hw/timer/sse-timer: Model the SSE Subsystem System Timer
[qemu/ar7.git] / target / arm / vec_helper.c
blob3fbeae87cb3bc80820ef02ed4a0da87a17440c7a
1 /*
2 * ARM AdvSIMD / SVE Vector Operations
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 #include "vec_internal.h"
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28 so addressing units smaller than that needs a host-endian fixup. */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x) ((x) ^ 7)
31 #define H2(x) ((x) ^ 3)
32 #define H4(x) ((x) ^ 1)
33 #else
34 #define H1(x) (x)
35 #define H2(x) (x)
36 #define H4(x) (x)
37 #endif
39 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
40 static int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3,
41 bool neg, bool round, uint32_t *sat)
44 * Simplify:
45 * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
46 * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
48 int32_t ret = (int32_t)src1 * src2;
49 if (neg) {
50 ret = -ret;
52 ret += ((int32_t)src3 << 15) + (round << 14);
53 ret >>= 15;
55 if (ret != (int16_t)ret) {
56 *sat = 1;
57 ret = (ret < 0 ? INT16_MIN : INT16_MAX);
59 return ret;
62 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
63 uint32_t src2, uint32_t src3)
65 uint32_t *sat = &env->vfp.qc[0];
66 uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat);
67 uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
68 false, true, sat);
69 return deposit32(e1, 16, 16, e2);
72 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
73 void *vq, uint32_t desc)
75 uintptr_t opr_sz = simd_oprsz(desc);
76 int16_t *d = vd;
77 int16_t *n = vn;
78 int16_t *m = vm;
79 uintptr_t i;
81 for (i = 0; i < opr_sz / 2; ++i) {
82 d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq);
84 clear_tail(d, opr_sz, simd_maxsz(desc));
87 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
88 uint32_t src2, uint32_t src3)
90 uint32_t *sat = &env->vfp.qc[0];
91 uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat);
92 uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
93 true, true, sat);
94 return deposit32(e1, 16, 16, e2);
97 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
98 void *vq, uint32_t desc)
100 uintptr_t opr_sz = simd_oprsz(desc);
101 int16_t *d = vd;
102 int16_t *n = vn;
103 int16_t *m = vm;
104 uintptr_t i;
106 for (i = 0; i < opr_sz / 2; ++i) {
107 d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq);
109 clear_tail(d, opr_sz, simd_maxsz(desc));
112 void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm,
113 void *vq, uint32_t desc)
115 intptr_t i, opr_sz = simd_oprsz(desc);
116 int16_t *d = vd, *n = vn, *m = vm;
118 for (i = 0; i < opr_sz / 2; ++i) {
119 d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq);
121 clear_tail(d, opr_sz, simd_maxsz(desc));
124 void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm,
125 void *vq, uint32_t desc)
127 intptr_t i, opr_sz = simd_oprsz(desc);
128 int16_t *d = vd, *n = vn, *m = vm;
130 for (i = 0; i < opr_sz / 2; ++i) {
131 d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq);
133 clear_tail(d, opr_sz, simd_maxsz(desc));
136 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
137 static int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3,
138 bool neg, bool round, uint32_t *sat)
140 /* Simplify similarly to int_qrdmlah_s16 above. */
141 int64_t ret = (int64_t)src1 * src2;
142 if (neg) {
143 ret = -ret;
145 ret += ((int64_t)src3 << 31) + (round << 30);
146 ret >>= 31;
148 if (ret != (int32_t)ret) {
149 *sat = 1;
150 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
152 return ret;
155 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
156 int32_t src2, int32_t src3)
158 uint32_t *sat = &env->vfp.qc[0];
159 return do_sqrdmlah_s(src1, src2, src3, false, true, sat);
162 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
163 void *vq, uint32_t desc)
165 uintptr_t opr_sz = simd_oprsz(desc);
166 int32_t *d = vd;
167 int32_t *n = vn;
168 int32_t *m = vm;
169 uintptr_t i;
171 for (i = 0; i < opr_sz / 4; ++i) {
172 d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq);
174 clear_tail(d, opr_sz, simd_maxsz(desc));
177 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
178 int32_t src2, int32_t src3)
180 uint32_t *sat = &env->vfp.qc[0];
181 return do_sqrdmlah_s(src1, src2, src3, true, true, sat);
184 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
185 void *vq, uint32_t desc)
187 uintptr_t opr_sz = simd_oprsz(desc);
188 int32_t *d = vd;
189 int32_t *n = vn;
190 int32_t *m = vm;
191 uintptr_t i;
193 for (i = 0; i < opr_sz / 4; ++i) {
194 d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq);
196 clear_tail(d, opr_sz, simd_maxsz(desc));
199 void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm,
200 void *vq, uint32_t desc)
202 intptr_t i, opr_sz = simd_oprsz(desc);
203 int32_t *d = vd, *n = vn, *m = vm;
205 for (i = 0; i < opr_sz / 4; ++i) {
206 d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq);
208 clear_tail(d, opr_sz, simd_maxsz(desc));
211 void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm,
212 void *vq, uint32_t desc)
214 intptr_t i, opr_sz = simd_oprsz(desc);
215 int32_t *d = vd, *n = vn, *m = vm;
217 for (i = 0; i < opr_sz / 4; ++i) {
218 d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq);
220 clear_tail(d, opr_sz, simd_maxsz(desc));
223 /* Integer 8 and 16-bit dot-product.
225 * Note that for the loops herein, host endianness does not matter
226 * with respect to the ordering of data within the 64-bit lanes.
227 * All elements are treated equally, no matter where they are.
230 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
232 intptr_t i, opr_sz = simd_oprsz(desc);
233 uint32_t *d = vd;
234 int8_t *n = vn, *m = vm;
236 for (i = 0; i < opr_sz / 4; ++i) {
237 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
238 + n[i * 4 + 1] * m[i * 4 + 1]
239 + n[i * 4 + 2] * m[i * 4 + 2]
240 + n[i * 4 + 3] * m[i * 4 + 3];
242 clear_tail(d, opr_sz, simd_maxsz(desc));
245 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
247 intptr_t i, opr_sz = simd_oprsz(desc);
248 uint32_t *d = vd;
249 uint8_t *n = vn, *m = vm;
251 for (i = 0; i < opr_sz / 4; ++i) {
252 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
253 + n[i * 4 + 1] * m[i * 4 + 1]
254 + n[i * 4 + 2] * m[i * 4 + 2]
255 + n[i * 4 + 3] * m[i * 4 + 3];
257 clear_tail(d, opr_sz, simd_maxsz(desc));
260 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
262 intptr_t i, opr_sz = simd_oprsz(desc);
263 uint64_t *d = vd;
264 int16_t *n = vn, *m = vm;
266 for (i = 0; i < opr_sz / 8; ++i) {
267 d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
268 + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
269 + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
270 + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
272 clear_tail(d, opr_sz, simd_maxsz(desc));
275 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
277 intptr_t i, opr_sz = simd_oprsz(desc);
278 uint64_t *d = vd;
279 uint16_t *n = vn, *m = vm;
281 for (i = 0; i < opr_sz / 8; ++i) {
282 d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
283 + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
284 + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
285 + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
287 clear_tail(d, opr_sz, simd_maxsz(desc));
290 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
292 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
293 intptr_t index = simd_data(desc);
294 uint32_t *d = vd;
295 int8_t *n = vn;
296 int8_t *m_indexed = (int8_t *)vm + H4(index) * 4;
298 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
299 * Otherwise opr_sz is a multiple of 16.
