ipmi: add a realize function to the device class
[qemu/ar7.git] / target-alpha / cpu.h
blob420f2a53fe1315aede95a4ce0c7186126174876e
1 /*
2 * Alpha emulation cpu definitions for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #if !defined (__CPU_ALPHA_H__)
21 #define __CPU_ALPHA_H__
23 #include "qemu-common.h"
25 #define TARGET_LONG_BITS 64
26 #define ALIGNED_ONLY
28 #define CPUArchState struct CPUAlphaState
30 #include "exec/cpu-defs.h"
32 #include "fpu/softfloat.h"
34 #define ICACHE_LINE_SIZE 32
35 #define DCACHE_LINE_SIZE 32
37 #define TARGET_PAGE_BITS 13
39 #ifdef CONFIG_USER_ONLY
40 /* ??? The kernel likes to give addresses in high memory. If the host has
41 more virtual address space than the guest, this can lead to impossible
42 allocations. Honor the long-standing assumption that only kernel addrs
43 are negative, but otherwise allow allocations anywhere. This could lead
44 to tricky emulation problems for programs doing tagged addressing, but
45 that's far fewer than encounter the impossible allocation problem. */
46 #define TARGET_PHYS_ADDR_SPACE_BITS 63
47 #define TARGET_VIRT_ADDR_SPACE_BITS 63
48 #else
49 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
50 #define TARGET_PHYS_ADDR_SPACE_BITS 44
51 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
52 #endif
54 /* Alpha major type */
55 enum {
56 ALPHA_EV3 = 1,
57 ALPHA_EV4 = 2,
58 ALPHA_SIM = 3,
59 ALPHA_LCA = 4,
60 ALPHA_EV5 = 5, /* 21164 */
61 ALPHA_EV45 = 6, /* 21064A */
62 ALPHA_EV56 = 7, /* 21164A */
65 /* EV4 minor type */
66 enum {
67 ALPHA_EV4_2 = 0,
68 ALPHA_EV4_3 = 1,
71 /* LCA minor type */
72 enum {
73 ALPHA_LCA_1 = 1, /* 21066 */
74 ALPHA_LCA_2 = 2, /* 20166 */
75 ALPHA_LCA_3 = 3, /* 21068 */
76 ALPHA_LCA_4 = 4, /* 21068 */
77 ALPHA_LCA_5 = 5, /* 21066A */
78 ALPHA_LCA_6 = 6, /* 21068A */
81 /* EV5 minor type */
82 enum {
83 ALPHA_EV5_1 = 1, /* Rev BA, CA */
84 ALPHA_EV5_2 = 2, /* Rev DA, EA */
85 ALPHA_EV5_3 = 3, /* Pass 3 */
86 ALPHA_EV5_4 = 4, /* Pass 3.2 */
87 ALPHA_EV5_5 = 5, /* Pass 4 */
90 /* EV45 minor type */
91 enum {
92 ALPHA_EV45_1 = 1, /* Pass 1 */
93 ALPHA_EV45_2 = 2, /* Pass 1.1 */
94 ALPHA_EV45_3 = 3, /* Pass 2 */
97 /* EV56 minor type */
98 enum {
99 ALPHA_EV56_1 = 1, /* Pass 1 */
100 ALPHA_EV56_2 = 2, /* Pass 2 */
103 enum {
104 IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
105 IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
106 IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
107 IMPLVER_21364 = 3, /* EV7 & EV79 */
110 enum {
111 AMASK_BWX = 0x00000001,
112 AMASK_FIX = 0x00000002,
113 AMASK_CIX = 0x00000004,
114 AMASK_MVI = 0x00000100,
115 AMASK_TRAP = 0x00000200,
116 AMASK_PREFETCH = 0x00001000,
119 enum {
120 VAX_ROUND_NORMAL = 0,
121 VAX_ROUND_CHOPPED,
124 enum {
125 IEEE_ROUND_NORMAL = 0,
126 IEEE_ROUND_DYNAMIC,
127 IEEE_ROUND_PLUS,
128 IEEE_ROUND_MINUS,
129 IEEE_ROUND_CHOPPED,
132 /* IEEE floating-point operations encoding */
133 /* Trap mode */
134 enum {
135 FP_TRAP_I = 0x0,
136 FP_TRAP_U = 0x1,
137 FP_TRAP_S = 0x4,
