline int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor)
56 if (divisor == 0) {
57 return 1;
58 } else {
59 __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
60 __uint128_t result = dividend / divisor;
61 *plow = result;
62 *phigh = dividend % divisor;
63 return result > UINT64_MAX;
67 static inline int divs128(int64_t *plow, int64_t *phigh, int64_t divisor)
69 if (divisor == 0) {
70 return 1;
71 } else {
72 __int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
73 __int128_t result = dividend / divisor;
74 *plow = result;
75 *phigh = dividend % divisor;
76 return result != *plow;
79 #else
80 void muls64(uint64_t *phigh, uint64_t *plow, int64_t a, int64_t b);
81 void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b);
82 int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
83 int divs128(int64_t *plow, int64_t *phigh, int64_t divisor);
85 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
87 union {
88 uint64_t ll;
89 struct {
90 #ifdef HOST_WORDS_BIGENDIAN
91 uint32_t high, low;
92 #else
93 uint32_t low, high;
94 #endif
95 } l;
96 } u, res;
97 uint64_t rl, rh;
99 u.ll = a;
100 rl = (uint64_t)u.l.low * (uint64_t)b;
101 rh = (uint64_t)u.l.high * (uint64_t)b;
102 rh += (rl >> 32);
103 res.l.high = rh / c;
104 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
105 return res.ll;
107 #endif
110 * clz32 - count leading zeros in a 32-bit value.
111 * @val: The value to search
113 * Returns 32 if the value is zero. Note that the GCC builtin is
114 * undefined if the value is zero.
116 static inline int clz32(uint32_t val)
118 #if QEMU_GNUC_PREREQ(3, 4)
119 return val ? __builtin_clz(val) : 32;
120 #else
121 /* Binary search for the leading one bit. */
122 int cnt = 0;
124 if (!(val & 0xFFFF0000U)) {
125 cnt += 16;
126 val <<= 16;
128 if (!(val & 0xFF000000U)) {
129 cnt += 8;
130 val <<= 8;
132 if (!(val & 0xF0000000U)) {
133 cnt += 4;
134 val <<= 4;
136 if (!(val & 0xC0000000U)) {
137 cnt += 2;
138 val <<= 2;
140 if (!(val & 0x80000000U)) {
141 cnt++;
142 val <<= 1;
144 if (!(val & 0x80000000U)) {
145 cnt++;
147 return cnt;
148 #endif
152 * clo32 - count leading ones in a 32-bit value.
153 * @val: The value to search
155 * Returns 32 if the value is -1.
157 static inline int clo32(uint32_t val)
159 return clz32(~val);
163 * clz64 - count leading zeros in a 64-bit value.
164 * @val: The value to search
166 * Returns 64 if the value is zero. Note that the GCC builtin is
167 * undefined if the value is zero.
169 static inline int clz64(uint64_t val)
171 #if QEMU_GNUC_PREREQ(3, 4)
172 return val ? __builtin_clzll(val) : 64;
173 #else
174 int cnt = 0;
176 if (!(val >> 32)) {
177 cnt += 32;
178 } else {
179 val >>= 32;
182 return cnt + clz32(val);
183 #endif
187 * clo64 - count leading ones in a 64-bit value.
188 * @val: The value to search
190 * Returns 64 if the value is -1.
192 static inline int clo64(uint64_t val)
194 return clz64(~val);
198 * ctz32 - count trailing zeros in a 32-bit value.
199 * @val: The value to search
201 * Returns 32 if the value is zero. Note that the GCC builtin is
202 * undefined if the value is zero.
