hw/timer/sse-timer: Model the SSE Subsystem System Timer
[qemu/ar7.git] / target / arm / internals.h
blobf11bd3269620f867730401bdec62e2abc4644c89
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
29 #include "syndrome.h"
31 /* register banks for CPU modes */
32 #define BANK_USRSYS 0
33 #define BANK_SVC 1
34 #define BANK_ABT 2
35 #define BANK_UND 3
36 #define BANK_IRQ 4
37 #define BANK_FIQ 5
38 #define BANK_HYP 6
39 #define BANK_MON 7
41 static inline bool excp_is_internal(int excp)
43 /* Return true if this exception number represents a QEMU-internal
44 * exception that will not be passed to the guest.
46 return excp == EXCP_INTERRUPT
47 || excp == EXCP_HLT
48 || excp == EXCP_DEBUG
49 || excp == EXCP_HALTED
50 || excp == EXCP_EXCEPTION_EXIT
51 || excp == EXCP_KERNEL_TRAP
52 || excp == EXCP_SEMIHOST;
55 /* Scale factor for generic timers, ie number of ns per tick.
56 * This gives a 62.5MHz timer.
58 #define GTIMER_SCALE 16
60 /* Bit definitions for the v7M CONTROL register */
61 FIELD(V7M_CONTROL, NPRIV, 0, 1)
62 FIELD(V7M_CONTROL, SPSEL, 1, 1)
63 FIELD(V7M_CONTROL, FPCA, 2, 1)
64 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 /* Bit definitions for v7M exception return payload */
67 FIELD(V7M_EXCRET, ES, 0, 1)
68 FIELD(V7M_EXCRET, RES0, 1, 1)
69 FIELD(V7M_EXCRET, SPSEL, 2, 1)
70 FIELD(V7M_EXCRET, MODE, 3, 1)
71 FIELD(V7M_EXCRET, FTYPE, 4, 1)
72 FIELD(V7M_EXCRET, DCRS, 5, 1)
73 FIELD(V7M_EXCRET, S, 6, 1)
74 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 /* Minimum value which is a magic number for exception return */
77 #define EXC_RETURN_MIN_MAGIC 0xff000000
78 /* Minimum number which is a magic number for function or exception return
79 * when using v8M security extension
81 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 /* We use a few fake FSR values for internal purposes in M profile.
84 * M profile cores don't have A/R format FSRs, but currently our
85 * get_phys_addr() code assumes A/R profile and reports failures via
86 * an A/R format FSR value. We then translate that into the proper
87 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
88 * Mostly the FSR values we use for this are those defined for v7PMSA,
89 * since we share some of that codepath. A few kinds of fault are
90 * only for M profile and have no A/R equivalent, though, so we have
91 * to pick a value from the reserved range (which we never otherwise
92 * generate) to use for these.
93 * These values will never be visible to the guest.
95 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
96 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98 /**
99 * raise_exception: Raise the specified exception.
100 * Raise a guest exception with the specified value, syndrome register
101 * and target exception level. This should be called from helper functions,
102 * and never returns because we will longjump back up to the CPU main loop.
104 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
105 uint32_t syndrome, uint32_t target_el);
108 * Similarly, but also use unwinding to restore cpu state.
110 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
111 uint32_t syndrome, uint32_t target_el,
112 uintptr_t ra);
115 * For AArch64, map a given EL to an index in the banked_spsr array.
116 * Note that this mapping and the AArch32 mapping defined in bank_number()
117 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
118 * mandated mapping between each other.
120 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
122 static const unsigned int map[4] = {
123 [1] = BANK_SVC, /* EL1. */
124 [2] = BANK_HYP, /* EL2. */
125 [3] = BANK_MON, /* EL3. */
127 assert(el >= 1 && el <= 3);
128 return map[el];
131 /* Map CPU modes onto saved register banks. */
132 static inline int bank_number(int mode)
134 switch (mode) {
135 case ARM_CPU_MODE_USR:
136 case ARM_CPU_MODE_SYS:
137 return BANK_USRSYS;
138 case ARM_CPU_MODE_SVC:
139 return BANK_SVC;
140 case ARM_CPU_MODE_ABT:
141 return BANK_ABT;
142 case ARM_CPU_MODE_UND:
143 return BANK_UND;
144 case ARM_CPU_MODE_IRQ:
145 return BANK_IRQ;
146 case ARM_CPU_MODE_FIQ:
147 return BANK_FIQ;
148 case ARM_CPU_MODE_HYP:
149 return BANK_HYP;
150 case ARM_CPU_MODE_MON:
151 return BANK_MON;
153 g_assert_not_reached();
157 * r14_bank_number: Map CPU mode onto register bank for r14
159 * Given an AArch32 CPU mode, return the index into the saved register
160 * banks to use for the R14 (LR) in that mode. This is the same as
161 * bank_number(), except for the special case of Hyp mode, where
162 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
163 * This should be used as the index into env->banked_r14[], and
164 * bank_number() used for the index into env->banked_r13[] and
165 * env->banked_spsr[].
