slirp: fix build on mingw32
[qemu/ar7.git] / hw / pc.c
blob81c391cd6a822158d00884260c35a4f8eb93cf30
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pc.h"
26 #include "apic.h"
27 #include "fdc.h"
28 #include "ide.h"
29 #include "pci.h"
30 #include "vmware_vga.h"
31 #include "monitor.h"
32 #include "fw_cfg.h"
33 #include "hpet_emul.h"
34 #include "smbios.h"
35 #include "loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "mc146818rtc.h"
39 #include "i8254.h"
40 #include "pcspk.h"
41 #include "msi.h"
42 #include "sysbus.h"
43 #include "sysemu.h"
44 #include "kvm.h"
45 #include "xen.h"
46 #include "blockdev.h"
47 #include "hw/block-common.h"
48 #include "ui/qemu-spice.h"
49 #include "memory.h"
50 #include "exec-memory.h"
51 #include "arch_init.h"
52 #include "bitmap.h"
54 /* output Bochs bios info messages */
55 //#define DEBUG_BIOS
57 /* debug PC/ISA interrupts */
58 //#define DEBUG_IRQ
60 #ifdef DEBUG_IRQ
61 #define DPRINTF(fmt, ...) \
62 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
63 #else
64 #define DPRINTF(fmt, ...)
65 #endif
67 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
68 #define ACPI_DATA_SIZE 0x10000
69 #define BIOS_CFG_IOPORT 0x510
70 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
71 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
72 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
73 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
74 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
76 #define MSI_ADDR_BASE 0xfee00000
78 #define E820_NR_ENTRIES 16
80 struct e820_entry {
81 uint64_t address;
82 uint64_t length;
83 uint32_t type;
84 } QEMU_PACKED __attribute((__aligned__(4)));
86 struct e820_table {
87 uint32_t count;
88 struct e820_entry entry[E820_NR_ENTRIES];
89 } QEMU_PACKED __attribute((__aligned__(4)));
91 static struct e820_table e820_table;
92 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
94 void gsi_handler(void *opaque, int n, int level)
96 GSIState *s = opaque;
98 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
99 if (n < ISA_NUM_IRQS) {
100 qemu_set_irq(s->i8259_irq[n], level);
102 qemu_set_irq(s->ioapic_irq[n], level);
105 static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
109 /* MSDOS compatibility mode FPU exception support */
110 static qemu_irq ferr_irq;
112 void pc_register_ferr_irq(qemu_irq irq)
114 ferr_irq = irq;
117 /* XXX: add IGNNE support */
118 void cpu_set_ferr(CPUX86State *s)
120 qemu_irq_raise(ferr_irq);
123 static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
125 qemu_irq_lower(ferr_irq);
128 /* TSC handling */
129 uint64_t cpu_get_tsc(CPUX86State *env)
131 return cpu_get_ticks();
134 /* SMM support */
136 static cpu_set_smm_t smm_set;
137 static void *smm_arg;
139 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
141 assert(smm_set == NULL);
142 assert(smm_arg == NULL);
143 smm_set = callback;
144 smm_arg = arg;
147 void cpu_smm_update(CPUX86State *env)
149 if (smm_set && smm_arg && env == first_cpu)
150 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
154 /* IRQ handling */
155 int cpu_get_pic_interrupt(CPUX86State *env)
157 int intno;
159 intno = apic_get_interrupt(env->apic_state);
160 if (intno >= 0) {
161 return intno;
163 /* read the irq from the PIC */
164 if (!apic_accept_pic_intr(env->apic_state)) {
165 return -1;
168 intno = pic_read_irq(isa_pic);
169 return intno;
172 static void pic_irq_request(void *opaque, int irq, int level)
174 CPUX86State *env = first_cpu;
176 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
177 if (env->apic_state) {
178 while (env) {
179 if (apic_accept_pic_intr(env->apic_state)) {
180 apic_deliver_pic_intr(env->apic_state, level);
182 env = env->next_cpu;
184 } else {
185 if (level)
186 cpu_interrupt(env, CPU_INTERRUPT_HARD);
187 else
188 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
192 /* PC cmos mappings */
194 #define REG_EQUIPMENT_BYTE 0x14
196 static int cmos_get_fd_drive_type(FDriveType fd0)
198 int val;
200 switch (fd0) {
