hw/timer/sse-timer: Model the SSE Subsystem System Timer
[qemu/ar7.git] / target / i386 / hvf / hvf.c
blob15f14ac69e7f741f4b47e5348f48cf9baf21e003
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
7 * QEMU Hypervisor.framework support
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
53 #include "sysemu/hvf.h"
54 #include "sysemu/runstate.h"
55 #include "hvf-i386.h"
56 #include "vmcs.h"
57 #include "vmx.h"
58 #include "x86.h"
59 #include "x86_descr.h"
60 #include "x86_mmu.h"
61 #include "x86_decode.h"
62 #include "x86_emu.h"
63 #include "x86_task.h"
64 #include "x86hvf.h"
66 #include <Hypervisor/hv.h>
67 #include <Hypervisor/hv_vmx.h>
68 #include <sys/sysctl.h>
70 #include "exec/address-spaces.h"
71 #include "hw/i386/apic_internal.h"
72 #include "qemu/main-loop.h"
73 #include "qemu/accel.h"
74 #include "target/i386/cpu.h"
76 #include "hvf-accel-ops.h"
78 HVFState *hvf_state;
80 static void assert_hvf_ok(hv_return_t ret)
82 if (ret == HV_SUCCESS) {
83 return;
86 switch (ret) {
87 case HV_ERROR:
88 error_report("Error: HV_ERROR");
89 break;
90 case HV_BUSY:
91 error_report("Error: HV_BUSY");
92 break;
93 case HV_BAD_ARGUMENT:
94 error_report("Error: HV_BAD_ARGUMENT");
95 break;
96 case HV_NO_RESOURCES:
97 error_report("Error: HV_NO_RESOURCES");
98 break;
99 case HV_NO_DEVICE:
100 error_report("Error: HV_NO_DEVICE");
101 break;
102 case HV_UNSUPPORTED:
103 error_report("Error: HV_UNSUPPORTED");
104 break;
105 default:
106 error_report("Unknown Error");
109 abort();
112 /* Memory slots */
113 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
115 hvf_slot *slot;
116 int x;
117 for (x = 0; x < hvf_state->num_slots; ++x) {
118 slot = &hvf_state->slots[x];
119 if (slot->size && start < (slot->start + slot->size) &&
120 (start + size) > slot->start) {
121 return slot;
124 return NULL;
127 struct mac_slot {
128 int present;
129 uint64_t size;
130 uint64_t gpa_start;
131 uint64_t gva;
134 struct mac_slot mac_slots[32];
136 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
138 struct mac_slot *macslot;
139 hv_return_t ret;
141 macslot = &mac_slots[slot->slot_id];
143 if (macslot->present) {
144 if (macslot->size != slot->size) {
145 macslot->present = 0;
146 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
147 assert_hvf_ok(ret);
151 if (!slot->size) {
152 return 0;
155 macslot->present = 1;
156 macslot->gpa_start = slot->start;
157 macslot->size = slot->size;
158 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
159 assert_hvf_ok(ret);
160 return 0;
163 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
165 hvf_slot *mem;
166 MemoryRegion *area = section->mr;
167 bool writeable = !area->readonly && !area->rom_device;
168 hv_memory_flags_t flags;
170 if (!memory_region_is_ram(area)) {
171 if (writeable) {
172 return;
173 } else if (!memory_region_is_romd(area)) {
175 * If the memory device is not in romd_mode, then we actually want
176 * to remove the hvf memory slot so all accesses will trap.
