2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "exec/cpu_ldst.h"
27 //#define DEBUG_UNALIGNED
28 //#define DEBUG_UNASSIGNED
30 //#define DEBUG_CACHE_CONTROL
33 #define DPRINTF_MMU(fmt, ...) \
34 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
36 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #define DPRINTF_MXCC(fmt, ...) \
41 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
43 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #define DPRINTF_ASI(fmt, ...) \
48 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
51 #ifdef DEBUG_CACHE_CONTROL
52 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
53 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
55 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
60 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
62 #define AM_CHECK(env1) (1)
66 #define QT0 (env->qt0)
67 #define QT1 (env->qt1)
69 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
70 /* Calculates TSB pointer value for fault page size 8k or 64k */
71 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register
,
72 uint64_t tag_access_register
,
75 uint64_t tsb_base
= tsb_register
& ~0x1fffULL
;
76 int tsb_split
= (tsb_register
& 0x1000ULL
) ? 1 : 0;
77 int tsb_size
= tsb_register
& 0xf;
79 /* discard lower 13 bits which hold tag access context */
80 uint64_t tag_access_va
= tag_access_register
& ~0x1fffULL
;
82 /* now reorder bits */
83 uint64_t tsb_base_mask
= ~0x1fffULL
;
84 uint64_t va
= tag_access_va
;
86 /* move va bits to correct position */
87 if (page_size
== 8*1024) {
89 } else if (page_size
== 64*1024) {
94 tsb_base_mask
<<= tsb_size
;
97 /* calculate tsb_base mask and adjust va if split is in use */
99 if (page_size
== 8*1024) {
100 va
&= ~(1ULL << (13 + tsb_size
));
101 } else if (page_size
== 64*1024) {
102 va
|= (1ULL << (13 + tsb_size
));
107 return ((tsb_base
& tsb_base_mask
) | (va
& ~tsb_base_mask
)) & ~0xfULL
;
110 /* Calculates tag target register value by reordering bits
111 in tag access register */
112 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register
)
114 return ((tag_access_register
& 0x1fff) << 48) | (tag_access_register
>> 22);
117 static void replace_tlb_entry(SparcTLBEntry
*tlb
,
118 uint64_t tlb_tag
, uint64_t tlb_tte
,
121 target_ulong mask
, size
, va
, offset
;
123 /* flush page range if translation is valid */
124 if (TTE_IS_VALID(tlb
->tte
)) {
125 CPUState
*cs
= CPU(sparc_env_get_cpu(env1
));
127 mask
= 0xffffffffffffe000ULL
;
128 mask
<<= 3 * ((tlb
->tte
>> 61) & 3);
131 va
= tlb
->tag
& mask
;
133 for (offset
= 0; offset
< size
; offset
+= TARGET_PAGE_SIZE
) {
134 tlb_flush_page(cs
, va
+ offset
);
142 static void demap_tlb(SparcTLBEntry
*tlb
, target_ulong demap_addr
,
143 const char *strmmu
, CPUSPARCState
*env1
)
149 int is_demap_context
= (demap_addr
>> 6) & 1;
152 switch ((demap_addr
>> 4) & 3) {
153 case 0: /* primary */
154 context
= env1
->dmmu
.mmu_primary_context
;
156 case 1: /* secondary */
157 context
= env1
->dmmu
.mmu_secondary_context
;
159 case 2: /* nucleus */
162 case 3: /* reserved */
167 for (i
= 0; i
< 64; i
++) {
168 if (TTE_IS_VALID(tlb
[i
].tte
)) {
170 if (is_demap_context
) {
171 /* will remove non-global entries matching context value */
172 if (TTE_IS_GLOBAL(tlb
[i
].tte
) ||
173 !tlb_compare_context(&tlb
[i
], context
)) {
178 will remove any entry matching VA */
179 mask
= 0xffffffffffffe000ULL
;
180 mask
<<= 3 * ((tlb
[i
].tte
>> 61) & 3);
182 if (!compare_masked(demap_addr
, tlb
[i
].tag
, mask
)) {
186 /* entry should be global or matching context value */
187 if (!TTE_IS_GLOBAL(tlb
[i
].tte
) &&
188 !tlb_compare_context(&tlb
[i
], context
)) {
193 replace_tlb_entry(&tlb
[i
], 0, 0, env1
);
195 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu
, i
);
196 dump_mmu(stdout
, fprintf
, env1
);
202 static void replace_tlb_1bit_lru(SparcTLBEntry
*tlb
,
203 uint64_t tlb_tag
, uint64_t tlb_tte
,
204 const char *strmmu
, CPUSPARCState
*env1
)
206 unsigned int i
, replace_used
;
208 /* Try replacing invalid entry */
209 for (i
= 0; i
< 64; i
++) {
210 if (!TTE_IS_VALID(tlb
[i
].tte
)) {
211 replace_tlb_entry(&tlb
[i
], tlb_tag
, tlb_tte
, env1
);
213 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu
, i
);
214 dump_mmu(stdout
, fprintf
, env1
);
220 /* All entries are valid, try replacing unlocked entry */
222 for (replace_used
= 0; replace_used
< 2; ++replace_used
) {
224 /* Used entries are not replaced on first pass */
226 for (i
= 0; i
< 64; i
++) {
227 if (!TTE_IS_LOCKED(tlb
[i
].tte
) && !TTE_IS_USED(tlb
[i
].tte
)) {
229 replace_tlb_entry(&tlb
[i
], tlb_tag
, tlb_tte
, env1
);
231 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
232 strmmu
, (replace_used
? "used" : "unused"), i
);
233 dump_mmu(stdout
, fprintf
, env1
);
239 /* Now reset used bit and search for unused entries again */
241 for (i
= 0; i
< 64; i
++) {
242 TTE_SET_UNUSED(tlb
[i