167 static inline int r14_bank_number(int mode)
169 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
172 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
173 void arm_translate_init(void);
175 #ifdef CONFIG_TCG
176 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
177 #endif /* CONFIG_TCG */
180 enum arm_fprounding {
181 FPROUNDING_TIEEVEN,
182 FPROUNDING_POSINF,
183 FPROUNDING_NEGINF,
184 FPROUNDING_ZERO,
185 FPROUNDING_TIEAWAY,
186 FPROUNDING_ODD
189 int arm_rmode_to_sf(int rmode);
191 static inline void aarch64_save_sp(CPUARMState *env, int el)
193 if (env->pstate & PSTATE_SP) {
194 env->sp_el[el] = env->xregs[31];
195 } else {
196 env->sp_el[0] = env->xregs[31];
200 static inline void aarch64_restore_sp(CPUARMState *env, int el)
202 if (env->pstate & PSTATE_SP) {
203 env->xregs[31] = env->sp_el[el];
204 } else {
205 env->xregs[31] = env->sp_el[0];
209 static inline void update_spsel(CPUARMState *env, uint32_t imm)
211 unsigned int cur_el = arm_current_el(env);
212 /* Update PSTATE SPSel bit; this requires us to update the
213 * working stack pointer in xregs[31].
215 if (!((imm ^ env->pstate) & PSTATE_SP)) {
216 return;
218 aarch64_save_sp(env, cur_el);
219 env->pstate = deposit32(env->pstate, 0, 1, imm);
221 /* We rely on illegal updates to SPsel from EL0 to get trapped
222 * at translation time.
224 assert(cur_el >= 1 && cur_el <= 3);
225 aarch64_restore_sp(env, cur_el);
229 * arm_pamax
230 * @cpu: ARMCPU
232 * Returns the implementation defined bit-width of physical addresses.
233 * The ARMv8 reference manuals refer to this as PAMax().
235 static inline unsigned int arm_pamax(ARMCPU *cpu)
237 static const unsigned int pamax_map[] = {
238 [0] = 32,
239 [1] = 36,
240 [2] = 40,
241 [3] = 42,
242 [4] = 44,
243 [5] = 48,
245 unsigned int parange =
246 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
248 /* id_aa64mmfr0 is a read-only register so values outside of the
249 * supported mappings can be considered an implementation error. */
250 assert(parange < ARRAY_SIZE(pamax_map));
251 return pamax_map[parange];
254 /* Return true if extended addresses are enabled.
255 * This is always the case if our translation regime is 64 bit,
256 * but depends on TTBCR.EAE for 32 bit.
258 static inline bool extended_addresses_enabled(CPUARMState *env)
260 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
261 return arm_el_is_aa64(env, 1) ||
262 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
265 /* Update a QEMU watchpoint based on the information the guest has set in the
266 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
268 void hw_watchpoint_update(ARMCPU *cpu, int n);
269 /* Update the QEMU watchpoints for every guest watchpoint. This does a
270 * complete delete-and-reinstate of the QEMU watchpoint list and so is
271 * suitable for use after migration or on reset.
273 void hw_watchpoint_update_all(ARMCPU *cpu);
274 /* Update a QEMU breakpoint based on the information the guest has set in the
275 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
277 void hw_breakpoint_update(ARMCPU *cpu, int n);
278 /* Update the QEMU breakpoints for every guest breakpoint. This does a
279 * complete delete-and-reinstate of the QEMU breakpoint list and so is
280 * suitable for use after migration or on reset.
282 void hw_breakpoint_update_all(ARMCPU *cpu);
284 /* Callback function for checking if a watchpoint should trigger. */
285 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
287 /* Adjust addresses (in BE32 mode) before testing against watchpoint
288 * addresses.