178 add = false;
182 mem = hvf_find_overlap_slot(
183 section->offset_within_address_space,
184 int128_get64(section->size));
186 if (mem && add) {
187 if (mem->size == int128_get64(section->size) &&
188 mem->start == section->offset_within_address_space &&
189 mem->mem == (memory_region_get_ram_ptr(area) +
190 section->offset_within_region)) {
191 return; /* Same region was attempted to register, go away. */
195 /* Region needs to be reset. set the size to 0 and remap it. */
196 if (mem) {
197 mem->size = 0;
198 if (do_hvf_set_memory(mem, 0)) {
199 error_report("Failed to reset overlapping slot");
200 abort();
204 if (!add) {
205 return;
208 if (area->readonly ||
209 (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
210 flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
211 } else {
212 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
215 /* Now make a new slot. */
216 int x;
218 for (x = 0; x < hvf_state->num_slots; ++x) {
219 mem = &hvf_state->slots[x];
220 if (!mem->size) {
221 break;
225 if (x == hvf_state->num_slots) {
226 error_report("No free slots");
227 abort();
230 mem->size = int128_get64(section->size);
231 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
232 mem->start = section->offset_within_address_space;
233 mem->region = area;
235 if (do_hvf_set_memory(mem, flags)) {
236 error_report("Error registering new memory slot");
237 abort();
241 void vmx_update_tpr(CPUState *cpu)
243 /* TODO: need integrate APIC handling */
244 X86CPU *x86_cpu = X86_CPU(cpu);
245 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
246 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
248 wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
249 if (irr == -1) {
250 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
251 } else {
252 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
253 irr >> 4);
257 static void update_apic_tpr(CPUState *cpu)
259 X86CPU *x86_cpu = X86_CPU(cpu);
260 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
261 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
264 #define VECTORING_INFO_VECTOR_MASK 0xff
266 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
267 int direction, int size, int count)
269 int i;
270 uint8_t *ptr = buffer;
272 for (i = 0; i < count; i++) {
273 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
274 ptr, size,
275 direction);
276 ptr += size;
280 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
282 if (!cpu->vcpu_dirty) {
283 hvf_get_registers(cpu);
284 cpu->vcpu_dirty = true;
288 void hvf_cpu_synchronize_state(CPUState *cpu)
290 if (!cpu->vcpu_dirty) {
291 run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
295 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu,
296 run_on_cpu_data arg)
298 hvf_put_registers(cpu);
299 cpu->vcpu_dirty = false;
302 void hvf_cpu_synchronize_post_reset(CPUState *cpu)
304 run_on_cpu(cpu, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
307 static void do_hvf_cpu_synchronize_post_init(CPUState *cpu,
308 run_on_cpu_data arg)
310 hvf_put_registers(cpu);
311 cpu->vcpu_dirty = false;
314 void hvf_cpu_synchronize_post_init(CPUState *cpu)
316 run_on_cpu(cpu, do_hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
319 static void do_hvf_cpu_synchronize_pre_loadvm(CPUState *cpu,
320 run_on_cpu_data arg)
322 cpu->vcpu_dirty = true;
325 void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
327 run_on_cpu(cpu, do_hvf_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
330 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
332 int read, write;
334 /* EPT fault on an instruction fetch doesn't make sense here */
335 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
336 return false;
339 /* EPT fault must be a read fault or a write fault */
340 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
341 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
342 if ((read | write) == 0) {
343 return false;
346 if (write && slot) {
347 if (slot->flags & HVF_SLOT_LOG) {
348 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
349 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
350 HV_MEMORY_READ | HV_MEMORY_WRITE);
355 * The EPT violation must have been caused by accessing a
356 * guest-physical address that is a translation of a guest-linear
357 * address.
359 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
360 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
361 return false;
364 if (!slot) {
365 return true;
367 if (!memory_region_is_ram(slot->region) &&
368 !(read && memory_region_is_romd(slot->region))) {
369 return true;
371 return false;
374 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
376 hvf_slot *slot;
378 slot = hvf_find_overlap_slot(
379 section->offset_within_address_space,
380 int128_get64(section->size));
382 /* protect region against writes; begin tracking it */
383 if (on) {
384 slot->flags |= HVF_SLOT_LOG;
385 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
386 HV_MEMORY_READ);
387 /* stop tracking region*/
388 } else {
389 slot->flags &= ~HVF_SLOT_LOG;
390 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
391 HV_MEMORY_READ | HV_MEMORY_WRITE);
395 static void hvf_log_start(MemoryListener *listener,
396 MemoryRegionSection *section, int old, int new)
398 if (old != 0) {
399 return;
402 hvf_set_dirty_tracking(section, 1);
405 static void hvf_log_stop(MemoryListener *listener,
406 MemoryRegionSection *section, int old, int new)
408 if (new != 0) {
409 return;
412 hvf_set_dirty_tracking(section, 0);
415 static void hvf_log_sync(MemoryListener *listener,
416 MemoryRegionSection *section)
419 * sync of dirty pages is handled elsewhere; just make sure we keep
420 * tracking the region.