301 segend = MIN(4, opr_sz_4);
302 i = 0;
303 do {
304 int8_t m0 = m_indexed[i * 4 + 0];
305 int8_t m1 = m_indexed[i * 4 + 1];
306 int8_t m2 = m_indexed[i * 4 + 2];
307 int8_t m3 = m_indexed[i * 4 + 3];
309 do {
310 d[i] += n[i * 4 + 0] * m0
311 + n[i * 4 + 1] * m1
312 + n[i * 4 + 2] * m2
313 + n[i * 4 + 3] * m3;
314 } while (++i < segend);
315 segend = i + 4;
316 } while (i < opr_sz_4);
318 clear_tail(d, opr_sz, simd_maxsz(desc));
321 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
323 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
324 intptr_t index = simd_data(desc);
325 uint32_t *d = vd;
326 uint8_t *n = vn;
327 uint8_t *m_indexed = (uint8_t *)vm + H4(index) * 4;
329 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
330 * Otherwise opr_sz is a multiple of 16.
332 segend = MIN(4, opr_sz_4);
333 i = 0;
334 do {
335 uint8_t m0 = m_indexed[i * 4 + 0];
336 uint8_t m1 = m_indexed[i * 4 + 1];
337 uint8_t m2 = m_indexed[i * 4 + 2];
338 uint8_t m3 = m_indexed[i * 4 + 3];
340 do {
341 d[i] += n[i * 4 + 0] * m0
342 + n[i * 4 + 1] * m1
343 + n[i * 4 + 2] * m2
344 + n[i * 4 + 3] * m3;
345 } while (++i < segend);
346 segend = i + 4;
347 } while (i < opr_sz_4);
349 clear_tail(d, opr_sz, simd_maxsz(desc));
352 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
354 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
355 intptr_t index = simd_data(desc);
356 uint64_t *d = vd;
357 int16_t *n = vn;
358 int16_t *m_indexed = (int16_t *)vm + index * 4;
360 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
361 * Process the entire segment all at once, writing back the results
362 * only after we've consumed all of the inputs.
364 for (i = 0; i < opr_sz_8 ; i += 2) {
365 uint64_t d0, d1;
367 d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
368 d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
369 d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
370 d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
371 d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
372 d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
373 d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
374 d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
376 d[i + 0] += d0;
377 d[i + 1] += d1;
380 clear_tail(d, opr_sz, simd_maxsz(desc));
383 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
385 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
386 intptr_t index = simd_data(desc);
387 uint64_t *d = vd;
388 uint16_t *n = vn;
389 uint16_t *m_indexed = (uint16_t *)vm + index * 4;
391 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
392 * Process the entire segment all at once, writing back the results
393 * only after we've consumed all of the inputs.
395 for (i = 0; i < opr_sz_8 ; i += 2) {
396 uint64_t d0, d1;
398 d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
399 d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
400 d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
401 d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
402 d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
403 d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
404 d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
405 d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
407 d[i + 0] += d0;
408 d[i + 1] += d1;
411 clear_tail(d, opr_sz, simd_maxsz(desc));
414 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
415 void *vfpst, uint32_t desc)
417 uintptr_t opr_sz = simd_oprsz(desc);
418 float16 *d = vd;
419 float16 *n = vn;
420 float16 *m = vm;
421 float_status *fpst = vfpst;
422 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
423 uint32_t neg_imag = neg_real ^ 1;
424 uintptr_t i;
426 /* Shift boolean to the sign bit so we can xor to negate. */
427 neg_real <<= 15;
428 neg_imag <<= 15;
430 for (i = 0; i < opr_sz / 2; i += 2) {
431 float16 e0 = n[H2(i)];
432 float16 e1 = m[H2(i + 1)] ^ neg_imag;
433 float16 e2 = n[H2(i + 1)];
434 float16 e3 = m[H2(i)] ^ neg_real;
436 d[H2(i)] = float16_add(e0, e1, fpst);
437 d[H2(i + 1)] = float16_add(e2, e3, fpst);
439 clear_tail(d, opr_sz, simd_maxsz(desc));
442 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
443 void *vfpst, uint32_t desc)
445 uintptr_t opr_sz = simd_oprsz(desc);
446 float32 *d = vd;
447 float32 *n = vn;
448 float32 *m = vm;
449 float_status *fpst = vfpst;
450 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
451 uint32_t neg_imag = neg_real ^ 1;
452 uintptr_t i;
454 /* Shift boolean to the sign bit so we can xor to negate. */
455 neg_real <<= 31;
456 neg_imag <<= 31;
458 for (i = 0; i < opr_sz / 4; i += 2) {
459 float32 e0 = n[H4(i)];
460 float32 e1 = m[H4(i + 1)] ^ neg_imag;
461 float32 e2 = n[H4(i + 1)];
462 float32 e3 = m[H4(i)] ^ neg_real;
464 d[H4(i)] = float32_add(e0, e1, fpst);
465 d[H4(i + 1)] = float32_add(e2, e3, fpst);
467 clear_tail(d, opr_sz, simd_maxsz(desc));
470 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
471 void *vfpst, uint32_t desc)
473 uintptr_t opr_sz = simd_oprsz(desc);
474 float64 *d = vd;
475 float64 *n = vn;
476 float64 *m = vm;
477 float_status *fpst = vfpst;
478 uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
479 uint64_t neg_imag = neg_real ^ 1;
480 uintptr_t i;
482 /* Shift boolean to the sign bit so we can xor to negate. */
483 neg_real <<= 63;
484 neg_imag <<= 63;
486 for (i = 0; i < opr_sz / 8; i += 2) {
487 float64 e0 = n[i];
488 float64 e1 = m[i + 1] ^ neg_imag;
489 float64 e2 = n[i + 1];
490 float64 e3 = m[i] ^ neg_real;
492 d[i] = float64_add(e0, e1, fpst);
493 d[i + 1] = float64_add(e2, e3, fpst);
495 clear_tail(d, opr_sz, simd_maxsz(desc));
498 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
499 void *vfpst, uint32_t desc)
501 uintptr_t opr_sz = simd_oprsz(desc);
502 float16 *d = vd;
503 float16 *n = vn;
504 float16 *m = vm;
505 float_status *fpst = vfpst;
506 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
507 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
508 uint32_t neg_real = flip ^ neg_imag;
509 uintptr_t i;
511 /* Shift boolean to the sign bit so we can xor to negate. */
512 neg_real <<= 15;
513 neg_imag <<= 15;
515 for (i = 0; i < opr_sz / 2; i += 2) {
516 float16 e2 = n[H2(i + flip)];
517 float16 e1 = m[H2(i + flip)] ^ neg_real;
518 float16 e4 = e2;
519 float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
521 d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
522 d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
524 clear_tail(d, opr_sz, simd_maxsz(desc));
527 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
528 void *vfpst, uint32_t desc)
530 uintptr_t opr_sz = simd_oprsz(desc);
531 float16 *d = vd;
532 float16 *n = vn;
533 float16 *m = vm;
534 float_status *fpst = vfpst;
535 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
536 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
537 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
538 uint32_t neg_real = flip ^ neg_imag;
539 intptr_t elements = opr_sz / sizeof(float16);
540 intptr_t eltspersegment = 16 / sizeof(float16);
541 intptr_t i, j;
543 /* Shift boolean to the sign bit so we can xor to negate. */
544 neg_real <<= 15;
545 neg_imag <<= 15;
547 for (i = 0; i < elements; i += eltspersegment) {
548 float16 mr = m[H2(i + 2 * index + 0)];
549 float16 mi = m[H2(i + 2 * index + 1)];
550 float16 e1 = neg_real ^ (flip ? mi : mr);
551 float16 e3 = neg_imag ^ (flip ? mr : mi);
553 for (j = i; j < i + eltspersegment; j += 2) {
554 float16 e2 = n[H2(j + flip)];
555 float16 e4 = e2;
557 d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
558 d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
561 clear_tail(d, opr_sz, simd_maxsz(desc));
564 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
