target/arm/m_helper: Silence GCC 10 maybe-uninitialized error
[qemu/ar7.git] / target / arm / m_helper.c
blob731c435c00b350d6d53de603f6cc021b8414cd01
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 #ifdef CONFIG_TCG
32 #include "arm_ldst.h"
33 #include "exec/cpu_ldst.h"
34 #include "hw/semihosting/common-semi.h"
35 #endif
37 static void v7m_msr_xpsr(CPUARMState *env, uint32_t mask,
38 uint32_t reg, uint32_t val)
40 /* Only APSR is actually writable */
41 if (!(reg & 4)) {
42 uint32_t apsrmask = 0;
44 if (mask & 8) {
45 apsrmask |= XPSR_NZCV | XPSR_Q;
47 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
48 apsrmask |= XPSR_GE;
50 xpsr_write(env, val, apsrmask);
54 static uint32_t v7m_mrs_xpsr(CPUARMState *env, uint32_t reg, unsigned el)
56 uint32_t mask = 0;
58 if ((reg & 1) && el) {
59 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
61 if (!(reg & 4)) {
62 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
63 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
64 mask |= XPSR_GE;
67 /* EPSR reads as zero */
68 return xpsr_read(env) & mask;
71 static uint32_t v7m_mrs_control(CPUARMState *env, uint32_t secure)
73 uint32_t value = env->v7m.control[secure];
75 if (!secure) {
76 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
77 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
79 return value;
82 #ifdef CONFIG_USER_ONLY
84 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
86 uint32_t mask = extract32(maskreg, 8, 4);
87 uint32_t reg = extract32(maskreg, 0, 8);
89 switch (reg) {
90 case 0 ... 7: /* xPSR sub-fields */
91 v7m_msr_xpsr(env, mask, reg, val);
92 break;
93 case 20: /* CONTROL */
94 /* There are no sub-fields that are actually writable from EL0. */
95 break;
96 default:
97 /* Unprivileged writes to other registers are ignored */
98 break;
102 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
104 switch (reg) {
105 case 0 ... 7: /* xPSR sub-fields */
106 return v7m_mrs_xpsr(env, reg, 0);
107 case 20: /* CONTROL */
108 return v7m_mrs_control(env, 0);
109 default:
110 /* Unprivileged reads others as zero. */
111 return 0;
115 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
117 /* translate.c should never generate calls here in user-only mode */
118 g_assert_not_reached();
121 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
123 /* translate.c should never generate calls here in user-only mode */
124 g_assert_not_reached();
127 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
129 /* translate.c should never generate calls here in user-only mode */
130 g_assert_not_reached();
133 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
135 /* translate.c should never generate calls here in user-only mode */
136 g_assert_not_reached();
139 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
141 /* translate.c should never generate calls here in user-only mode */
142 g_assert_not_reached();
145 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
148 * The TT instructions can be used by unprivileged code, but in
149 * user-only emulation we don't have the MPU.
150 * Luckily since we know we are NonSecure unprivileged (and that in
151 * turn means that the A flag wasn't specified), all the bits in the
152 * register must be zero:
153 * IREGION: 0 because IRVALID is 0
154 * IRVALID: 0 because NS
155 * S: 0 because NS
156 * NSRW: 0 because NS
157 * NSR: 0 because NS
158 * RW: 0 because unpriv and A flag not set
159 * R: 0 because unpriv and A flag not set
160 * SRVALID: 0 because NS
161 * MRVALID: 0 because unpriv and A flag not set
162 * SREGION: 0 becaus SRVALID is 0
163 * MREGION: 0 because MRVALID is 0
165 return 0;
168 #else
171 * What kind of stack write are we doing? This affects how exceptions
172 * generated during the stacking are treated.
174 typedef enum StackingMode {
175 STACK_NORMAL,
176 STACK_IGNFAULTS,
177 STACK_LAZYFP,
178 } StackingMode;
180 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
181 ARMMMUIdx mmu_idx, StackingMode mode)
183 CPUState *cs = CPU(cpu);
184 CPUARMState *env = &cpu->env;
185 MemTxAttrs attrs = {};
186 MemTxResult txres;
187 target_ulong page_size;
188 hwaddr physaddr;
189 int prot;
190 ARMMMUFaultInfo fi = {};
191 ARMCacheAttrs cacheattrs = {};
192 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
193 int exc;
194 bool exc_secure;
196 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
197 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
198 /* MPU/SAU lookup failed */
199 if (fi.type == ARMFault_QEMU_SFault) {
200 if (mode == STACK_LAZYFP) {
201 qemu_log_mask(CPU_LOG_INT,
202 "...SecureFault with SFSR.LSPERR "
203 "during lazy stacking\n");
204 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
205 } else {
206 qemu_log_mask(CPU_LOG_INT,
207 "...SecureFault with SFSR.AUVIOL "
208 "during stacking\n");
209 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
211 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
212 env->v7m.sfar = addr;
213 exc = ARMV7M_EXCP_SECURE;
214 exc_secure = false;
215 } else {
216 if (mode == STACK_LAZYFP) {
217 qemu_log_mask(CPU_LOG_INT,
218 "...MemManageFault with CFSR.MLSPERR\n");
219 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
220 } else {
221 qemu_log_mask(CPU_LOG_INT,
222 "...MemManageFault with CFSR.MSTKERR\n");
223 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
225 exc = ARMV7M_EXCP_MEM;
226 exc_secure = secure;
228 goto pend_fault;
230 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
231 attrs, &txres);
232 if (txres != MEMTX_OK) {
233 /* BusFault trying to write the data */
234 if (mode == STACK_LAZYFP) {
235 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
236 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
237 } else {
238 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
239 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
241 exc = ARMV7M_EXCP_BUS;
242 exc_secure = false;
243 goto pend_fault;
245 return true;
247 pend_fault:
249 * By pending the exception at this point we are making
250 * the IMPDEF choice "overridden exceptions pended" (see the
251 * MergeExcInfo() pseudocode). The other choice would be to not
252 * pend them now and then make a choice about which to throw away
253 * later if we have two derived exceptions.
254 * The only case when we must not pend the exception but instead
255 * throw it away is if we are doing the push of the callee registers
256 * and we've already generated a derived exception (this is indicated
257 * by the caller passing STACK_IGNFAULTS). Even in this case we will
258 * still update the fault status registers.
260 switch (mode) {
261 case STACK_NORMAL:
262 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
263 break;
264 case STACK_LAZYFP:
265 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
266 break;
267 case STACK_IGNFAULTS:
268 break;
270 return false;
273 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
274 ARMMMUIdx mmu_idx)
276 CPUState *cs = CPU(cpu);
277 CPUARMState *env = &cpu->env;
278 MemTxAttrs attrs = {};
279 MemTxResult txres;
280 target_ulong page_size;
281 hwaddr physaddr;
282 int prot;
283 ARMMMUFaultInfo fi = {};
284 ARMCacheAttrs cacheattrs = {};
285 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
286 int exc;
287 bool exc_secure;
288 uint32_t value;
290 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
291 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
292 /* MPU/SAU lookup failed */
293 if (fi.type == ARMFault_QEMU_SFault) {
294 qemu_log_mask(CPU_LOG_INT,
295 "...SecureFault with SFSR.AUVIOL during unstack\n");
296 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
297 env->v7m.sfar = addr;
298 exc = ARMV7M_EXCP_SECURE;
299 exc_secure = false;
300 } else {
301 qemu_log_mask(CPU_LOG_INT,
302 "...MemManageFault with CFSR.MUNSTKERR\n");
303 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
304 exc = ARMV7M_EXCP_MEM;
305 exc_secure = secure;
307 goto pend_fault;
310 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
311 attrs, &txres);
312 if (txres != MEMTX_OK) {
313 /* BusFault trying to read the data */
314 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
315 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
316 exc = ARMV7M_EXCP_BUS;
317 exc_secure = false;
318 goto pend_fault;
321 *dest = value;
322 return true;
324 pend_fault:
326 * By pending the exception at this point we are making
327 * the IMPDEF choice "overridden exceptions pended" (see the
328 * MergeExcInfo() pseudocode). The other choice would be to not
329 * pend them now and then make a choice about which to throw away
330 * later if we have two derived exceptions.
332 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
333 return false;
336 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
339 * Preserve FP state (because LSPACT was set and we are about
340 * to execute an FP instruction). This corresponds to the
341 * PreserveFPState() pseudocode.
342 * We may throw an exception if the stacking fails.
344 ARMCPU *cpu = env_archcpu(env);
345 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
346 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
347 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
348 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
349 uint32_t fpcar = env->v7m.fpcar[is_secure];
350 bool stacked_ok = true;
351 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
352 bool take_exception;
354 /* Take the iothread lock as we are going to touch the NVIC */
355 qemu_mutex_lock_iothread();
357 /* Check the background context had access to the FPU */
358 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
359 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
360 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
361 stacked_ok = false;
362 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
363 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
364 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
365 stacked_ok = false;
368 if (!splimviol && stacked_ok) {
369 /* We only stack if the stack limit wasn't violated */
370 int i;
371 ARMMMUIdx mmu_idx;
373 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
374 for (i = 0; i < (ts ? 32 : 16); i += 2) {
375 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
376 uint32_t faddr = fpcar + 4 * i;
377 uint32_t slo = extract64(dn, 0, 32);
378 uint32_t shi = extract64(dn, 32, 32);
380 if (i >= 16) {
381 faddr += 8; /* skip the slot for the FPSCR */
383 stacked_ok = stacked_ok &&
384 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
385 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
388 stacked_ok = stacked_ok &&
389 v7m_stack_write(cpu, fpcar + 0x40,
390 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
394 * We definitely pended an exception, but it's possible that it
395 * might not be able to be taken now. If its priority permits us
396 * to take it now, then we must not update the LSPACT or FP regs,
397 * but instead jump out to take the exception immediately.