].tte
);
247 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu
);
254 #if defined(TARGET_SPARC64) || defined(CONFIG_USER_ONLY)
255 static inline target_ulong
address_mask(CPUSPARCState
*env1
, target_ulong addr
)
257 #ifdef TARGET_SPARC64
258 if (AM_CHECK(env1
)) {
259 addr
&= 0xffffffffULL
;
266 #ifdef TARGET_SPARC64
267 /* returns true if access using this ASI is to have address translated by MMU
268 otherwise access is to raw physical address */
269 /* TODO: check sparc32 bits */
270 static inline int is_translating_asi(int asi
)
272 /* Ultrasparc IIi translating asi
273 - note this list is defined by cpu implementation
290 static inline target_ulong
asi_address_mask(CPUSPARCState
*env
,
291 int asi
, target_ulong addr
)
293 if (is_translating_asi(asi
)) {
294 return address_mask(env
, addr
);
301 void helper_check_align(CPUSPARCState
*env
, target_ulong addr
, uint32_t align
)
304 #ifdef DEBUG_UNALIGNED
305 printf("Unaligned access to 0x" TARGET_FMT_lx
" from 0x" TARGET_FMT_lx
306 "\n", addr
, env
->pc
);
308 helper_raise_exception(env
, TT_UNALIGNED
);
312 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
314 static void dump_mxcc(CPUSPARCState
*env
)
316 printf("mxccdata: %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
318 env
->mxccdata
[0], env
->mxccdata
[1],
319 env
->mxccdata
[2], env
->mxccdata
[3]);
320 printf("mxccregs: %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
322 " %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
324 env
->mxccregs
[0], env
->mxccregs
[1],
325 env
->mxccregs
[2], env
->mxccregs
[3],
326 env
->mxccregs
[4], env
->mxccregs
[5],
327 env
->mxccregs
[6], env
->mxccregs
[7]);
331 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
332 && defined(DEBUG_ASI)
333 static void dump_asi(const char *txt
, target_ulong addr
, int asi
, int size
,
338 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %02" PRIx64
"\n", txt
,
339 addr
, asi
, r1
& 0xff);
342 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %04" PRIx64
"\n", txt
,
343 addr
, asi
, r1
& 0xffff);
346 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %08" PRIx64
"\n", txt
,
347 addr
, asi
, r1
& 0xffffffff);
350 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %016" PRIx64
"\n", txt
,
357 #ifndef TARGET_SPARC64
358 #ifndef CONFIG_USER_ONLY
361 /* Leon3 cache control */
363 static void leon3_cache_control_st(CPUSPARCState
*env
, target_ulong addr
,
364 uint64_t val
, int size
)
366 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64
", size:%d\n",
370 DPRINTF_CACHE_CONTROL("32bits only\n");
375 case 0x00: /* Cache control */
377 /* These values must always be read as zeros */
378 val
&= ~CACHE_CTRL_FD
;
379 val
&= ~CACHE_CTRL_FI
;
380 val
&= ~CACHE_CTRL_IB
;
381 val
&= ~CACHE_CTRL_IP
;
382 val
&= ~CACHE_CTRL_DP
;
384 env
->cache_control
= val
;
386 case 0x04: /* Instruction cache configuration */
387 case 0x08: /* Data cache configuration */
391 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr
);
396 static uint64_t leon3_cache_control_ld(CPUSPARCState
*env
, target_ulong addr
,
402 DPRINTF_CACHE_CONTROL("32bits only\n");
407 case 0x00: /* Cache control */
408 ret
= env
->cache_control
;
411 /* Configuration registers are read and only always keep those
414 case 0x04: /* Instruction cache configuration */
417 case 0x08: /* Data cache configuration */
421 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr
);
424 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64
", size:%d\n",
429 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
432 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
434 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
435 uint32_t last_addr
= addr
;
438 helper_check_align(env
, addr
, size
- 1);
440 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
442 case 0x00: /* Leon3 Cache Control */
443 case 0x08: /* Leon3 Instruction Cache config */
444 case 0x0C: /* Leon3 Date Cache config */
445 if (env
->def
->features
& CPU_FEATURE_CACHE_CTRL
) {
446 ret
= leon3_cache_control_ld(env
, addr
, size
);
449 case 0x01c00a00: /* MXCC control register */
451 ret
= env
->mxccregs
[3];
453 qemu_log_mask(LOG_UNIMP
,
454 "%08x: unimplemented access size: %d\n", addr
,
458 case 0x01c00a04: /* MXCC control register */
460 ret
= env
->mxccregs
[3];
462 qemu_log_mask(LOG_UNIMP
,
463 "%08x: unimplemented access size: %d\n", addr
,
467 case 0x01c00c00: /* Module reset register */
469 ret
= env
->mxccregs
[5];
470 /* should we do something here? */
472 qemu_log_mask(LOG_UNIMP
,
473 "%08x: unimplemented access size: %d\n", addr
,
477 case 0x01c00f00: /* MBus port address register */
479 ret
= env
->mxccregs
[7];
481 qemu_log_mask(LOG_UNIMP
,
482 "%08x: unimplemented access size: %d\n", addr
,
487 qemu_log_mask(LOG_UNIMP
,
488 "%08x: unimplemented address, size: %d\n", addr
,
492 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