565 void *vfpst, uint32_t desc)
567 uintptr_t opr_sz = simd_oprsz(desc);
568 float32 *d = vd;
569 float32 *n = vn;
570 float32 *m = vm;
571 float_status *fpst = vfpst;
572 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
573 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
574 uint32_t neg_real = flip ^ neg_imag;
575 uintptr_t i;
577 /* Shift boolean to the sign bit so we can xor to negate. */
578 neg_real <<= 31;
579 neg_imag <<= 31;
581 for (i = 0; i < opr_sz / 4; i += 2) {
582 float32 e2 = n[H4(i + flip)];
583 float32 e1 = m[H4(i + flip)] ^ neg_real;
584 float32 e4 = e2;
585 float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
587 d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
588 d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
590 clear_tail(d, opr_sz, simd_maxsz(desc));
593 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
594 void *vfpst, uint32_t desc)
596 uintptr_t opr_sz = simd_oprsz(desc);
597 float32 *d = vd;
598 float32 *n = vn;
599 float32 *m = vm;
600 float_status *fpst = vfpst;
601 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
602 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
603 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
604 uint32_t neg_real = flip ^ neg_imag;
605 intptr_t elements = opr_sz / sizeof(float32);
606 intptr_t eltspersegment = 16 / sizeof(float32);
607 intptr_t i, j;
609 /* Shift boolean to the sign bit so we can xor to negate. */
610 neg_real <<= 31;
611 neg_imag <<= 31;
613 for (i = 0; i < elements; i += eltspersegment) {
614 float32 mr = m[H4(i + 2 * index + 0)];
615 float32 mi = m[H4(i + 2 * index + 1)];
616 float32 e1 = neg_real ^ (flip ? mi : mr);
617 float32 e3 = neg_imag ^ (flip ? mr : mi);
619 for (j = i; j < i + eltspersegment; j += 2) {
620 float32 e2 = n[H4(j + flip)];
621 float32 e4 = e2;
623 d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
624 d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
627 clear_tail(d, opr_sz, simd_maxsz(desc));
630 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
631 void *vfpst, uint32_t desc)
633 uintptr_t opr_sz = simd_oprsz(desc);
634 float64 *d = vd;
635 float64 *n = vn;
636 float64 *m = vm;
637 float_status *fpst = vfpst;
638 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
639 uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
640 uint64_t neg_real = flip ^ neg_imag;
641 uintptr_t i;
643 /* Shift boolean to the sign bit so we can xor to negate. */
644 neg_real <<= 63;
645 neg_imag <<= 63;
647 for (i = 0; i < opr_sz / 8; i += 2) {
648 float64 e2 = n[i + flip];
649 float64 e1 = m[i + flip] ^ neg_real;
650 float64 e4 = e2;
651 float64 e3 = m[i + 1 - flip] ^ neg_imag;
653 d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
654 d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
656 clear_tail(d, opr_sz, simd_maxsz(desc));
660 * Floating point comparisons producing an integer result (all 1s or all 0s).
661 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
662 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
664 static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat)
666 return -float16_eq_quiet(op1, op2, stat);
669 static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat)
671 return -float32_eq_quiet(op1, op2, stat);
674 static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat)
676 return -float16_le(op2, op1, stat);
679 static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat)
681 return -float32_le(op2, op1, stat);
684 static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat)
686 return -float16_lt(op2, op1, stat);
689 static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat)
691 return -float32_lt(op2, op1, stat);
694 static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat)
696 return -float16_le(float16_abs(op2), float16_abs(op1), stat);
699 static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat)
701 return -float32_le(float32_abs(op2), float32_abs(op1), stat);
704 static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat)
706 return -float16_lt(float16_abs(op2), float16_abs(op1), stat);
709 static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat)
711 return -float32_lt(float32_abs(op2), float32_abs(op1), stat);
714 static int16_t vfp_tosszh(float16 x, void *fpstp)
716 float_status *fpst = fpstp;
717 if (float16_is_any_nan(x)) {
718 float_raise(float_flag_invalid, fpst);
719 return 0;
721 return float16_to_int16_round_to_zero(x, fpst);
724 static uint16_t vfp_touszh(float16 x, void *fpstp)
726 float_status *fpst = fpstp;
727 if (float16_is_any_nan(x)) {
728 float_raise(float_flag_invalid, fpst);
729 return 0;
731 return float16_to_uint16_round_to_zero(x, fpst);
734 #define DO_2OP(NAME, FUNC, TYPE) \
735 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
737 intptr_t i, oprsz = simd_oprsz(desc); \
738 TYPE *d = vd, *n = vn; \
739 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
740 d[i] = FUNC(n[i], stat); \
742 clear_tail(d, oprsz, simd_maxsz(desc)); \
745 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
746 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
747 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
749 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
750 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
751 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
753 DO_2OP(gvec_vrintx_h, float16_round_to_int, float16)
754 DO_2OP(gvec_vrintx_s, float32_round_to_int, float32)
756 DO_2OP(gvec_sitos, helper_vfp_sitos, int32_t)
757 DO_2OP(gvec_uitos, helper_vfp_uitos, uint32_t)
758 DO_2OP(gvec_tosizs, helper_vfp_tosizs, float32)
759 DO_2OP(gvec_touizs, helper_vfp_touizs, float32)
760 DO_2OP(gvec_sstoh, int16_to_float16, int16_t)
761 DO_2OP(gvec_ustoh, uint16_to_float16, uint16_t)
762 DO_2OP(gvec_tosszh, vfp_tosszh, float16)
763 DO_2OP(gvec_touszh, vfp_touszh, float16)
765 #define WRAP_CMP0_FWD(FN, CMPOP, TYPE) \
766 static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \
768 return TYPE##_##CMPOP(op, TYPE##_zero, stat); \
771 #define WRAP_CMP0_REV(FN, CMPOP, TYPE) \
772 static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \
774 return TYPE##_##CMPOP(TYPE##_zero, op, stat); \
777 #define DO_2OP_CMP0(FN, CMPOP, DIRN) \
778 WRAP_CMP0_##DIRN(FN, CMPOP, float16) \
779 WRAP_CMP0_##DIRN(FN, CMPOP, float32) \
780 DO_2OP(gvec_f##FN##0_h, float16_##FN##0, float16) \
781 DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32)
783 DO_2OP_CMP0(cgt, cgt, FWD)
784 DO_2OP_CMP0(cge, cge, FWD)
785 DO_2OP_CMP0(ceq, ceq, FWD)
786 DO_2OP_CMP0(clt, cgt, REV)
787 DO_2OP_CMP0(cle, cge, REV)
789 #undef DO_2OP
790 #undef DO_2OP_CMP0
792 /* Floating-point trigonometric starting value.
793 * See the ARM ARM pseudocode function FPTrigSMul.
795 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
797 float16 result = float16_mul(op1, op1, stat);
798 if (!float16_is_any_nan(result)) {
799 result = float16_set_sign(result, op2 & 1);
801 return result;
804 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
806 float32 result = float32_mul(op1, op1, stat);
807 if (!float32_is_any_nan(result)) {
808 result = float32_set_sign(result, op2 & 1);
810 return result;
813 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
815 float64 result = float64_mul(op1, op1, stat);
816 if (!float64_is_any_nan(result)) {
817 result = float64_set_sign(result, op2 & 1);
819 return result;
822 static float16 float16_abd(float16 op1, float16 op2, float_status *stat)
824 return float16_abs(float16_sub(op1, op2, stat));
827 static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
829 return float32_abs(float32_sub(op1, op2, stat));
833 * Reciprocal step. These are the AArch32 version which uses a
834 * non-fused multiply-and-subtract.