204 static inline int ctz32(uint32_t val)
206 #if QEMU_GNUC_PREREQ(3, 4)
207 return val ? __builtin_ctz(val) : 32;
208 #else
209 /* Binary search for the trailing one bit. */
210 int cnt;
212 cnt = 0;
213 if (!(val & 0x0000FFFFUL)) {
214 cnt += 16;
215 val >>= 16;
217 if (!(val & 0x000000FFUL)) {
218 cnt += 8;
219 val >>= 8;
221 if (!(val & 0x0000000FUL)) {
222 cnt += 4;
223 val >>= 4;
225 if (!(val & 0x00000003UL)) {
226 cnt += 2;
227 val >>= 2;
229 if (!(val & 0x00000001UL)) {
230 cnt++;
231 val >>= 1;
233 if (!(val & 0x00000001UL)) {
234 cnt++;
237 return cnt;
238 #endif
242 * cto32 - count trailing ones in a 32-bit value.
243 * @val: The value to search
245 * Returns 32 if the value is -1.
247 static inline int cto32(uint32_t val)
249 return ctz32(~val);
253 * ctz64 - count trailing zeros in a 64-bit value.
254 * @val: The value to search
256 * Returns 64 if the value is zero. Note that the GCC builtin is
257 * undefined if the value is zero.
259 static inline int ctz64(uint64_t val)
261 #if QEMU_GNUC_PREREQ(3, 4)
262 return val ? __builtin_ctzll(val) : 64;
263 #else
264 int cnt;
266 cnt = 0;
267 if (!((uint32_t)val)) {
268 cnt += 32;
269 val >>= 32;
272 return cnt + ctz32(val);
273 #endif
277 * cto64 - count trailing ones in a 64-bit value.
278 * @val: The value to search
280 * Returns 64 if the value is -1.
282 static inline int cto64(uint64_t val)
284 return ctz64(~val);
288 * clrsb32 - count leading redundant sign bits in a 32-bit value.
289 * @val: The value to search
291 * Returns the number of bits following the sign bit that are equal to it.
292 * No special cases; output range is [0-31].
294 static inline int clrsb32(uint32_t val)
296 #if QEMU_GNUC_PREREQ(4, 7)
297 return __builtin_clrsb(val);
298 #else
299 return clz32(val ^ ((int32_t)val >> 1)) - 1;
300 #endif
304 * clrsb64 - count leading redundant sign bits in a 64-bit value.
305 * @val: The value to search
307 * Returns the number of bits following the sign bit that are equal to it.
308 * No special cases; output range is [0-63].
310 static inline int clrsb64(uint64_t val)
312 #if QEMU_GNUC_PREREQ(4, 7)
313 return __builtin_clrsbll(val);
314 #else
315 return clz64(val ^ ((int64_t)val >> 1)) - 1;
316 #endif
320 * ctpop8 - count the population of one bits in an 8-bit value.
321 * @val: The value to search
323 static inline int ctpop8(uint8_t val)
325 #if QEMU_GNUC_PREREQ(3, 4)
326 return __builtin_popcount(val);
327 #else
328 val = (val & 0x55) + ((val >> 1) & 0x55);
329 val = (val & 0x33) + ((val >> 2) & 0x33);
330 val = (val + (val >> 4)) & 0x0f;
332 return val;
333 #endif
337 * ctpop16 - count the population of one bits in a 16-bit value.
338 * @val: The value to search
340 static inline int ctpop16(uint16_t val)
342 #if QEMU_GNUC_PREREQ(3, 4)
343 return __builtin_popcount(val);
344 #else
345 val = (val & 0x5555) + ((val >> 1) & 0x5555);
346 val = (val & 0x3333) + ((val >> 2) & 0x3333);
347 val = (val + (val >> 4)) & 0x0f0f;
348 val = (val + (val >> 8)) & 0x00ff;
350 return val;
351 #endif
355 * ctpop32 - count the population of one bits in a 32-bit value.
356 * @val: The value to search
358 static inline int ctpop32(uint32_t val)
360 #if QEMU_GNUC_PREREQ(3, 4)
361 return __builtin_popcount(val);
362 #else
363 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
364 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
365 val = (val + (val >> 4)) & 0x0f0f0f0f;
366 val = (val * 0x01010101) >> 24;
368 return val;
369 #endif
373 * ctpop64 - count the population of one bits in a 64-bit value.