493 "addr = %08x -> ret = %" PRIx64
","
494 "addr = %08x\n", asi
, size
, sign
, last_addr
, ret
, addr
);
499 case 3: /* MMU probe */
500 case 0x18: /* LEON3 MMU probe */
504 mmulev
= (addr
>> 8) & 15;
508 ret
= mmu_probe(env
, addr
, mmulev
);
510 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64
"\n",
514 case 4: /* read MMU regs */
515 case 0x19: /* LEON3 read MMU regs */
517 int reg
= (addr
>> 8) & 0x1f;
519 ret
= env
->mmuregs
[reg
];
520 if (reg
== 3) { /* Fault status cleared on read */
522 } else if (reg
== 0x13) { /* Fault status read */
523 ret
= env
->mmuregs
[3];
524 } else if (reg
== 0x14) { /* Fault address read */
525 ret
= env
->mmuregs
[4];
527 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64
"\n", reg
, ret
);
530 case 5: /* Turbosparc ITLB Diagnostic */
531 case 6: /* Turbosparc DTLB Diagnostic */
532 case 7: /* Turbosparc IOTLB Diagnostic */
534 case 9: /* Supervisor code access */
537 ret
= cpu_ldub_code(env
, addr
);
540 ret
= cpu_lduw_code(env
, addr
);
544 ret
= cpu_ldl_code(env
, addr
);
547 ret
= cpu_ldq_code(env
, addr
);
551 case 0xa: /* User data access */
554 ret
= cpu_ldub_user(env
, addr
);
557 ret
= cpu_lduw_user(env
, addr
);
561 ret
= cpu_ldl_user(env
, addr
);
564 ret
= cpu_ldq_user(env
, addr
);
568 case 0xb: /* Supervisor data access */
572 ret
= cpu_ldub_kernel(env
, addr
);
575 ret
= cpu_lduw_kernel(env
, addr
);
579 ret
= cpu_ldl_kernel(env
, addr
);
582 ret
= cpu_ldq_kernel(env
, addr
);
586 case 0xc: /* I-cache tag */
587 case 0xd: /* I-cache data */
588 case 0xe: /* D-cache tag */
589 case 0xf: /* D-cache data */
591 case 0x20: /* MMU passthrough */
592 case 0x1c: /* LEON MMU passthrough */
595 ret
= ldub_phys(cs
->as
, addr
);
598 ret
= lduw_phys(cs
->as
, addr
);
602 ret
= ldl_phys(cs
->as
, addr
);
605 ret
= ldq_phys(cs
->as
, addr
);
609 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
612 ret
= ldub_phys(cs
->as
, (hwaddr
)addr
613 | ((hwaddr
)(asi
& 0xf) << 32));
616 ret
= lduw_phys(cs
->as
, (hwaddr
)addr
617 | ((hwaddr
)(asi
& 0xf) << 32));
621 ret
= ldl_phys(cs
->as
, (hwaddr
)addr
622 | ((hwaddr
)(asi
& 0xf) << 32));
625 ret
= ldq_phys(cs
->as
, (hwaddr
)addr
626 | ((hwaddr
)(asi
& 0xf) << 32));
630 case 0x30: /* Turbosparc secondary cache diagnostic */
631 case 0x31: /* Turbosparc RAM snoop */
632 case 0x32: /* Turbosparc page table descriptor diagnostic */
633 case 0x39: /* data cache diagnostic register */
636 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
638 int reg
= (addr
>> 8) & 3;
641 case 0: /* Breakpoint Value (Addr) */
642 ret
= env
->mmubpregs
[reg
];
644 case 1: /* Breakpoint Mask */
645 ret
= env
->mmubpregs
[reg
];
647 case 2: /* Breakpoint Control */
648 ret
= env
->mmubpregs
[reg
];
650 case 3: /* Breakpoint Status */
651 ret
= env
->mmubpregs
[reg
];
652 env
->mmubpregs
[reg
] = 0ULL;
655 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64
"\n", reg
,
659 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
660 ret
= env
->mmubpctrv
;
662 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
663 ret
= env
->mmubpctrc
;
665 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
666 ret
= env
->mmubpctrs
;
668 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
669 ret
= env
->mmubpaction
;
671 case 8: /* User code access, XXX */
673 cpu_unassigned_access(cs
, addr
, false, false, asi
, size
);
693 dump_asi("read ", last_addr
, asi
, size
, ret
);
698 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, uint64_t val
, int asi
,
701 SPARCCPU
*cpu
= sparc_env_get_cpu(env
);
702 CPUState
*cs
= CPU(cpu
);
704 helper_check_align(env
, addr
, size
- 1);
706 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
708 case 0x00: /* Leon3 Cache Control */
709 case 0x08: /* Leon3 Instruction Cache config */
710 case 0x0C: /* Leon3 Date Cache config */
711 if (env
->def
->features
& CPU_FEATURE_CACHE_CTRL
) {
712 leon3_cache_control_st(env
, addr
, val
, size
);
716 case 0x01c00000: /* MXCC stream data register 0 */
718 env
->mxccdata
[0] = val
;
720 qemu_log_mask(LOG_UNIMP
,
721 "%08x: unimplemented access size: %d\n", addr
,
725 case 0x01c00008: /* MXCC stream data register 1 */
727 env
->mxccdata
[1] = val
;
729 qemu_log_mask(LOG_UNIMP
,
730 "%08x: unimplemented access size: %d\n", addr
,
734 case 0x01c00010: /* MXCC stream data register 2 */
736 env
->mxccdata
[2] = val
;
738 qemu_log_mask(LOG_UNIMP
,
739 "%08x: unimplemented access size: %d\n", addr
,
743 case 0x01c00018: /* MXCC stream data register 3 */
745 env
->mxccdata
[3] = val
;
747 qemu_log_mask(LOG_UNIMP
,
748 "%08x: unimplemented access size: %d\n", addr
,
752 case 0x01c00100: /* MXCC stream source */
754 env
->mxccregs
[0] = val
;
756 qemu_log_mask(LOG_UNIMP
,
757 "%08x: unimplemented access size: %d\n", addr
,
760 env
->mxccdata
[0] = ldq_phys(cs
->as
,
761 (env
->mxccregs
[0] & 0xffffffffULL
) +
763 env
->mxccdata
[1] = ldq_phys(cs
->as
,