290 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
292 /* Callback function for when a watchpoint or breakpoint triggers. */
293 void arm_debug_excp_handler(CPUState *cs);
295 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
296 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
298 return false;
300 static inline void arm_handle_psci_call(ARMCPU *cpu)
302 g_assert_not_reached();
304 #else
305 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
306 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
307 /* Actually handle a PSCI call */
308 void arm_handle_psci_call(ARMCPU *cpu);
309 #endif
312 * arm_clear_exclusive: clear the exclusive monitor
313 * @env: CPU env
314 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
316 static inline void arm_clear_exclusive(CPUARMState *env)
318 env->exclusive_addr = -1;
322 * ARMFaultType: type of an ARM MMU fault
323 * This corresponds to the v8A pseudocode's Fault enumeration,
324 * with extensions for QEMU internal conditions.
326 typedef enum ARMFaultType {
327 ARMFault_None,
328 ARMFault_AccessFlag,
329 ARMFault_Alignment,
330 ARMFault_Background,
331 ARMFault_Domain,
332 ARMFault_Permission,
333 ARMFault_Translation,
334 ARMFault_AddressSize,
335 ARMFault_SyncExternal,
336 ARMFault_SyncExternalOnWalk,
337 ARMFault_SyncParity,
338 ARMFault_SyncParityOnWalk,
339 ARMFault_AsyncParity,
340 ARMFault_AsyncExternal,
341 ARMFault_Debug,
342 ARMFault_TLBConflict,
343 ARMFault_Lockdown,
344 ARMFault_Exclusive,
345 ARMFault_ICacheMaint,
346 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
347 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
348 } ARMFaultType;
351 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
352 * @type: Type of fault
353 * @level: Table walk level (for translation, access flag and permission faults)
354 * @domain: Domain of the fault address (for non-LPAE CPUs only)
355 * @s2addr: Address that caused a fault at stage 2
356 * @stage2: True if we faulted at stage 2
357 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
358 * @s1ns: True if we faulted on a non-secure IPA while in secure state
359 * @ea: True if we should set the EA (external abort type) bit in syndrome
361 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
362 struct ARMMMUFaultInfo {
363 ARMFaultType type;
364 target_ulong s2addr;
365 int level;
366 int domain;
367 bool stage2;
368 bool s1ptw;
369 bool s1ns;
370 bool ea;
374 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
375 * Compare pseudocode EncodeSDFSC(), though unlike that function
376 * we set up a whole FSR-format code including domain field and
377 * putting the high bit of the FSC into bit 10.
379 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
381 uint32_t fsc;
383 switch (fi->type) {
384 case ARMFault_None:
385 return 0;
386 case ARMFault_AccessFlag:
387 fsc = fi->level == 1 ? 0x3 : 0x6;
388 break;
389 case ARMFault_Alignment:
390 fsc = 0x1;
391 break;
392 case ARMFault_Permission:
393 fsc = fi->level == 1 ? 0xd : 0xf;
394 break;
395 case ARMFault_Domain:
396 fsc = fi->level == 1 ? 0x9 : 0xb;
397 break;
398 case ARMFault_Translation:
399 fsc = fi->level == 1 ? 0x5 : 0x7;
400 break;
401 case ARMFault_SyncExternal:
402 fsc = 0x8 | (fi->ea << 12);
403 break;
404 case ARMFault_SyncExternalOnWalk:
405 fsc = fi->level == 1 ? 0xc : 0xe;
406 fsc |= (fi->ea << 12);
407 break;
408 case ARMFault_SyncParity:
409 fsc = 0x409;
410 break;
411 case ARMFault_SyncParityOnWalk:
412 fsc = fi->level == 1 ? 0x40c : 0x40e;
413 break;
414 case ARMFault_AsyncParity:
415 fsc = 0x408;
416 break;
417 case ARMFault_AsyncExternal:
418 fsc = 0x406 | (fi->ea << 12);
419 break;
420 case ARMFault_Debug:
421 fsc = 0x2;
422 break;
423 case ARMFault_TLBConflict:
424 fsc = 0x400;
425 break;
426 case ARMFault_Lockdown:
427 fsc = 0x404;
428 break;
429 case ARMFault_Exclusive:
430 fsc = 0x405;
431 break;
432 case ARMFault_ICacheMaint:
433 fsc = 0x4;
434 break;
435 case ARMFault_Background:
436 fsc = 0x0;
437 break;
438 case ARMFault_QEMU_NSCExec:
439 fsc = M_FAKE_FSR_NSC_EXEC;
440 break;
441 case ARMFault_QEMU_SFault:
442 fsc = M_FAKE_FSR_SFAULT;
443 break;
444 default:
445 /* Other faults can't occur in a context that requires a
446 * short-format status code.