398 * If it's just pending and won't be taken until the current
399 * handler exits, then we do update LSPACT and the FP regs.
401 take_exception = !stacked_ok &&
402 armv7m_nvic_can_take_pending_exception(env->nvic);
404 qemu_mutex_unlock_iothread();
406 if (take_exception) {
407 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
410 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
412 if (ts) {
413 /* Clear s0 to s31 and the FPSCR */
414 int i;
416 for (i = 0; i < 32; i += 2) {
417 *aa32_vfp_dreg(env, i / 2) = 0;
419 vfp_set_fpscr(env, 0);
422 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
423 * unchanged.
428 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
429 * This may change the current stack pointer between Main and Process
430 * stack pointers if it is done for the CONTROL register for the current
431 * security state.
433 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
434 bool new_spsel,
435 bool secstate)
437 bool old_is_psp = v7m_using_psp(env);
439 env->v7m.control[secstate] =
440 deposit32(env->v7m.control[secstate],
441 R_V7M_CONTROL_SPSEL_SHIFT,
442 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
444 if (secstate == env->v7m.secure) {
445 bool new_is_psp = v7m_using_psp(env);
446 uint32_t tmp;
448 if (old_is_psp != new_is_psp) {
449 tmp = env->v7m.other_sp;
450 env->v7m.other_sp = env->regs[13];
451 env->regs[13] = tmp;
457 * Write to v7M CONTROL.SPSEL bit. This may change the current
458 * stack pointer between Main and Process stack pointers.
460 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
462 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
465 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
468 * Write a new value to v7m.exception, thus transitioning into or out
469 * of Handler mode; this may result in a change of active stack pointer.
471 bool new_is_psp, old_is_psp = v7m_using_psp(env);
472 uint32_t tmp;
474 env->v7m.exception = new_exc;
476 new_is_psp = v7m_using_psp(env);
478 if (old_is_psp != new_is_psp) {
479 tmp = env->v7m.other_sp;
480 env->v7m.other_sp = env->regs[13];
481 env->regs[13] = tmp;
485 /* Switch M profile security state between NS and S */
486 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
488 uint32_t new_ss_msp, new_ss_psp;
490 if (env->v7m.secure == new_secstate) {
491 return;
495 * All the banked state is accessed by looking at env->v7m.secure
496 * except for the stack pointer; rearrange the SP appropriately.
498 new_ss_msp = env->v7m.other_ss_msp;
499 new_ss_psp = env->v7m.other_ss_psp;
501 if (v7m_using_psp(env)) {
502 env->v7m.other_ss_psp = env->regs[13];
503 env->v7m.other_ss_msp = env->v7m.other_sp;
504 } else {
505 env->v7m.other_ss_msp = env->regs[13];
506 env->v7m.other_ss_psp = env->v7m.other_sp;
509 env->v7m.secure = new_secstate;
511 if (v7m_using_psp(env)) {
512 env->regs[13] = new_ss_psp;
513 env->v7m.other_sp = new_ss_msp;
514 } else {
515 env->regs[13] = new_ss_msp;
516 env->v7m.other_sp = new_ss_psp;
520 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
523 * Handle v7M BXNS:
524 * - if the return value is a magic value, do exception return (like BX)
525 * - otherwise bit 0 of the return value is the target security state
527 uint32_t min_magic;
529 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
530 /* Covers FNC_RETURN and EXC_RETURN magic */
531 min_magic = FNC_RETURN_MIN_MAGIC;
532 } else {
533 /* EXC_RETURN magic only */
534 min_magic = EXC_RETURN_MIN_MAGIC;
537 if (dest >= min_magic) {
539 * This is an exception return magic value; put it where
540 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
541 * Note that if we ever add gen_ss_advance() singlestep support to
542 * M profile this should count as an "instruction execution complete"
543 * event (compare gen_bx_excret_final_code()).
545 env->regs[15] = dest & ~1;
546 env->thumb = dest & 1;
547 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
548 /* notreached */
551 /* translate.c should have made BXNS UNDEF unless we're secure */
552 assert(env->v7m.secure);
554 if (!(dest & 1)) {
555 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
557 switch_v7m_security_state(env, dest & 1);
558 env->thumb = 1;
559 env->regs[15] = dest & ~1;
560 arm_rebuild_hflags(env);
563 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
566 * Handle v7M BLXNS:
567 * - bit 0 of the destination address is the target security state
570 /* At this point regs[15] is the address just after the BLXNS */
571 uint32_t nextinst = env->regs[15] | 1;
572 uint32_t sp = env->regs[13] - 8;
573 uint32_t saved_psr;
575 /* translate.c will have made BLXNS UNDEF unless we're secure */
576 assert(env->v7m.secure);
578 if (dest & 1) {
580 * Target is Secure, so this is just a normal BLX,
581 * except that the low bit doesn't indicate Thumb/not.
583 env->regs[14] = nextinst;
584 env->thumb = 1;
585 env->regs[15] = dest & ~1;
586 return;
589 /* Target is non-secure: first push a stack frame */
590 if (!QEMU_IS_ALIGNED(sp, 8)) {
591 qemu_log_mask(LOG_GUEST_ERROR,
592 "BLXNS with misaligned SP is UNPREDICTABLE\n");
595 if (sp < v7m_sp_limit(env)) {
596 raise_exception(env, EXCP_STKOF, 0, 1);
599 saved_psr = env->v7m.exception;
600 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
601 saved_psr |= XPSR_SFPA;
604 /* Note that these stores can throw exceptions on MPU faults */
605 cpu_stl_data_ra(env, sp, nextinst, GETPC());
606 cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
608 env->regs[13] = sp;
609 env->regs[14] = 0xfeffffff;
610 if (arm_v7m_is_handler_mode(env)) {
612 * Write a dummy value to IPSR, to avoid leaking the current secure
613 * exception number to non-secure code. This is guaranteed not
614 * to cause write_v7m_exception() to actually change stacks.
616 write_v7m_exception(env, 1);
618 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
619 switch_v7m_security_state(env, 0);
620 env->thumb = 1;
621 env->regs[15] = dest;
622 arm_rebuild_hflags(env);
625 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
626 bool spsel)
629 * Return a pointer to the location where we currently store the
630 * stack pointer for the requested security state and thread mode.
631 * This pointer will become invalid if the CPU state is updated
632 * such that the stack pointers are switched around (eg changing
633 * the SPSEL control bit).
634 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
635 * Unlike that pseudocode, we require the caller to pass us in the
636 * SPSEL control bit value; this is because we also use this
637 * function in handling of pushing of the callee-saves registers
638 * part of the v8M stack frame (pseudocode PushCalleeStack()),
639 * and in the tailchain codepath the SPSEL bit comes from the exception
640 * return magic LR value from the previous exception. The pseudocode
641 * opencodes the stack-selection in PushCalleeStack(), but we prefer
642 * to make this utility function generic enough to do the job.
644 bool want_psp = threadmode && spsel;
646 if (secure == env->v7m.secure) {
647 if (want_psp == v7m_using_psp(env)) {
648 return &env->regs[13];
649 } else {
650 return &env->v7m.other_sp;
652 } else {
653 if (want_psp) {
654 return &env->v7m.other_ss_psp;
655 } else {
656 return &env->v7m.other_ss_msp;
661 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
662 uint32_t *pvec)
664 CPUState *cs = CPU(cpu);
665 CPUARMState *env = &cpu->env;
666 MemTxResult result;
667 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
668 uint32_t vector_entry;
669 MemTxAttrs attrs = {};
670 ARMMMUIdx mmu_idx;
671 bool exc_secure;
673 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
676 * We don't do a get_phys_addr() here because the rules for vector
677 * loads are special: they always use the default memory map, and
678 * the default memory map permits reads from all addresses.
679 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
680 * that we want this special case which would always say "yes",
681 * we just do the SAU lookup here followed by a direct physical load.
683 attrs.secure = targets_secure;
684 attrs.user = false;
686 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
687 V8M_SAttributes sattrs = {};
689 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
690 if (sattrs.ns) {
691 attrs.secure = false;
692 } else if (!targets_secure) {
694 * NS access to S memory: the underlying exception which we escalate
695 * to HardFault is SecureFault, which always targets Secure.
697 exc_secure = true;
698 goto load_fail;
702 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
703 attrs, &result);
704 if (result != MEMTX_OK) {
706 * Underlying exception is BusFault: its target security state
707 * depends on BFHFNMINS.
709 exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
710 goto load_fail;
712 *pvec = vector_entry;
713 return true;
715 load_fail:
717 * All vector table fetch fails are reported as HardFault, with
718 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
719 * technically the underlying exception is a SecureFault or BusFault
720 * that is escalated to HardFault.) This is a terminal exception,
721 * so we will either take the HardFault immediately or else enter
722 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
723 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
724 * secure); otherwise it targets the same security state as the
725 * underlying exception.
726 * In v8.1M HardFaults from vector table fetch fails don't set FORCED.
728 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
729 exc_secure = true;
731 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK;
732 if (!arm_feature(env, ARM_FEATURE_V8_1M)) {
733 env->v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
735 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
736 return false;
739 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
742 * Return the integrity signature value for the callee-saves
743 * stack frame section. @lr is the exception return payload/LR value
744 * whose FType bit forms bit 0 of the signature if FP is present.
