configure: add --enable-tsan flag + fiber annotations for coroutine-ucontext
[qemu/ar7.git] / cpus-common.c
blob70a9d12981a243fd8134cabcb6a93002f00c3726
1 /*
2 * CPU thread main loop - common bits for user and system mode emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "sysemu/cpus.h"
25 #include "qemu/lockable.h"
27 static QemuMutex qemu_cpu_list_lock;
28 static QemuCond exclusive_cond;
29 static QemuCond exclusive_resume;
30 static QemuCond qemu_work_cond;
32 /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
33 * under qemu_cpu_list_lock, read with atomic operations.
35 static int pending_cpus;
37 void qemu_init_cpu_list(void)
39 /* This is needed because qemu_init_cpu_list is also called by the
40 * child process in a fork. */
41 pending_cpus = 0;
43 qemu_mutex_init(&qemu_cpu_list_lock);
44 qemu_cond_init(&exclusive_cond);
45 qemu_cond_init(&exclusive_resume);
46 qemu_cond_init(&qemu_work_cond);
49 void cpu_list_lock(void)
51 qemu_mutex_lock(&qemu_cpu_list_lock);
54 void cpu_list_unlock(void)
56 qemu_mutex_unlock(&qemu_cpu_list_lock);
59 static bool cpu_index_auto_assigned;
61 static int cpu_get_free_index(void)
63 CPUState *some_cpu;
64 int max_cpu_index = 0;
66 cpu_index_auto_assigned = true;
67 CPU_FOREACH(some_cpu) {
68 if (some_cpu->cpu_index >= max_cpu_index) {
69 max_cpu_index = some_cpu->cpu_index + 1;
72 return max_cpu_index;
75 void cpu_list_add(CPUState *cpu)
77 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
78 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
79 cpu->cpu_index = cpu_get_free_index();
80 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
81 } else {
82 assert(!cpu_index_auto_assigned);
84 QTAILQ_INSERT_TAIL_RCU(&cpus, cpu, node);
87 void cpu_list_remove(CPUState *cpu)
89 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
90 if (!QTAILQ_IN_USE(cpu, node)) {
91 /* there is nothing to undo since cpu_exec_init() hasn't been called */
92 return;
95 QTAILQ_REMOVE_RCU(&cpus, cpu, node);
96 cpu->cpu_index = UNASSIGNED_CPU_INDEX;
99 struct qemu_work_item {
100 struct qemu_work_item *next;
101 run_on_cpu_func func;
102 run_on_cpu_data data;
103 bool free, exclusive, done;
106 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
108 qemu_mutex_lock(&cpu->work_mutex);
109 if (cpu->queued_work_first == NULL) {
110 cpu->queued_work_first = wi;
111 } else {
112 cpu->queued_work_last->next = wi;
114 cpu->queued_work_last = wi;
115 wi->next = NULL;
116 wi->done = false;
117 qemu_mutex_unlock(&cpu->work_mutex);
119 qemu_cpu_kick(cpu);
122 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
123 QemuMutex *mutex)
125 struct qemu_work_item wi;
127 if (qemu_cpu_is_self(cpu)) {
128 func(cpu, data);
129 return;
132 wi.func = func;
133 wi.data = data;
134 wi.done = false;
135 wi.free = false;
136 wi.exclusive = false;
138 queue_work_on_cpu(cpu, &wi);
139 while (!atomic_mb_read(&wi.done)) {
140 CPUState *self_cpu = current_cpu;
142 qemu_cond_wait(&qemu_work_cond, mutex);
143 current_cpu = self_cpu;
147 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
149 struct qemu_work_item *wi;
151 wi = g_malloc0(sizeof(struct qemu_work_item));
152 wi->func = func;
153 wi->data = data;
154 wi->free = true;
156 queue_work_on_cpu(cpu, wi);
159 /* Wait for pending exclusive operations to complete. The CPU list lock
160 must be held. */
161 static inline void exclusive_idle(void)
163 while (pending_cpus) {
164 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
168 /* Start an exclusive operation.
169 Must only be called from outside cpu_exec. */
170 void start_exclusive(void)
172 CPUState *other_cpu;
173 int running_cpus;
175 qemu_mutex_lock(&qemu_cpu_list_lock);
176 exclusive_idle();
178 /* Make all other cpus stop executing. */
179 atomic_set(&pending_cpus, 1);
181 /* Write pending_cpus before reading other_cpu->running. */
182 smp_mb();
183 running_cpus = 0;
184 CPU_FOREACH(other_cpu) {
185 if (atomic_read(&other_cpu->running)) {
186 other_cpu->has_waiter = true;
187 running_cpus++;
188 qemu_cpu_kick(other_cpu);
192 atomic_set(&pending_cpus, running_cpus + 1);
193 while (pending_cpus > 1) {
194 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
197 /* Can release mutex, no one will enter another exclusive
198 * section until end_exclusive resets pending_cpus to 0.