201 case FDRIVE_DRV_144:
202 /* 1.44 Mb 3"5 drive */
203 val = 4;
204 break;
205 case FDRIVE_DRV_288:
206 /* 2.88 Mb 3"5 drive */
207 val = 5;
208 break;
209 case FDRIVE_DRV_120:
210 /* 1.2 Mb 5"5 drive */
211 val = 2;
212 break;
213 case FDRIVE_DRV_NONE:
214 default:
215 val = 0;
216 break;
218 return val;
221 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
222 int16_t cylinders, int8_t heads, int8_t sectors)
224 rtc_set_memory(s, type_ofs, 47);
225 rtc_set_memory(s, info_ofs, cylinders);
226 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
227 rtc_set_memory(s, info_ofs + 2, heads);
228 rtc_set_memory(s, info_ofs + 3, 0xff);
229 rtc_set_memory(s, info_ofs + 4, 0xff);
230 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
231 rtc_set_memory(s, info_ofs + 6, cylinders);
232 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
233 rtc_set_memory(s, info_ofs + 8, sectors);
236 /* convert boot_device letter to something recognizable by the bios */
237 static int boot_device2nibble(char boot_device)
239 switch(boot_device) {
240 case 'a':
241 case 'b':
242 return 0x01; /* floppy boot */
243 case 'c':
244 return 0x02; /* hard drive boot */
245 case 'd':
246 return 0x03; /* CD-ROM boot */
247 case 'n':
248 return 0x04; /* Network boot */
250 return 0;
253 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
255 #define PC_MAX_BOOT_DEVICES 3
256 int nbds, bds[3] = { 0, };
257 int i;
259 nbds = strlen(boot_device);
260 if (nbds > PC_MAX_BOOT_DEVICES) {
261 error_report("Too many boot devices for PC");
262 return(1);
264 for (i = 0; i < nbds; i++) {
265 bds[i] = boot_device2nibble(boot_device[i]);
266 if (bds[i] == 0) {
267 error_report("Invalid boot device for PC: '%c'",
268 boot_device[i]);
269 return(1);
272 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
273 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
274 return(0);
277 static int pc_boot_set(void *opaque, const char *boot_device)
279 return set_boot_dev(opaque, boot_device, 0);
282 typedef struct pc_cmos_init_late_arg {
283 ISADevice *rtc_state;
284 BusState *idebus[2];
285 } pc_cmos_init_late_arg;
287 static void pc_cmos_init_late(void *opaque)
289 pc_cmos_init_late_arg *arg = opaque;
290 ISADevice *s = arg->rtc_state;
291 int16_t cylinders;
292 int8_t heads, sectors;
293 int val;
294 int i, trans;
296 val = 0;
297 if (ide_get_geometry(arg->idebus[0], 0,
298 &cylinders, &heads, &sectors) >= 0) {
299 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
300 val |= 0xf0;
302 if (ide_get_geometry(arg->idebus[0], 1,
303 &cylinders, &heads, &sectors) >= 0) {
304 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
305 val |= 0x0f;
307 rtc_set_memory(s, 0x12, val);
309 val = 0;
310 for (i = 0; i < 4; i++) {
311 /* NOTE: ide_get_geometry() returns the physical
312 geometry. It is always such that: 1 <= sects <= 63, 1
313 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
314 geometry can be different if a translation is done. */
315 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
316 &cylinders, &heads, &sectors) >= 0) {
317 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
318 assert((trans & ~3) == 0);
319 val |= trans << (i * 2);
322 rtc_set_memory(s, 0x39, val);
324 qemu_unregister_reset(pc_cmos_init_late, opaque);
327 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
328 const char *boot_device,
329 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
330 ISADevice *s)
332 int val, nb, i;
333 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
334 static pc_cmos_init_late_arg arg;
336 /* various important CMOS locations needed by PC/Bochs bios */
338 /* memory size */
339 val = 640; /* base memory in K */
340 rtc_set_memory(s, 0x15, val);
341 rtc_set_memory(s, 0x16, val >> 8);
343 val = (ram_size / 1024) - 1024;
344 if (val > 65535)
345 val = 65535;
346 rtc_set_memory(s, 0x17, val);
347 rtc_set_memory(s, 0x18, val >> 8);
348 rtc_set_memory(s, 0x30, val);
349 rtc_set_memory(s, 0x31, val >> 8);
351 if (above_4g_mem_size) {