138 FP_TRAP_SU = 0x5,
139 FP_TRAP_SUI = 0x7,
142 /* Rounding mode */
143 enum {
144 FP_ROUND_CHOPPED = 0x0,
145 FP_ROUND_MINUS = 0x1,
146 FP_ROUND_NORMAL = 0x2,
147 FP_ROUND_DYNAMIC = 0x3,
150 /* FPCR bits -- right-shifted 32 so we can use a uint32_t. */
151 #define FPCR_SUM (1U << (63 - 32))
152 #define FPCR_INED (1U << (62 - 32))
153 #define FPCR_UNFD (1U << (61 - 32))
154 #define FPCR_UNDZ (1U << (60 - 32))
155 #define FPCR_DYN_SHIFT (58 - 32)
156 #define FPCR_DYN_CHOPPED (0U << FPCR_DYN_SHIFT)
157 #define FPCR_DYN_MINUS (1U << FPCR_DYN_SHIFT)
158 #define FPCR_DYN_NORMAL (2U << FPCR_DYN_SHIFT)
159 #define FPCR_DYN_PLUS (3U << FPCR_DYN_SHIFT)
160 #define FPCR_DYN_MASK (3U << FPCR_DYN_SHIFT)
161 #define FPCR_IOV (1U << (57 - 32))
162 #define FPCR_INE (1U << (56 - 32))
163 #define FPCR_UNF (1U << (55 - 32))
164 #define FPCR_OVF (1U << (54 - 32))
165 #define FPCR_DZE (1U << (53 - 32))
166 #define FPCR_INV (1U << (52 - 32))
167 #define FPCR_OVFD (1U << (51 - 32))
168 #define FPCR_DZED (1U << (50 - 32))
169 #define FPCR_INVD (1U << (49 - 32))
170 #define FPCR_DNZ (1U << (48 - 32))
171 #define FPCR_DNOD (1U << (47 - 32))
172 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
173 | FPCR_OVF | FPCR_DZE | FPCR_INV)
175 /* The silly software trap enables implemented by the kernel emulation.
176 These are more or less architecturally required, since the real hardware
177 has read-as-zero bits in the FPCR when the features aren't implemented.
178 For the purposes of QEMU, we pretend the FPCR can hold everything. */
179 #define SWCR_TRAP_ENABLE_INV (1U << 1)
180 #define SWCR_TRAP_ENABLE_DZE (1U << 2)
181 #define SWCR_TRAP_ENABLE_OVF (1U << 3)
182 #define SWCR_TRAP_ENABLE_UNF (1U << 4)
183 #define SWCR_TRAP_ENABLE_INE (1U << 5)
184 #define SWCR_TRAP_ENABLE_DNO (1U << 6)
185 #define SWCR_TRAP_ENABLE_MASK ((1U << 7) - (1U << 1))
187 #define SWCR_MAP_DMZ (1U << 12)
188 #define SWCR_MAP_UMZ (1U << 13)
189 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
191 #define SWCR_STATUS_INV (1U << 17)
192 #define SWCR_STATUS_DZE (1U << 18)
193 #define SWCR_STATUS_OVF (1U << 19)
194 #define SWCR_STATUS_UNF (1U << 20)
195 #define SWCR_STATUS_INE (1U << 21)
196 #define SWCR_STATUS_DNO (1U << 22)
197 #define SWCR_STATUS_MASK ((1U << 23) - (1U << 17))
199 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
201 /* MMU modes definitions */
203 /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
204 The Unix PALcode only exposes the kernel and user modes; presumably
205 executive and supervisor are used by VMS.
207 PALcode itself uses physical mode for code and kernel mode for data;
208 there are PALmode instructions that can access data via physical mode
209 or via an os-installed "alternate mode", which is one of the 4 above.
211 QEMU does not currently properly distinguish between code/data when
212 looking up addresses. To avoid having to address this issue, our
213 emulated PALcode will cheat and use the KSEG mapping for its code+data
214 rather than physical addresses.