448 g_assert_not_reached();
451 fsc |= (fi->domain << 4);
452 return fsc;
456 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
457 * Compare pseudocode EncodeLDFSC(), though unlike that function
458 * we fill in also the LPAE bit 9 of a DFSR format.
460 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
462 uint32_t fsc;
464 switch (fi->type) {
465 case ARMFault_None:
466 return 0;
467 case ARMFault_AddressSize:
468 fsc = fi->level & 3;
469 break;
470 case ARMFault_AccessFlag:
471 fsc = (fi->level & 3) | (0x2 << 2);
472 break;
473 case ARMFault_Permission:
474 fsc = (fi->level & 3) | (0x3 << 2);
475 break;
476 case ARMFault_Translation:
477 fsc = (fi->level & 3) | (0x1 << 2);
478 break;
479 case ARMFault_SyncExternal:
480 fsc = 0x10 | (fi->ea << 12);
481 break;
482 case ARMFault_SyncExternalOnWalk:
483 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
484 break;
485 case ARMFault_SyncParity:
486 fsc = 0x18;
487 break;
488 case ARMFault_SyncParityOnWalk:
489 fsc = (fi->level & 3) | (0x7 << 2);
490 break;
491 case ARMFault_AsyncParity:
492 fsc = 0x19;
493 break;
494 case ARMFault_AsyncExternal:
495 fsc = 0x11 | (fi->ea << 12);
496 break;
497 case ARMFault_Alignment:
498 fsc = 0x21;
499 break;
500 case ARMFault_Debug:
501 fsc = 0x22;
502 break;
503 case ARMFault_TLBConflict:
504 fsc = 0x30;
505 break;
506 case ARMFault_Lockdown:
507 fsc = 0x34;
508 break;
509 case ARMFault_Exclusive:
510 fsc = 0x35;
511 break;
512 default:
513 /* Other faults can't occur in a context that requires a
514 * long-format status code.
516 g_assert_not_reached();
519 fsc |= 1 << 9;
520 return fsc;
523 static inline bool arm_extabort_type(MemTxResult result)
525 /* The EA bit in syndromes and fault status registers is an
526 * IMPDEF classification of external aborts. ARM implementations
527 * usually use this to indicate AXI bus Decode error (0) or
528 * Slave error (1); in QEMU we follow that.
530 return result != MEMTX_DECODE_ERROR;
533 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
534 MMUAccessType access_type, int mmu_idx,
535 bool probe, uintptr_t retaddr);
537 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
539 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
542 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
544 if (arm_feature(env, ARM_FEATURE_M)) {
545 return mmu_idx | ARM_MMU_IDX_M;
546 } else {
547 return mmu_idx | ARM_MMU_IDX_A;
551 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
553 /* AArch64 is always a-profile. */
554 return mmu_idx | ARM_MMU_IDX_A;
557 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
560 * Return the MMU index for a v7M CPU with all relevant information
561 * manually specified.
563 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
564 bool secstate, bool priv, bool negpri);
567 * Return the MMU index for a v7M CPU in the specified security and
568 * privilege state.