764 (env
->mxccregs
[0] & 0xffffffffULL
) +
766 env
->mxccdata
[2] = ldq_phys(cs
->as
,
767 (env
->mxccregs
[0] & 0xffffffffULL
) +
769 env
->mxccdata
[3] = ldq_phys(cs
->as
,
770 (env
->mxccregs
[0] & 0xffffffffULL
) +
773 case 0x01c00200: /* MXCC stream destination */
775 env
->mxccregs
[1] = val
;
777 qemu_log_mask(LOG_UNIMP
,
778 "%08x: unimplemented access size: %d\n", addr
,
781 stq_phys(cs
->as
, (env
->mxccregs
[1] & 0xffffffffULL
) + 0,
783 stq_phys(cs
->as
, (env
->mxccregs
[1] & 0xffffffffULL
) + 8,
785 stq_phys(cs
->as
, (env
->mxccregs
[1] & 0xffffffffULL
) + 16,
787 stq_phys(cs
->as
, (env
->mxccregs
[1] & 0xffffffffULL
) + 24,
790 case 0x01c00a00: /* MXCC control register */
792 env
->mxccregs
[3] = val
;
794 qemu_log_mask(LOG_UNIMP
,
795 "%08x: unimplemented access size: %d\n", addr
,
799 case 0x01c00a04: /* MXCC control register */
801 env
->mxccregs
[3] = (env
->mxccregs
[3] & 0xffffffff00000000ULL
)
804 qemu_log_mask(LOG_UNIMP
,
805 "%08x: unimplemented access size: %d\n", addr
,
809 case 0x01c00e00: /* MXCC error register */
810 /* writing a 1 bit clears the error */
812 env
->mxccregs
[6] &= ~val
;
814 qemu_log_mask(LOG_UNIMP
,
815 "%08x: unimplemented access size: %d\n", addr
,
819 case 0x01c00f00: /* MBus port address register */
821 env
->mxccregs
[7] = val
;
823 qemu_log_mask(LOG_UNIMP
,
824 "%08x: unimplemented access size: %d\n", addr
,
829 qemu_log_mask(LOG_UNIMP
,
830 "%08x: unimplemented address, size: %d\n", addr
,
834 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64
"\n",
835 asi
, size
, addr
, val
);
840 case 3: /* MMU flush */
841 case 0x18: /* LEON3 MMU flush */
845 mmulev
= (addr
>> 8) & 15;
846 DPRINTF_MMU("mmu flush level %d\n", mmulev
);
848 case 0: /* flush page */
849 tlb_flush_page(CPU(cpu
), addr
& 0xfffff000);
851 case 1: /* flush segment (256k) */
852 case 2: /* flush region (16M) */
853 case 3: /* flush context (4G) */
854 case 4: /* flush entire */
855 tlb_flush(CPU(cpu
), 1);
861 dump_mmu(stdout
, fprintf
, env
);
865 case 4: /* write MMU regs */
866 case 0x19: /* LEON3 write MMU regs */
868 int reg
= (addr
>> 8) & 0x1f;
871 oldreg
= env
->mmuregs
[reg
];
873 case 0: /* Control Register */
874 env
->mmuregs
[reg
] = (env
->mmuregs
[reg
] & 0xff000000) |
876 /* Mappings generated during no-fault mode or MMU
877 disabled mode are invalid in normal mode */
878 if ((oldreg
& (MMU_E
| MMU_NF
| env
->def
->mmu_bm
)) !=
879 (env
->mmuregs
[reg
] & (MMU_E
| MMU_NF
| env
->def
->mmu_bm
))) {
880 tlb_flush(CPU(cpu
), 1);
883 case 1: /* Context Table Pointer Register */
884 env
->mmuregs
[reg
] = val
& env
->def
->mmu_ctpr_mask
;
886 case 2: /* Context Register */
887 env
->mmuregs
[reg
] = val
& env
->def
->mmu_cxr_mask
;
888 if (oldreg
!= env
->mmuregs
[reg
]) {
889 /* we flush when the MMU context changes because
890 QEMU has no MMU context support */
891 tlb_flush(CPU(cpu
), 1);
894 case 3: /* Synchronous Fault Status Register with Clear */
895 case 4: /* Synchronous Fault Address Register */
897 case 0x10: /* TLB Replacement Control Register */
898 env
->mmuregs
[reg
] = val
& env
->def
->mmu_trcr_mask
;
900 case 0x13: /* Synchronous Fault Status Register with Read
902 env
->mmuregs
[3] = val
& env
->def
->mmu_sfsr_mask
;
904 case 0x14: /* Synchronous Fault Address Register */
905 env
->mmuregs
[4] = val
;
908 env
->mmuregs
[reg
] = val
;
911 if (oldreg
!= env
->mmuregs
[reg
]) {
912 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
913 reg
, oldreg
, env
->mmuregs
[reg
]);
916 dump_mmu(stdout
, fprintf
, env
);
920 case 5: /* Turbosparc ITLB Diagnostic */
921 case 6: /* Turbosparc DTLB Diagnostic */
922 case 7: /* Turbosparc IOTLB Diagnostic */
924 case 0xa: /* User data access */
927 cpu_stb_user(env
, addr
, val
);
930 cpu_stw_user(env
, addr
, val
);
934 cpu_stl_user(env
, addr
, val
);
937 cpu_stq_user(env
, addr
, val
);
941 case 0xb: /* Supervisor data access */
945 cpu_stb_kernel(env
, addr
, val
);
948 cpu_stw_kernel(env
, addr
, val
);
952 cpu_stl_kernel(env
, addr
, val
);
955 cpu_stq_kernel(env
, addr
, val
);
959 case 0xc: /* I-cache tag */
960 case 0xd: /* I-cache data */
961 case 0xe: /* D-cache tag */
962 case 0xf: /* D-cache data */
963 case 0x10: /* I/D-cache flush page */
964 case 0x11: /* I/D-cache flush segment */
965 case 0x12: /* I/D-cache flush region */
966 case 0x13: /* I/D-cache flush context */
967 case 0x14: /* I/D-cache flush user */
969 case 0x17: /* Block copy, sta access */
975 uint32_t src
= val
& ~3, dst
= addr
& ~3, temp
;
977 for (i
= 0; i
< 32; i
+= 4, src
+= 4, dst
+= 4) {
978 temp
= cpu_ldl_kernel(env
, src
);
979 cpu_stl_kernel(env
, dst
, temp
);
983 case 0x1f: /* Block fill, stda access */
986 fill 32 bytes with val */
988 uint32_t dst
= addr
& 7;
990 for (i
= 0; i
< 32; i
+= 8, dst
+= 8) {
991 cpu_stq_kernel(env
, dst
, val
);
995 case 0x20: /* MMU passthrough */
996 case 0x1c: /* LEON MMU passthrough */