200 qemu_mutex_unlock(&qemu_cpu_list_lock);
202 current_cpu->in_exclusive_context = true;
205 /* Finish an exclusive operation. */
206 void end_exclusive(void)
208 current_cpu->in_exclusive_context = false;
210 qemu_mutex_lock(&qemu_cpu_list_lock);
211 atomic_set(&pending_cpus, 0);
212 qemu_cond_broadcast(&exclusive_resume);
213 qemu_mutex_unlock(&qemu_cpu_list_lock);
216 /* Wait for exclusive ops to finish, and begin cpu execution. */
217 void cpu_exec_start(CPUState *cpu)
219 atomic_set(&cpu->running, true);
221 /* Write cpu->running before reading pending_cpus. */
222 smp_mb();
224 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
225 * After taking the lock we'll see cpu->has_waiter == true and run---not
226 * for long because start_exclusive kicked us. cpu_exec_end will
227 * decrement pending_cpus and signal the waiter.
229 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
230 * This includes the case when an exclusive item is running now.
231 * Then we'll see cpu->has_waiter == false and wait for the item to
232 * complete.
234 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
235 * see cpu->running == true, and it will kick the CPU.
237 if (unlikely(atomic_read(&pending_cpus))) {
238 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
239 if (!cpu->has_waiter) {
240 /* Not counted in pending_cpus, let the exclusive item
241 * run. Since we have the lock, just set cpu->running to true
242 * while holding it; no need to check pending_cpus again.
244 atomic_set(&cpu->running, false);
245 exclusive_idle();
246 /* Now pending_cpus is zero. */
247 atomic_set(&cpu->running, true);
248 } else {
249 /* Counted in pending_cpus, go ahead and release the
250 * waiter at cpu_exec_end.
256 /* Mark cpu as not executing, and release pending exclusive ops. */
257 void cpu_exec_end(CPUState *cpu)
259 atomic_set(&cpu->running, false);
261 /* Write cpu->running before reading pending_cpus. */
262 smp_mb();
264 /* 1. start_exclusive saw cpu->running == true. Then it will increment
265 * pending_cpus and wait for exclusive_cond. After taking the lock
266 * we'll see cpu->has_waiter == true.
268 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
269 * This includes the case when an exclusive item started after setting
270 * cpu->running to false and before we read pending_cpus. Then we'll see
271 * cpu->has_waiter == false and not touch pending_cpus. The next call to
272 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
273 * for the item to complete.
275 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
276 * see cpu->running == false, and it can ignore this CPU until the
277 * next cpu_exec_start.
279 if (unlikely(atomic_read(&pending_cpus))) {
280 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
281 if (cpu->has_waiter) {
282 cpu->has_waiter = false;
283 atomic_set(&pending_cpus, pending_cpus - 1);
284 if (pending_cpus == 1) {
285 qemu_cond_signal(&exclusive_cond);
291 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
292 run_on_cpu_data data)
294 struct qemu_work_item *wi;
296 wi = g_malloc0(sizeof(struct qemu_work_item));
297 wi->func = func;
298 wi->data = data;
299 wi->free = true;
300 wi->exclusive = true;
302 queue_work_on_cpu(cpu, wi);
305 void process_queued_cpu_work(CPUState *cpu)
307 struct qemu_work_item *wi;
309 if (cpu->queued_work_first == NULL) {
310 return;
313 qemu_mutex_lock(&cpu->work_mutex);
314 while (cpu->queued_work_first != NULL) {
315 wi = cpu->queued_work_first;
316 cpu->queued_work_first = wi->next;
317 if (!cpu->queued_work_first) {
318 cpu->queued_work_last = NULL;
320 qemu_mutex_unlock(&cpu->work_mutex);
321 if (wi->exclusive) {
322 /* Running work items outside the BQL avoids the following deadlock:
323 * 1) start_exclusive() is called with the BQL taken while another
324 * CPU is running; 2) cpu_exec in the other CPU tries to takes the
325 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
326 * neither CPU can proceed.
328 qemu_mutex_unlock_iothread();
329 start_exclusive();
330 wi->func(cpu, wi->data);
331 end_exclusive();
332 qemu_mutex_lock_iothread();
333 } else {
334 wi->func(cpu, wi->data);
336 qemu_mutex_lock(&cpu->work_mutex);
337 if (wi->free) {
338 g_free(wi);
339 } else {
340 atomic_mb_set(&wi->done, true);
343 qemu_mutex_unlock(&cpu->work_mutex);
344 qemu_cond_broadcast(&qemu_work_cond);