570 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
571 bool secstate, bool priv);
573 /* Return the MMU index for a v7M CPU in the specified security state */
574 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
576 /* Return true if the stage 1 translation regime is using LPAE format page
577 * tables */
578 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
580 /* Raise a data fault alignment exception for the specified virtual address */
581 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
582 MMUAccessType access_type,
583 int mmu_idx, uintptr_t retaddr);
585 /* arm_cpu_do_transaction_failed: handle a memory system error response
586 * (eg "no device/memory present at address") by raising an external abort
587 * exception
589 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
590 vaddr addr, unsigned size,
591 MMUAccessType access_type,
592 int mmu_idx, MemTxAttrs attrs,
593 MemTxResult response, uintptr_t retaddr);
595 /* Call any registered EL change hooks */
596 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
598 ARMELChangeHook *hook, *next;
599 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
600 hook->hook(cpu, hook->opaque);
603 static inline void arm_call_el_change_hook(ARMCPU *cpu)
605 ARMELChangeHook *hook, *next;
606 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
607 hook->hook(cpu, hook->opaque);
611 /* Return true if this address translation regime has two ranges. */
612 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
614 switch (mmu_idx) {
615 case ARMMMUIdx_Stage1_E0:
616 case ARMMMUIdx_Stage1_E1:
617 case ARMMMUIdx_Stage1_E1_PAN:
618 case ARMMMUIdx_Stage1_SE0:
619 case ARMMMUIdx_Stage1_SE1:
620 case ARMMMUIdx_Stage1_SE1_PAN:
621 case ARMMMUIdx_E10_0:
622 case ARMMMUIdx_E10_1:
623 case ARMMMUIdx_E10_1_PAN:
624 case ARMMMUIdx_E20_0:
625 case ARMMMUIdx_E20_2:
626 case ARMMMUIdx_E20_2_PAN:
627 case ARMMMUIdx_SE10_0:
628 case ARMMMUIdx_SE10_1:
629 case ARMMMUIdx_SE10_1_PAN:
630 case ARMMMUIdx_SE20_0:
631 case ARMMMUIdx_SE20_2:
632 case ARMMMUIdx_SE20_2_PAN:
633 return true;
634 default:
635 return false;
639 /* Return true if this address translation regime is secure */
640 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
642 switch (mmu_idx) {
643 case ARMMMUIdx_E10_0:
644 case ARMMMUIdx_E10_1:
645 case ARMMMUIdx_E10_1_PAN:
646 case ARMMMUIdx_E20_0:
647 case ARMMMUIdx_E20_2:
648 case ARMMMUIdx_E20_2_PAN:
649 case ARMMMUIdx_Stage1_E0:
650 case ARMMMUIdx_Stage1_E1:
651 case ARMMMUIdx_Stage1_E1_PAN:
652 case ARMMMUIdx_E2:
653 case ARMMMUIdx_Stage2:
654 case ARMMMUIdx_MPrivNegPri:
655 case ARMMMUIdx_MUserNegPri:
656 case ARMMMUIdx_MPriv:
657 case ARMMMUIdx_MUser:
658 return false;
659 case ARMMMUIdx_SE3:
660 case ARMMMUIdx_SE10_0:
661 case ARMMMUIdx_SE10_1:
662 case ARMMMUIdx_SE10_1_PAN:
663 case ARMMMUIdx_SE20_0:
664 case ARMMMUIdx_SE20_2:
665 case ARMMMUIdx_SE20_2_PAN:
666 case ARMMMUIdx_Stage1_SE0:
667 case ARMMMUIdx_Stage1_SE1:
668 case ARMMMUIdx_Stage1_SE1_PAN:
669 case ARMMMUIdx_SE2:
670 case ARMMMUIdx_Stage2_S:
671 case ARMMMUIdx_MSPrivNegPri:
672 case ARMMMUIdx_MSUserNegPri:
673 case ARMMMUIdx_MSPriv:
674 case ARMMMUIdx_MSUser:
675 return true;
676 default:
677 g_assert_not_reached();
681 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
683 switch (mmu_idx) {
684 case ARMMMUIdx_Stage1_E1_PAN:
685 case ARMMMUIdx_Stage1_SE1_PAN:
686 case ARMMMUIdx_E10_1_PAN:
687 case ARMMMUIdx_E20_2_PAN:
688 case ARMMMUIdx_SE10_1_PAN:
689 case ARMMMUIdx_SE20_2_PAN:
690 return true;
691 default:
692 return false;
696 /* Return the exception level which controls this address translation regime */
697 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
699 switch (mmu_idx) {
700 case ARMMMUIdx_SE20_0:
701 case ARMMMUIdx_SE20_2:
702 case ARMMMUIdx_SE20_2_PAN:
703 case ARMMMUIdx_E20_0:
704 case ARMMMUIdx_E20_2:
705 case ARMMMUIdx_E20_2_PAN:
706 case ARMMMUIdx_Stage2:
707 case ARMMMUIdx_Stage2_S:
708 case ARMMMUIdx_SE2:
709 case ARMMMUIdx_E2:
710 return 2;
711 case ARMMMUIdx_SE3:
712 return 3;
713 case ARMMMUIdx_SE10_0:
714 case ARMMMUIdx_Stage1_SE0:
715 return arm_el_is_aa64(env, 3) ? 1 : 3;
716 case ARMMMUIdx_SE10_1:
717 case ARMMMUIdx_SE10_1_PAN:
718 case ARMMMUIdx_Stage1_E0:
719 case ARMMMUIdx_Stage1_E1:
720 case ARMMMUIdx_Stage1_E1_PAN:
721 case ARMMMUIdx_Stage1_SE1:
722 case ARMMMUIdx_Stage1_SE1_PAN:
723 case ARMMMUIdx_E10_0:
724 case ARMMMUIdx_E10_1:
725 case ARMMMUIdx_E10_1_PAN:
726 case ARMMMUIdx_MPrivNegPri:
727 case ARMMMUIdx_MUserNegPri:
728 case ARMMMUIdx_MPriv:
729 case ARMMMUIdx_MUser:
730 case ARMMMUIdx_MSPrivNegPri:
731 case ARMMMUIdx_MSUserNegPri:
732 case ARMMMUIdx_MSPriv:
733 case ARMMMUIdx_MSUser:
734 return 1;
735 default:
736 g_assert_not_reached();
740 /* Return the TCR controlling this translation regime */
741 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
743 if (mmu_idx == ARMMMUIdx_Stage2) {
744 return &env->cp15.vtcr_el2;
746 if (mmu_idx == ARMMMUIdx_Stage2_S) {
748 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
749 * those are not currently used by QEMU, so just return VSTCR_EL2.
751 return &env->cp15.vstcr_el2;
753 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
756 /* Return the FSR value for a debug exception (watchpoint, hardware
757 * breakpoint or BKPT insn) targeting the specified exception level.
759 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
761 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
762 int target_el = arm_debug_target_el(env);
763 bool using_lpae = false;
765 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
766 using_lpae = true;
767 } else {
768 if (arm_feature(env, ARM_FEATURE_LPAE) &&
769 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
770 using_lpae = true;
774 if (using_lpae) {
775 return arm_fi_to_lfsc(&fi);
776 } else {
777 return arm_fi_to_sfsc(&fi);
782 * arm_num_brps: Return number of implemented breakpoints.
783 * Note that the ID register BRPS field is "number of bps - 1",
784 * and we return the actual number of breakpoints.
786 static inline int arm_num_brps(ARMCPU *cpu)
788 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
789 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
790 } else {
791 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
796 * arm_num_wrps: Return number of implemented watchpoints.
797 * Note that the ID register WRPS field is "number of wps - 1",
798 * and we return the actual number of watchpoints.
800 static inline int arm_num_wrps(ARMCPU *cpu)
802 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
803 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
804 } else {
805 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
810 * arm_num_ctx_cmps: Return number of implemented context comparators.
811 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
812 * and we return the actual number of comparators.
814 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
816 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
817 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
818 } else {
819 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
824 * v7m_using_psp: Return true if using process stack pointer
825 * Return true if the CPU is currently using the process stack
826 * pointer, or false if it is using the main stack pointer.
828 static inline bool v7m_using_psp(CPUARMState *env)
830 /* Handler mode always uses the main stack; for thread mode
831 * the CONTROL.SPSEL bit determines the answer.
832 * Note that in v7M it is not possible to be in Handler mode with
833 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
835 return !arm_v7m_is_handler_mode(env) &&
836 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
840 * v7m_sp_limit: Return SP limit for current CPU state
841 * Return the SP limit value for the current CPU security state
842 * and stack pointer.
844 static inline uint32_t v7m_sp_limit(CPUARMState *env)
846 if (v7m_using_psp(env)) {
847 return env->v7m.psplim[env->v7m.secure];
848 } else {
849 return env->v7m.msplim[env->v7m.secure];
854 * v7m_cpacr_pass:
855 * Return true if the v7M CPACR permits access to the FPU for the specified
856 * security state and privilege level.
858 static inline bool v7m_cpacr_pass(CPUARMState *env,
859 bool is_secure, bool is_priv)
861 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
862 case 0:
863 case 2: /* UNPREDICTABLE: we treat like 0 */
864 return false;
865 case 1:
866 return is_priv;
867 case 3:
868 return true;
869 default:
870 g_assert_not_reached();
875 * aarch32_mode_name(): Return name of the AArch32 CPU mode
876 * @psr: Program Status Register indicating CPU mode
878 * Returns, for debug logging purposes, a printable representation
879 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
880 * the low bits of the specified PSR.