836 static float16 float16_recps_nf(float16 op1, float16 op2, float_status *stat)
838 op1 = float16_squash_input_denormal(op1, stat);
839 op2 = float16_squash_input_denormal(op2, stat);
841 if ((float16_is_infinity(op1) && float16_is_zero(op2)) ||
842 (float16_is_infinity(op2) && float16_is_zero(op1))) {
843 return float16_two;
845 return float16_sub(float16_two, float16_mul(op1, op2, stat), stat);
848 static float32 float32_recps_nf(float32 op1, float32 op2, float_status *stat)
850 op1 = float32_squash_input_denormal(op1, stat);
851 op2 = float32_squash_input_denormal(op2, stat);
853 if ((float32_is_infinity(op1) && float32_is_zero(op2)) ||
854 (float32_is_infinity(op2) && float32_is_zero(op1))) {
855 return float32_two;
857 return float32_sub(float32_two, float32_mul(op1, op2, stat), stat);
860 /* Reciprocal square-root step. AArch32 non-fused semantics. */
861 static float16 float16_rsqrts_nf(float16 op1, float16 op2, float_status *stat)
863 op1 = float16_squash_input_denormal(op1, stat);
864 op2 = float16_squash_input_denormal(op2, stat);
866 if ((float16_is_infinity(op1) && float16_is_zero(op2)) ||
867 (float16_is_infinity(op2) && float16_is_zero(op1))) {
868 return float16_one_point_five;
870 op1 = float16_sub(float16_three, float16_mul(op1, op2, stat), stat);
871 return float16_div(op1, float16_two, stat);
874 static float32 float32_rsqrts_nf(float32 op1, float32 op2, float_status *stat)
876 op1 = float32_squash_input_denormal(op1, stat);
877 op2 = float32_squash_input_denormal(op2, stat);
879 if ((float32_is_infinity(op1) && float32_is_zero(op2)) ||
880 (float32_is_infinity(op2) && float32_is_zero(op1))) {
881 return float32_one_point_five;
883 op1 = float32_sub(float32_three, float32_mul(op1, op2, stat), stat);
884 return float32_div(op1, float32_two, stat);
887 #define DO_3OP(NAME, FUNC, TYPE) \
888 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
890 intptr_t i, oprsz = simd_oprsz(desc); \
891 TYPE *d = vd, *n = vn, *m = vm; \
892 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
893 d[i] = FUNC(n[i], m[i], stat); \
895 clear_tail(d, oprsz, simd_maxsz(desc)); \
898 DO_3OP(gvec_fadd_h, float16_add, float16)
899 DO_3OP(gvec_fadd_s, float32_add, float32)
900 DO_3OP(gvec_fadd_d, float64_add, float64)
902 DO_3OP(gvec_fsub_h, float16_sub, float16)
903 DO_3OP(gvec_fsub_s, float32_sub, float32)
904 DO_3OP(gvec_fsub_d, float64_sub, float64)
906 DO_3OP(gvec_fmul_h, float16_mul, float16)
907 DO_3OP(gvec_fmul_s, float32_mul, float32)
908 DO_3OP(gvec_fmul_d, float64_mul, float64)
910 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
911 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
912 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
914 DO_3OP(gvec_fabd_h, float16_abd, float16)
915 DO_3OP(gvec_fabd_s, float32_abd, float32)
917 DO_3OP(gvec_fceq_h, float16_ceq, float16)
918 DO_3OP(gvec_fceq_s, float32_ceq, float32)
920 DO_3OP(gvec_fcge_h, float16_cge, float16)
921 DO_3OP(gvec_fcge_s, float32_cge, float32)
923 DO_3OP(gvec_fcgt_h, float16_cgt, float16)
924 DO_3OP(gvec_fcgt_s, float32_cgt, float32)
926 DO_3OP(gvec_facge_h, float16_acge, float16)
927 DO_3OP(gvec_facge_s, float32_acge, float32)
929 DO_3OP(gvec_facgt_h, float16_acgt, float16)
930 DO_3OP(gvec_facgt_s, float32_acgt, float32)
932 DO_3OP(gvec_fmax_h, float16_max, float16)
933 DO_3OP(gvec_fmax_s, float32_max, float32)
935 DO_3OP(gvec_fmin_h, float16_min, float16)
936 DO_3OP(gvec_fmin_s, float32_min, float32)
938 DO_3OP(gvec_fmaxnum_h, float16_maxnum, float16)
939 DO_3OP(gvec_fmaxnum_s, float32_maxnum, float32)
941 DO_3OP(gvec_fminnum_h, float16_minnum, float16)
942 DO_3OP(gvec_fminnum_s, float32_minnum, float32)
944 DO_3OP(gvec_recps_nf_h, float16_recps_nf, float16)
945 DO_3OP(gvec_recps_nf_s, float32_recps_nf, float32)
947 DO_3OP(gvec_rsqrts_nf_h, float16_rsqrts_nf, float16)
948 DO_3OP(gvec_rsqrts_nf_s, float32_rsqrts_nf, float32)
950 #ifdef TARGET_AARCH64
952 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
953 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
954 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
956 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
957 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
958 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
960 #endif
961 #undef DO_3OP
963 /* Non-fused multiply-add (unlike float16_muladd etc, which are fused) */
964 static float16 float16_muladd_nf(float16 dest, float16 op1, float16 op2,
965 float_status *stat)
967 return float16_add(dest, float16_mul(op1, op2, stat), stat);
970 static float32 float32_muladd_nf(float32 dest, float32 op1, float32 op2,
971 float_status *stat)
973 return float32_add(dest, float32_mul(op1, op2, stat), stat);
976 static float16 float16_mulsub_nf(float16 dest, float16 op1, float16 op2,
977 float_status *stat)
979 return float16_sub(dest, float16_mul(op1, op2, stat), stat);
982 static float32 float32_mulsub_nf(float32 dest, float32 op1, float32 op2,
983 float_status *stat)
985 return float32_sub(dest, float32_mul(op1, op2, stat), stat);
988 /* Fused versions; these have the semantics Neon VFMA/VFMS want */
989 static float16 float16_muladd_f(float16 dest, float16 op1, float16 op2,
990 float_status *stat)
992 return float16_muladd(op1, op2, dest, 0, stat);
995 static float32 float32_muladd_f(float32 dest, float32 op1, float32 op2,
996 float_status *stat)
998 return float32_muladd(op1, op2, dest, 0, stat);
1001 static float16 float16_mulsub_f(float16 dest, float16 op1, float16 op2,
1002 float_status *stat)
1004 return float16_muladd(float16_chs(op1), op2, dest, 0, stat);
1007 static float32 float32_mulsub_f(float32 dest, float32 op1, float32 op2,
1008 float_status *stat)
1010 return float32_muladd(float32_chs(op1), op2, dest, 0, stat);
1013 #define DO_MULADD(NAME, FUNC, TYPE) \
1014 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
1016 intptr_t i, oprsz = simd_oprsz(desc); \
1017 TYPE *d = vd, *n = vn, *m = vm; \
1018 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1019 d[i] = FUNC(d[i], n[i], m[i], stat); \
1021 clear_tail(d, oprsz, simd_maxsz(desc)); \
1024 DO_MULADD(gvec_fmla_h, float16_muladd_nf, float16)
1025 DO_MULADD(gvec_fmla_s, float32_muladd_nf, float32)
1027 DO_MULADD(gvec_fmls_h, float16_mulsub_nf, float16)
1028 DO_MULADD(gvec_fmls_s, float32_mulsub_nf, float32)
1030 DO_MULADD(gvec_vfma_h, float16_muladd_f, float16)
1031 DO_MULADD(gvec_vfma_s, float32_muladd_f, float32)
1033 DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16)
1034 DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32)
1036 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
1037 * For AdvSIMD, there is of course only one such vector segment.