746 uint32_t sig = 0xfefa125a;
748 if (!cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))
749 || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
750 sig |= 1;
752 return sig;
755 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
756 bool ignore_faults)
759 * For v8M, push the callee-saves register part of the stack frame.
760 * Compare the v8M pseudocode PushCalleeStack().
761 * In the tailchaining case this may not be the current stack.
763 CPUARMState *env = &cpu->env;
764 uint32_t *frame_sp_p;
765 uint32_t frameptr;
766 ARMMMUIdx mmu_idx;
767 bool stacked_ok;
768 uint32_t limit;
769 bool want_psp;
770 uint32_t sig;
771 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
773 if (dotailchain) {
774 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
775 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
776 !mode;
778 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
779 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
780 lr & R_V7M_EXCRET_SPSEL_MASK);
781 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
782 if (want_psp) {
783 limit = env->v7m.psplim[M_REG_S];
784 } else {
785 limit = env->v7m.msplim[M_REG_S];
787 } else {
788 mmu_idx = arm_mmu_idx(env);
789 frame_sp_p = &env->regs[13];
790 limit = v7m_sp_limit(env);
793 frameptr = *frame_sp_p - 0x28;
794 if (frameptr < limit) {
796 * Stack limit failure: set SP to the limit value, and generate
797 * STKOF UsageFault. Stack pushes below the limit must not be
798 * performed. It is IMPDEF whether pushes above the limit are
799 * performed; we choose not to.
801 qemu_log_mask(CPU_LOG_INT,
802 "...STKOF during callee-saves register stacking\n");
803 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
804 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
805 env->v7m.secure);
806 *frame_sp_p = limit;
807 return true;
811 * Write as much of the stack frame as we can. A write failure may
812 * cause us to pend a derived exception.
814 sig = v7m_integrity_sig(env, lr);
815 stacked_ok =
816 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
817 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
818 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
819 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
820 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
821 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
822 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
823 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
824 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
826 /* Update SP regardless of whether any of the stack accesses failed. */
827 *frame_sp_p = frameptr;
829 return !stacked_ok;
832 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
833 bool ignore_stackfaults)
836 * Do the "take the exception" parts of exception entry,
837 * but not the pushing of state to the stack. This is
838 * similar to the pseudocode ExceptionTaken() function.
840 CPUARMState *env = &cpu->env;
841 uint32_t addr;
842 bool targets_secure;
843 int exc;
844 bool push_failed = false;
846 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
847 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
848 targets_secure ? "secure" : "nonsecure", exc);
850 if (dotailchain) {
851 /* Sanitize LR FType and PREFIX bits */
852 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
853 lr |= R_V7M_EXCRET_FTYPE_MASK;
855 lr = deposit32(lr, 24, 8, 0xff);
858 if (arm_feature(env, ARM_FEATURE_V8)) {
859 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
860 (lr & R_V7M_EXCRET_S_MASK)) {
862 * The background code (the owner of the registers in the
863 * exception frame) is Secure. This means it may either already
864 * have or now needs to push callee-saves registers.
866 if (targets_secure) {
867 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
869 * We took an exception from Secure to NonSecure
870 * (which means the callee-saved registers got stacked)
871 * and are now tailchaining to a Secure exception.
872 * Clear DCRS so eventual return from this Secure
873 * exception unstacks the callee-saved registers.
875 lr &= ~R_V7M_EXCRET_DCRS_MASK;
877 } else {
879 * We're going to a non-secure exception; push the
880 * callee-saves registers to the stack now, if they're
881 * not already saved.
883 if (lr & R_V7M_EXCRET_DCRS_MASK &&
884 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
885 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
886 ignore_stackfaults);
888 lr |= R_V7M_EXCRET_DCRS_MASK;
892 lr &= ~R_V7M_EXCRET_ES_MASK;
893 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
894 lr |= R_V7M_EXCRET_ES_MASK;
896 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
897 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
898 lr |= R_V7M_EXCRET_SPSEL_MASK;
902 * Clear registers if necessary to prevent non-secure exception
903 * code being able to see register values from secure code.
904 * Where register values become architecturally UNKNOWN we leave
905 * them with their previous values. v8.1M is tighter than v8.0M
906 * here and always zeroes the caller-saved registers regardless
907 * of the security state the exception is targeting.
909 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
910 if (!targets_secure || arm_feature(env, ARM_FEATURE_V8_1M)) {
912 * Always clear the caller-saved registers (they have been
913 * pushed to the stack earlier in v7m_push_stack()).
914 * Clear callee-saved registers if the background code is
915 * Secure (in which case these regs were saved in
916 * v7m_push_callee_stack()).
918 int i;
920 * r4..r11 are callee-saves, zero only if background
921 * state was Secure (EXCRET.S == 1) and exception
922 * targets Non-secure state
924 bool zero_callee_saves = !targets_secure &&
925 (lr & R_V7M_EXCRET_S_MASK);
927 for (i = 0; i < 13; i++) {
928 if (i < 4 || i > 11 || zero_callee_saves) {
929 env->regs[i] = 0;
932 /* Clear EAPSR */
933 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
938 if (push_failed && !ignore_stackfaults) {
940 * Derived exception on callee-saves register stacking:
941 * we might now want to take a different exception which
942 * targets a different security state, so try again from the top.
944 qemu_log_mask(CPU_LOG_INT,
945 "...derived exception on callee-saves register stacking");
946 v7m_exception_taken(cpu, lr, true, true);
947 return;
950 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
951 /* Vector load failed: derived exception */
952 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
953 v7m_exception_taken(cpu, lr, true, true);
954 return;
958 * Now we've done everything that might cause a derived exception
959 * we can go ahead and activate whichever exception we're going to
960 * take (which might now be the derived exception).
962 armv7m_nvic_acknowledge_irq(env->nvic);
964 /* Switch to target security state -- must do this before writing SPSEL */
965 switch_v7m_security_state(env, targets_secure);
966 write_v7m_control_spsel(env, 0);
967 arm_clear_exclusive(env);
968 /* Clear SFPA and FPCA (has no effect if no FPU) */
969 env->v7m.control[M_REG_S] &=
970 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
971 /* Clear IT bits */
972 env->condexec_bits = 0;
973 env->regs[14] = lr;
974 env->regs[15] = addr & 0xfffffffe;
975 env->thumb = addr & 1;
976 arm_rebuild_hflags(env);
979 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
980 bool apply_splim)
983 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
984 * that we will need later in order to do lazy FP reg stacking.
986 bool is_secure = env->v7m.secure;
987 void *nvic = env->nvic;
989 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
990 * are banked and we want to update the bit in the bank for the
991 * current security state; and in one case we want to specifically
992 * update the NS banked version of a bit even if we are secure.
994 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
995 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
996 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
997 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
999 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
1001 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
1002 bool splimviol;
1003 uint32_t splim = v7m_sp_limit(env);
1004 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
1005 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
1007 splimviol = !ign && frameptr < splim;
1008 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
1011 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
1013 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
1015 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
1017 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
1018 !arm_v7m_is_handler_mode(env));
1020 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
1021 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1023 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
1024 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1026 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
1027 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
1029 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
1030 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
1032 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
1033 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1035 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1036 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
1037 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
1039 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
1040 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
1044 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
1046 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1047 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1048 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
1049 uintptr_t ra = GETPC();
1051 assert(env->v7m.secure);
1053 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1054 return;
1057 /* Check access to the coprocessor is permitted */
1058 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1059 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1062 if (lspact) {
1063 /* LSPACT should not be active when there is active FP state */
1064 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
1067 if (fptr & 7) {
1068 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1072 * Note that we do not use v7m_stack_write() here, because the
1073 * accesses should not set the FSR bits for stacking errors if they
1074 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1075 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1076 * and longjmp out.
1078 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1079 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1080 int i;
1082 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1083 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1084 uint32_t faddr = fptr + 4 * i;
1085 uint32_t slo = extract64(dn, 0, 32);
1086 uint32_t shi = extract64(dn, 32, 32);
1088 if (i >= 16) {
1089 faddr += 8; /* skip the slot for the FPSCR */
1091 cpu_stl_data_ra(env, faddr, slo, ra);
1092 cpu_stl_data_ra(env, faddr + 4, shi, ra);
1094 cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
1097 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
1098 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1100 if (ts) {
1101 for (i = 0; i < 32; i += 2) {
1102 *aa32_vfp_dreg(env, i / 2) = 0;
1104 vfp_set_fpscr(env, 0);
1106 } else {
1107 v7m_update_fpccr(env, fptr, false);
1110 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
1113 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
1115 uintptr_t ra = GETPC();
1117 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1118 assert(env->v7m.secure);
1120 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1121 return;
1124 /* Check access to the coprocessor is permitted */
1125 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1126 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1129 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1130 /* State in FP is still valid */
1131 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
1132 } else {
1133 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1134 int i;
1135 uint32_t fpscr;
1137 if (fptr & 7) {
1138 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1141 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1142 uint32_t slo, shi;
1143 uint64_t dn;
1144 uint32_t faddr = fptr + 4 * i;
1146 if (i >= 16) {
1147 faddr += 8; /* skip the slot for the FPSCR */
1150 slo = cpu_ldl_data_ra(env, faddr, ra);
1151 shi = cpu_ldl_data_ra(env, faddr + 4, ra);
1153 dn = (uint64_t) shi << 32 | slo;
1154 *aa32_vfp_dreg(env, i / 2) = dn;
1156 fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
1157 vfp_set_fpscr(env, fpscr);
1160 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
1163 static bool v7m_push_stack(ARMCPU *cpu)
1166 * Do the "set up stack frame" part of exception entry,
1167 * similar to pseudocode PushStack().