422 hvf_set_dirty_tracking(section, 1);
425 static void hvf_region_add(MemoryListener *listener,
426 MemoryRegionSection *section)
428 hvf_set_phys_mem(section, true);
431 static void hvf_region_del(MemoryListener *listener,
432 MemoryRegionSection *section)
434 hvf_set_phys_mem(section, false);
437 static MemoryListener hvf_memory_listener = {
438 .priority = 10,
439 .region_add = hvf_region_add,
440 .region_del = hvf_region_del,
441 .log_start = hvf_log_start,
442 .log_stop = hvf_log_stop,
443 .log_sync = hvf_log_sync,
446 void hvf_vcpu_destroy(CPUState *cpu)
448 X86CPU *x86_cpu = X86_CPU(cpu);
449 CPUX86State *env = &x86_cpu->env;
451 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
452 g_free(env->hvf_mmio_buf);
453 assert_hvf_ok(ret);
456 static void dummy_signal(int sig)
460 static void init_tsc_freq(CPUX86State *env)
462 size_t length;
463 uint64_t tsc_freq;
465 if (env->tsc_khz != 0) {
466 return;
469 length = sizeof(uint64_t);
470 if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
471 return;
473 env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */
476 static void init_apic_bus_freq(CPUX86State *env)
478 size_t length;
479 uint64_t bus_freq;
481 if (env->apic_bus_freq != 0) {
482 return;
485 length = sizeof(uint64_t);
486 if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
487 return;
489 env->apic_bus_freq = bus_freq;
492 static inline bool tsc_is_known(CPUX86State *env)
494 return env->tsc_khz != 0;
497 static inline bool apic_bus_freq_is_known(CPUX86State *env)
499 return env->apic_bus_freq != 0;
502 int hvf_init_vcpu(CPUState *cpu)
505 X86CPU *x86cpu = X86_CPU(cpu);
506 CPUX86State *env = &x86cpu->env;
507 int r;
509 /* init cpu signals */
510 sigset_t set;
511 struct sigaction sigact;
513 memset(&sigact, 0, sizeof(sigact));
514 sigact.sa_handler = dummy_signal;
515 sigaction(SIG_IPI, &sigact, NULL);
517 pthread_sigmask(SIG_BLOCK, NULL, &set);
518 sigdelset(&set, SIG_IPI);
520 init_emu();
521 init_decoder();
523 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
524 env->hvf_mmio_buf = g_new(char, 4096);
526 if (x86cpu->vmware_cpuid_freq) {
527 init_tsc_freq(env);
528 init_apic_bus_freq(env);
530 if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
531 error_report("vmware-cpuid-freq: feature couldn't be enabled");
535 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
536 cpu->vcpu_dirty = 1;
537 assert_hvf_ok(r);
539 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
540 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
541 abort();
543 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
544 &hvf_state->hvf_caps->vmx_cap_procbased)) {
545 abort();
547 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
548 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
549 abort();
551 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
552 &hvf_state->hvf_caps->vmx_cap_entry)) {
553 abort();
556 /* set VMCS control fields */
557 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
558 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
559 VMCS_PIN_BASED_CTLS_EXTINT |
560 VMCS_PIN_BASED_CTLS_NMI |
561 VMCS_PIN_BASED_CTLS_VNMI));
562 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
563 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
564 VMCS_PRI_PROC_BASED_CTLS_HLT |
565 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
566 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
567 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
568 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
569 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
570 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
571 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
573 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
574 0));
575 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
577 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
579 x86cpu = X86_CPU(cpu);
580 x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
582 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
583 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
584 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
585 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
586 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
587 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
588 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
589 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
590 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);
591 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
592 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
593 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
595 return 0;
598 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
600 X86CPU *x86_cpu = X86_CPU(cpu);
601 CPUX86State *env = &x86_cpu->env;
603 env->exception_nr = -1;
604 env->exception_pending = 0;
605 env->exception_injected = 0;
606 env->interrupt_injected = -1;
607 env->nmi_injected = false;
608 env->ins_len = 0;
609 env->has_error_code = false;