352 rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
353 rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
354 rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
357 if (ram_size > (16 * 1024 * 1024))
358 val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
359 else
360 val = 0;
361 if (val > 65535)
362 val = 65535;
363 rtc_set_memory(s, 0x34, val);
364 rtc_set_memory(s, 0x35, val >> 8);
366 /* set the number of CPU */
367 rtc_set_memory(s, 0x5f, smp_cpus - 1);
369 /* set boot devices, and disable floppy signature check if requested */
370 if (set_boot_dev(s, boot_device, fd_bootchk)) {
371 exit(1);
374 /* floppy type */
375 if (floppy) {
376 for (i = 0; i < 2; i++) {
377 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
380 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
381 cmos_get_fd_drive_type(fd_type[1]);
382 rtc_set_memory(s, 0x10, val);
384 val = 0;
385 nb = 0;
386 if (fd_type[0] < FDRIVE_DRV_NONE) {
387 nb++;
389 if (fd_type[1] < FDRIVE_DRV_NONE) {
390 nb++;
392 switch (nb) {
393 case 0:
394 break;
395 case 1:
396 val |= 0x01; /* 1 drive, ready for boot */
397 break;
398 case 2:
399 val |= 0x41; /* 2 drives, ready for boot */
400 break;
402 val |= 0x02; /* FPU is there */
403 val |= 0x04; /* PS/2 mouse installed */
404 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
406 /* hard drives */
407 arg.rtc_state = s;
408 arg.idebus[0] = idebus0;
409 arg.idebus[1] = idebus1;
410 qemu_register_reset(pc_cmos_init_late, &arg);
413 /* port 92 stuff: could be split off */
414 typedef struct Port92State {
415 ISADevice dev;
416 MemoryRegion io;
417 uint8_t outport;
418 qemu_irq *a20_out;
419 } Port92State;
421 static void port92_write(void *opaque, uint32_t addr, uint32_t val)
423 Port92State *s = opaque;
425 DPRINTF("port92: write 0x%02x\n", val);
426 s->outport = val;
427 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
428 if (val & 1) {
429 qemu_system_reset_request();
433 static uint32_t port92_read(void *opaque, uint32_t addr)
435 Port92State *s = opaque;
436 uint32_t ret;
438 ret = s->outport;
439 DPRINTF("port92: read 0x%02x\n", ret);
440 return ret;
443 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
445 Port92State *s = DO_UPCAST(Port92State, dev, dev);
447 s->a20_out = a20_out;
450 static const VMStateDescription vmstate_port92_isa = {
451 .name = "port92",
452 .version_id = 1,
453 .minimum_version_id = 1,
454 .minimum_version_id_old = 1,
455 .fields = (VMStateField []) {
456 VMSTATE_UINT8(outport, Port92State),
457 VMSTATE_END_OF_LIST()
461 static void port92_reset(DeviceState *d)
463 Port92State *s = container_of(d, Port92State, dev.qdev);
465 s->outport &= ~1;
468 static const MemoryRegionPortio port92_portio[] = {
469 { 0, 1, 1, .read = port92_read, .write = port92_write },
470 PORTIO_END_OF_LIST(),
473 static const MemoryRegionOps port92_ops = {
474 .old_portio = port92_portio
477 static int port92_initfn(ISADevice *dev)
479 Port92State *s = DO_UPCAST(Port92State, dev, dev);
481 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
482 isa_register_ioport(dev, &s->io, 0x92);
484 s->outport = 0;
485 return 0;
488 static void port92_class_initfn(ObjectClass *klass, void *data)
490 DeviceClass *dc = DEVICE_CLASS(klass);
491 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
492 ic->init = port92_initfn;
493 dc->no_user = 1;
494 dc->reset = port92_reset;
495 dc->vmsd = &vmstate_port92_isa;
498 static TypeInfo port92_info = {
499 .name = "port92",
500 .parent = TYPE_ISA_DEVICE,
501 .instance_size = sizeof(Port92State),
502 .class_init = port92_class_initfn,
505 static void port92_register_types(void)
507 type_register_static(&port92_info);
510 type_init(port92_register_types)
512 static void handle_a20_line_change(void *opaque, int irq, int level)
514 CPUX86State *cpu = opaque;
516 /* XXX: send to all CPUs ? */
517 /* XXX: add logic to handle multiple A20 line sources */
518 cpu_x86_set_a20(cpu, level);
521 /***********************************************************/