1168 * Return true if we generate a derived exception (and so
1169 * should ignore further stack faults trying to process
1170 * that derived exception.)
1172 bool stacked_ok = true, limitviol = false;
1173 CPUARMState *env = &cpu->env;
1174 uint32_t xpsr = xpsr_read(env);
1175 uint32_t frameptr = env->regs[13];
1176 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
1177 uint32_t framesize;
1178 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
1180 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
1181 (env->v7m.secure || nsacr_cp10)) {
1182 if (env->v7m.secure &&
1183 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
1184 framesize = 0xa8;
1185 } else {
1186 framesize = 0x68;
1188 } else {
1189 framesize = 0x20;
1192 /* Align stack pointer if the guest wants that */
1193 if ((frameptr & 4) &&
1194 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
1195 frameptr -= 4;
1196 xpsr |= XPSR_SPREALIGN;
1199 xpsr &= ~XPSR_SFPA;
1200 if (env->v7m.secure &&
1201 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1202 xpsr |= XPSR_SFPA;
1205 frameptr -= framesize;
1207 if (arm_feature(env, ARM_FEATURE_V8)) {
1208 uint32_t limit = v7m_sp_limit(env);
1210 if (frameptr < limit) {
1212 * Stack limit failure: set SP to the limit value, and generate
1213 * STKOF UsageFault. Stack pushes below the limit must not be
1214 * performed. It is IMPDEF whether pushes above the limit are
1215 * performed; we choose not to.
1217 qemu_log_mask(CPU_LOG_INT,
1218 "...STKOF during stacking\n");
1219 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
1220 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1221 env->v7m.secure);
1222 env->regs[13] = limit;
1224 * We won't try to perform any further memory accesses but
1225 * we must continue through the following code to check for
1226 * permission faults during FPU state preservation, and we
1227 * must update FPCCR if lazy stacking is enabled.
1229 limitviol = true;
1230 stacked_ok = false;
1235 * Write as much of the stack frame as we can. If we fail a stack
1236 * write this will result in a derived exception being pended
1237 * (which may be taken in preference to the one we started with
1238 * if it has higher priority).
1240 stacked_ok = stacked_ok &&
1241 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
1242 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
1243 mmu_idx, STACK_NORMAL) &&
1244 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
1245 mmu_idx, STACK_NORMAL) &&
1246 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
1247 mmu_idx, STACK_NORMAL) &&
1248 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
1249 mmu_idx, STACK_NORMAL) &&
1250 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
1251 mmu_idx, STACK_NORMAL) &&
1252 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
1253 mmu_idx, STACK_NORMAL) &&
1254 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
1256 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
1257 /* FPU is active, try to save its registers */
1258 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1259 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
1261 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1262 qemu_log_mask(CPU_LOG_INT,
1263 "...SecureFault because LSPACT and FPCA both set\n");
1264 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1265 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1266 } else if (!env->v7m.secure && !nsacr_cp10) {
1267 qemu_log_mask(CPU_LOG_INT,
1268 "...Secure UsageFault with CFSR.NOCP because "
1269 "NSACR.CP10 prevents stacking FP regs\n");
1270 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
1271 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1272 } else {
1273 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1274 /* Lazy stacking disabled, save registers now */
1275 int i;
1276 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
1277 arm_current_el(env) != 0);
1279 if (stacked_ok && !cpacr_pass) {
1281 * Take UsageFault if CPACR forbids access. The pseudocode
1282 * here does a full CheckCPEnabled() but we know the NSACR
1283 * check can never fail as we have already handled that.
1285 qemu_log_mask(CPU_LOG_INT,
1286 "...UsageFault with CFSR.NOCP because "
1287 "CPACR.CP10 prevents stacking FP regs\n");
1288 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1289 env->v7m.secure);
1290 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
1291 stacked_ok = false;
1294 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1295 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1296 uint32_t faddr = frameptr + 0x20 + 4 * i;
1297 uint32_t slo = extract64(dn, 0, 32);
1298 uint32_t shi = extract64(dn, 32, 32);
1300 if (i >= 16) {
1301 faddr += 8; /* skip the slot for the FPSCR */
1303 stacked_ok = stacked_ok &&
1304 v7m_stack_write(cpu, faddr, slo,
1305 mmu_idx, STACK_NORMAL) &&
1306 v7m_stack_write(cpu, faddr + 4, shi,
1307 mmu_idx, STACK_NORMAL);
1309 stacked_ok = stacked_ok &&
1310 v7m_stack_write(cpu, frameptr + 0x60,
1311 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
1312 if (cpacr_pass) {
1313 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1314 *aa32_vfp_dreg(env, i / 2) = 0;
1316 vfp_set_fpscr(env, 0);
1318 } else {
1319 /* Lazy stacking enabled, save necessary info to stack later */
1320 v7m_update_fpccr(env, frameptr + 0x20, true);
1326 * If we broke a stack limit then SP was already updated earlier;
1327 * otherwise we update SP regardless of whether any of the stack
1328 * accesses failed or we took some other kind of fault.
1330 if (!limitviol) {
1331 env->regs[13] = frameptr;
1334 return !stacked_ok;
1337 static void do_v7m_exception_exit(ARMCPU *cpu)
1339 CPUARMState *env = &cpu->env;
1340 uint32_t excret;
1341 uint32_t xpsr, xpsr_mask;
1342 bool ufault = false;
1343 bool sfault = false;
1344 bool return_to_sp_process;
1345 bool return_to_handler;
1346 bool rettobase = false;
1347 bool exc_secure = false;
1348 bool return_to_secure;
1349 bool ftype;
1350 bool restore_s16_s31 = false;
1353 * If we're not in Handler mode then jumps to magic exception-exit
1354 * addresses don't have magic behaviour. However for the v8M
1355 * security extensions the magic secure-function-return has to
1356 * work in thread mode too, so to avoid doing an extra check in
1357 * the generated code we allow exception-exit magic to also cause the
1358 * internal exception and bring us here in thread mode. Correct code
1359 * will never try to do this (the following insn fetch will always
1360 * fault) so we the overhead of having taken an unnecessary exception
1361 * doesn't matter.
1363 if (!arm_v7m_is_handler_mode(env)) {
1364 return;
1368 * In the spec pseudocode ExceptionReturn() is called directly
1369 * from BXWritePC() and gets the full target PC value including
1370 * bit zero. In QEMU's implementation we treat it as a normal
1371 * jump-to-register (which is then caught later on), and so split
1372 * the target value up between env->regs[15] and env->thumb in
1373 * gen_bx(). Reconstitute it.
1375 excret = env->regs[15];
1376 if (env->thumb) {
1377 excret |= 1;
1380 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
1381 " previous exception %d\n",
1382 excret, env->v7m.exception);
1384 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
1385 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
1386 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
1387 excret);
1390 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
1392 if (!ftype && !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1393 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
1394 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
1395 "if FPU not present\n",
1396 excret);
1397 ftype = true;
1400 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1402 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1403 * we pick which FAULTMASK to clear.
1405 if (!env->v7m.secure &&
1406 ((excret & R_V7M_EXCRET_ES_MASK) ||
1407 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
1408 sfault = 1;
1409 /* For all other purposes, treat ES as 0 (R_HXSR) */
1410 excret &= ~R_V7M_EXCRET_ES_MASK;
1412 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
1415 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
1417 * Auto-clear FAULTMASK on return from other than NMI.
1418 * If the security extension is implemented then this only
1419 * happens if the raw execution priority is >= 0; the
1420 * value of the ES bit in the exception return value indicates
1421 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1423 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1424 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
1425 env->v7m.faultmask[exc_secure] = 0;
1427 } else {
1428 env->v7m.faultmask[M_REG_NS] = 0;
1432 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
1433 exc_secure)) {
1434 case -1:
1435 /* attempt to exit an exception that isn't active */
1436 ufault = true;
1437 break;
1438 case 0:
1439 /* still an irq active now */
1440 break;
1441 case 1:
1443 * We returned to base exception level, no nesting.
1444 * (In the pseudocode this is written using "NestedActivation != 1"
1445 * where we have 'rettobase == false'.)
1447 rettobase = true;
1448 break;
1449 default:
1450 g_assert_not_reached();
1453 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
1454 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
1455 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
1456 (excret & R_V7M_EXCRET_S_MASK);
1458 if (arm_feature(env, ARM_FEATURE_V8)) {
1459 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1461 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1462 * we choose to take the UsageFault.
1464 if ((excret & R_V7M_EXCRET_S_MASK) ||
1465 (excret & R_V7M_EXCRET_ES_MASK) ||
1466 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
1467 ufault = true;
1470 if (excret & R_V7M_EXCRET_RES0_MASK) {
1471 ufault = true;
1473 } else {
1474 /* For v7M we only recognize certain combinations of the low bits */
1475 switch (excret & 0xf) {
1476 case 1: /* Return to Handler */
1477 break;
1478 case 13: /* Return to Thread using Process stack */
1479 case 9: /* Return to Thread using Main stack */
1481 * We only need to check NONBASETHRDENA for v7M, because in
1482 * v8M this bit does not exist (it is RES1).