1000 stb_phys(cs
->as
, addr
, val
);
1003 stw_phys(cs
->as
, addr
, val
);
1007 stl_phys(cs
->as
, addr
, val
);
1010 stq_phys(cs
->as
, addr
, val
);
1015 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1019 stb_phys(cs
->as
, (hwaddr
)addr
1020 | ((hwaddr
)(asi
& 0xf) << 32), val
);
1023 stw_phys(cs
->as
, (hwaddr
)addr
1024 | ((hwaddr
)(asi
& 0xf) << 32), val
);
1028 stl_phys(cs
->as
, (hwaddr
)addr
1029 | ((hwaddr
)(asi
& 0xf) << 32), val
);
1032 stq_phys(cs
->as
, (hwaddr
)addr
1033 | ((hwaddr
)(asi
& 0xf) << 32), val
);
1038 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1039 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1040 Turbosparc snoop RAM */
1041 case 0x32: /* store buffer control or Turbosparc page table
1042 descriptor diagnostic */
1043 case 0x36: /* I-cache flash clear */
1044 case 0x37: /* D-cache flash clear */
1046 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1048 int reg
= (addr
>> 8) & 3;
1051 case 0: /* Breakpoint Value (Addr) */
1052 env
->mmubpregs
[reg
] = (val
& 0xfffffffffULL
);
1054 case 1: /* Breakpoint Mask */
1055 env
->mmubpregs
[reg
] = (val
& 0xfffffffffULL
);
1057 case 2: /* Breakpoint Control */
1058 env
->mmubpregs
[reg
] = (val
& 0x7fULL
);
1060 case 3: /* Breakpoint Status */
1061 env
->mmubpregs
[reg
] = (val
& 0xfULL
);
1064 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg
,
1068 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1069 env
->mmubpctrv
= val
& 0xffffffff;
1071 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1072 env
->mmubpctrc
= val
& 0x3;
1074 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1075 env
->mmubpctrs
= val
& 0x3;
1077 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1078 env
->mmubpaction
= val
& 0x1fff;
1080 case 8: /* User code access, XXX */
1081 case 9: /* Supervisor code access, XXX */
1083 cpu_unassigned_access(CPU(sparc_env_get_cpu(env
)),
1084 addr
, true, false, asi
, size
);
1088 dump_asi("write", addr
, asi
, size
, val
);
1092 #endif /* CONFIG_USER_ONLY */
1093 #else /* TARGET_SPARC64 */
1095 #ifdef CONFIG_USER_ONLY
1096 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
1100 #if defined(DEBUG_ASI)
1101 target_ulong last_addr
= addr
;
1105 helper_raise_exception(env
, TT_PRIV_ACT
);
1108 helper_check_align(env
, addr
, size
- 1);
1109 addr
= asi_address_mask(env
, asi
, addr
);
1112 case 0x82: /* Primary no-fault */
1113 case 0x8a: /* Primary no-fault LE */
1114 if (page_check_range(addr
, size
, PAGE_READ
) == -1) {
1116 dump_asi("read ", last_addr
, asi
, size
, ret
);
1121 case 0x80: /* Primary */
1122 case 0x88: /* Primary LE */
1126 ret
= cpu_ldub_data(env
, addr
);
1129 ret
= cpu_lduw_data(env
, addr
);
1132 ret
= cpu_ldl_data(env
, addr
);
1136 ret
= cpu_ldq_data(env
, addr
);
1141 case 0x83: /* Secondary no-fault */
1142 case 0x8b: /* Secondary no-fault LE */
1143 if (page_check_range(addr
, size
, PAGE_READ
) == -1) {
1145 dump_asi("read ", last_addr
, asi
, size
, ret
);
1150 case 0x81: /* Secondary */
1151 case 0x89: /* Secondary LE */
1158 /* Convert from little endian */
1160 case 0x88: /* Primary LE */
1161 case 0x89: /* Secondary LE */
1162 case 0x8a: /* Primary no-fault LE */
1163 case 0x8b: /* Secondary no-fault LE */
1181 /* Convert to signed number */
1188 ret
= (int16_t) ret
;
1191 ret
= (int32_t) ret
;
1198 dump_asi("read ", last_addr
, asi
, size
, ret
);
1203 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, target_ulong val
,
1207 dump_asi("write", addr
, asi
, size
, val
);
1210 helper_raise_exception(env
, TT_PRIV_ACT
);
1213 helper_check_align(env
, addr
, size
- 1);
1214 addr
= asi_address_mask(env
, asi
, addr
);
1216 /* Convert to little endian */
1218 case 0x88: /* Primary LE */
1219 case 0x89: /* Secondary LE */
1238 case 0x80: /* Primary */
1239 case 0x88: /* Primary LE */
1243 cpu_stb_data(env
, addr
, val
);
1246 cpu_stw_data(env
, addr
, val
);
1249 cpu_stl_data(env
, addr
, val
);
1253 cpu_stq_data(env
, addr
, val
);
1258 case 0x81: /* Secondary */
1259 case 0x89: /* Secondary LE */
1263 case 0x82: /* Primary no-fault, RO */
1264 case 0x83: /* Secondary no-fault, RO */
1265 case 0x8a: /* Primary no-fault LE, RO */
1266 case 0x8b: /* Secondary no-fault LE, RO */
1268 helper_raise_exception(env
, TT_DATA_ACCESS
);
1273 #else /* CONFIG_USER_ONLY */
1275 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
1278 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1280 #if defined(DEBUG_ASI)
1281 target_ulong last_addr
= addr
;
1286 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
1287 || (cpu_has_hypervisor(env
)
1288 && asi
>= 0x30 && asi
< 0x80
1289 && !(env
->hpstate
& HS_PRIV
))) {
1290 helper_raise_exception(env
, TT_PRIV_ACT
);
1293 helper_check_align(env
, addr
, size
- 1);
1294 addr
= asi_address_mask(env
, asi
, addr
);
1296 /* process nonfaulting loads first */
1297 if ((asi
& 0xf6) == 0x82) {