522 /* Bochs BIOS debug ports */
524 static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
526 static const char shutdown_str[8] = "Shutdown";
527 static int shutdown_index = 0;
529 switch(addr) {
530 /* Bochs BIOS messages */
531 case 0x400:
532 case 0x401:
533 /* used to be panic, now unused */
534 break;
535 case 0x402:
536 case 0x403:
537 #ifdef DEBUG_BIOS
538 fprintf(stderr, "%c", val);
539 #endif
540 break;
541 case 0x8900:
542 /* same as Bochs power off */
543 if (val == shutdown_str[shutdown_index]) {
544 shutdown_index++;
545 if (shutdown_index == 8) {
546 shutdown_index = 0;
547 qemu_system_shutdown_request();
549 } else {
550 shutdown_index = 0;
552 break;
554 /* LGPL'ed VGA BIOS messages */
555 case 0x501:
556 case 0x502:
557 exit((val << 1) | 1);
558 case 0x500:
559 case 0x503:
560 #ifdef DEBUG_BIOS
561 fprintf(stderr, "%c", val);
562 #endif
563 break;
567 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
569 int index = le32_to_cpu(e820_table.count);
570 struct e820_entry *entry;
572 if (index >= E820_NR_ENTRIES)
573 return -EBUSY;
574 entry = &e820_table.entry[index++];
576 entry->address = cpu_to_le64(address);
577 entry->length = cpu_to_le64(length);
578 entry->type = cpu_to_le32(type);
580 e820_table.count = cpu_to_le32(index);
581 return index;
584 static void *bochs_bios_init(void)
586 void *fw_cfg;
587 uint8_t *smbios_table;
588 size_t smbios_len;
589 uint64_t *numa_fw_cfg;
590 int i, j;
592 register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
593 register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
594 register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
595 register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
596 register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
598 register_ioport_write(0x501, 1, 1, bochs_bios_write, NULL);
599 register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
600 register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
601 register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
602 register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
604 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
606 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
607 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
608 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
609 acpi_tables_len);
610 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
612 smbios_table = smbios_get_table(&smbios_len);
613 if (smbios_table)
614 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
615 smbios_table, smbios_len);
616 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, (uint8_t *)&e820_table,
617 sizeof(struct e820_table));
619 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, (uint8_t *)&hpet_cfg,
620 sizeof(struct hpet_fw_config));
621 /* allocate memory for the NUMA channel: one (64bit) word for the number
622 * of nodes, one word for each VCPU->node and one word for each node to
623 * hold the amount of memory.
625 numa_fw_cfg = g_malloc0((1 + max_cpus + nb_numa_nodes) * 8);
626 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
627 for (i = 0; i < max_cpus; i++) {
628 for (j = 0; j < nb_numa_nodes; j++) {
629 if (test_bit(i, node_cpumask[j])) {
630 numa_fw_cfg[i + 1] = cpu_to_le64(j);
631 break;
635 for (i = 0; i < nb_numa_nodes; i++) {
636 numa_fw_cfg[max_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
638 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
639 (1 + max_cpus + nb_numa_nodes) * 8);
641 return fw_cfg;
644 static long get_file_size(FILE *f)
646 long where, size;
648 /* XXX: on Unix systems, using fstat() probably makes more sense */
650 where = ftell(f);
651 fseek(f, 0, SEEK_END);
652 size = ftell(f);
653 fseek(f, where, SEEK_SET);
655 return size;
658 static void load_linux(void *fw_cfg,
659 const char *kernel_filename,
660 const char *initrd_filename,
661 const char *kernel_cmdline,
662 target_phys_addr_t max_ram_size)
664 uint16_t protocol;