1040 #define DO_MUL_IDX(NAME, TYPE, H) \
1041 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1043 intptr_t i, j, oprsz = simd_oprsz(desc); \
1044 intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
1045 intptr_t idx = simd_data(desc); \
1046 TYPE *d = vd, *n = vn, *m = vm; \
1047 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
1048 TYPE mm = m[H(i + idx)]; \
1049 for (j = 0; j < segment; j++) { \
1050 d[i + j] = n[i + j] * mm; \
1053 clear_tail(d, oprsz, simd_maxsz(desc)); \
1056 DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2)
1057 DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4)
1058 DO_MUL_IDX(gvec_mul_idx_d, uint64_t, )
1060 #undef DO_MUL_IDX
1062 #define DO_MLA_IDX(NAME, TYPE, OP, H) \
1063 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
1065 intptr_t i, j, oprsz = simd_oprsz(desc); \
1066 intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
1067 intptr_t idx = simd_data(desc); \
1068 TYPE *d = vd, *n = vn, *m = vm, *a = va; \
1069 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
1070 TYPE mm = m[H(i + idx)]; \
1071 for (j = 0; j < segment; j++) { \
1072 d[i + j] = a[i + j] OP n[i + j] * mm; \
1075 clear_tail(d, oprsz, simd_maxsz(desc)); \
1078 DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2)
1079 DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4)
1080 DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +, )
1082 DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2)
1083 DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4)
1084 DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -, )
1086 #undef DO_MLA_IDX
1088 #define DO_FMUL_IDX(NAME, ADD, TYPE, H) \
1089 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
1091 intptr_t i, j, oprsz = simd_oprsz(desc); \
1092 intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
1093 intptr_t idx = simd_data(desc); \
1094 TYPE *d = vd, *n = vn, *m = vm; \
1095 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
1096 TYPE mm = m[H(i + idx)]; \
1097 for (j = 0; j < segment; j++) { \
1098 d[i + j] = TYPE##_##ADD(d[i + j], \
1099 TYPE##_mul(n[i + j], mm, stat), stat); \
1102 clear_tail(d, oprsz, simd_maxsz(desc)); \
1105 #define float16_nop(N, M, S) (M)
1106 #define float32_nop(N, M, S) (M)
1107 #define float64_nop(N, M, S) (M)
1109 DO_FMUL_IDX(gvec_fmul_idx_h, nop, float16, H2)
1110 DO_FMUL_IDX(gvec_fmul_idx_s, nop, float32, H4)
1111 DO_FMUL_IDX(gvec_fmul_idx_d, nop, float64, )
1114 * Non-fused multiply-accumulate operations, for Neon. NB that unlike
1115 * the fused ops below they assume accumulate both from and into Vd.
1117 DO_FMUL_IDX(gvec_fmla_nf_idx_h, add, float16, H2)
1118 DO_FMUL_IDX(gvec_fmla_nf_idx_s, add, float32, H4)
1119 DO_FMUL_IDX(gvec_fmls_nf_idx_h, sub, float16, H2)
1120 DO_FMUL_IDX(gvec_fmls_nf_idx_s, sub, float32, H4)
1122 #undef float16_nop
1123 #undef float32_nop
1124 #undef float64_nop
1125 #undef DO_FMUL_IDX
1127 #define DO_FMLA_IDX(NAME, TYPE, H) \
1128 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
1129 void *stat, uint32_t desc) \
1131 intptr_t i, j, oprsz = simd_oprsz(desc); \
1132 intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
1133 TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
1134 intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
1135 TYPE *d = vd, *n = vn, *m = vm, *a = va; \
1136 op1_neg <<= (8 * sizeof(TYPE) - 1); \
1137 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
1138 TYPE mm = m[H(i + idx)]; \
1139 for (j = 0; j < segment; j++) { \
1140 d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
1141 mm, a[i + j], 0, stat); \
1144 clear_tail(d, oprsz, simd_maxsz(desc)); \
1147 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
1148 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
1149 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
1151 #undef DO_FMLA_IDX
1153 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
1154 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \
1156 intptr_t i, oprsz = simd_oprsz(desc); \
1157 TYPEN *d = vd, *n = vn; TYPEM *m = vm; \
1158 bool q = false; \
1159 for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \
1160 WTYPE dd = (WTYPE)n[i] OP m[i]; \
1161 if (dd < MIN) { \
1162 dd = MIN; \
1163 q = true; \
1164 } else if (dd > MAX) { \
1165 dd = MAX; \
1166 q = true; \
1168 d[i] = dd; \
1170 if (q) { \
1171 uint32_t *qc = vq; \
1172 qc[0] = 1; \
1174 clear_tail(d, oprsz, simd_maxsz(desc)); \
1177 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
1178 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
1179 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
1181 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
1182 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
1183 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
1185 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
1186 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
1187 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
1189 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
1190 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
1191 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
1193 #undef DO_SAT
1195 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
1196 void *vm, uint32_t desc)
1198 intptr_t i, oprsz = simd_oprsz(desc);
1199 uint64_t *d = vd, *n = vn, *m = vm;
1200 bool q = false;
1202 for (i = 0; i < oprsz / 8; i++) {
1203 uint64_t nn = n[i], mm = m[i], dd = nn + mm;
1204 if (dd < nn) {
1205 dd = UINT64_MAX;
1206 q = true;
1208 d[i] = dd;
1210 if (q) {
1211 uint32_t *qc = vq;
1212 qc[0] = 1;
1214 clear_tail(d, oprsz, simd_maxsz(desc));
1217 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
1218 void *vm, uint32_t desc)
1220 intptr_t i, oprsz = simd_oprsz(desc);
1221 uint64_t *d = vd, *n = vn, *m = vm;
1222 bool q = false;
1224 for (i = 0; i < oprsz / 8; i++) {
1225 uint64_t nn = n[i], mm = m[i], dd = nn - mm;
1226 if (nn < mm) {