216 Moreover, we're only emulating Unix PALcode, and not attempting VMS.
218 All of which allows us to drop all but kernel and user modes.
219 Elide the unused MMU modes to save space. */
221 #define NB_MMU_MODES 2
223 #define MMU_MODE0_SUFFIX _kernel
224 #define MMU_MODE1_SUFFIX _user
225 #define MMU_KERNEL_IDX 0
226 #define MMU_USER_IDX 1
228 typedef struct CPUAlphaState CPUAlphaState;
230 struct CPUAlphaState {
231 uint64_t ir[31];
232 float64 fir[31];
233 uint64_t pc;
234 uint64_t unique;
235 uint64_t lock_addr;
236 uint64_t lock_st_addr;
237 uint64_t lock_value;
239 /* The FPCR, and disassembled portions thereof. */
240 uint32_t fpcr;
241 uint32_t fpcr_exc_enable;
242 float_status fp_status;
243 uint8_t fpcr_dyn_round;
244 uint8_t fpcr_flush_to_zero;
246 /* The Internal Processor Registers. Some of these we assume always
247 exist for use in user-mode. */
248 uint8_t ps;
249 uint8_t intr_flag;
250 uint8_t pal_mode;
251 uint8_t fen;
253 uint32_t pcc_ofs;
255 /* These pass data from the exception logic in the translator and
256 helpers to the OS entry point. This is used for both system
257 emulation and user-mode. */
258 uint64_t trap_arg0;
259 uint64_t trap_arg1;
260 uint64_t trap_arg2;
262 #if !defined(CONFIG_USER_ONLY)
263 /* The internal data required by our emulation of the Unix PALcode. */
264 uint64_t exc_addr;
265 uint64_t palbr;
266 uint64_t ptbr;
267 uint64_t vptptr;
268 uint64_t sysval;
269 uint64_t usp;
270 uint64_t shadow[8];
271 uint64_t scratch[24];
272 #endif
274 /* This alarm doesn't exist in real hardware; we wish it did. */
275 uint64_t alarm_expire;
277 /* Those resources are used only in QEMU core */
278 CPU_COMMON
280 int error_code;
282 uint32_t features;
283 uint32_t amask;
284 int implver;
287 #define cpu_list alpha_cpu_list
288 #define cpu_exec cpu_alpha_exec
289 #define cpu_signal_handler cpu_alpha_signal_handler
291 #include "exec/cpu-all.h"
292 #include "cpu-qom.h"
294 enum {
295 FEATURE_ASN = 0x00000001,
296 FEATURE_SPS = 0x00000002,
297 FEATURE_VIRBND = 0x00000004,
298 FEATURE_TBCHK = 0x00000008,
301 enum {
302 EXCP_RESET,
303 EXCP_MCHK,
304 EXCP_SMP_INTERRUPT,
305 EXCP_CLK_INTERRUPT,
306 EXCP_DEV_INTERRUPT,
307 EXCP_MMFAULT,
308 EXCP_UNALIGN,
309 EXCP_OPCDEC,
310 EXCP_ARITH,
311 EXCP_FEN,
312 EXCP_CALL_PAL,
313 /* For Usermode emulation. */
314 EXCP_STL_C,
315 EXCP_STQ_C,
318 /* Alpha-specific interrupt pending bits. */
319 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
320 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
321 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
323 /* OSF/1 Page table bits. */
324 enum {
325 PTE_VALID = 0x0001,
326 PTE_FOR = 0x0002, /* used for page protection (fault on read) */
327 PTE_FOW = 0x0004, /* used for page protection (fault on write) */
328 PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
329 PTE_ASM = 0x0010,
330 PTE_KRE = 0x0100,
331 PTE_URE = 0x0200,
332 PTE_KWE = 0x1000,
333 PTE_UWE = 0x2000
336 /* Hardware interrupt (entInt) constants. */
337 enum {
338 INT_K_IP,
339 INT_K_CLK,
340 INT_K_MCHK,
341 INT_K_DEV,
342 INT_K_PERF,
345 /* Memory management (entMM) constants. */
346 enum {
347 MM_K_TNV,
348 MM_K_ACV,
349 MM_K_FOR,
350 MM_K_FOE,
351 MM_K_FOW
354 /* Arithmetic exception (entArith) constants. */
355 enum {
356 EXC_M_SWC = 1, /* Software completion */
357 EXC_M_INV = 2, /* Invalid operation */
358 EXC_M_DZE = 4, /* Division by zero */