1300 /* secondary space access has lowest asi bit equal to 1 */
1301 if (env
->pstate
& PS_PRIV
) {
1302 mmu_idx
= (asi
& 1) ? MMU_KERNEL_SECONDARY_IDX
: MMU_KERNEL_IDX
;
1304 mmu_idx
= (asi
& 1) ? MMU_USER_SECONDARY_IDX
: MMU_USER_IDX
;
1307 if (cpu_get_phys_page_nofault(env
, addr
, mmu_idx
) == -1ULL) {
1309 dump_asi("read ", last_addr
, asi
, size
, ret
);
1311 /* env->exception_index is set in get_physical_address_data(). */
1312 helper_raise_exception(env
, cs
->exception_index
);
1315 /* convert nonfaulting load ASIs to normal load ASIs */
1320 case 0x10: /* As if user primary */
1321 case 0x11: /* As if user secondary */
1322 case 0x18: /* As if user primary LE */
1323 case 0x19: /* As if user secondary LE */
1324 case 0x80: /* Primary */
1325 case 0x81: /* Secondary */
1326 case 0x88: /* Primary LE */
1327 case 0x89: /* Secondary LE */
1328 case 0xe2: /* UA2007 Primary block init */
1329 case 0xe3: /* UA2007 Secondary block init */
1330 if ((asi
& 0x80) && (env
->pstate
& PS_PRIV
)) {
1331 if (cpu_hypervisor_mode(env
)) {
1334 ret
= cpu_ldub_hypv(env
, addr
);
1337 ret
= cpu_lduw_hypv(env
, addr
);
1340 ret
= cpu_ldl_hypv(env
, addr
);
1344 ret
= cpu_ldq_hypv(env
, addr
);
1348 /* secondary space access has lowest asi bit equal to 1 */
1352 ret
= cpu_ldub_kernel_secondary(env
, addr
);
1355 ret
= cpu_lduw_kernel_secondary(env
, addr
);
1358 ret
= cpu_ldl_kernel_secondary(env
, addr
);
1362 ret
= cpu_ldq_kernel_secondary(env
, addr
);
1368 ret
= cpu_ldub_kernel(env
, addr
);
1371 ret
= cpu_lduw_kernel(env
, addr
);
1374 ret
= cpu_ldl_kernel(env
, addr
);
1378 ret
= cpu_ldq_kernel(env
, addr
);
1384 /* secondary space access has lowest asi bit equal to 1 */
1388 ret
= cpu_ldub_user_secondary(env
, addr
);
1391 ret
= cpu_lduw_user_secondary(env
, addr
);
1394 ret
= cpu_ldl_user_secondary(env
, addr
);
1398 ret
= cpu_ldq_user_secondary(env
, addr
);
1404 ret
= cpu_ldub_user(env
, addr
);
1407 ret
= cpu_lduw_user(env
, addr
);
1410 ret
= cpu_ldl_user(env
, addr
);
1414 ret
= cpu_ldq_user(env
, addr
);
1420 case 0x14: /* Bypass */
1421 case 0x15: /* Bypass, non-cacheable */
1422 case 0x1c: /* Bypass LE */
1423 case 0x1d: /* Bypass, non-cacheable LE */
1427 ret
= ldub_phys(cs
->as
, addr
);
1430 ret
= lduw_phys(cs
->as
, addr
);
1433 ret
= ldl_phys(cs
->as
, addr
);
1437 ret
= ldq_phys(cs
->as
, addr
);
1442 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1443 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1444 Only ldda allowed */
1445 helper_raise_exception(env
, TT_ILL_INSN
);
1447 case 0x04: /* Nucleus */
1448 case 0x0c: /* Nucleus Little Endian (LE) */
1452 ret
= cpu_ldub_nucleus(env
, addr
);
1455 ret
= cpu_lduw_nucleus(env
, addr
);
1458 ret
= cpu_ldl_nucleus(env
, addr
);
1462 ret
= cpu_ldq_nucleus(env
, addr
);
1467 case 0x4a: /* UPA config */
1470 case 0x45: /* LSU */
1473 case 0x50: /* I-MMU regs */
1475 int reg
= (addr
>> 3) & 0xf;
1478 /* I-TSB Tag Target register */
1479 ret
= ultrasparc_tag_target(env
->immu
.tag_access
);
1481 ret
= env
->immuregs
[reg
];
1486 case 0x51: /* I-MMU 8k TSB pointer */
1488 /* env->immuregs[5] holds I-MMU TSB register value
1489 env->immuregs[6] holds I-MMU Tag Access register value */
1490 ret
= ultrasparc_tsb_pointer(env
->immu
.tsb
, env
->immu
.tag_access
,
1494 case 0x52: /* I-MMU 64k TSB pointer */
1496 /* env->immuregs[5] holds I-MMU TSB register value
1497 env->immuregs[6] holds I-MMU Tag Access register value */
1498 ret
= ultrasparc_tsb_pointer(env
->immu
.tsb
, env
->immu
.tag_access
,
1502 case 0x55: /* I-MMU data access */
1504 int reg
= (addr
>> 3) & 0x3f;
1506 ret
= env
->itlb
[reg
].tte
;
1509 case 0x56: /* I-MMU tag read */
1511 int reg
= (addr
>> 3) & 0x3f;
1513 ret
= env
->itlb
[reg
].tag
;
1516 case 0x58: /* D-MMU regs */
1518 int reg
= (addr
>> 3) & 0xf;
1521 /* D-TSB Tag Target register */
1522 ret
= ultrasparc_tag_target(env
->dmmu
.tag_access
);
1524 ret
= env
->dmmuregs
[reg
];
1528 case 0x59: /* D-MMU 8k TSB pointer */
1530 /* env->dmmuregs[5] holds D-MMU TSB register value
1531 env->dmmuregs[6] holds D-MMU Tag Access register value */
1532 ret
= ultrasparc_tsb_pointer(env
->dmmu
.tsb
, env
->dmmu
.tag_access
,
1536 case 0x5a: /* D-MMU 64k TSB pointer */
1538 /* env->dmmuregs[5] holds D-MMU TSB register value
1539 env->dmmuregs[6] holds D-MMU Tag Access register value */
1540 ret
= ultrasparc_tsb_pointer(env
->dmmu
.tsb
, env
->dmmu
.tag_access
,
1544 case 0x5d: /* D-MMU data access */
1546 int reg
= (addr
>> 3) & 0x3f;
1548 ret
= env
->dtlb
[reg
].tte
;
1551 case 0x5e: /* D-MMU tag read */
1553 int reg
= (addr
>> 3) & 0x3f;
1555 ret
= env
->dtlb
[reg
].tag
;
1558 case 0x48: /* Interrupt dispatch, RO */
1560 case 0x49: /* Interrupt data receive */
1561 ret
= env
->ivec_status
;
1563 case 0x7f: /* Incoming interrupt vector, RO */
1565 int reg
= (addr
>> 4) & 0x3;
1567 ret
= env
->ivec_data
[reg
];