665 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
666 uint32_t initrd_max;
667 uint8_t header[8192], *setup, *kernel, *initrd_data;
668 target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
669 FILE *f;
670 char *vmode;
672 /* Align to 16 bytes as a paranoia measure */
673 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
675 /* load the kernel header */
676 f = fopen(kernel_filename, "rb");
677 if (!f || !(kernel_size = get_file_size(f)) ||
678 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
679 MIN(ARRAY_SIZE(header), kernel_size)) {
680 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
681 kernel_filename, strerror(errno));
682 exit(1);
685 /* kernel protocol version */
686 #if 0
687 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
688 #endif
689 if (ldl_p(header+0x202) == 0x53726448)
690 protocol = lduw_p(header+0x206);
691 else {
692 /* This looks like a multiboot kernel. If it is, let's stop
693 treating it like a Linux kernel. */
694 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
695 kernel_cmdline, kernel_size, header))
696 return;
697 protocol = 0;
700 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
701 /* Low kernel */
702 real_addr = 0x90000;
703 cmdline_addr = 0x9a000 - cmdline_size;
704 prot_addr = 0x10000;
705 } else if (protocol < 0x202) {
706 /* High but ancient kernel */
707 real_addr = 0x90000;
708 cmdline_addr = 0x9a000 - cmdline_size;
709 prot_addr = 0x100000;
710 } else {
711 /* High and recent kernel */
712 real_addr = 0x10000;
713 cmdline_addr = 0x20000;
714 prot_addr = 0x100000;
717 #if 0
718 fprintf(stderr,
719 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
720 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
721 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
722 real_addr,
723 cmdline_addr,
724 prot_addr);
725 #endif
727 /* highest address for loading the initrd */
728 if (protocol >= 0x203)
729 initrd_max = ldl_p(header+0x22c);
730 else
731 initrd_max = 0x37ffffff;
733 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
734 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
736 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
737 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
738 fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
739 (uint8_t*)strdup(kernel_cmdline),
740 strlen(kernel_cmdline)+1);
742 if (protocol >= 0x202) {
743 stl_p(header+0x228, cmdline_addr);
744 } else {
745 stw_p(header+0x20, 0xA33F);
746 stw_p(header+0x22, cmdline_addr-real_addr);
749 /* handle vga= parameter */
750 vmode = strstr(kernel_cmdline, "vga=");
751 if (vmode) {
752 unsigned int video_mode;
753 /* skip "vga=" */
754 vmode += 4;
755 if (!strncmp(vmode, "normal", 6)) {
756 video_mode = 0xffff;
757 } else if (!strncmp(vmode, "ext", 3)) {
758 video_mode = 0xfffe;
759 } else if (!strncmp(vmode, "ask", 3)) {
760 video_mode = 0xfffd;
761 } else {
762 video_mode = strtol(vmode, NULL, 0);
764 stw_p(header+0x1fa, video_mode);
767 /* loader type */
768 /* High nybble = B reserved for QEMU; low nybble is revision number.
769 If this code is substantially changed, you may want to consider
770 incrementing the revision. */
771 if (protocol >= 0x200)
772 header[0x210] = 0xB0;
774 /* heap */
775 if (protocol >= 0x201) {
776 header[0x211] |= 0x80; /* CAN_USE_HEAP */
777 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
780 /* load initrd */
781 if (initrd_filename) {
782 if (protocol < 0x200) {
783 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
784 exit(1);
787 initrd_size = get_image_size(initrd_filename);
788 if (initrd_size < 0) {
789 fprintf(stderr, "qemu: error reading initrd %s\n",
790 initrd_filename);
791 exit(1);
794 initrd_addr = (initrd_max-initrd_size) & ~4095;
796 initrd_data = g_malloc(initrd_size);
797 load_image(initrd_filename, initrd_data);
799 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
800 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
801 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
