target/arm: Implement FMLAL and FMLSL for aarch64
[qemu/ar7.git] / target / i386 / gdbstub.c
blob1221433bc727a848b7c44a485f8630baff05e782
1 /*
2 * x86 gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 * Copyright (c) 2013 SUSE LINUX Products GmbH
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "cpu.h"
23 #include "exec/gdbstub.h"
25 #ifdef TARGET_X86_64
26 static const int gpr_map[16] = {
27 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
28 8, 9, 10, 11, 12, 13, 14, 15
30 #else
31 #define gpr_map gpr_map32
32 #endif
33 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
36 * Keep these in sync with assignment to
37 * gdb_num_core_regs in target/i386/cpu.c
38 * and with the machine description
42 * SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base
46 * general regs -----> 8 or 16
48 #define IDX_NB_IP 1
49 #define IDX_NB_FLAGS 1
50 #define IDX_NB_SEG (6 + 3)
51 #define IDX_NB_CTL 6
52 #define IDX_NB_FP 16
54 * fpu regs ----------> 8 or 16
56 #define IDX_NB_MXCSR 1
58 * total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66
61 #define IDX_IP_REG CPU_NB_REGS
62 #define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP)
63 #define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS)
64 #define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG)
65 #define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL)
66 #define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP)
67 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
69 #define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0)
70 #define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1)
71 #define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2)
72 #define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3)
73 #define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4)
74 #define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5)
76 #ifdef TARGET_X86_64
77 #define GDB_FORCE_64 1
78 #else
79 #define GDB_FORCE_64 0
80 #endif
83 int x86_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
85 X86CPU *cpu = X86_CPU(cs);
86 CPUX86State *env = &cpu->env;
88 uint64_t tpr;
90 /* N.B. GDB can't deal with changes in registers or sizes in the middle
91 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
92 as if we're on a 64-bit cpu. */
94 if (n < CPU_NB_REGS) {
95 if (TARGET_LONG_BITS == 64) {
96 if (env->hflags & HF_CS64_MASK) {
97 return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]);
98 } else if (n < CPU_NB_REGS32) {
99 return gdb_get_reg64(mem_buf,
100 env->regs[gpr_map[n]] & 0xffffffffUL);
101 } else {
102 memset(mem_buf, 0, sizeof(target_ulong));
103 return sizeof(target_ulong);
105 } else {
106 return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]);
108 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
109 #ifdef USE_X86LDOUBLE
110 /* FIXME: byteswap float values - after fixing fpregs layout. */
111 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
112 #else
113 memset(mem_buf, 0, 10);
114 #endif
115 return 10;
116 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
117 n -= IDX_XMM_REGS;
118 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
119 stq_p(mem_buf, env->xmm_regs[n].ZMM_Q(0));
120 stq_p(mem_buf + 8, env->xmm_regs[n].ZMM_Q(1));
121 return 16;
123 } else {
124 switch (n) {
125 case IDX_IP_REG:
126 if (TARGET_LONG_BITS == 64) {
127 if (env->hflags & HF_CS64_MASK) {
128 return gdb_get_reg64(mem_buf, env->eip);
129 } else {
130 return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL);
132 } else {
133 return gdb_get_reg32(mem_buf, env->eip);
135 case IDX_FLAGS_REG:
136 return gdb_get_reg32(mem_buf, env->eflags);
138 case IDX_SEG_REGS:
139 return gdb_get_reg32(mem_buf, env->segs[R_CS].selector);
140 case IDX_SEG_REGS + 1:
141 return gdb_get_reg32(mem_buf, env->segs[R_SS].selector);
142 case IDX_SEG_REGS + 2:
143 return gdb_get_reg32(mem_buf, env->segs[R_DS].selector);
144 case IDX_SEG_REGS + 3:
145 return gdb_get_reg32(mem_buf, env->segs[R_ES].selector);
146 case IDX_SEG_REGS + 4:
147 return gdb_get_reg32(mem_buf, env->segs[R_FS].selector);
148 case IDX_SEG_REGS + 5:
149 return gdb_get_reg32(mem_buf, env->segs[R_GS].selector);
151 case IDX_SEG_REGS + 6:
152 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
153 return gdb_get_reg64(mem_buf, env->segs[R_FS].base);
155 return gdb_get_reg32(mem_buf, env->segs[R_FS].base);
157 case IDX_SEG_REGS + 7:
158 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
159 return gdb_get_reg64(mem_buf, env->segs[R_GS].base);
161 return gdb_get_reg32(mem_buf, env->segs[R_GS].base);
163 case IDX_SEG_REGS + 8:
164 #ifdef TARGET_X86_64
165 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
166 return gdb_get_reg64(mem_buf, env->kernelgsbase);
168 return gdb_get_reg32(mem_buf, env->kernelgsbase);
169 #else
170 return gdb_get_reg32(mem_buf, 0);
171 #endif
173 case IDX_FP_REGS + 8:
174 return gdb_get_reg32(mem_buf, env->fpuc);
175 case IDX_FP_REGS + 9:
176 return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) |
177 (env->fpstt & 0x7) << 11);
178 case IDX_FP_REGS + 10:
179 return gdb_get_reg32(mem_buf, 0); /* ftag */
180 case IDX_FP_REGS + 11:
181 return gdb_get_reg32(mem_buf, 0); /* fiseg */
182 case IDX_FP_REGS + 12:
183 return gdb_get_reg32(mem_buf, 0); /* fioff */
184 case IDX_FP_REGS + 13:
185 return gdb_get_reg32(mem_buf, 0); /* foseg */
186 case IDX_FP_REGS + 14:
187 return gdb_get_reg32(mem_buf, 0); /* fooff */
188 case IDX_FP_REGS + 15:
189 return gdb_get_reg32(mem_buf, 0); /* fop */
191 case IDX_MXCSR_REG:
192 return gdb_get_reg32(mem_buf, env->mxcsr);
194 case IDX_CTL_CR0_REG:
195 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
196 return gdb_get_reg64(mem_buf, env->cr[0]);
198 return gdb_get_reg32(mem_buf, env->cr[0]);
200 case IDX_CTL_CR2_REG:
201 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
202 return gdb_get_reg64(mem_buf, env->cr[2]);
204 return gdb_get_reg32(mem_buf, env->cr[2]);
206 case IDX_CTL_CR3_REG:
207 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
208 return gdb_get_reg64(mem_buf, env->cr[3]);
210 return gdb_get_reg32(mem_buf, env->cr[3]);
212 case IDX_CTL_CR4_REG:
213 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
214 return gdb_get_reg64(mem_buf, env->cr[4]);
216 return gdb_get_reg32(mem_buf, env->cr[4]);
218 case IDX_CTL_CR8_REG:
219 #ifdef CONFIG_SOFTMMU
220 tpr = cpu_get_apic_tpr(cpu->apic_state);
221 #else
222 tpr = 0;
223 #endif
224 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
225 return gdb_get_reg64(mem_buf, tpr);
227 return gdb_get_reg32(mem_buf, tpr);
229 case IDX_CTL_EFER_REG:
230 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
231 return gdb_get_reg64(mem_buf, env->efer);
233 return gdb_get_reg32(mem_buf, env->efer);
236 return 0;
239 static int x86_cpu_gdb_load_seg(X86CPU *cpu, int sreg, uint8_t *mem_buf)
241 CPUX86State *env = &cpu->env;
242 uint16_t selector = ldl_p(mem_buf);
244 if (selector != env->segs[sreg].selector) {
245 #if defined(CONFIG_USER_ONLY)
246 cpu_x86_load_seg(env, sreg, selector);
247 #else
248 unsigned int limit, flags;
249 target_ulong base;
251 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
252 int dpl = (env->eflags & VM_MASK) ? 3 : 0;
253 base = selector << 4;
254 limit = 0xffff;
255 flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
256 DESC_A_MASK | (dpl << DESC_DPL_SHIFT);
257 } else {
258 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit,
259 &flags)) {
260 return 4;
263 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
264 #endif
266 return 4;
269 int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
271 X86CPU *cpu = X86_CPU(cs);
272 CPUX86State *env = &cpu->env;
273 uint32_t tmp;
275 /* N.B. GDB can't deal with changes in registers or sizes in the middle
276 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
277 as if we're on a 64-bit cpu. */
279 if (n < CPU_NB_REGS) {
280 if (TARGET_LONG_BITS == 64) {
281 if (env->hflags & HF_CS64_MASK) {
282 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
283 } else if (n < CPU_NB_REGS32) {
284 env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL;