1484 if (!rettobase &&
1485 !(env->v7m.ccr[env->v7m.secure] &
1486 R_V7M_CCR_NONBASETHRDENA_MASK)) {
1487 ufault = true;
1489 break;
1490 default:
1491 ufault = true;
1496 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1497 * Handler mode (and will be until we write the new XPSR.Interrupt
1498 * field) this does not switch around the current stack pointer.
1499 * We must do this before we do any kind of tailchaining, including
1500 * for the derived exceptions on integrity check failures, or we will
1501 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1503 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
1506 * Clear scratch FP values left in caller saved registers; this
1507 * must happen before any kind of tail chaining.
1509 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
1510 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
1511 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1512 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1513 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1514 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1515 "stackframe: error during lazy state deactivation\n");
1516 v7m_exception_taken(cpu, excret, true, false);
1517 return;
1518 } else {
1519 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1520 /* v8.1M adds this NOCP check */
1521 bool nsacr_pass = exc_secure ||
1522 extract32(env->v7m.nsacr, 10, 1);
1523 bool cpacr_pass = v7m_cpacr_pass(env, exc_secure, true);
1524 if (!nsacr_pass) {
1525 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1526 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1527 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1528 "stackframe: NSACR prevents clearing FPU registers\n");
1529 v7m_exception_taken(cpu, excret, true, false);
1530 } else if (!cpacr_pass) {
1531 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1532 exc_secure);
1533 env->v7m.cfsr[exc_secure] |= R_V7M_CFSR_NOCP_MASK;
1534 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1535 "stackframe: CPACR prevents clearing FPU registers\n");
1536 v7m_exception_taken(cpu, excret, true, false);
1539 /* Clear s0..s15 and FPSCR; TODO also VPR when MVE is implemented */
1540 int i;
1542 for (i = 0; i < 16; i += 2) {
1543 *aa32_vfp_dreg(env, i / 2) = 0;
1545 vfp_set_fpscr(env, 0);
1549 if (sfault) {
1550 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
1551 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1552 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1553 "stackframe: failed EXC_RETURN.ES validity check\n");
1554 v7m_exception_taken(cpu, excret, true, false);
1555 return;
1558 if (ufault) {
1560 * Bad exception return: instead of popping the exception
1561 * stack, directly take a usage fault on the current stack.
1563 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1564 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1565 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1566 "stackframe: failed exception return integrity check\n");
1567 v7m_exception_taken(cpu, excret, true, false);
1568 return;
1572 * Tailchaining: if there is currently a pending exception that
1573 * is high enough priority to preempt execution at the level we're
1574 * about to return to, then just directly take that exception now,
1575 * avoiding an unstack-and-then-stack. Note that now we have
1576 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1577 * our current execution priority is already the execution priority we are
1578 * returning to -- none of the state we would unstack or set based on
1579 * the EXCRET value affects it.
1581 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
1582 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
1583 v7m_exception_taken(cpu, excret, true, false);
1584 return;
1587 switch_v7m_security_state(env, return_to_secure);
1591 * The stack pointer we should be reading the exception frame from
1592 * depends on bits in the magic exception return type value (and
1593 * for v8M isn't necessarily the stack pointer we will eventually
1594 * end up resuming execution with). Get a pointer to the location
1595 * in the CPU state struct where the SP we need is currently being
1596 * stored; we will use and modify it in place.
1597 * We use this limited C variable scope so we don't accidentally
1598 * use 'frame_sp_p' after we do something that makes it invalid.
1600 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
1601 return_to_secure,
1602 !return_to_handler,
1603 return_to_sp_process);
1604 uint32_t frameptr = *frame_sp_p;
1605 bool pop_ok = true;
1606 ARMMMUIdx mmu_idx;
1607 bool return_to_priv = return_to_handler ||
1608 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
1610 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
1611 return_to_priv);
1613 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
1614 arm_feature(env, ARM_FEATURE_V8)) {
1615 qemu_log_mask(LOG_GUEST_ERROR,
1616 "M profile exception return with non-8-aligned SP "
1617 "for destination state is UNPREDICTABLE\n");
1620 /* Do we need to pop callee-saved registers? */
1621 if (return_to_secure &&
1622 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
1623 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
1624 uint32_t actual_sig;
1626 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
1628 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
1629 /* Take a SecureFault on the current stack */
1630 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
1631 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1632 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1633 "stackframe: failed exception return integrity "
1634 "signature check\n");
1635 v7m_exception_taken(cpu, excret, true, false);
1636 return;
1639 pop_ok = pop_ok &&
1640 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
1641 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
1642 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
1643 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
1644 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
1645 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
1646 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
1647 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
1649 frameptr += 0x28;
1652 /* Pop registers */
1653 pop_ok = pop_ok &&
1654 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
1655 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
1656 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
1657 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
1658 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
1659 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
1660 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
1661 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
1663 if (!pop_ok) {
1665 * v7m_stack_read() pended a fault, so take it (as a tail
1666 * chained exception on the same stack frame)
1668 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
1669 v7m_exception_taken(cpu, excret, true, false);
1670 return;
1674 * Returning from an exception with a PC with bit 0 set is defined
1675 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1676 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1677 * the lsbit, and there are several RTOSes out there which incorrectly
1678 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1679 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1680 * complain about the badly behaved guest.
1682 if (env->regs[15] & 1) {
1683 env->regs[15] &= ~1U;
1684 if (!arm_feature(env, ARM_FEATURE_V8)) {
1685 qemu_log_mask(LOG_GUEST_ERROR,
1686 "M profile return from interrupt with misaligned "
1687 "PC is UNPREDICTABLE on v7M\n");
1691 if (arm_feature(env, ARM_FEATURE_V8)) {
1693 * For v8M we have to check whether the xPSR exception field
1694 * matches the EXCRET value for return to handler/thread
1695 * before we commit to changing the SP and xPSR.
1697 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
1698 if (return_to_handler != will_be_handler) {
1700 * Take an INVPC UsageFault on the current stack.
1701 * By this point we will have switched to the security state
1702 * for the background state, so this UsageFault will target
1703 * that state.
1705 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1706 env->v7m.secure);
1707 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1708 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1709 "stackframe: failed exception return integrity "
1710 "check\n");
1711 v7m_exception_taken(cpu, excret, true, false);
1712 return;
1716 if (!ftype) {
1717 /* FP present and we need to handle it */
1718 if (!return_to_secure &&
1719 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
1720 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1721 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1722 qemu_log_mask(CPU_LOG_INT,
1723 "...taking SecureFault on existing stackframe: "
1724 "Secure LSPACT set but exception return is "
1725 "not to secure state\n");
1726 v7m_exception_taken(cpu, excret, true, false);
1727 return;
1730 restore_s16_s31 = return_to_secure &&
1731 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
1733 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
1734 /* State in FPU is still valid, just clear LSPACT */
1735 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
1736 } else {
1737 int i;
1738 uint32_t fpscr;
1739 bool cpacr_pass, nsacr_pass;
1741 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
1742 return_to_priv);
1743 nsacr_pass = return_to_secure ||
1744 extract32(env->v7m.nsacr, 10, 1);
1746 if (!cpacr_pass) {
1747 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1748 return_to_secure);
1749 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
1750 qemu_log_mask(CPU_LOG_INT,
1751 "...taking UsageFault on existing "
1752 "stackframe: CPACR.CP10 prevents unstacking "
1753 "FP regs\n");
1754 v7m_exception_taken(cpu, excret, true, false);
1755 return;
1756 } else if (!nsacr_pass) {
1757 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1758 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
1759 qemu_log_mask(CPU_LOG_INT,
1760 "...taking Secure UsageFault on existing "
1761 "stackframe: NSACR.CP10 prevents unstacking "
1762 "FP regs\n");
1763 v7m_exception_taken(cpu, excret, true, false);
1764 return;
1767 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1768 uint32_t slo, shi;
1769 uint64_t dn;
1770 uint32_t faddr = frameptr + 0x20 + 4 * i;
1772 if (i >= 16) {
1773 faddr += 8; /* Skip the slot for the FPSCR */
1776 pop_ok = pop_ok &&
1777 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
1778 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
1780 if (!pop_ok) {
1781 break;
1784 dn = (uint64_t)shi << 32 | slo;
1785 *aa32_vfp_dreg(env, i / 2) = dn;
1787 pop_ok = pop_ok &&
1788 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
1789 if (pop_ok) {
1790 vfp_set_fpscr(env, fpscr);
1792 if (!pop_ok) {
1794 * These regs are 0 if security extension present;
1795 * otherwise merely UNKNOWN. We zero always.
1797 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1798 *aa32_vfp_dreg(env, i / 2) = 0;
1800 vfp_set_fpscr(env, 0);
1804 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1805 V7M_CONTROL, FPCA, !ftype);
1807 /* Commit to consuming the stack frame */
1808 frameptr += 0x20;
1809 if (!ftype) {
1810 frameptr += 0x48;
1811 if (restore_s16_s31) {
1812 frameptr += 0x40;
1816 * Undo stack alignment (the SPREALIGN bit indicates that the original
1817 * pre-exception SP was not 8-aligned and we added a padding word to
1818 * align it, so we undo this by ORing in the bit that increases it
1819 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1820 * would work too but a logical OR is how the pseudocode specifies it.)