1227 dd = 0;
1228 q = true;
1230 d[i] = dd;
1232 if (q) {
1233 uint32_t *qc = vq;
1234 qc[0] = 1;
1236 clear_tail(d, oprsz, simd_maxsz(desc));
1239 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
1240 void *vm, uint32_t desc)
1242 intptr_t i, oprsz = simd_oprsz(desc);
1243 int64_t *d = vd, *n = vn, *m = vm;
1244 bool q = false;
1246 for (i = 0; i < oprsz / 8; i++) {
1247 int64_t nn = n[i], mm = m[i], dd = nn + mm;
1248 if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
1249 dd = (nn >> 63) ^ ~INT64_MIN;
1250 q = true;
1252 d[i] = dd;
1254 if (q) {
1255 uint32_t *qc = vq;
1256 qc[0] = 1;
1258 clear_tail(d, oprsz, simd_maxsz(desc));
1261 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
1262 void *vm, uint32_t desc)
1264 intptr_t i, oprsz = simd_oprsz(desc);
1265 int64_t *d = vd, *n = vn, *m = vm;
1266 bool q = false;
1268 for (i = 0; i < oprsz / 8; i++) {
1269 int64_t nn = n[i], mm = m[i], dd = nn - mm;
1270 if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
1271 dd = (nn >> 63) ^ ~INT64_MIN;
1272 q = true;
1274 d[i] = dd;
1276 if (q) {
1277 uint32_t *qc = vq;
1278 qc[0] = 1;
1280 clear_tail(d, oprsz, simd_maxsz(desc));
1284 #define DO_SRA(NAME, TYPE) \
1285 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1287 intptr_t i, oprsz = simd_oprsz(desc); \
1288 int shift = simd_data(desc); \
1289 TYPE *d = vd, *n = vn; \
1290 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1291 d[i] += n[i] >> shift; \
1293 clear_tail(d, oprsz, simd_maxsz(desc)); \
1296 DO_SRA(gvec_ssra_b, int8_t)
1297 DO_SRA(gvec_ssra_h, int16_t)
1298 DO_SRA(gvec_ssra_s, int32_t)
1299 DO_SRA(gvec_ssra_d, int64_t)
1301 DO_SRA(gvec_usra_b, uint8_t)
1302 DO_SRA(gvec_usra_h, uint16_t)
1303 DO_SRA(gvec_usra_s, uint32_t)
1304 DO_SRA(gvec_usra_d, uint64_t)
1306 #undef DO_SRA
1308 #define DO_RSHR(NAME, TYPE) \
1309 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1311 intptr_t i, oprsz = simd_oprsz(desc); \
1312 int shift = simd_data(desc); \
1313 TYPE *d = vd, *n = vn; \
1314 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1315 TYPE tmp = n[i] >> (shift - 1); \
1316 d[i] = (tmp >> 1) + (tmp & 1); \
1318 clear_tail(d, oprsz, simd_maxsz(desc)); \
1321 DO_RSHR(gvec_srshr_b, int8_t)
1322 DO_RSHR(gvec_srshr_h, int16_t)
1323 DO_RSHR(gvec_srshr_s, int32_t)
1324 DO_RSHR(gvec_srshr_d, int64_t)
1326 DO_RSHR(gvec_urshr_b, uint8_t)
1327 DO_RSHR(gvec_urshr_h, uint16_t)
1328 DO_RSHR(gvec_urshr_s, uint32_t)
1329 DO_RSHR(gvec_urshr_d, uint64_t)
1331 #undef DO_RSHR
1333 #define DO_RSRA(NAME, TYPE) \
1334 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1336 intptr_t i, oprsz = simd_oprsz(desc); \
1337 int shift = simd_data(desc); \
1338 TYPE *d = vd, *n = vn; \
1339 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1340 TYPE tmp = n[i] >> (shift - 1); \
1341 d[i] += (tmp >> 1) + (tmp & 1); \
1343 clear_tail(d, oprsz, simd_maxsz(desc)); \
1346 DO_RSRA(gvec_srsra_b, int8_t)
1347 DO_RSRA(gvec_srsra_h, int16_t)
1348 DO_RSRA(gvec_srsra_s, int32_t)
1349 DO_RSRA(gvec_srsra_d, int64_t)
1351 DO_RSRA(gvec_ursra_b, uint8_t)
1352 DO_RSRA(gvec_ursra_h, uint16_t)
1353 DO_RSRA(gvec_ursra_s, uint32_t)
1354 DO_RSRA(gvec_ursra_d, uint64_t)
1356 #undef DO_RSRA
1358 #define DO_SRI(NAME, TYPE) \
1359 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1361 intptr_t i, oprsz = simd_oprsz(desc); \
1362 int shift = simd_data(desc); \
1363 TYPE *d = vd, *n = vn; \
1364 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1365 d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
1367 clear_tail(d, oprsz, simd_maxsz(desc)); \
1370 DO_SRI(gvec_sri_b, uint8_t)
1371 DO_SRI(gvec_sri_h, uint16_t)
1372 DO_SRI(gvec_sri_s, uint32_t)
1373 DO_SRI(gvec_sri_d, uint64_t)
1375 #undef DO_SRI
1377 #define DO_SLI(NAME, TYPE) \
1378 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1380 intptr_t i, oprsz = simd_oprsz(desc); \
1381 int shift = simd_data(desc); \
1382 TYPE *d = vd, *n = vn; \
1383 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1384 d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1386 clear_tail(d, oprsz, simd_maxsz(desc)); \
1389 DO_SLI(gvec_sli_b, uint8_t)
1390 DO_SLI(gvec_sli_h, uint16_t)
1391 DO_SLI(gvec_sli_s, uint32_t)
1392 DO_SLI(gvec_sli_d, uint64_t)
1394 #undef DO_SLI
1397 * Convert float16 to float32, raising no exceptions and
1398 * preserving exceptional values, including SNaN.
1399 * This is effectively an unpack+repack operation.
1401 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1403 const int f16_bias = 15;
1404 const int f32_bias = 127;
1405 uint32_t sign = extract32(f16, 15, 1);
1406 uint32_t exp = extract32(f16, 10, 5);
1407 uint32_t frac = extract32(f16, 0, 10);
1409 if (exp == 0x1f) {
1410 /* Inf or NaN */
1411 exp = 0xff;
1412 } else if (exp == 0) {
1413 /* Zero or denormal. */
1414 if (frac != 0) {
1415 if (fz16) {
1416 frac = 0;
1417 } else {
1419 * Denormal; these are all normal float32.
1420 * Shift the fraction so that the msb is at bit 11,
1421 * then remove bit 11 as the implicit bit of the
1422 * normalized float32. Note that we still go through
1423 * the shift for normal numbers below, to put the
1424 * float32 fraction at the right place.
1426 int shift = clz32(frac) - 21;
1427 frac = (frac << shift) & 0x3ff;
1428 exp = f32_bias - f16_bias - shift + 1;
1431 } else {
1432 /* Normal number; adjust the bias. */
1433 exp += f32_bias - f16_bias;
1435 sign <<= 31;
1436 exp <<= 23;
1437 frac <<= 23 - 10;
1439 return sign | exp | frac;
1442 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1445 * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1446 * Load the 2nd qword iff is_q & is_2.
1447 * Shift to the 2nd dword iff !is_q & is_2.
1448 * For !is_q & !is_2, the upper bits of the result are garbage.
1450 return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1454 * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1455 * as there is not yet SVE versions that might use blocking.