286 return sizeof(target_ulong);
287 } else if (n < CPU_NB_REGS32) {
288 n = gpr_map32[n];
289 env->regs[n] &= ~0xffffffffUL;
290 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
291 return 4;
293 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
294 #ifdef USE_X86LDOUBLE
295 /* FIXME: byteswap float values - after fixing fpregs layout. */
296 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
297 #endif
298 return 10;
299 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
300 n -= IDX_XMM_REGS;
301 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
302 env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf);
303 env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8);
304 return 16;
306 } else {
307 switch (n) {
308 case IDX_IP_REG:
309 if (TARGET_LONG_BITS == 64) {
310 if (env->hflags & HF_CS64_MASK) {
311 env->eip = ldq_p(mem_buf);
312 } else {
313 env->eip = ldq_p(mem_buf) & 0xffffffffUL;
315 return 8;
316 } else {
317 env->eip &= ~0xffffffffUL;
318 env->eip |= (uint32_t)ldl_p(mem_buf);
319 return 4;
321 case IDX_FLAGS_REG:
322 env->eflags = ldl_p(mem_buf);
323 return 4;
325 case IDX_SEG_REGS:
326 return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
327 case IDX_SEG_REGS + 1:
328 return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
329 case IDX_SEG_REGS + 2:
330 return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
331 case IDX_SEG_REGS + 3:
332 return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
333 case IDX_SEG_REGS + 4:
334 return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
335 case IDX_SEG_REGS + 5:
336 return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);
338 case IDX_SEG_REGS + 6:
339 if (env->hflags & HF_CS64_MASK) {
340 env->segs[R_FS].base = ldq_p(mem_buf);
341 return 8;
343 env->segs[R_FS].base = ldl_p(mem_buf);
344 return 4;
346 case IDX_SEG_REGS + 7:
347 if (env->hflags & HF_CS64_MASK) {
348 env->segs[R_GS].base = ldq_p(mem_buf);
349 return 8;
351 env->segs[R_GS].base = ldl_p(mem_buf);
352 return 4;
354 #ifdef TARGET_X86_64
355 case IDX_SEG_REGS + 8:
356 if (env->hflags & HF_CS64_MASK) {
357 env->kernelgsbase = ldq_p(mem_buf);
358 return 8;
360 env->kernelgsbase = ldl_p(mem_buf);
361 return 4;
362 #endif
364 case IDX_FP_REGS + 8:
365 cpu_set_fpuc(env, ldl_p(mem_buf));
366 return 4;
367 case IDX_FP_REGS + 9:
368 tmp = ldl_p(mem_buf);
369 env->fpstt = (tmp >> 11) & 7;
370 env->fpus = tmp & ~0x3800;
371 return 4;
372 case IDX_FP_REGS + 10: /* ftag */
373 return 4;
374 case IDX_FP_REGS + 11: /* fiseg */
375 return 4;
376 case IDX_FP_REGS + 12: /* fioff */
377 return 4;
378 case IDX_FP_REGS + 13: /* foseg */
379 return 4;
380 case IDX_FP_REGS + 14: /* fooff */
381 return 4;
382 case IDX_FP_REGS + 15: /* fop */
383 return 4;
385 case IDX_MXCSR_REG:
386 cpu_set_mxcsr(env, ldl_p(mem_buf));
387 return 4;
389 case IDX_CTL_CR0_REG:
390 if (env->hflags & HF_CS64_MASK) {
391 cpu_x86_update_cr0(env, ldq_p(mem_buf));
392 return 8;
394 cpu_x86_update_cr0(env, ldl_p(mem_buf));
395 return 4;
397 case IDX_CTL_CR2_REG:
398 if (env->hflags & HF_CS64_MASK) {
399 env->cr[2] = ldq_p(mem_buf);
400 return 8;
402 env->cr[2] = ldl_p(mem_buf);
403 return 4;
405 case IDX_CTL_CR3_REG:
406 if (env->hflags & HF_CS64_MASK) {
407 cpu_x86_update_cr3(env, ldq_p(mem_buf));
408 return 8;
410 cpu_x86_update_cr3(env, ldl_p(mem_buf));
411 return 4;
413 case IDX_CTL_CR4_REG:
414 if (env->hflags & HF_CS64_MASK) {
415 cpu_x86_update_cr4(env, ldq_p(mem_buf));
416 return 8;
418 cpu_x86_update_cr4(env, ldl_p(mem_buf));
419 return 4;
421 case IDX_CTL_CR8_REG:
422 if (env->hflags & HF_CS64_MASK) {
423 #ifdef CONFIG_SOFTMMU
424 cpu_set_apic_tpr(cpu->apic_state, ldq_p(mem_buf));
425 #endif
426 return 8;
428 #ifdef CONFIG_SOFTMMU
429 cpu_set_apic_tpr(cpu->apic_state, ldl_p(mem_buf));
430 #endif
431 return 4;
433 case IDX_CTL_EFER_REG:
434 if (env->hflags & HF_CS64_MASK) {
435 cpu_load_efer(env, ldq_p(mem_buf));
436 return 8;
438 cpu_load_efer(env, ldl_p(mem_buf));
439 return 4;
443 /* Unrecognised register. */
444 return 0;