1822 if (xpsr & XPSR_SPREALIGN) {
1823 frameptr |= 4;
1825 *frame_sp_p = frameptr;
1828 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
1829 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
1830 xpsr_mask &= ~XPSR_GE;
1832 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1833 xpsr_write(env, xpsr, xpsr_mask);
1835 if (env->v7m.secure) {
1836 bool sfpa = xpsr & XPSR_SFPA;
1838 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1839 V7M_CONTROL, SFPA, sfpa);
1843 * The restored xPSR exception field will be zero if we're
1844 * resuming in Thread mode. If that doesn't match what the
1845 * exception return excret specified then this is a UsageFault.
1846 * v7M requires we make this check here; v8M did it earlier.
1848 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
1850 * Take an INVPC UsageFault by pushing the stack again;
1851 * we know we're v7M so this is never a Secure UsageFault.
1853 bool ignore_stackfaults;
1855 assert(!arm_feature(env, ARM_FEATURE_V8));
1856 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
1857 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1858 ignore_stackfaults = v7m_push_stack(cpu);
1859 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
1860 "failed exception return integrity check\n");
1861 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
1862 return;
1865 /* Otherwise, we have a successful exception exit. */
1866 arm_clear_exclusive(env);
1867 arm_rebuild_hflags(env);
1868 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
1871 static bool do_v7m_function_return(ARMCPU *cpu)
1874 * v8M security extensions magic function return.
1875 * We may either:
1876 * (1) throw an exception (longjump)
1877 * (2) return true if we successfully handled the function return
1878 * (3) return false if we failed a consistency check and have
1879 * pended a UsageFault that needs to be taken now
1881 * At this point the magic return value is split between env->regs[15]
1882 * and env->thumb. We don't bother to reconstitute it because we don't
1883 * need it (all values are handled the same way).
1885 CPUARMState *env = &cpu->env;
1886 uint32_t newpc, newpsr, newpsr_exc;
1888 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
1891 bool threadmode, spsel;
1892 TCGMemOpIdx oi;
1893 ARMMMUIdx mmu_idx;
1894 uint32_t *frame_sp_p;
1895 uint32_t frameptr;
1897 /* Pull the return address and IPSR from the Secure stack */
1898 threadmode = !arm_v7m_is_handler_mode(env);
1899 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
1901 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
1902 frameptr = *frame_sp_p;
1905 * These loads may throw an exception (for MPU faults). We want to
1906 * do them as secure, so work out what MMU index that is.
1908 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1909 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
1910 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
1911 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
1913 /* Consistency checks on new IPSR */
1914 newpsr_exc = newpsr & XPSR_EXCP;
1915 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
1916 (env->v7m.exception == 1 && newpsr_exc != 0))) {
1917 /* Pend the fault and tell our caller to take it */
1918 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1919 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1920 env->v7m.secure);
1921 qemu_log_mask(CPU_LOG_INT,
1922 "...taking INVPC UsageFault: "
1923 "IPSR consistency check failed\n");
1924 return false;
1927 *frame_sp_p = frameptr + 8;
1930 /* This invalidates frame_sp_p */
1931 switch_v7m_security_state(env, true);
1932 env->v7m.exception = newpsr_exc;
1933 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1934 if (newpsr & XPSR_SFPA) {
1935 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
1937 xpsr_write(env, 0, XPSR_IT);
1938 env->thumb = newpc & 1;
1939 env->regs[15] = newpc & ~1;
1940 arm_rebuild_hflags(env);
1942 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
1943 return true;
1946 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1947 uint32_t addr, uint16_t *insn)
1950 * Load a 16-bit portion of a v7M instruction, returning true on success,
1951 * or false on failure (in which case we will have pended the appropriate
1952 * exception).
1953 * We need to do the instruction fetch's MPU and SAU checks
1954 * like this because there is no MMU index that would allow
1955 * doing the load with a single function call. Instead we must
1956 * first check that the security attributes permit the load
1957 * and that they don't mismatch on the two halves of the instruction,
1958 * and then we do the load as a secure load (ie using the security
1959 * attributes of the address, not the CPU, as architecturally required).
1961 CPUState *cs = CPU(cpu);
1962 CPUARMState *env = &cpu->env;
1963 V8M_SAttributes sattrs = {};
1964 MemTxAttrs attrs = {};
1965 ARMMMUFaultInfo fi = {};
1966 ARMCacheAttrs cacheattrs = {};
1967 MemTxResult txres;
1968 target_ulong page_size;
1969 hwaddr physaddr;
1970 int prot;
1972 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
1973 if (!sattrs.nsc || sattrs.ns) {
1975 * This must be the second half of the insn, and it straddles a
1976 * region boundary with the second half not being S&NSC.
1978 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
1979 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1980 qemu_log_mask(CPU_LOG_INT,
1981 "...really SecureFault with SFSR.INVEP\n");
1982 return false;
1984 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, &physaddr,
1985 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
1986 /* the MPU lookup failed */
1987 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
1988 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
1989 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
1990 return false;
1992 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
1993 attrs, &txres);
1994 if (txres != MEMTX_OK) {
1995 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
1996 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
1997 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
1998 return false;
2000 return true;
2003 static bool v7m_read_sg_stack_word(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2004 uint32_t addr, uint32_t *spdata)
2007 * Read a word of data from the stack for the SG instruction,
2008 * writing the value into *spdata. If the load succeeds, return
2009 * true; otherwise pend an appropriate exception and return false.
2010 * (We can't use data load helpers here that throw an exception
2011 * because of the context we're called in, which is halfway through
2012 * arm_v7m_cpu_do_interrupt().)
2014 CPUState *cs = CPU(cpu);
2015 CPUARMState *env = &cpu->env;
2016 MemTxAttrs attrs = {};
2017 MemTxResult txres;
2018 target_ulong page_size;
2019 hwaddr physaddr;
2020 int prot;
2021 ARMMMUFaultInfo fi = {};
2022 ARMCacheAttrs cacheattrs = {};
2023 uint32_t value;
2025 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
2026 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
2027 /* MPU/SAU lookup failed */
2028 if (fi.type == ARMFault_QEMU_SFault) {
2029 qemu_log_mask(CPU_LOG_INT,
2030 "...SecureFault during stack word read\n");
2031 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
2032 env->v7m.sfar = addr;
2033 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2034 } else {
2035 qemu_log_mask(CPU_LOG_INT,
2036 "...MemManageFault during stack word read\n");
2037 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_DACCVIOL_MASK |
2038 R_V7M_CFSR_MMARVALID_MASK;
2039 env->v7m.mmfar[M_REG_S] = addr;
2040 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, false);
2042 return false;
2044 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
2045 attrs, &txres);
2046 if (txres != MEMTX_OK) {
2047 /* BusFault trying to read the data */
2048 qemu_log_mask(CPU_LOG_INT,
2049 "...BusFault during stack word read\n");
2050 env->v7m.cfsr[M_REG_NS] |=
2051 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2052 env->v7m.bfar = addr;
2053 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2054 return false;
2057 *spdata = value;
2058 return true;
2061 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
2064 * Check whether this attempt to execute code in a Secure & NS-Callable
2065 * memory region is for an SG instruction; if so, then emulate the
2066 * effect of the SG instruction and return true. Otherwise pend
2067 * the correct kind of exception and return false.
2069 CPUARMState *env = &cpu->env;
2070 ARMMMUIdx mmu_idx;
2071 uint16_t insn;
2074 * We should never get here unless get_phys_addr_pmsav8() caused
2075 * an exception for NS executing in S&NSC memory.
2077 assert(!env->v7m.secure);
2078 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2080 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
2081 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
2083 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
2084 return false;
2087 if (!env->thumb) {
2088 goto gen_invep;
2091 if (insn != 0xe97f) {
2093 * Not an SG instruction first half (we choose the IMPDEF
2094 * early-SG-check option).
2096 goto gen_invep;
2099 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
2100 return false;
2103 if (insn != 0xe97f) {
2105 * Not an SG instruction second half (yes, both halves of the SG
2106 * insn have the same hex value)
2108 goto gen_invep;
2112 * OK, we have confirmed that we really have an SG instruction.
2113 * We know we're NS in S memory so don't need to repeat those checks.
2115 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
2116 ", executing it\n", env->regs[15]);
2118 if (cpu_isar_feature(aa32_m_sec_state, cpu) &&
2119 !arm_v7m_is_handler_mode(env)) {
2121 * v8.1M exception stack frame integrity check. Note that we
2122 * must perform the memory access even if CCR_S.TRD is zero
2123 * and we aren't going to check what the data loaded is.
2125 uint32_t spdata, sp;
2128 * We know we are currently NS, so the S stack pointers must be
2129 * in other_ss_{psp,msp}, not in regs[13]/other_sp.
2131 sp = v7m_using_psp(env) ? env->v7m.other_ss_psp : env->v7m.other_ss_msp;
2132 if (!v7m_read_sg_stack_word(cpu, mmu_idx, sp, &spdata)) {
2133 /* Stack access failed and an exception has been pended */
2134 return false;
2137 if (env->v7m.ccr[M_REG_S] & R_V7M_CCR_TRD_MASK) {
2138 if (((spdata & ~1) == 0xfefa125a) ||
2139 !(env->v7m.control[M_REG_S] & 1)) {
2140 goto gen_invep;
2145 env->regs[14] &= ~1;
2146 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2147 switch_v7m_security_state(env, true);
2148 xpsr_write(env, 0, XPSR_IT);
2149 env->regs[15] += 4;
2150 arm_rebuild_hflags(env);
2151 return true;
2153 gen_invep:
2154 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2155 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2156 qemu_log_mask(CPU_LOG_INT,
2157 "...really SecureFault with SFSR.INVEP\n");
2158 return false;
2161 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2163 ARMCPU *cpu = ARM_CPU(cs);
2164 CPUARMState *env = &cpu->env;
2165 uint32_t lr;
2166 bool ignore_stackfaults;
2168 arm_log_exception(cs->exception_index);
2171 * For exceptions we just mark as pending on the NVIC, and let that
2172 * handle it.