374 * @val: The value to search
376 static inline int ctpop64(uint64_t val)
378 #if QEMU_GNUC_PREREQ(3, 4)
379 return __builtin_popcountll(val);
380 #else
381 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
382 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
383 val = (val + (val >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
384 val = (val * 0x0101010101010101ULL) >> 56;
386 return val;
387 #endif
391 * revbit8 - reverse the bits in an 8-bit value.
392 * @x: The value to modify.
394 static inline uint8_t revbit8(uint8_t x)
396 /* Assign the correct nibble position. */
397 x = ((x & 0xf0) >> 4)
398 | ((x & 0x0f) << 4);
399 /* Assign the correct bit position. */
400 x = ((x & 0x88) >> 3)
401 | ((x & 0x44) >> 1)
402 | ((x & 0x22) << 1)
403 | ((x & 0x11) << 3);
404 return x;
408 * revbit16 - reverse the bits in a 16-bit value.
409 * @x: The value to modify.
411 static inline uint16_t revbit16(uint16_t x)
413 /* Assign the correct byte position. */
414 x = bswap16(x);
415 /* Assign the correct nibble position. */
416 x = ((x & 0xf0f0) >> 4)
417 | ((x & 0x0f0f) << 4);
418 /* Assign the correct bit position. */
419 x = ((x & 0x8888) >> 3)
420 | ((x & 0x4444) >> 1)
421 | ((x & 0x2222) << 1)
422 | ((x & 0x1111) << 3);
423 return x;
427 * revbit32 - reverse the bits in a 32-bit value.
428 * @x: The value to modify.
430 static inline uint32_t revbit32(uint32_t x)
432 /* Assign the correct byte position. */
433 x = bswap32(x);
434 /* Assign the correct nibble position. */
435 x = ((x & 0xf0f0f0f0u) >> 4)
436 | ((x & 0x0f0f0f0fu) << 4);
437 /* Assign the correct bit position. */
438 x = ((x & 0x88888888u) >> 3)
439 | ((x & 0x44444444u) >> 1)
440 | ((x & 0x22222222u) << 1)
441 | ((x & 0x11111111u) << 3);
442 return x;
446 * revbit64 - reverse the bits in a 64-bit value.
447 * @x: The value to modify.
449 static inline uint64_t revbit64(uint64_t x)
451 /* Assign the correct byte position. */
452 x = bswap64(x);
453 /* Assign the correct nibble position. */
454 x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
455 | ((x & 0x0f0f0f0f0f0f0f0full) << 4);
456 /* Assign the correct bit position. */
457 x = ((x & 0x8888888888888888ull) >> 3)
458 | ((x & 0x4444444444444444ull) >> 1)
459 | ((x & 0x2222222222222222ull) << 1)
460 | ((x & 0x1111111111111111ull) << 3);
461 return x;
464 /* Host type specific sizes of these routines. */
466 #if ULONG_MAX == UINT32_MAX
467 # define clzl clz32
468 # define ctzl ctz32
469 # define clol clo32
470 # define ctol cto32
471 # define ctpopl ctpop32
472 # define revbitl revbit32
473 #elif ULONG_MAX == UINT64_MAX
474 # define clzl clz64
475 # define ctzl ctz64
476 # define clol clo64
477 # define ctol cto64
478 # define ctpopl ctpop64
479 # define revbitl revbit64
480 #else
481 # error Unknown sizeof long
482 #endif
484 static inline bool is_power_of_2(uint64_t value)
486 if (!value) {
487 return false;
490 return !(value & (value - 1));
493 /* round down to the nearest power of 2*/
494 static inline int64_t pow2floor(int64_t value)
496 if (!is_power_of_2(value)) {
497 value = 0x8000000000000000ULL >> clz64(value);
499 return value;
502 /* round up to the nearest power of 2 (0 if overflow) */
503 static inline uint64_t pow2ceil(uint64_t value)
505 uint8_t nlz = clz64(value);
507 if (is_power_of_2(value)) {
508 return value;
510 if (!nlz) {
511 return 0;
513 return 1ULL << (64 - nlz);
516 #endif