882 static inline const char *aarch32_mode_name(uint32_t psr)
884 static const char cpu_mode_names[16][4] = {
885 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
886 "???", "???", "hyp", "und", "???", "???", "???", "sys"
889 return cpu_mode_names[psr & 0xf];
893 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
895 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
896 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
897 * Must be called with the iothread lock held.
899 void arm_cpu_update_virq(ARMCPU *cpu);
902 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
904 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
905 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
906 * Must be called with the iothread lock held.
908 void arm_cpu_update_vfiq(ARMCPU *cpu);
911 * arm_mmu_idx_el:
912 * @env: The cpu environment
913 * @el: The EL to use.
915 * Return the full ARMMMUIdx for the translation regime for EL.
917 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
920 * arm_mmu_idx:
921 * @env: The cpu environment
923 * Return the full ARMMMUIdx for the current translation regime.
925 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
928 * arm_stage1_mmu_idx:
929 * @env: The cpu environment
931 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
933 #ifdef CONFIG_USER_ONLY
934 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
936 return ARMMMUIdx_Stage1_E0;
938 #else
939 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
940 #endif
943 * arm_mmu_idx_is_stage1_of_2:
944 * @mmu_idx: The ARMMMUIdx to test
946 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
947 * first stage of a two stage regime.
949 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
951 switch (mmu_idx) {
952 case ARMMMUIdx_Stage1_E0:
953 case ARMMMUIdx_Stage1_E1:
954 case ARMMMUIdx_Stage1_E1_PAN:
955 case ARMMMUIdx_Stage1_SE0:
956 case ARMMMUIdx_Stage1_SE1:
957 case ARMMMUIdx_Stage1_SE1_PAN:
958 return true;
959 default:
960 return false;
964 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
965 const ARMISARegisters *id)
967 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
969 if ((features >> ARM_FEATURE_V4T) & 1) {
970 valid |= CPSR_T;
972 if ((features >> ARM_FEATURE_V5) & 1) {
973 valid |= CPSR_Q; /* V5TE in reality*/
975 if ((features >> ARM_FEATURE_V6) & 1) {
976 valid |= CPSR_E | CPSR_GE;
978 if ((features >> ARM_FEATURE_THUMB2) & 1) {
979 valid |= CPSR_IT;
981 if (isar_feature_aa32_jazelle(id)) {
982 valid |= CPSR_J;
984 if (isar_feature_aa32_pan(id)) {
985 valid |= CPSR_PAN;
987 if (isar_feature_aa32_dit(id)) {
988 valid |= CPSR_DIT;
990 if (isar_feature_aa32_ssbs(id)) {
991 valid |= CPSR_SSBS;
994 return valid;
997 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
999 uint32_t valid;
1001 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1002 if (isar_feature_aa64_bti(id)) {
1003 valid |= PSTATE_BTYPE;
1005 if (isar_feature_aa64_pan(id)) {
1006 valid |= PSTATE_PAN;
1008 if (isar_feature_aa64_uao(id)) {
1009 valid |= PSTATE_UAO;
1011 if (isar_feature_aa64_dit(id)) {
1012 valid |= PSTATE_DIT;
1014 if (isar_feature_aa64_ssbs(id)) {
1015 valid |= PSTATE_SSBS;
1017 if (isar_feature_aa64_mte(id)) {
1018 valid |= PSTATE_TCO;
1021 return valid;
1025 * Parameters of a given virtual address, as extracted from the
1026 * translation control register (TCR) for a given regime.
1028 typedef struct ARMVAParameters {
1029 unsigned tsz : 8;
1030 unsigned select : 1;
1031 bool tbi : 1;
1032 bool epd : 1;
1033 bool hpd : 1;
1034 bool using16k : 1;
1035 bool using64k : 1;
1036 } ARMVAParameters;
1038 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1039 ARMMMUIdx mmu_idx, bool data);
1041 static inline int exception_target_el(CPUARMState *env)
1043 int target_el = MAX(1, arm_current_el(env));
1046 * No such thing as secure EL1 if EL3 is aarch32,
1047 * so update the target EL to EL3 in this case.