2174 switch (cs->exception_index) {
2175 case EXCP_UDEF:
2176 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2177 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
2178 break;
2179 case EXCP_NOCP:
2182 * NOCP might be directed to something other than the current
2183 * security state if this fault is because of NSACR; we indicate
2184 * the target security state using exception.target_el.
2186 int target_secstate;
2188 if (env->exception.target_el == 3) {
2189 target_secstate = M_REG_S;
2190 } else {
2191 target_secstate = env->v7m.secure;
2193 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
2194 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
2195 break;
2197 case EXCP_INVSTATE:
2198 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2199 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
2200 break;
2201 case EXCP_STKOF:
2202 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2203 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
2204 break;
2205 case EXCP_LSERR:
2206 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2207 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
2208 break;
2209 case EXCP_UNALIGNED:
2210 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2211 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2212 break;
2213 case EXCP_SWI:
2214 /* The PC already points to the next instruction. */
2215 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
2216 break;
2217 case EXCP_PREFETCH_ABORT:
2218 case EXCP_DATA_ABORT:
2220 * Note that for M profile we don't have a guest facing FSR, but
2221 * the env->exception.fsr will be populated by the code that
2222 * raises the fault, in the A profile short-descriptor format.
2224 switch (env->exception.fsr & 0xf) {
2225 case M_FAKE_FSR_NSC_EXEC:
2227 * Exception generated when we try to execute code at an address
2228 * which is marked as Secure & Non-Secure Callable and the CPU
2229 * is in the Non-Secure state. The only instruction which can
2230 * be executed like this is SG (and that only if both halves of
2231 * the SG instruction have the same security attributes.)
2232 * Everything else must generate an INVEP SecureFault, so we
2233 * emulate the SG instruction here.
2235 if (v7m_handle_execute_nsc(cpu)) {
2236 return;
2238 break;
2239 case M_FAKE_FSR_SFAULT:
2241 * Various flavours of SecureFault for attempts to execute or
2242 * access data in the wrong security state.
2244 switch (cs->exception_index) {
2245 case EXCP_PREFETCH_ABORT:
2246 if (env->v7m.secure) {
2247 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
2248 qemu_log_mask(CPU_LOG_INT,
2249 "...really SecureFault with SFSR.INVTRAN\n");
2250 } else {
2251 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2252 qemu_log_mask(CPU_LOG_INT,
2253 "...really SecureFault with SFSR.INVEP\n");
2255 break;
2256 case EXCP_DATA_ABORT:
2257 /* This must be an NS access to S memory */
2258 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
2259 qemu_log_mask(CPU_LOG_INT,
2260 "...really SecureFault with SFSR.AUVIOL\n");
2261 break;
2263 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2264 break;
2265 case 0x8: /* External Abort */
2266 switch (cs->exception_index) {
2267 case EXCP_PREFETCH_ABORT:
2268 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2269 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
2270 break;
2271 case EXCP_DATA_ABORT:
2272 env->v7m.cfsr[M_REG_NS] |=
2273 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2274 env->v7m.bfar = env->exception.vaddress;
2275 qemu_log_mask(CPU_LOG_INT,
2276 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2277 env->v7m.bfar);
2278 break;
2280 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2281 break;
2282 default:
2284 * All other FSR values are either MPU faults or "can't happen
2285 * for M profile" cases.
2287 switch (cs->exception_index) {
2288 case EXCP_PREFETCH_ABORT:
2289 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2290 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
2291 break;
2292 case EXCP_DATA_ABORT:
2293 env->v7m.cfsr[env->v7m.secure] |=
2294 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
2295 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
2296 qemu_log_mask(CPU_LOG_INT,
2297 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2298 env->v7m.mmfar[env->v7m.secure]);
2299 break;
2301 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
2302 env->v7m.secure);
2303 break;
2305 break;
2306 case EXCP_SEMIHOST:
2307 qemu_log_mask(CPU_LOG_INT,
2308 "...handling as semihosting call 0x%x\n",
2309 env->regs[0]);
2310 #ifdef CONFIG_TCG
2311 env->regs[0] = do_common_semihosting(cs);
2312 #else
2313 g_assert_not_reached();
2314 #endif
2315 env->regs[15] += env->thumb ? 2 : 4;
2316 return;
2317 case EXCP_BKPT:
2318 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
2319 break;
2320 case EXCP_IRQ:
2321 break;
2322 case EXCP_EXCEPTION_EXIT:
2323 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
2324 /* Must be v8M security extension function return */
2325 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
2326 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2327 if (do_v7m_function_return(cpu)) {
2328 return;
2330 } else {
2331 do_v7m_exception_exit(cpu);
2332 return;
2334 break;
2335 case EXCP_LAZYFP:
2337 * We already pended the specific exception in the NVIC in the
2338 * v7m_preserve_fp_state() helper function.
2340 break;
2341 default:
2342 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2343 return; /* Never happens. Keep compiler happy. */
2346 if (arm_feature(env, ARM_FEATURE_V8)) {
2347 lr = R_V7M_EXCRET_RES1_MASK |
2348 R_V7M_EXCRET_DCRS_MASK;
2350 * The S bit indicates whether we should return to Secure
2351 * or NonSecure (ie our current state).
2352 * The ES bit indicates whether we're taking this exception
2353 * to Secure or NonSecure (ie our target state). We set it
2354 * later, in v7m_exception_taken().
2355 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2356 * This corresponds to the ARM ARM pseudocode for v8M setting
2357 * some LR bits in PushStack() and some in ExceptionTaken();
2358 * the distinction matters for the tailchain cases where we
2359 * can take an exception without pushing the stack.
2361 if (env->v7m.secure) {
2362 lr |= R_V7M_EXCRET_S_MASK;
2364 } else {
2365 lr = R_V7M_EXCRET_RES1_MASK |
2366 R_V7M_EXCRET_S_MASK |
2367 R_V7M_EXCRET_DCRS_MASK |
2368 R_V7M_EXCRET_ES_MASK;
2369 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
2370 lr |= R_V7M_EXCRET_SPSEL_MASK;
2373 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
2374 lr |= R_V7M_EXCRET_FTYPE_MASK;
2376 if (!arm_v7m_is_handler_mode(env)) {
2377 lr |= R_V7M_EXCRET_MODE_MASK;
2380 ignore_stackfaults = v7m_push_stack(cpu);
2381 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
2384 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2386 unsigned el = arm_current_el(env);
2388 /* First handle registers which unprivileged can read */
2389 switch (reg) {
2390 case 0 ... 7: /* xPSR sub-fields */
2391 return v7m_mrs_xpsr(env, reg, el);
2392 case 20: /* CONTROL */
2393 return v7m_mrs_control(env, env->v7m.secure);
2394 case 0x94: /* CONTROL_NS */
2396 * We have to handle this here because unprivileged Secure code
2397 * can read the NS CONTROL register.
2399 if (!env->v7m.secure) {
2400 return 0;
2402 return env->v7m.control[M_REG_NS] |
2403 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
2406 if (el == 0) {
2407 return 0; /* unprivileged reads others as zero */
2410 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2411 switch (reg) {
2412 case 0x88: /* MSP_NS */
2413 if (!env->v7m.secure) {
2414 return 0;
2416 return env->v7m.other_ss_msp;
2417 case 0x89: /* PSP_NS */
2418 if (!env->v7m.secure) {
2419 return 0;
2421 return env->v7m.other_ss_psp;
2422 case 0x8a: /* MSPLIM_NS */
2423 if (!env->v7m.secure) {
2424 return 0;
2426 return env->v7m.msplim[M_REG_NS];
2427 case 0x8b: /* PSPLIM_NS */
2428 if (!env->v7m.secure) {
2429 return 0;
2431 return env->v7m.psplim[M_REG_NS];
2432 case 0x90: /* PRIMASK_NS */
2433 if (!env->v7m.secure) {
2434 return 0;
2436 return env->v7m.primask[M_REG_NS];
2437 case 0x91: /* BASEPRI_NS */
2438 if (!env->v7m.secure) {
2439 return 0;
2441 return env->v7m.basepri[M_REG_NS];
2442 case 0x93: /* FAULTMASK_NS */
2443 if (!env->v7m.secure) {
2444 return 0;
2446 return env->v7m.faultmask[M_REG_NS];
2447 case 0x98: /* SP_NS */
2450 * This gives the non-secure SP selected based on whether we're
2451 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2453 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2455 if (!env->v7m.secure) {
2456 return 0;
2458 if (!arm_v7m_is_handler_mode(env) && spsel) {
2459 return env->v7m.other_ss_psp;
2460 } else {
2461 return env->v7m.other_ss_msp;
2464 default:
2465 break;
2469 switch (reg) {
2470 case 8: /* MSP */
2471 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
2472 case 9: /* PSP */
2473 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
2474 case 10: /* MSPLIM */
2475 if (!arm_feature(env, ARM_FEATURE_V8)) {
2476 goto bad_reg;
2478 return env->v7m.msplim[env->v7m.secure];
2479 case 11: /* PSPLIM */
2480 if (!arm_feature(env, ARM_FEATURE_V8)) {
2481 goto bad_reg;
2483 return env->v7m.psplim[env->v7m.secure];
2484 case 16: /* PRIMASK */
2485 return env->v7m.primask[env->v7m.secure];
2486 case 17: /* BASEPRI */
2487 case 18: /* BASEPRI_MAX */
2488 return env->v7m.basepri[env->v7m.secure];
2489 case 19: /* FAULTMASK */
2490 return env->v7m.faultmask[env->v7m.secure];
2491 default:
2492 bad_reg:
2493 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
2494 " register %d\n", reg);
2495 return 0;
2499 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
2502 * We're passed bits [11..0] of the instruction; extract
2503 * SYSm and the mask bits.