1571 case 0x46: /* D-cache data */
1572 case 0x47: /* D-cache tag access */
1573 case 0x4b: /* E-cache error enable */
1574 case 0x4c: /* E-cache asynchronous fault status */
1575 case 0x4d: /* E-cache asynchronous fault address */
1576 case 0x4e: /* E-cache tag data */
1577 case 0x66: /* I-cache instruction access */
1578 case 0x67: /* I-cache tag access */
1579 case 0x6e: /* I-cache predecode */
1580 case 0x6f: /* I-cache LRU etc. */
1581 case 0x76: /* E-cache tag */
1582 case 0x7e: /* E-cache tag */
1584 case 0x5b: /* D-MMU data pointer */
1585 case 0x54: /* I-MMU data in, WO */
1586 case 0x57: /* I-MMU demap, WO */
1587 case 0x5c: /* D-MMU data in, WO */
1588 case 0x5f: /* D-MMU demap, WO */
1589 case 0x77: /* Interrupt vector, WO */
1591 cpu_unassigned_access(cs
, addr
, false, false, 1, size
);
1596 /* Convert from little endian */
1598 case 0x0c: /* Nucleus Little Endian (LE) */
1599 case 0x18: /* As if user primary LE */
1600 case 0x19: /* As if user secondary LE */
1601 case 0x1c: /* Bypass LE */
1602 case 0x1d: /* Bypass, non-cacheable LE */
1603 case 0x88: /* Primary LE */
1604 case 0x89: /* Secondary LE */
1622 /* Convert to signed number */
1629 ret
= (int16_t) ret
;
1632 ret
= (int32_t) ret
;
1639 dump_asi("read ", last_addr
, asi
, size
, ret
);
1644 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, target_ulong val
,
1647 SPARCCPU
*cpu
= sparc_env_get_cpu(env
);
1648 CPUState
*cs
= CPU(cpu
);
1651 dump_asi("write", addr
, asi
, size
, val
);
1656 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
1657 || (cpu_has_hypervisor(env
)
1658 && asi
>= 0x30 && asi
< 0x80
1659 && !(env
->hpstate
& HS_PRIV
))) {
1660 helper_raise_exception(env
, TT_PRIV_ACT
);
1663 helper_check_align(env
, addr
, size
- 1);
1664 addr
= asi_address_mask(env
, asi
, addr
);
1666 /* Convert to little endian */
1668 case 0x0c: /* Nucleus Little Endian (LE) */
1669 case 0x18: /* As if user primary LE */
1670 case 0x19: /* As if user secondary LE */
1671 case 0x1c: /* Bypass LE */
1672 case 0x1d: /* Bypass, non-cacheable LE */
1673 case 0x88: /* Primary LE */
1674 case 0x89: /* Secondary LE */
1693 case 0x10: /* As if user primary */
1694 case 0x11: /* As if user secondary */
1695 case 0x18: /* As if user primary LE */
1696 case 0x19: /* As if user secondary LE */
1697 case 0x80: /* Primary */
1698 case 0x81: /* Secondary */
1699 case 0x88: /* Primary LE */
1700 case 0x89: /* Secondary LE */
1701 case 0xe2: /* UA2007 Primary block init */
1702 case 0xe3: /* UA2007 Secondary block init */
1703 if ((asi
& 0x80) && (env
->pstate
& PS_PRIV
)) {
1704 if (cpu_hypervisor_mode(env
)) {
1707 cpu_stb_hypv(env
, addr
, val
);
1710 cpu_stw_hypv(env
, addr
, val
);
1713 cpu_stl_hypv(env
, addr
, val
);
1717 cpu_stq_hypv(env
, addr
, val
);
1721 /* secondary space access has lowest asi bit equal to 1 */
1725 cpu_stb_kernel_secondary(env
, addr
, val
);
1728 cpu_stw_kernel_secondary(env
, addr
, val
);
1731 cpu_stl_kernel_secondary(env
, addr
, val
);
1735 cpu_stq_kernel_secondary(env
, addr
, val
);
1741 cpu_stb_kernel(env
, addr
, val
);
1744 cpu_stw_kernel(env
, addr
, val
);
1747 cpu_stl_kernel(env
, addr
, val
);
1751 cpu_stq_kernel(env
, addr
, val
);
1757 /* secondary space access has lowest asi bit equal to 1 */
1761 cpu_stb_user_secondary(env
, addr
, val
);
1764 cpu_stw_user_secondary(env
, addr
, val
);
1767 cpu_stl_user_secondary(env
, addr
, val
);
1771 cpu_stq_user_secondary(env
, addr
, val
);
1777 cpu_stb_user(env
, addr
, val
);
1780 cpu_stw_user(env
, addr
, val
);
1783 cpu_stl_user(env
, addr
, val
);
1787 cpu_stq_user(env
, addr
, val
);
1793 case 0x14: /* Bypass */
1794 case 0x15: /* Bypass, non-cacheable */
1795 case 0x1c: /* Bypass LE */
1796 case 0x1d: /* Bypass, non-cacheable LE */
1800 stb_phys(cs
->as
, addr
, val
);
1803 stw_phys(cs
->as
, addr
, val
);
1806 stl_phys(cs
->as
, addr
, val
);
1810 stq_phys(cs
->as
, addr
, val
);
1815 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1816 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1817 Only ldda allowed */
1818 helper_raise_exception(env
, TT_ILL_INSN
);
1820 case 0x04: /* Nucleus */
1821 case 0x0c: /* Nucleus Little Endian (LE) */
1825 cpu_stb_nucleus(env
, addr
, val
);
1828 cpu_stw_nucleus(env
, addr
, val
);
1831 cpu_stl_nucleus(env
, addr
, val
);
1835 cpu_stq_nucleus(env
, addr
, val
);
1841 case 0x4a: /* UPA config */
1844 case 0x45: /* LSU */
1849 env
->lsu
= val
& (DMMU_E
| IMMU_E
);
1850 /* Mappings generated during D/I MMU disabled mode are
1851 invalid in normal mode */
1852 if (oldreg
!= env
->lsu
) {
1853 DPRINTF_MMU("LSU change: 0x%" PRIx64
" -> 0x%" PRIx64
"\n",
1856 dump_mmu(stdout
, fprintf
, env
);
1858 tlb_flush(CPU(cpu
), 1);
1862 case 0x50: /* I-MMU regs */
1864 int reg
= (addr
>> 3) & 0xf;
1867 oldreg
= env
->immuregs
[reg
];
1871 case 1: /* Not in I-MMU */
1875 if ((val
& 1) == 0) {
1876 val
= 0; /* Clear SFSR */