610 if (idtvec_info & VMCS_IDT_VEC_VALID) {
611 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
612 case VMCS_IDT_VEC_HWINTR:
613 case VMCS_IDT_VEC_SWINTR:
614 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
615 break;
616 case VMCS_IDT_VEC_NMI:
617 env->nmi_injected = true;
618 break;
619 case VMCS_IDT_VEC_HWEXCEPTION:
620 case VMCS_IDT_VEC_SWEXCEPTION:
621 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
622 env->exception_injected = 1;
623 break;
624 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
625 default:
626 abort();
628 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
629 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
630 env->ins_len = ins_len;
632 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
633 env->has_error_code = true;
634 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
637 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
638 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
639 env->hflags2 |= HF2_NMI_MASK;
640 } else {
641 env->hflags2 &= ~HF2_NMI_MASK;
643 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
644 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
645 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
646 env->hflags |= HF_INHIBIT_IRQ_MASK;
647 } else {
648 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
652 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
653 uint32_t *eax, uint32_t *ebx,
654 uint32_t *ecx, uint32_t *edx)
657 * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
658 * leafs 0x40000001-0x4000000F are filled with zeros
659 * Provides vmware-cpuid-freq support to hvf
661 * Note: leaf 0x40000000 not exposes HVF,
662 * leaving hypervisor signature empty
665 if (index < 0x40000000 || index > 0x40000010 ||
666 !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
668 cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
669 return;
672 switch (index) {
673 case 0x40000000:
674 *eax = 0x40000010; /* Max available cpuid leaf */
675 *ebx = 0; /* Leave signature empty */
676 *ecx = 0;
677 *edx = 0;
678 break;
679 case 0x40000010:
680 *eax = env->tsc_khz;
681 *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
682 *ecx = 0;
683 *edx = 0;
684 break;
685 default:
686 *eax = 0;
687 *ebx = 0;
688 *ecx = 0;
689 *edx = 0;
690 break;
694 int hvf_vcpu_exec(CPUState *cpu)
696 X86CPU *x86_cpu = X86_CPU(cpu);
697 CPUX86State *env = &x86_cpu->env;
698 int ret = 0;
699 uint64_t rip = 0;
701 if (hvf_process_events(cpu)) {
702 return EXCP_HLT;
705 do {
706 if (cpu->vcpu_dirty) {
707 hvf_put_registers(cpu);
708 cpu->vcpu_dirty = false;
711 if (hvf_inject_interrupts(cpu)) {
712 return EXCP_INTERRUPT;
714 vmx_update_tpr(cpu);
716 qemu_mutex_unlock_iothread();
717 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
718 qemu_mutex_lock_iothread();
719 return EXCP_HLT;
722 hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
723 assert_hvf_ok(r);
725 /* handle VMEXIT */
726 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
727 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
728 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
729 VMCS_EXIT_INSTRUCTION_LENGTH);
731 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
733 hvf_store_events(cpu, ins_len, idtvec_info);
734 rip = rreg(cpu->hvf_fd, HV_X86_RIP);
735 env->eflags = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
737 qemu_mutex_lock_iothread();
739 update_apic_tpr(cpu);
740 current_cpu = cpu;
742 ret = 0;
743 switch (exit_reason) {
744 case EXIT_REASON_HLT: {
745 macvm_set_rip(cpu, rip + ins_len);
746 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
747 (env->eflags & IF_MASK))
748 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
749 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
750 cpu->halted = 1;
751 ret = EXCP_HLT;
752 break;
754 ret = EXCP_INTERRUPT;
755 break;
757 case EXIT_REASON_MWAIT: {
758 ret = EXCP_INTERRUPT;
759 break;
761 /* Need to check if MMIO or unmapped fault */
762 case EXIT_REASON_EPT_FAULT:
764 hvf_slot *slot;
765 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
767 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
768 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
769 vmx_set_nmi_blocking(cpu);
772 slot = hvf_find_overlap_slot(gpa, 1);
773 /* mmio */
774 if (ept_emulation_fault(slot, gpa, exit_qual)) {
775 struct x86_decode decode;
777 load_regs(cpu);
778 decode_instruction(env, &decode);
779 exec_instruction(env, &decode);
780 store_regs(cpu);
781 break;
783 break;
785 case EXIT_REASON_INOUT:
787 uint32_t in = (exit_qual & 8) != 0;
788 uint32_t size = (exit_qual & 7) + 1;
789 uint32_t string = (exit_qual & 16) != 0;
790 uint32_t port = exit_qual >> 16;
791 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
793 if (!string && in) {
794 uint64_t val = 0;
795 load_regs(cpu);
796 hvf_handle_io(env, port, &val, 0, size, 1);
797 if (size == 1) {
798 AL(env) = val;
799 } else if (size == 2) {
800 AX(env) = val;
801 } else if (size == 4) {
802 RAX(env) = (uint32_t)val;
803 } else {