2504 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2505 * we choose to treat them as if the mask bits were valid.
2506 * NB that the pseudocode 'mask' variable is bits [11..10],
2507 * whereas ours is [11..8].
2509 uint32_t mask = extract32(maskreg, 8, 4);
2510 uint32_t reg = extract32(maskreg, 0, 8);
2511 int cur_el = arm_current_el(env);
2513 if (cur_el == 0 && reg > 7 && reg != 20) {
2515 * only xPSR sub-fields and CONTROL.SFPA may be written by
2516 * unprivileged code
2518 return;
2521 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2522 switch (reg) {
2523 case 0x88: /* MSP_NS */
2524 if (!env->v7m.secure) {
2525 return;
2527 env->v7m.other_ss_msp = val;
2528 return;
2529 case 0x89: /* PSP_NS */
2530 if (!env->v7m.secure) {
2531 return;
2533 env->v7m.other_ss_psp = val;
2534 return;
2535 case 0x8a: /* MSPLIM_NS */
2536 if (!env->v7m.secure) {
2537 return;
2539 env->v7m.msplim[M_REG_NS] = val & ~7;
2540 return;
2541 case 0x8b: /* PSPLIM_NS */
2542 if (!env->v7m.secure) {
2543 return;
2545 env->v7m.psplim[M_REG_NS] = val & ~7;
2546 return;
2547 case 0x90: /* PRIMASK_NS */
2548 if (!env->v7m.secure) {
2549 return;
2551 env->v7m.primask[M_REG_NS] = val & 1;
2552 return;
2553 case 0x91: /* BASEPRI_NS */
2554 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2555 return;
2557 env->v7m.basepri[M_REG_NS] = val & 0xff;
2558 return;
2559 case 0x93: /* FAULTMASK_NS */
2560 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2561 return;
2563 env->v7m.faultmask[M_REG_NS] = val & 1;
2564 return;
2565 case 0x94: /* CONTROL_NS */
2566 if (!env->v7m.secure) {
2567 return;
2569 write_v7m_control_spsel_for_secstate(env,
2570 val & R_V7M_CONTROL_SPSEL_MASK,
2571 M_REG_NS);
2572 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
2573 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
2574 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
2577 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2578 * RES0 if the FPU is not present, and is stored in the S bank
2580 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env)) &&
2581 extract32(env->v7m.nsacr, 10, 1)) {
2582 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2583 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2585 return;
2586 case 0x98: /* SP_NS */
2589 * This gives the non-secure SP selected based on whether we're
2590 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2592 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2593 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
2594 uint32_t limit;
2596 if (!env->v7m.secure) {
2597 return;
2600 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
2602 if (val < limit) {
2603 CPUState *cs = env_cpu(env);
2605 cpu_restore_state(cs, GETPC(), true);
2606 raise_exception(env, EXCP_STKOF, 0, 1);
2609 if (is_psp) {
2610 env->v7m.other_ss_psp = val;
2611 } else {
2612 env->v7m.other_ss_msp = val;
2614 return;
2616 default:
2617 break;
2621 switch (reg) {
2622 case 0 ... 7: /* xPSR sub-fields */
2623 v7m_msr_xpsr(env, mask, reg, val);
2624 break;
2625 case 8: /* MSP */
2626 if (v7m_using_psp(env)) {
2627 env->v7m.other_sp = val;
2628 } else {
2629 env->regs[13] = val;
2631 break;
2632 case 9: /* PSP */
2633 if (v7m_using_psp(env)) {
2634 env->regs[13] = val;
2635 } else {
2636 env->v7m.other_sp = val;
2638 break;
2639 case 10: /* MSPLIM */
2640 if (!arm_feature(env, ARM_FEATURE_V8)) {
2641 goto bad_reg;
2643 env->v7m.msplim[env->v7m.secure] = val & ~7;
2644 break;
2645 case 11: /* PSPLIM */
2646 if (!arm_feature(env, ARM_FEATURE_V8)) {
2647 goto bad_reg;
2649 env->v7m.psplim[env->v7m.secure] = val & ~7;
2650 break;
2651 case 16: /* PRIMASK */
2652 env->v7m.primask[env->v7m.secure] = val & 1;
2653 break;
2654 case 17: /* BASEPRI */
2655 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2656 goto bad_reg;
2658 env->v7m.basepri[env->v7m.secure] = val & 0xff;
2659 break;
2660 case 18: /* BASEPRI_MAX */
2661 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2662 goto bad_reg;
2664 val &= 0xff;
2665 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
2666 || env->v7m.basepri[env->v7m.secure] == 0)) {
2667 env->v7m.basepri[env->v7m.secure] = val;
2669 break;
2670 case 19: /* FAULTMASK */
2671 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2672 goto bad_reg;
2674 env->v7m.faultmask[env->v7m.secure] = val & 1;
2675 break;
2676 case 20: /* CONTROL */
2678 * Writing to the SPSEL bit only has an effect if we are in
2679 * thread mode; other bits can be updated by any privileged code.
2680 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2681 * env->v7m.control, so we only need update the others.
2682 * For v7M, we must just ignore explicit writes to SPSEL in handler
2683 * mode; for v8M the write is permitted but will have no effect.
2684 * All these bits are writes-ignored from non-privileged code,
2685 * except for SFPA.
2687 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
2688 !arm_v7m_is_handler_mode(env))) {
2689 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
2691 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
2692 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
2693 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
2695 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
2697 * SFPA is RAZ/WI from NS or if no FPU.
2698 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2699 * Both are stored in the S bank.
2701 if (env->v7m.secure) {
2702 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2703 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
2705 if (cur_el > 0 &&
2706 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
2707 extract32(env->v7m.nsacr, 10, 1))) {
2708 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2709 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2712 break;
2713 default:
2714 bad_reg:
2715 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
2716 " register %d\n", reg);
2717 return;
2721 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
2723 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2724 bool forceunpriv = op & 1;
2725 bool alt = op & 2;
2726 V8M_SAttributes sattrs = {};
2727 uint32_t tt_resp;
2728 bool r, rw, nsr, nsrw, mrvalid;
2729 int prot;
2730 ARMMMUFaultInfo fi = {};
2731 MemTxAttrs attrs = {};
2732 hwaddr phys_addr;
2733 ARMMMUIdx mmu_idx;
2734 uint32_t mregion;
2735 bool targetpriv;
2736 bool targetsec = env->v7m.secure;
2737 bool is_subpage;
2740 * Work out what the security state and privilege level we're
2741 * interested in is...
2743 if (alt) {
2744 targetsec = !targetsec;
2747 if (forceunpriv) {
2748 targetpriv = false;
2749 } else {
2750 targetpriv = arm_v7m_is_handler_mode(env) ||
2751 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
2754 /* ...and then figure out which MMU index this is */
2755 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
2758 * We know that the MPU and SAU don't care about the access type
2759 * for our purposes beyond that we don't want to claim to be
2760 * an insn fetch, so we arbitrarily call this a read.
2764 * MPU region info only available for privileged or if
2765 * inspecting the other MPU state.
2767 if (arm_current_el(env) != 0 || alt) {
2768 /* We can ignore the return value as prot is always set */
2769 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
2770 &phys_addr, &attrs, &prot, &is_subpage,
2771 &fi, &mregion);
2772 if (mregion == -1) {
2773 mrvalid = false;
2774 mregion = 0;
2775 } else {
2776 mrvalid = true;
2778 r = prot & PAGE_READ;
2779 rw = prot & PAGE_WRITE;
2780 } else {
2781 r = false;
2782 rw = false;
2783 mrvalid = false;
2784 mregion = 0;
2787 if (env->v7m.secure) {
2788 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
2789 nsr = sattrs.ns && r;
2790 nsrw = sattrs.ns && rw;
2791 } else {
2792 sattrs.ns = true;
2793 nsr = false;
2794 nsrw = false;
2797 tt_resp = (sattrs.iregion << 24) |
2798 (sattrs.irvalid << 23) |
2799 ((!sattrs.ns) << 22) |
2800 (nsrw << 21) |
2801 (nsr << 20) |
2802 (rw << 19) |
2803 (r << 18) |
2804 (sattrs.srvalid << 17) |
2805 (mrvalid << 16) |
2806 (sattrs.sregion << 8) |
2807 mregion;
2809 return tt_resp;
2812 #endif /* !CONFIG_USER_ONLY */
2814 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2815 bool secstate, bool priv, bool negpri)
2817 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2819 if (priv) {
2820 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2823 if (negpri) {
2824 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2827 if (secstate) {
2828 mmu_idx |= ARM_MMU_IDX_M_S;
2831 return mmu_idx;
2834 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2835 bool secstate, bool priv)
2837 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
2839 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
2842 /* Return the MMU index for a v7M CPU in the specified security state */
2843 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
2845 bool priv = arm_v7m_is_handler_mode(env) ||
2846 !(env->v7m.control[secstate] & 1);
2848 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);