1049 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1050 target_el = 3;
1053 return target_el;
1056 /* Determine if allocation tags are available. */
1057 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1058 uint64_t sctlr)
1060 if (el < 3
1061 && arm_feature(env, ARM_FEATURE_EL3)
1062 && !(env->cp15.scr_el3 & SCR_ATA)) {
1063 return false;
1065 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1066 uint64_t hcr = arm_hcr_el2_eff(env);
1067 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1068 return false;
1071 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1072 return sctlr != 0;
1075 #ifndef CONFIG_USER_ONLY
1077 /* Security attributes for an address, as returned by v8m_security_lookup. */
1078 typedef struct V8M_SAttributes {
1079 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1080 bool ns;
1081 bool nsc;
1082 uint8_t sregion;
1083 bool srvalid;
1084 uint8_t iregion;
1085 bool irvalid;
1086 } V8M_SAttributes;
1088 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1089 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1090 V8M_SAttributes *sattrs);
1092 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1093 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1094 hwaddr *phys_ptr, MemTxAttrs *txattrs,
1095 int *prot, bool *is_subpage,
1096 ARMMMUFaultInfo *fi, uint32_t *mregion);
1098 /* Cacheability and shareability attributes for a memory access */
1099 typedef struct ARMCacheAttrs {
1100 unsigned int attrs:8; /* as in the MAIR register encoding */
1101 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1102 } ARMCacheAttrs;
1104 bool get_phys_addr(CPUARMState *env, target_ulong address,
1105 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1106 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1107 target_ulong *page_size,
1108 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1109 __attribute__((nonnull));
1111 void arm_log_exception(int idx);
1113 #endif /* !CONFIG_USER_ONLY */
1116 * The log2 of the words in the tag block, for GMID_EL1.BS.
1117 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1119 #define GMID_EL1_BS 6
1121 /* We associate one allocation tag per 16 bytes, the minimum. */
1122 #define LOG2_TAG_GRANULE 4
1123 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
1126 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1127 * the same simd_desc() encoding due to restrictions on size.
1128 * Use these instead.
1130 FIELD(PREDDESC, OPRSZ, 0, 6)
1131 FIELD(PREDDESC, ESZ, 6, 2)
1132 FIELD(PREDDESC, DATA, 8, 24)
1135 * The SVE simd_data field, for memory ops, contains either
1136 * rd (5 bits) or a shift count (2 bits).
1138 #define SVE_MTEDESC_SHIFT 5
1140 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1141 FIELD(MTEDESC, MIDX, 0, 4)
1142 FIELD(MTEDESC, TBI, 4, 2)
1143 FIELD(MTEDESC, TCMA, 6, 2)
1144 FIELD(MTEDESC, WRITE, 8, 1)
1145 FIELD(MTEDESC, ESIZE, 9, 5)
1146 FIELD(MTEDESC, TSIZE, 14, 10) /* mte_checkN only */
1148 bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr);
1149 uint64_t mte_check1(CPUARMState *env, uint32_t desc,
1150 uint64_t ptr, uintptr_t ra);
1151 uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
1152 uint64_t ptr, uintptr_t ra);
1154 static inline int allocation_tag_from_addr(uint64_t ptr)
1156 return extract64(ptr, 56, 4);
1159 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1161 return deposit64(ptr, 56, 4, rtag);
1164 /* Return true if tbi bits mean that the access is checked. */
1165 static inline bool tbi_check(uint32_t desc, int bit55)
1167 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1170 /* Return true if tcma bits mean that the access is unchecked. */
1171 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1174 * We had extracted bit55 and ptr_tag for other reasons, so fold
1175 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1177 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1178 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1179 return tcma && match;
1183 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1184 * for the tag to be present in the FAR_ELx register. But for user-only
1185 * mode, we do not have a TLB with which to implement this, so we must
1186 * remove the top byte.
1188 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1190 #ifdef CONFIG_USER_ONLY
1191 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1192 ptr &= sextract64(ptr, 0, 56);
1193 #endif
1194 return ptr;
1197 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1199 #ifdef CONFIG_USER_ONLY
1200 int64_t clean_ptr = sextract64(ptr, 0, 56);
1201 if (tbi_check(desc, clean_ptr < 0)) {
1202 ptr = clean_ptr;
1204 #endif
1205 return ptr;
1208 #endif