hw/timer/sse-timer: Model the SSE Subsystem System Timer
[qemu/ar7.git] / target / avr / helper.c
blob65880b9928cb6f84172aa7ecd969de0ec6e43a4e
1 /*
2 * QEMU AVR CPU helpers
4 * Copyright (c) 2016-2020 Michael Rolnik
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "hw/core/tcg-cpu-ops.h"
24 #include "exec/exec-all.h"
25 #include "exec/address-spaces.h"
26 #include "exec/helper-proto.h"
28 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
30 bool ret = false;
31 CPUClass *cc = CPU_GET_CLASS(cs);
32 AVRCPU *cpu = AVR_CPU(cs);
33 CPUAVRState *env = &cpu->env;
35 if (interrupt_request & CPU_INTERRUPT_RESET) {
36 if (cpu_interrupts_enabled(env)) {
37 cs->exception_index = EXCP_RESET;
38 cc->tcg_ops->do_interrupt(cs);
40 cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
42 ret = true;
45 if (interrupt_request & CPU_INTERRUPT_HARD) {
46 if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
47 int index = ctz32(env->intsrc);
48 cs->exception_index = EXCP_INT(index);
49 cc->tcg_ops->do_interrupt(cs);
51 env->intsrc &= env->intsrc - 1; /* clear the interrupt */
52 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
54 ret = true;
57 return ret;
60 void avr_cpu_do_interrupt(CPUState *cs)
62 AVRCPU *cpu = AVR_CPU(cs);
63 CPUAVRState *env = &cpu->env;
65 uint32_t ret = env->pc_w;
66 int vector = 0;
67 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
68 int base = 0;
70 if (cs->exception_index == EXCP_RESET) {
71 vector = 0;
72 } else if (env->intsrc != 0) {
73 vector = ctz32(env->intsrc) + 1;
76 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
77 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
78 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
79 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
80 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
81 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
82 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
83 } else {
84 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
87 env->pc_w = base + vector * size;
88 env->sregI = 0; /* clear Global Interrupt Flag */
90 cs->exception_index = -1;
93 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
94 int len, bool is_write)
96 return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
99 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
101 return addr; /* I assume 1:1 address correspondance */
104 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
105 MMUAccessType access_type, int mmu_idx,
106 bool probe, uintptr_t retaddr)
108 int prot = 0;
109 MemTxAttrs attrs = {};
110 uint32_t paddr;
112 address &= TARGET_PAGE_MASK;
114 if (mmu_idx == MMU_CODE_IDX) {
115 /* access to code in flash */
116 paddr = OFFSET_CODE + address;
117 prot = PAGE_READ | PAGE_EXEC;
118 if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
119 error_report("execution left flash memory");
120 abort();
122 } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
124 * access to CPU registers, exit and rebuilt this TB to use full access
125 * incase it touches specially handled registers like SREG or SP
127 AVRCPU *cpu = AVR_CPU(cs);
128 CPUAVRState *env = &cpu->env;
129 env->fullacc = 1;
130 cpu_loop_exit_restore(cs, retaddr);
131 } else {
132 /* access to memory. nothing special */
133 paddr = OFFSET_DATA + address;
134 prot = PAGE_READ | PAGE_WRITE;
137 tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
138 mmu_idx, TARGET_PAGE_SIZE);
140 return true;
144 * helpers
147 void helper_sleep(CPUAVRState *env)
149 CPUState *cs = env_cpu(env);
151 cs->exception_index = EXCP_HLT;
152 cpu_loop_exit(cs);
155 void helper_unsupported(CPUAVRState *env)
157 CPUState *cs = env_cpu(env);
160 * I count not find what happens on the real platform, so
161 * it's EXCP_DEBUG for meanwhile
163 cs->exception_index = EXCP_DEBUG;
164 if (qemu_loglevel_mask(LOG_UNIMP)) {
165 qemu_log("UNSUPPORTED\n");
166 cpu_dump_state(cs, stderr, 0);
168 cpu_loop_exit(cs);
171 void helper_debug(CPUAVRState *env)
173 CPUState *cs = env_cpu(env);
175 cs->exception_index = EXCP_DEBUG;
176 cpu_loop_exit(cs);
179 void helper_break(CPUAVRState *env)
181 CPUState *cs = env_cpu(env);
183 cs->exception_index = EXCP_DEBUG;
184 cpu_loop_exit(cs);
187 void helper_wdr(CPUAVRState *env)
189 CPUState *cs = env_cpu(env);
191 /* WD is not implemented yet, placeholder */
192 cs->exception_index = EXCP_DEBUG;
193 cpu_loop_exit(cs);
197 * This function implements IN instruction
199 * It does the following
200 * a. if an IO register belongs to CPU, its value is read and returned
201 * b. otherwise io address is translated to mem address and physical memory
202 * is read.