803 stl_p(header+0x218, initrd_addr);
804 stl_p(header+0x21c, initrd_size);
807 /* load kernel and setup */
808 setup_size = header[0x1f1];
809 if (setup_size == 0)
810 setup_size = 4;
811 setup_size = (setup_size+1)*512;
812 kernel_size -= setup_size;
814 setup = g_malloc(setup_size);
815 kernel = g_malloc(kernel_size);
816 fseek(f, 0, SEEK_SET);
817 if (fread(setup, 1, setup_size, f) != setup_size) {
818 fprintf(stderr, "fread() failed\n");
819 exit(1);
821 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
822 fprintf(stderr, "fread() failed\n");
823 exit(1);
825 fclose(f);
826 memcpy(setup, header, MIN(sizeof(header), setup_size));
828 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
829 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
830 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
832 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
833 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
834 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
836 option_rom[nb_option_roms].name = "linuxboot.bin";
837 option_rom[nb_option_roms].bootindex = 0;
838 nb_option_roms++;
841 #define NE2000_NB_MAX 6
843 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
844 0x280, 0x380 };
845 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
847 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
848 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
850 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
852 static int nb_ne2k = 0;
854 if (nb_ne2k == NE2000_NB_MAX)
855 return;
856 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
857 ne2000_irq[nb_ne2k], nd);
858 nb_ne2k++;
861 DeviceState *cpu_get_current_apic(void)
863 if (cpu_single_env) {
864 return cpu_single_env->apic_state;
865 } else {
866 return NULL;
870 static DeviceState *apic_init(void *env, uint8_t apic_id)
872 DeviceState *dev;
873 static int apic_mapped;
875 if (kvm_irqchip_in_kernel()) {
876 dev = qdev_create(NULL, "kvm-apic");
877 } else if (xen_enabled()) {
878 dev = qdev_create(NULL, "xen-apic");
879 } else {
880 dev = qdev_create(NULL, "apic");
883 qdev_prop_set_uint8(dev, "id", apic_id);
884 qdev_prop_set_ptr(dev, "cpu_env", env);
885 qdev_init_nofail(dev);
887 /* XXX: mapping more APICs at the same memory location */
888 if (apic_mapped == 0) {
889 /* NOTE: the APIC is directly connected to the CPU - it is not
890 on the global memory bus. */
891 /* XXX: what if the base changes? */
892 sysbus_mmio_map(sysbus_from_qdev(dev), 0, MSI_ADDR_BASE);
893 apic_mapped = 1;
896 return dev;
899 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
901 CPUX86State *s = opaque;
903 if (level) {
904 cpu_interrupt(s, CPU_INTERRUPT_SMI);
908 static X86CPU *pc_new_cpu(const char *cpu_model)
910 X86CPU *cpu;
911 CPUX86State *env;
913 cpu = cpu_x86_init(cpu_model);
914 if (cpu == NULL) {
915 fprintf(stderr, "Unable to find x86 CPU definition\n");
916 exit(1);
918 env = &cpu->env;
919 if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
920 env->apic_state = apic_init(env, env->cpuid_apic_id);
922 cpu_reset(CPU(cpu));
923 return cpu;
926 void pc_cpus_init(const char *cpu_model)
928 int i;
930 /* init CPUs */
931 if (cpu_model == NULL) {
932 #ifdef TARGET_X86_64
933 cpu_model = "qemu64";
934 #else
935 cpu_model = "qemu32";
936 #endif
939 for(i = 0; i < smp_cpus; i++) {
940 pc_new_cpu(cpu_model);
944 void *pc_memory_init(MemoryRegion *system_memory,
945 const char *kernel_filename,
946 const char *kernel_cmdline,
947 const char *initrd_filename,
948 ram_addr_t below_4g_mem_size,
949 ram_addr_t above_4g_mem_size,
950 MemoryRegion *rom_memory,
951 MemoryRegion **ram_memory)
953 int linux_boot, i;
954 MemoryRegion *ram, *option_rom_mr;
955 MemoryRegion *ram_below_4g, *ram_above_4g;
956 void *fw_cfg;
958 linux_boot = (kernel_filename != NULL);
960 /* Allocate RAM. We allocate it as a single memory region and use
961 * aliases to address portions of it, mostly for backwards compatibility
962 * with older qemus that used qemu_ram_alloc().