804 RAX(env) = (uint64_t)val;
806 env->eip += ins_len;
807 store_regs(cpu);
808 break;
809 } else if (!string && !in) {
810 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
811 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
812 macvm_set_rip(cpu, rip + ins_len);
813 break;
815 struct x86_decode decode;
817 load_regs(cpu);
818 decode_instruction(env, &decode);
819 assert(ins_len == decode.len);
820 exec_instruction(env, &decode);
821 store_regs(cpu);
823 break;
825 case EXIT_REASON_CPUID: {
826 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
827 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
828 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
829 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
831 if (rax == 1) {
832 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
833 env->cr[4] = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR4);
835 hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
837 wreg(cpu->hvf_fd, HV_X86_RAX, rax);
838 wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
839 wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
840 wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
842 macvm_set_rip(cpu, rip + ins_len);
843 break;
845 case EXIT_REASON_XSETBV: {
846 X86CPU *x86_cpu = X86_CPU(cpu);
847 CPUX86State *env = &x86_cpu->env;
848 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
849 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
850 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
852 if (ecx) {
853 macvm_set_rip(cpu, rip + ins_len);
854 break;
856 env->xcr0 = ((uint64_t)edx << 32) | eax;
857 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
858 macvm_set_rip(cpu, rip + ins_len);
859 break;
861 case EXIT_REASON_INTR_WINDOW:
862 vmx_clear_int_window_exiting(cpu);
863 ret = EXCP_INTERRUPT;
864 break;
865 case EXIT_REASON_NMI_WINDOW:
866 vmx_clear_nmi_window_exiting(cpu);
867 ret = EXCP_INTERRUPT;
868 break;
869 case EXIT_REASON_EXT_INTR:
870 /* force exit and allow io handling */
871 ret = EXCP_INTERRUPT;
872 break;
873 case EXIT_REASON_RDMSR:
874 case EXIT_REASON_WRMSR:
876 load_regs(cpu);
877 if (exit_reason == EXIT_REASON_RDMSR) {
878 simulate_rdmsr(cpu);
879 } else {
880 simulate_wrmsr(cpu);
882 env->eip += ins_len;
883 store_regs(cpu);
884 break;
886 case EXIT_REASON_CR_ACCESS: {
887 int cr;
888 int reg;
890 load_regs(cpu);
891 cr = exit_qual & 15;
892 reg = (exit_qual >> 8) & 15;
894 switch (cr) {
895 case 0x0: {
896 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
897 break;
899 case 4: {
900 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
901 break;
903 case 8: {
904 X86CPU *x86_cpu = X86_CPU(cpu);
905 if (exit_qual & 0x10) {
906 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
907 } else {
908 int tpr = RRX(env, reg);
909 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
910 ret = EXCP_INTERRUPT;
912 break;
914 default:
915 error_report("Unrecognized CR %d", cr);
916 abort();
918 env->eip += ins_len;
919 store_regs(cpu);
920 break;
922 case EXIT_REASON_APIC_ACCESS: { /* TODO */
923 struct x86_decode decode;
925 load_regs(cpu);
926 decode_instruction(env, &decode);
927 exec_instruction(env, &decode);
928 store_regs(cpu);
929 break;
931 case EXIT_REASON_TPR: {
932 ret = 1;
933 break;
935 case EXIT_REASON_TASK_SWITCH: {
936 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
937 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
938 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
939 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
940 & VMCS_INTR_T_MASK);
941 break;
943 case EXIT_REASON_TRIPLE_FAULT: {
944 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
945 ret = EXCP_INTERRUPT;
946 break;
948 case EXIT_REASON_RDPMC:
949 wreg(cpu->hvf_fd, HV_X86_RAX, 0);
950 wreg(cpu->hvf_fd, HV_X86_RDX, 0);
951 macvm_set_rip(cpu, rip + ins_len);
952 break;
953 case VMX_REASON_VMCALL:
954 env->exception_nr = EXCP0D_GPF;
955 env->exception_injected = 1;
956 env->has_error_code = true;
957 env->error_code = 0;
958 break;
959 default:
960 error_report("%llx: unhandled exit %llx", rip, exit_reason);
962 } while (ret == 0);
964 return ret;
967 bool hvf_allowed;
969 static int hvf_accel_init(MachineState *ms)
971 int x;
972 hv_return_t ret;
973 HVFState *s;
975 ret = hv_vm_create(HV_VM_DEFAULT);
976 assert_hvf_ok(ret);
978 s = g_new0(HVFState, 1);
980 s->num_slots = 32;
981 for (x = 0; x < s->num_slots; ++x) {
982 s->slots[x].size = 0;
983 s->slots[x].slot_id = x;
986 hvf_state = s;
987 memory_listener_register(&hvf_memory_listener, &address_space_memory);
988 return 0;
991 static void hvf_accel_class_init(ObjectClass *oc, void *data)
993 AccelClass *ac = ACCEL_CLASS(oc);
994 ac->name = "HVF";
995 ac->init_machine = hvf_accel_init;
996 ac->allowed = &hvf_allowed;
999 static const TypeInfo hvf_accel_type = {
1000 .name = TYPE_HVF_ACCEL,
1001 .parent = TYPE_ACCEL,
1002 .class_init = hvf_accel_class_init,
1005 static void hvf_type_init(void)
1007 type_register_static(&hvf_accel_type);
1010 type_init(hvf_type_init);