1458 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1459 uint32_t desc, bool fz16)
1461 intptr_t i, oprsz = simd_oprsz(desc);
1462 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1463 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1464 int is_q = oprsz == 16;
1465 uint64_t n_4, m_4;
1467 /* Pre-load all of the f16 data, avoiding overlap issues. */
1468 n_4 = load4_f16(vn, is_q, is_2);
1469 m_4 = load4_f16(vm, is_q, is_2);
1471 /* Negate all inputs for FMLSL at once. */
1472 if (is_s) {
1473 n_4 ^= 0x8000800080008000ull;
1476 for (i = 0; i < oprsz / 4; i++) {
1477 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1478 float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1479 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1481 clear_tail(d, oprsz, simd_maxsz(desc));
1484 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1485 void *venv, uint32_t desc)
1487 CPUARMState *env = venv;
1488 do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1489 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1492 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1493 void *venv, uint32_t desc)
1495 CPUARMState *env = venv;
1496 do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1497 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1500 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1501 uint32_t desc, bool fz16)
1503 intptr_t i, oprsz = simd_oprsz(desc);
1504 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1505 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1506 int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1507 int is_q = oprsz == 16;
1508 uint64_t n_4;
1509 float32 m_1;
1511 /* Pre-load all of the f16 data, avoiding overlap issues. */
1512 n_4 = load4_f16(vn, is_q, is_2);
1514 /* Negate all inputs for FMLSL at once. */
1515 if (is_s) {
1516 n_4 ^= 0x8000800080008000ull;
1519 m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1521 for (i = 0; i < oprsz / 4; i++) {
1522 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1523 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1525 clear_tail(d, oprsz, simd_maxsz(desc));
1528 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1529 void *venv, uint32_t desc)
1531 CPUARMState *env = venv;
1532 do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1533 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1536 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1537 void *venv, uint32_t desc)
1539 CPUARMState *env = venv;
1540 do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1541 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1544 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1546 intptr_t i, opr_sz = simd_oprsz(desc);
1547 int8_t *d = vd, *n = vn, *m = vm;
1549 for (i = 0; i < opr_sz; ++i) {
1550 int8_t mm = m[i];
1551 int8_t nn = n[i];
1552 int8_t res = 0;
1553 if (mm >= 0) {
1554 if (mm < 8) {
1555 res = nn << mm;
1557 } else {
1558 res = nn >> (mm > -8 ? -mm : 7);
1560 d[i] = res;
1562 clear_tail(d, opr_sz, simd_maxsz(desc));
1565 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1567 intptr_t i, opr_sz = simd_oprsz(desc);
1568 int16_t *d = vd, *n = vn, *m = vm;
1570 for (i = 0; i < opr_sz / 2; ++i) {
1571 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1572 int16_t nn = n[i];
1573 int16_t res = 0;
1574 if (mm >= 0) {
1575 if (mm < 16) {
1576 res = nn << mm;
1578 } else {
1579 res = nn >> (mm > -16 ? -mm : 15);
1581 d[i] = res;
1583 clear_tail(d, opr_sz, simd_maxsz(desc));
1586 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1588 intptr_t i, opr_sz = simd_oprsz(desc);
1589 uint8_t *d = vd, *n = vn, *m = vm;
1591 for (i = 0; i < opr_sz; ++i) {
1592 int8_t mm = m[i];
1593 uint8_t nn = n[i];
1594 uint8_t res = 0;
1595 if (mm >= 0) {
1596 if (mm < 8) {
1597 res = nn << mm;
1599 } else {
1600 if (mm > -8) {
1601 res = nn >> -mm;
1604 d[i] = res;
1606 clear_tail(d, opr_sz, simd_maxsz(desc));
1609 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1611 intptr_t i, opr_sz = simd_oprsz(desc);
1612 uint16_t *d = vd, *n = vn, *m = vm;
1614 for (i = 0; i < opr_sz / 2; ++i) {
1615 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1616 uint16_t nn = n[i];
1617 uint16_t res = 0;
1618 if (mm >= 0) {
1619 if (mm < 16) {
1620 res = nn << mm;
1622 } else {
1623 if (mm > -16) {
1624 res = nn >> -mm;
1627 d[i] = res;
1629 clear_tail(d, opr_sz, simd_maxsz(desc));
1633 * 8x8->8 polynomial multiply.
1635 * Polynomial multiplication is like integer multiplication except the
1636 * partial products are XORed, not added.
1638 * TODO: expose this as a generic vector operation, as it is a common
1639 * crypto building block.
1641 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1643 intptr_t i, j, opr_sz = simd_oprsz(desc);
1644 uint64_t *d = vd, *n = vn, *m = vm;
1646 for (i = 0; i < opr_sz / 8; ++i) {
1647 uint64_t nn = n[i];
1648 uint64_t mm = m[i];
1649 uint64_t rr = 0;
1651 for (j = 0; j < 8; ++j) {
1652 uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1653 rr ^= mm & mask;
1654 mm = (mm << 1) & 0xfefefefefefefefeull;
1655 nn >>= 1;
1657 d[i] = rr;
1659 clear_tail(d, opr_sz, simd_maxsz(desc));
1663 * 64x64->128 polynomial multiply.
1664 * Because of the lanes are not accessed in strict columns,
1665 * this probably cannot be turned into a generic helper.
1667 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1669 intptr_t i, j, opr_sz = simd_oprsz(desc);
1670 intptr_t hi = simd_data(desc);
1671 uint64_t *d = vd, *n = vn, *m = vm;
1673 for (i = 0; i < opr_sz / 8; i += 2) {
1674 uint64_t nn = n[i + hi];
1675 uint64_t mm = m[i + hi];
1676 uint64_t rhi = 0;
1677 uint64_t rlo = 0;
1679 /* Bit 0 can only influence the low 64-bit result. */
1680 if (nn & 1) {
1681 rlo = mm;
1684 for (j = 1; j < 64; ++j) {
1685 uint64_t mask = -((nn >> j) & 1);
1686 rlo ^= (mm << j) & mask;
1687 rhi ^= (mm >> (64 - j)) & mask;
1689 d[i] = rlo;
1690 d[i + 1] = rhi;
1692 clear_tail(d, opr_sz, simd_maxsz(desc));
1696 * 8x8->16 polynomial multiply.
1698 * The byte inputs are expanded to (or extracted from) half-words.
1699 * Note that neon and sve2 get the inputs from different positions.
1700 * This allows 4 bytes to be processed in parallel with uint64_t.
1703 static uint64_t expand_byte_to_half(uint64_t x)
1705 return (x & 0x000000ff)
1706 | ((x & 0x0000ff00) << 8)
1707 | ((x & 0x00ff0000) << 16)
1708 | ((x & 0xff000000) << 24);
1711 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1713 uint64_t result = 0;
1714 int i;
1716 for (i = 0; i < 8; ++i) {
1717 uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1718 result ^= op2 & mask;
1719 op1 >>= 1;
1720 op2 <<= 1;
1722 return result;
1725 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1727 int hi = simd_data(desc);
1728 uint64_t *d = vd, *n = vn, *m = vm;
1729 uint64_t nn = n[hi], mm = m[hi];
1731 d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1732 nn >>= 32;
1733 mm >>= 32;
1734 d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1736 clear_tail(d, 16, simd_maxsz(desc));
1739 #ifdef TARGET_AARCH64
1740 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1742 int shift = simd_data(desc) * 8;
1743 intptr_t i, opr_sz = simd_oprsz(desc);
1744 uint64_t *d = vd, *n = vn, *m = vm;
1746 for (i = 0; i < opr_sz / 8; ++i) {