964 ram = g_malloc(sizeof(*ram));
965 memory_region_init_ram(ram, "pc.ram",
966 below_4g_mem_size + above_4g_mem_size);
967 vmstate_register_ram_global(ram);
968 *ram_memory = ram;
969 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
970 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
971 0, below_4g_mem_size);
972 memory_region_add_subregion(system_memory, 0, ram_below_4g);
973 if (above_4g_mem_size > 0) {
974 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
975 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
976 below_4g_mem_size, above_4g_mem_size);
977 memory_region_add_subregion(system_memory, 0x100000000ULL,
978 ram_above_4g);
982 /* Initialize PC system firmware */
983 pc_system_firmware_init(rom_memory);
985 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
986 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
987 vmstate_register_ram_global(option_rom_mr);
988 memory_region_add_subregion_overlap(rom_memory,
989 PC_ROM_MIN_VGA,
990 option_rom_mr,
993 fw_cfg = bochs_bios_init();
994 rom_set_fw(fw_cfg);
996 if (linux_boot) {
997 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1000 for (i = 0; i < nb_option_roms; i++) {
1001 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1003 return fw_cfg;
1006 qemu_irq *pc_allocate_cpu_irq(void)
1008 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1011 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1013 DeviceState *dev = NULL;
1015 if (cirrus_vga_enabled) {
1016 if (pci_bus) {
1017 dev = pci_cirrus_vga_init(pci_bus);
1018 } else {
1019 dev = &isa_create_simple(isa_bus, "isa-cirrus-vga")->qdev;
1021 } else if (vmsvga_enabled) {
1022 if (pci_bus) {
1023 dev = pci_vmsvga_init(pci_bus);
1024 } else {
1025 fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
1027 #ifdef CONFIG_SPICE
1028 } else if (qxl_enabled) {
1029 if (pci_bus) {
1030 dev = &pci_create_simple(pci_bus, -1, "qxl-vga")->qdev;
1031 } else {
1032 fprintf(stderr, "%s: qxl: no PCI bus\n", __FUNCTION__);
1034 #endif
1035 } else if (std_vga_enabled) {
1036 if (pci_bus) {
1037 dev = pci_vga_init(pci_bus);
1038 } else {
1039 dev = isa_vga_init(isa_bus);
1043 return dev;
1046 static void cpu_request_exit(void *opaque, int irq, int level)
1048 CPUX86State *env = cpu_single_env;
1050 if (env && level) {
1051 cpu_exit(env);
1055 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1056 ISADevice **rtc_state,
1057 ISADevice **floppy,
1058 bool no_vmport)
1060 int i;
1061 DriveInfo *fd[MAX_FD];
1062 DeviceState *hpet = NULL;
1063 int pit_isa_irq = 0;
1064 qemu_irq pit_alt_irq = NULL;
1065 qemu_irq rtc_irq = NULL;
1066 qemu_irq *a20_line;
1067 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1068 qemu_irq *cpu_exit_irq;
1070 register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
1072 register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
1075 * Check if an HPET shall be created.
1077 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1078 * when the HPET wants to take over. Thus we have to disable the latter.
1080 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1081 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1083 if (hpet) {
1084 for (i = 0; i < GSI_NUM_PINS; i++) {
1085 sysbus_connect_irq(sysbus_from_qdev(hpet), i, gsi[i]);
1087 pit_isa_irq = -1;
1088 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1089 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1092 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1094 qemu_register_boot_set(pc_boot_set, *rtc_state);
1096 if (!xen_enabled()) {
1097 if (kvm_irqchip_in_kernel()) {
1098 pit = kvm_pit_init(isa_bus, 0x40);
1099 } else {
1100 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1102 if (hpet) {
1103 /* connect PIT to output control line of the HPET */
1104 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1106 pcspk_init(isa_bus, pit);
1109 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1110 if (serial_hds[i]) {
1111 serial_isa_init(isa_bus, i, serial_hds[i]);
1115 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1116 if (parallel_hds[i]) {
1117 parallel_init(isa_bus, i, parallel_hds[i]);
1121 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1122 i8042 = isa_create_simple(isa_bus, "i8042");
1123 i8042_setup_a20_line(i8042, &a20_line[0]);
1124 if (!no_vmport) {
1125 vmport_init(isa_bus);
1126 vmmouse = isa_try_create(isa_bus, "vmmouse");
1127 } else {
1128 vmmouse = NULL;
1130 if (vmmouse) {
1131 qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1132 qdev_init_nofail(&vmmouse->qdev);
1134 port92 = isa_create_simple(isa_bus, "port92");
1135 port92_init(port92, &a20_line[1]);
1137 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1138 DMA_init(0, cpu_exit_irq);
1140 for(i = 0; i < MAX_FD; i++) {
1141 fd[i] = drive_get(IF_FLOPPY, 0, i);
1143 *floppy = fdctrl_init_isa(isa_bus, fd);
1146 void pc_pci_device_init(PCIBus *pci_bus)
1148 int max_bus;
1149 int bus;
1151 max_bus = drive_get_max_bus(IF_SCSI);
1152 for (bus = 0; bus <= max_bus; bus++) {
1153 pci_create_simple(pci_bus, -1, "lsi53c895a");