nbd/client: Add meta contexts to nbd_receive_export_list()
[qemu/ar7.git] / accel / tcg / softmmu_template.h
blobb0adea045e91710a3b76d7c487eb851160fe3733
1 /*
2 * Software MMU support
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #if DATA_SIZE == 8
25 #define SUFFIX q
26 #define LSUFFIX q
27 #define SDATA_TYPE int64_t
28 #define DATA_TYPE uint64_t
29 #elif DATA_SIZE == 4
30 #define SUFFIX l
31 #define LSUFFIX l
32 #define SDATA_TYPE int32_t
33 #define DATA_TYPE uint32_t
34 #elif DATA_SIZE == 2
35 #define SUFFIX w
36 #define LSUFFIX uw
37 #define SDATA_TYPE int16_t
38 #define DATA_TYPE uint16_t
39 #elif DATA_SIZE == 1
40 #define SUFFIX b
41 #define LSUFFIX ub
42 #define SDATA_TYPE int8_t
43 #define DATA_TYPE uint8_t
44 #else
45 #error unsupported data size
46 #endif
49 /* For the benefit of TCG generated code, we want to avoid the complication
50 of ABI-specific return type promotion and always return a value extended
51 to the register size of the host. This is tcg_target_long, except in the
52 case of a 32-bit host and 64-bit data, and for that we always have
53 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
54 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
55 # define WORD_TYPE DATA_TYPE
56 # define USUFFIX SUFFIX
57 #else
58 # define WORD_TYPE tcg_target_ulong
59 # define USUFFIX glue(u, SUFFIX)
60 # define SSUFFIX glue(s, SUFFIX)
61 #endif
63 #ifdef SOFTMMU_CODE_ACCESS
64 #define READ_ACCESS_TYPE MMU_INST_FETCH
65 #define ADDR_READ addr_code
66 #else
67 #define READ_ACCESS_TYPE MMU_DATA_LOAD
68 #define ADDR_READ addr_read
69 #endif
71 #if DATA_SIZE == 8
72 # define BSWAP(X) bswap64(X)
73 #elif DATA_SIZE == 4
74 # define BSWAP(X) bswap32(X)
75 #elif DATA_SIZE == 2
76 # define BSWAP(X) bswap16(X)
77 #else
78 # define BSWAP(X) (X)
79 #endif
81 #if DATA_SIZE == 1
82 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
83 # define helper_be_ld_name helper_le_ld_name
84 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
85 # define helper_be_lds_name helper_le_lds_name
86 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
87 # define helper_be_st_name helper_le_st_name
88 #else
89 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
90 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
91 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
92 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
93 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
94 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
95 #endif
97 #ifndef SOFTMMU_CODE_ACCESS
98 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
99 size_t mmu_idx, size_t index,
100 target_ulong addr,
101 uintptr_t retaddr,
102 bool recheck,
103 MMUAccessType access_type)
105 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
106 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, recheck,
107 access_type, DATA_SIZE);
109 #endif
111 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
112 TCGMemOpIdx oi, uintptr_t retaddr)
114 uintptr_t mmu_idx = get_mmuidx(oi);
115 uintptr_t index = tlb_index(env, mmu_idx, addr);
116 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
117 target_ulong tlb_addr = entry->ADDR_READ;
118 unsigned a_bits = get_alignment_bits(get_memop(oi));
119 uintptr_t haddr;
120 DATA_TYPE res;
122 if (addr & ((1 << a_bits) - 1)) {
123 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
124 mmu_idx, retaddr);
127 /* If the TLB entry is for a different page, reload and try again. */
128 if (!tlb_hit(tlb_addr, addr)) {
129 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
130 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
131 mmu_idx, retaddr);
133 tlb_addr = entry->ADDR_READ;
136 /* Handle an IO access. */
137 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
138 if ((addr & (DATA_SIZE - 1)) != 0) {
139 goto do_unaligned_access;
142 /* ??? Note that the io helpers always read data in the target
143 byte ordering. We should push the LE/BE request down into io. */
144 res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
145 tlb_addr & TLB_RECHECK,
146 READ_ACCESS_TYPE);
147 res = TGT_LE(res);
148 return res;
151 /* Handle slow unaligned access (it spans two pages or IO). */
152 if (DATA_SIZE > 1
153 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
154 >= TARGET_PAGE_SIZE)) {
155 target_ulong addr1, addr2;
156 DATA_TYPE res1, res2;
157 unsigned shift;
158 do_unaligned_access:
159 addr1 = addr & ~(DATA_SIZE - 1);
160 addr2 = addr1 + DATA_SIZE;
161 res1 = helper_le_ld_name(env, addr1, oi, retaddr);
162 res2 = helper_le_ld_name(env, addr2, oi, retaddr);
163 shift = (addr & (DATA_SIZE - 1)) * 8;
165 /* Little-endian combine. */
166 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
167 return res;
170 haddr = addr + entry->addend;
171 #if DATA_SIZE == 1
172 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
173 #else
174 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
175 #endif
176 return res;
179 #if DATA_SIZE > 1
180 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
181 TCGMemOpIdx oi, uintptr_t retaddr)
183 uintptr_t mmu_idx = get_mmuidx(oi);
184 uintptr_t index = tlb_index(env, mmu_idx, addr);
185 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
186 target_ulong tlb_addr = entry->ADDR_READ;
187 unsigned a_bits = get_alignment_bits(get_memop(oi));
188 uintptr_t haddr;
189 DATA_TYPE res;
191 if (addr & ((1 << a_bits) - 1)) {
192 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
193 mmu_idx, retaddr);
196 /* If the TLB entry is for a different page, reload and try again. */
197 if (!tlb_hit(tlb_addr, addr)) {
198 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
199 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
200 mmu_idx, retaddr);
202 tlb_addr = entry->ADDR_READ;
205 /* Handle an IO access. */
206 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
207 if ((addr & (DATA_SIZE - 1)) != 0) {
208 goto do_unaligned_access;
211 /* ??? Note that the io helpers always read data in the target
212 byte ordering. We should push the LE/BE request down into io. */
213 res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
214 tlb_addr & TLB_RECHECK,
215 READ_ACCESS_TYPE);
216 res = TGT_BE(res);
217 return res;
220 /* Handle slow unaligned access (it spans two pages or IO). */
221 if (DATA_SIZE > 1
222 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
223 >= TARGET_PAGE_SIZE)) {
224 target_ulong addr1, addr2;
225 DATA_TYPE res1, res2;
226 unsigned shift;
227 do_unaligned_access:
228 addr1 = addr & ~(DATA_SIZE - 1);
229 addr2 = addr1 + DATA_SIZE;
230 res1 = helper_be_ld_name(env, addr1, oi, retaddr);
231 res2 = helper_be_ld_name(env, addr2, oi, retaddr);
232 shift = (addr & (DATA_SIZE - 1)) * 8;
234 /* Big-endian combine. */
235 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
236 return res;
239 haddr = addr + entry->addend;
240 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
241 return res;
243 #endif /* DATA_SIZE > 1 */
245 #ifndef SOFTMMU_CODE_ACCESS
247 /* Provide signed versions of the load routines as well. We can of course
248 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
249 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
250 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
251 TCGMemOpIdx oi, uintptr_t retaddr)
253 return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
256 # if DATA_SIZE > 1
257 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
258 TCGMemOpIdx oi, uintptr_t retaddr)
260 return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
262 # endif
263 #endif
265 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
266 size_t mmu_idx, size_t index,
267 DATA_TYPE val,
268 target_ulong addr,
269 uintptr_t retaddr,
270 bool recheck)
272 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
273 return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
274 recheck, DATA_SIZE);
277 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
278 TCGMemOpIdx oi, uintptr_t retaddr)
280 uintptr_t mmu_idx = get_mmuidx(oi);
281 uintptr_t index = tlb_index(env, mmu_idx, addr);
282 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
283 target_ulong tlb_addr = tlb_addr_write(entry);
284 unsigned a_bits = get_alignment_bits(get_memop(oi));
285 uintptr_t haddr;
287 if (addr & ((1 << a_bits) - 1)) {
288 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
289 mmu_idx, retaddr);
292 /* If the TLB entry is for a different page, reload and try again. */
293 if (!tlb_hit(tlb_addr, addr)) {
294 if (!VICTIM_TLB_HIT(addr_write, addr)) {
295 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
296 mmu_idx, retaddr);
298 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
301 /* Handle an IO access. */
302 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
303 if ((addr & (DATA_SIZE - 1)) != 0) {
304 goto do_unaligned_access;
