hw/timer/sse-timer: Model the SSE Subsystem System Timer
[qemu/ar7.git] / target / i386 / hvf / x86.c
blobcd045183a811857fde2174d96a2393c53bcd8ae9
1 /*
2 * Copyright (C) 2016 Veertu Inc,
3 * Copyright (C) 2017 Google Inc,
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "qemu-common.h"
23 #include "x86_decode.h"
24 #include "x86_emu.h"
25 #include "vmcs.h"
26 #include "vmx.h"
27 #include "x86_mmu.h"
28 #include "x86_descr.h"
30 /* static uint32_t x86_segment_access_rights(struct x86_segment_descriptor *var)
32 uint32_t ar;
34 if (!var->p) {
35 ar = 1 << 16;
36 return ar;
39 ar = var->type & 15;
40 ar |= (var->s & 1) << 4;
41 ar |= (var->dpl & 3) << 5;
42 ar |= (var->p & 1) << 7;
43 ar |= (var->avl & 1) << 12;
44 ar |= (var->l & 1) << 13;
45 ar |= (var->db & 1) << 14;
46 ar |= (var->g & 1) << 15;
47 return ar;
48 }*/
50 bool x86_read_segment_descriptor(struct CPUState *cpu,
51 struct x86_segment_descriptor *desc,
52 x68_segment_selector sel)
54 target_ulong base;
55 uint32_t limit;
57 memset(desc, 0, sizeof(*desc));
59 /* valid gdt descriptors start from index 1 */
60 if (!sel.index && GDT_SEL == sel.ti) {
61 return false;
64 if (GDT_SEL == sel.ti) {
65 base = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE);
66 limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
67 } else {
68 base = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE);
69 limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT);
72 if (sel.index * 8 >= limit) {
73 return false;
76 vmx_read_mem(cpu, desc, base + sel.index * 8, sizeof(*desc));
77 return true;
80 bool x86_write_segment_descriptor(struct CPUState *cpu,
81 struct x86_segment_descriptor *desc,
82 x68_segment_selector sel)
84 target_ulong base;
85 uint32_t limit;
87 if (GDT_SEL == sel.ti) {
88 base = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE);
89 limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
90 } else {
91 base = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE);
92 limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT);
95 if (sel.index * 8 >= limit) {
96 printf("%s: gdt limit\n", __func__);
97 return false;
99 vmx_write_mem(cpu, base + sel.index * 8, desc, sizeof(*desc));
100 return true;
103 bool x86_read_call_gate(struct CPUState *cpu, struct x86_call_gate *idt_desc,
104 int gate)
106 target_ulong base = rvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE);
107 uint32_t limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT);
109 memset(idt_desc, 0, sizeof(*idt_desc));
110 if (gate * 8 >= limit) {
111 printf("%s: idt limit\n", __func__);
112 return false;
115 vmx_read_mem(cpu, idt_desc, base + gate * 8, sizeof(*idt_desc));
116 return true;
119 bool x86_is_protected(struct CPUState *cpu)
121 uint64_t cr0 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR0);
122 return cr0 & CR0_PE;
125 bool x86_is_real(struct CPUState *cpu)
127 return !x86_is_protected(cpu);
130 bool x86_is_v8086(struct CPUState *cpu)
132 X86CPU *x86_cpu = X86_CPU(cpu);
133 CPUX86State *env = &x86_cpu->env;
134 return x86_is_protected(cpu) && (env->eflags & VM_MASK);
137 bool x86_is_long_mode(struct CPUState *cpu)
139 return rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER) & MSR_EFER_LMA;
142 bool x86_is_long64_mode(struct CPUState *cpu)
144 struct vmx_segment desc;
145 vmx_read_segment_descriptor(cpu, &desc, R_CS);
147 return x86_is_long_mode(cpu) && ((desc.ar >> 13) & 1);
150 bool x86_is_paging_mode(struct CPUState *cpu)
152 uint64_t cr0 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR0);
153 return cr0 & CR0_PG;
156 bool x86_is_pae_enabled(struct CPUState *cpu)
158 uint64_t cr4 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR4);
159 return cr4 & CR4_PAE;
162 target_ulong linear_addr(struct CPUState *cpu, target_ulong addr, X86Seg seg)
164 return vmx_read_segment_base(cpu, seg) + addr;
167 target_ulong linear_addr_size(struct CPUState *cpu, target_ulong addr, int size,
168 X86Seg seg)
170 switch (size) {
171 case 2:
172 addr = (uint16_t)addr;
173 break;
174 case 4:
175 addr = (uint32_t)addr;
176 break;
177 default:
178 break;
180 return linear_addr(cpu, addr, seg);
183 target_ulong linear_rip(struct CPUState *cpu, target_ulong rip)
185 return linear_addr(cpu, rip, R_CS);