359 EXC_M_FOV = 8, /* Overflow */
360 EXC_M_UNF = 16, /* Underflow */
361 EXC_M_INE = 32, /* Inexact result */
362 EXC_M_IOV = 64 /* Integer Overflow */
365 /* Processor status constants. */
366 enum {
367 /* Low 3 bits are interrupt mask level. */
368 PS_INT_MASK = 7,
370 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
371 The Unix PALcode only uses bit 4. */
372 PS_USER_MODE = 8
375 static inline int cpu_mmu_index(CPUAlphaState *env, bool ifetch)
377 if (env->pal_mode) {
378 return MMU_KERNEL_IDX;
379 } else if (env->ps & PS_USER_MODE) {
380 return MMU_USER_IDX;
381 } else {
382 return MMU_KERNEL_IDX;
386 enum {
387 IR_V0 = 0,
388 IR_T0 = 1,
389 IR_T1 = 2,
390 IR_T2 = 3,
391 IR_T3 = 4,
392 IR_T4 = 5,
393 IR_T5 = 6,
394 IR_T6 = 7,
395 IR_T7 = 8,
396 IR_S0 = 9,
397 IR_S1 = 10,
398 IR_S2 = 11,
399 IR_S3 = 12,
400 IR_S4 = 13,
401 IR_S5 = 14,
402 IR_S6 = 15,
403 IR_FP = IR_S6,
404 IR_A0 = 16,
405 IR_A1 = 17,
406 IR_A2 = 18,
407 IR_A3 = 19,
408 IR_A4 = 20,
409 IR_A5 = 21,
410 IR_T8 = 22,
411 IR_T9 = 23,
412 IR_T10 = 24,
413 IR_T11 = 25,
414 IR_RA = 26,
415 IR_T12 = 27,
416 IR_PV = IR_T12,
417 IR_AT = 28,
418 IR_GP = 29,
419 IR_SP = 30,
420 IR_ZERO = 31,
423 void alpha_translate_init(void);
425 AlphaCPU *cpu_alpha_init(const char *cpu_model);
427 #define cpu_init(cpu_model) CPU(cpu_alpha_init(cpu_model))
429 void alpha_cpu_list(FILE *f, fprintf_function cpu_fprintf);
430 int cpu_alpha_exec(CPUState *cpu);
431 /* you can call this signal handler from your SIGBUS and SIGSEGV
432 signal handlers to inform the virtual CPU of exceptions. non zero
433 is returned if the signal was handled by the virtual CPU. */
434 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
435 void *puc);
436 int alpha_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
437 int mmu_idx);
438 void do_restore_state(CPUAlphaState *, uintptr_t retaddr);
439 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
440 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
442 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
443 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
444 uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg);
445 void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val);
446 #ifndef CONFIG_USER_ONLY
447 QEMU_NORETURN void alpha_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
448 bool is_write, bool is_exec,
449 int unused, unsigned size);
450 #endif
452 /* Bits in TB->FLAGS that control how translation is processed. */
453 enum {
454 TB_FLAGS_PAL_MODE = 1,
455 TB_FLAGS_FEN = 2,
456 TB_FLAGS_USER_MODE = 8,
458 TB_FLAGS_AMASK_SHIFT = 4,
459 TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
460 TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
461 TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
462 TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
463 TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
464 TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
467 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
468 target_ulong *cs_base, int *pflags)
470 int flags = 0;
472 *pc = env->pc;
473 *cs_base = 0;
475 if (env->pal_mode) {
476 flags = TB_FLAGS_PAL_MODE;
477 } else {
478 flags = env->ps & PS_USER_MODE;
480 if (env->fen) {
481 flags |= TB_FLAGS_FEN;
483 flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
485 *pflags = flags;
488 #include "exec/exec-all.h"
490 #endif /* !defined (__CPU_ALPHA_H__) */