307 /* ??? Note that the io helpers always read data in the target
308 byte ordering. We should push the LE/BE request down into io. */
309 val = TGT_LE(val);
310 glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr,
311 retaddr, tlb_addr & TLB_RECHECK);
312 return;
315 /* Handle slow unaligned access (it spans two pages or IO). */
316 if (DATA_SIZE > 1
317 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
318 >= TARGET_PAGE_SIZE)) {
319 int i;
320 target_ulong page2;
321 CPUTLBEntry *entry2;
322 do_unaligned_access:
323 /* Ensure the second page is in the TLB. Note that the first page
324 is already guaranteed to be filled, and that the second page
325 cannot evict the first. */
326 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
327 entry2 = tlb_entry(env, mmu_idx, page2);
328 if (!tlb_hit_page(tlb_addr_write(entry2), page2)
329 && !VICTIM_TLB_HIT(addr_write, page2)) {
330 tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
331 mmu_idx, retaddr);
334 /* XXX: not efficient, but simple. */
335 /* This loop must go in the forward direction to avoid issues
336 with self-modifying code in Windows 64-bit. */
337 for (i = 0; i < DATA_SIZE; ++i) {
338 /* Little-endian extract. */
339 uint8_t val8 = val >> (i * 8);
340 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
341 oi, retaddr);
343 return;
346 haddr = addr + entry->addend;
347 #if DATA_SIZE == 1
348 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
349 #else
350 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
351 #endif
354 #if DATA_SIZE > 1
355 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
356 TCGMemOpIdx oi, uintptr_t retaddr)
358 uintptr_t mmu_idx = get_mmuidx(oi);
359 uintptr_t index = tlb_index(env, mmu_idx, addr);
360 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
361 target_ulong tlb_addr = tlb_addr_write(entry);
362 unsigned a_bits = get_alignment_bits(get_memop(oi));
363 uintptr_t haddr;
365 if (addr & ((1 << a_bits) - 1)) {
366 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
367 mmu_idx, retaddr);
370 /* If the TLB entry is for a different page, reload and try again. */
371 if (!tlb_hit(tlb_addr, addr)) {
372 if (!VICTIM_TLB_HIT(addr_write, addr)) {
373 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
374 mmu_idx, retaddr);
376 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
379 /* Handle an IO access. */
380 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
381 if ((addr & (DATA_SIZE - 1)) != 0) {
382 goto do_unaligned_access;
385 /* ??? Note that the io helpers always read data in the target
386 byte ordering. We should push the LE/BE request down into io. */
387 val = TGT_BE(val);
388 glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr,
389 tlb_addr & TLB_RECHECK);
390 return;
393 /* Handle slow unaligned access (it spans two pages or IO). */
394 if (DATA_SIZE > 1
395 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
396 >= TARGET_PAGE_SIZE)) {
397 int i;
398 target_ulong page2;
399 CPUTLBEntry *entry2;
400 do_unaligned_access:
401 /* Ensure the second page is in the TLB. Note that the first page
402 is already guaranteed to be filled, and that the second page
403 cannot evict the first. */
404 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
405 entry2 = tlb_entry(env, mmu_idx, page2);
406 if (!tlb_hit_page(tlb_addr_write(entry2), page2)
407 && !VICTIM_TLB_HIT(addr_write, page2)) {
408 tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
409 mmu_idx, retaddr);
412 /* XXX: not efficient, but simple */
413 /* This loop must go in the forward direction to avoid issues
414 with self-modifying code. */
415 for (i = 0; i < DATA_SIZE; ++i) {
416 /* Big-endian extract. */
417 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
418 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
419 oi, retaddr);
421 return;
424 haddr = addr + entry->addend;
425 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
427 #endif /* DATA_SIZE > 1 */
428 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
430 #undef READ_ACCESS_TYPE
431 #undef DATA_TYPE
432 #undef SUFFIX
433 #undef LSUFFIX
434 #undef DATA_SIZE
435 #undef ADDR_READ
436 #undef WORD_TYPE
437 #undef SDATA_TYPE
438 #undef USUFFIX
439 #undef SSUFFIX
440 #undef BSWAP
441 #undef helper_le_ld_name
442 #undef helper_be_ld_name
443 #undef helper_le_lds_name
444 #undef helper_be_lds_name
445 #undef helper_le_st_name
446 #undef helper_be_st_name