203 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
206 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
208 target_ulong data = 0;
210 switch (port) {
211 case 0x38: /* RAMPD */
212 data = 0xff & (env->rampD >> 16);
213 break;
214 case 0x39: /* RAMPX */
215 data = 0xff & (env->rampX >> 16);
216 break;
217 case 0x3a: /* RAMPY */
218 data = 0xff & (env->rampY >> 16);
219 break;
220 case 0x3b: /* RAMPZ */
221 data = 0xff & (env->rampZ >> 16);
222 break;
223 case 0x3c: /* EIND */
224 data = 0xff & (env->eind >> 16);
225 break;
226 case 0x3d: /* SPL */
227 data = env->sp & 0x00ff;
228 break;
229 case 0x3e: /* SPH */
230 data = env->sp >> 8;
231 break;
232 case 0x3f: /* SREG */
233 data = cpu_get_sreg(env);
234 break;
235 default:
236 /* not a special register, pass to normal memory access */
237 data = address_space_ldub(&address_space_memory,
238 OFFSET_IO_REGISTERS + port,
239 MEMTXATTRS_UNSPECIFIED, NULL);
242 return data;
246 * This function implements OUT instruction
248 * It does the following
249 * a. if an IO register belongs to CPU, its value is written into the register
250 * b. otherwise io address is translated to mem address and physical memory
251 * is written.
252 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
255 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
257 data &= 0x000000ff;
259 switch (port) {
260 case 0x38: /* RAMPD */
261 if (avr_feature(env, AVR_FEATURE_RAMPD)) {
262 env->rampD = (data & 0xff) << 16;
264 break;
265 case 0x39: /* RAMPX */
266 if (avr_feature(env, AVR_FEATURE_RAMPX)) {
267 env->rampX = (data & 0xff) << 16;
269 break;
270 case 0x3a: /* RAMPY */
271 if (avr_feature(env, AVR_FEATURE_RAMPY)) {
272 env->rampY = (data & 0xff) << 16;
274 break;
275 case 0x3b: /* RAMPZ */
276 if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
277 env->rampZ = (data & 0xff) << 16;
279 break;
280 case 0x3c: /* EIDN */
281 env->eind = (data & 0xff) << 16;
282 break;
283 case 0x3d: /* SPL */
284 env->sp = (env->sp & 0xff00) | (data);
285 break;
286 case 0x3e: /* SPH */
287 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
288 env->sp = (env->sp & 0x00ff) | (data << 8);
290 break;
291 case 0x3f: /* SREG */
292 cpu_set_sreg(env, data);
293 break;
294 default:
295 /* not a special register, pass to normal memory access */
296 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
297 data, MEMTXATTRS_UNSPECIFIED, NULL);
302 * this function implements LD instruction when there is a posibility to read
303 * from a CPU register
305 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
307 uint8_t data;
309 env->fullacc = false;
311 if (addr < NUMBER_OF_CPU_REGISTERS) {
312 /* CPU registers */
313 data = env->r[addr];
314 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
315 /* IO registers */
316 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
317 } else {
318 /* memory */
319 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
320 MEMTXATTRS_UNSPECIFIED, NULL);
322 return data;
326 * this function implements ST instruction when there is a posibility to write
327 * into a CPU register
329 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
331 env->fullacc = false;
333 /* Following logic assumes this: */
334 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
335 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
336 NUMBER_OF_CPU_REGISTERS);
338 if (addr < NUMBER_OF_CPU_REGISTERS) {
339 /* CPU registers */
340 env->r[addr] = data;
341 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
342 /* IO registers */
343 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
344 } else {
345 /* memory */
346 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
347 MEMTXATTRS_UNSPECIFIED, NULL);