1747 uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1748 uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1750 d[i] = pmull_h(nn, mm);
1753 #endif
1755 #define DO_CMP0(NAME, TYPE, OP) \
1756 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1758 intptr_t i, opr_sz = simd_oprsz(desc); \
1759 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
1760 TYPE nn = *(TYPE *)(vn + i); \
1761 *(TYPE *)(vd + i) = -(nn OP 0); \
1763 clear_tail(vd, opr_sz, simd_maxsz(desc)); \
1766 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1767 DO_CMP0(gvec_clt0_b, int8_t, <)
1768 DO_CMP0(gvec_cle0_b, int8_t, <=)
1769 DO_CMP0(gvec_cgt0_b, int8_t, >)
1770 DO_CMP0(gvec_cge0_b, int8_t, >=)
1772 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1773 DO_CMP0(gvec_clt0_h, int16_t, <)
1774 DO_CMP0(gvec_cle0_h, int16_t, <=)
1775 DO_CMP0(gvec_cgt0_h, int16_t, >)
1776 DO_CMP0(gvec_cge0_h, int16_t, >=)
1778 #undef DO_CMP0
1780 #define DO_ABD(NAME, TYPE) \
1781 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1783 intptr_t i, opr_sz = simd_oprsz(desc); \
1784 TYPE *d = vd, *n = vn, *m = vm; \
1786 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1787 d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1789 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1792 DO_ABD(gvec_sabd_b, int8_t)
1793 DO_ABD(gvec_sabd_h, int16_t)
1794 DO_ABD(gvec_sabd_s, int32_t)
1795 DO_ABD(gvec_sabd_d, int64_t)
1797 DO_ABD(gvec_uabd_b, uint8_t)
1798 DO_ABD(gvec_uabd_h, uint16_t)
1799 DO_ABD(gvec_uabd_s, uint32_t)
1800 DO_ABD(gvec_uabd_d, uint64_t)
1802 #undef DO_ABD
1804 #define DO_ABA(NAME, TYPE) \
1805 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1807 intptr_t i, opr_sz = simd_oprsz(desc); \
1808 TYPE *d = vd, *n = vn, *m = vm; \
1810 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1811 d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1813 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1816 DO_ABA(gvec_saba_b, int8_t)
1817 DO_ABA(gvec_saba_h, int16_t)
1818 DO_ABA(gvec_saba_s, int32_t)
1819 DO_ABA(gvec_saba_d, int64_t)
1821 DO_ABA(gvec_uaba_b, uint8_t)
1822 DO_ABA(gvec_uaba_h, uint16_t)
1823 DO_ABA(gvec_uaba_s, uint32_t)
1824 DO_ABA(gvec_uaba_d, uint64_t)
1826 #undef DO_ABA
1828 #define DO_NEON_PAIRWISE(NAME, OP) \
1829 void HELPER(NAME##s)(void *vd, void *vn, void *vm, \
1830 void *stat, uint32_t oprsz) \
1832 float_status *fpst = stat; \
1833 float32 *d = vd; \
1834 float32 *n = vn; \
1835 float32 *m = vm; \
1836 float32 r0, r1; \
1838 /* Read all inputs before writing outputs in case vm == vd */ \
1839 r0 = float32_##OP(n[H4(0)], n[H4(1)], fpst); \
1840 r1 = float32_##OP(m[H4(0)], m[H4(1)], fpst); \
1842 d[H4(0)] = r0; \
1843 d[H4(1)] = r1; \
1846 void HELPER(NAME##h)(void *vd, void *vn, void *vm, \
1847 void *stat, uint32_t oprsz) \
1849 float_status *fpst = stat; \
1850 float16 *d = vd; \
1851 float16 *n = vn; \
1852 float16 *m = vm; \
1853 float16 r0, r1, r2, r3; \
1855 /* Read all inputs before writing outputs in case vm == vd */ \
1856 r0 = float16_##OP(n[H2(0)], n[H2(1)], fpst); \
1857 r1 = float16_##OP(n[H2(2)], n[H2(3)], fpst); \
1858 r2 = float16_##OP(m[H2(0)], m[H2(1)], fpst); \
1859 r3 = float16_##OP(m[H2(2)], m[H2(3)], fpst); \
1861 d[H2(0)] = r0; \
1862 d[H2(1)] = r1; \
1863 d[H2(2)] = r2; \
1864 d[H2(3)] = r3; \
1867 DO_NEON_PAIRWISE(neon_padd, add)
1868 DO_NEON_PAIRWISE(neon_pmax, max)
1869 DO_NEON_PAIRWISE(neon_pmin, min)
1871 #undef DO_NEON_PAIRWISE
1873 #define DO_VCVT_FIXED(NAME, FUNC, TYPE) \
1874 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
1876 intptr_t i, oprsz = simd_oprsz(desc); \
1877 int shift = simd_data(desc); \
1878 TYPE *d = vd, *n = vn; \
1879 float_status *fpst = stat; \
1880 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1881 d[i] = FUNC(n[i], shift, fpst); \
1883 clear_tail(d, oprsz, simd_maxsz(desc)); \
1886 DO_VCVT_FIXED(gvec_vcvt_sf, helper_vfp_sltos, uint32_t)
1887 DO_VCVT_FIXED(gvec_vcvt_uf, helper_vfp_ultos, uint32_t)
1888 DO_VCVT_FIXED(gvec_vcvt_fs, helper_vfp_tosls_round_to_zero, uint32_t)
1889 DO_VCVT_FIXED(gvec_vcvt_fu, helper_vfp_touls_round_to_zero, uint32_t)
1890 DO_VCVT_FIXED(gvec_vcvt_sh, helper_vfp_shtoh, uint16_t)
1891 DO_VCVT_FIXED(gvec_vcvt_uh, helper_vfp_uhtoh, uint16_t)
1892 DO_VCVT_FIXED(gvec_vcvt_hs, helper_vfp_toshh_round_to_zero, uint16_t)
1893 DO_VCVT_FIXED(gvec_vcvt_hu, helper_vfp_touhh_round_to_zero, uint16_t)
1895 #undef DO_VCVT_FIXED
1897 #define DO_VCVT_RMODE(NAME, FUNC, TYPE) \
1898 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
1900 float_status *fpst = stat; \
1901 intptr_t i, oprsz = simd_oprsz(desc); \
1902 uint32_t rmode = simd_data(desc); \
1903 uint32_t prev_rmode = get_float_rounding_mode(fpst); \
1904 TYPE *d = vd, *n = vn; \
1905 set_float_rounding_mode(rmode, fpst); \
1906 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1907 d[i] = FUNC(n[i], 0, fpst); \
1909 set_float_rounding_mode(prev_rmode, fpst); \
1910 clear_tail(d, oprsz, simd_maxsz(desc)); \
1913 DO_VCVT_RMODE(gvec_vcvt_rm_ss, helper_vfp_tosls, uint32_t)
1914 DO_VCVT_RMODE(gvec_vcvt_rm_us, helper_vfp_touls, uint32_t)
1915 DO_VCVT_RMODE(gvec_vcvt_rm_sh, helper_vfp_toshh, uint16_t)
1916 DO_VCVT_RMODE(gvec_vcvt_rm_uh, helper_vfp_touhh, uint16_t)
1918 #undef DO_VCVT_RMODE
1920 #define DO_VRINT_RMODE(NAME, FUNC, TYPE) \
1921 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
1923 float_status *fpst = stat; \
1924 intptr_t i, oprsz = simd_oprsz(desc); \
1925 uint32_t rmode = simd_data(desc); \
1926 uint32_t prev_rmode = get_float_rounding_mode(fpst); \
1927 TYPE *d = vd, *n = vn; \
1928 set_float_rounding_mode(rmode, fpst); \
1929 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1930 d[i] = FUNC(n[i], fpst); \
1932 set_float_rounding_mode(prev_rmode, fpst); \
1933 clear_tail(d, oprsz, simd_maxsz(desc)); \
1936 DO_VRINT_RMODE(gvec_vrint_rm_h, helper_rinth, uint16_t)
1937 DO_VRINT_RMODE(gvec_vrint_rm_s, helper_rints, uint32_t)
1939 #undef DO_VRINT_RMODE
1941 #ifdef TARGET_AARCH64
1942 void HELPER(simd_tblx)(void *vd, void *vm, void *venv, uint32_t desc)
1944 const uint8_t *indices = vm;
1945 CPUARMState *env = venv;
1946 size_t oprsz = simd_oprsz(desc);
1947 uint32_t rn = extract32(desc, SIMD_DATA_SHIFT, 5);
1948 bool is_tbx = extract32(desc, SIMD_DATA_SHIFT + 5, 1);
1949 uint32_t table_len = desc >> (SIMD_DATA_SHIFT + 6);
1950 union {
1951 uint8_t b[16];
1952 uint64_t d[2];
1953 } result;
1956 * We must construct the final result in a temp, lest the output
1957 * overlaps the input table. For TBL, begin with zero; for TBX,
1958 * begin with the original register contents. Note that we always
1959 * copy 16 bytes here to avoid an extra branch; clearing the high
1960 * bits of the register for oprsz == 8 is handled below.
1962 if (is_tbx) {
1963 memcpy(&result, vd, 16);
1964 } else {
1965 memset(&result, 0, 16);
1968 for (size_t i = 0; i < oprsz; ++i) {
1969 uint32_t index = indices[H1(i)];
1971 if (index < table_len) {
1973 * Convert index (a byte offset into the virtual table
1974 * which is a series of 128-bit vectors concatenated)
1975 * into the correct register element, bearing in mind
1976 * that the table can wrap around from V31 to V0.
1978 const uint8_t *table = (const uint8_t *)
1979 aa64_vfp_qreg(env, (rn + (index >> 4)) % 32);
1980 result.b[H1(i)] = table[H1(index % 16)];
1984 memcpy(vd, &result, 16);
1985 clear_tail(vd, oprsz, simd_maxsz(desc));
1987 #endif