1878 env
->immu
.sfsr
= val
;
1882 case 5: /* TSB access */
1883 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64
" -> 0x%016"
1884 PRIx64
"\n", env
->immu
.tsb
, val
);
1885 env
->immu
.tsb
= val
;
1887 case 6: /* Tag access */
1888 env
->immu
.tag_access
= val
;
1897 if (oldreg
!= env
->immuregs
[reg
]) {
1898 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64
" -> 0x%016"
1899 PRIx64
"\n", reg
, oldreg
, env
->immuregs
[reg
]);
1902 dump_mmu(stdout
, fprintf
, env
);
1906 case 0x54: /* I-MMU data in */
1907 replace_tlb_1bit_lru(env
->itlb
, env
->immu
.tag_access
, val
, "immu", env
);
1909 case 0x55: /* I-MMU data access */
1911 /* TODO: auto demap */
1913 unsigned int i
= (addr
>> 3) & 0x3f;
1915 replace_tlb_entry(&env
->itlb
[i
], env
->immu
.tag_access
, val
, env
);
1918 DPRINTF_MMU("immu data access replaced entry [%i]\n", i
);
1919 dump_mmu(stdout
, fprintf
, env
);
1923 case 0x57: /* I-MMU demap */
1924 demap_tlb(env
->itlb
, addr
, "immu", env
);
1926 case 0x58: /* D-MMU regs */
1928 int reg
= (addr
>> 3) & 0xf;
1931 oldreg
= env
->dmmuregs
[reg
];
1937 if ((val
& 1) == 0) {
1938 val
= 0; /* Clear SFSR, Fault address */
1941 env
->dmmu
.sfsr
= val
;
1943 case 1: /* Primary context */
1944 env
->dmmu
.mmu_primary_context
= val
;
1945 /* can be optimized to only flush MMU_USER_IDX
1946 and MMU_KERNEL_IDX entries */
1947 tlb_flush(CPU(cpu
), 1);
1949 case 2: /* Secondary context */
1950 env
->dmmu
.mmu_secondary_context
= val
;
1951 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1952 and MMU_KERNEL_SECONDARY_IDX entries */
1953 tlb_flush(CPU(cpu
), 1);
1955 case 5: /* TSB access */
1956 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64
" -> 0x%016"
1957 PRIx64
"\n", env
->dmmu
.tsb
, val
);
1958 env
->dmmu
.tsb
= val
;
1960 case 6: /* Tag access */
1961 env
->dmmu
.tag_access
= val
;
1963 case 7: /* Virtual Watchpoint */
1964 case 8: /* Physical Watchpoint */
1966 env
->dmmuregs
[reg
] = val
;
1970 if (oldreg
!= env
->dmmuregs
[reg
]) {
1971 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64
" -> 0x%016"
1972 PRIx64
"\n", reg
, oldreg
, env
->dmmuregs
[reg
]);
1975 dump_mmu(stdout
, fprintf
, env
);
1979 case 0x5c: /* D-MMU data in */
1980 replace_tlb_1bit_lru(env
->dtlb
, env
->dmmu
.tag_access
, val
, "dmmu", env
);
1982 case 0x5d: /* D-MMU data access */
1984 unsigned int i
= (addr
>> 3) & 0x3f;
1986 replace_tlb_entry(&env
->dtlb
[i
], env
->dmmu
.tag_access
, val
, env
);
1989 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i
);
1990 dump_mmu(stdout
, fprintf
, env
);
1994 case 0x5f: /* D-MMU demap */
1995 demap_tlb(env
->dtlb
, addr
, "dmmu", env
);
1997 case 0x49: /* Interrupt data receive */
1998 env
->ivec_status
= val
& 0x20;
2000 case 0x46: /* D-cache data */
2001 case 0x47: /* D-cache tag access */
2002 case 0x4b: /* E-cache error enable */
2003 case 0x4c: /* E-cache asynchronous fault status */
2004 case 0x4d: /* E-cache asynchronous fault address */
2005 case 0x4e: /* E-cache tag data */
2006 case 0x66: /* I-cache instruction access */
2007 case 0x67: /* I-cache tag access */
2008 case 0x6e: /* I-cache predecode */
2009 case 0x6f: /* I-cache LRU etc. */
2010 case 0x76: /* E-cache tag */
2011 case 0x7e: /* E-cache tag */
2013 case 0x51: /* I-MMU 8k TSB pointer, RO */
2014 case 0x52: /* I-MMU 64k TSB pointer, RO */
2015 case 0x56: /* I-MMU tag read, RO */
2016 case 0x59: /* D-MMU 8k TSB pointer, RO */
2017 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2018 case 0x5b: /* D-MMU data pointer, RO */
2019 case 0x5e: /* D-MMU tag read, RO */
2020 case 0x48: /* Interrupt dispatch, RO */
2021 case 0x7f: /* Incoming interrupt vector, RO */
2022 case 0x82: /* Primary no-fault, RO */
2023 case 0x83: /* Secondary no-fault, RO */
2024 case 0x8a: /* Primary no-fault LE, RO */
2025 case 0x8b: /* Secondary no-fault LE, RO */
2027 cpu_unassigned_access(cs
, addr
, true, false, 1, size
);
2031 #endif /* CONFIG_USER_ONLY */
2033 void helper_ldda_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int rd
)
2035 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
2036 || (cpu_has_hypervisor(env
)
2037 && asi
>= 0x30 && asi
< 0x80
2038 && !(env
->hpstate
& HS_PRIV
))) {
2039 helper_raise_exception(env
, TT_PRIV_ACT
);
2042 addr
= asi_address_mask(env
, asi
, addr
);
2045 #if !defined(CONFIG_USER_ONLY)
2046 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2047 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2048 helper_check_align(env
, addr
, 0xf);
2050 env
->gregs
[1] = cpu_ldq_nucleus(env
, addr
+ 8);
2052 bswap64s(&env
->gregs
[1]);
2054 } else if (rd
< 8) {
2055 env
->gregs
[rd
] = cpu_ldq_nucleus(env
, addr
);
2056 env
->gregs
[rd
+ 1] = cpu_ldq_nucleus(env
, addr
+ 8);
2058 bswap64s(&env
->gregs
[rd
]);
2059 bswap64s(&env
->gregs
[rd
+ 1]);
2062 env
->regwptr
[rd
] = cpu_ldq_nucleus(env
, addr
);
2063 env
->regwptr
[rd
+ 1] = cpu_ldq_nucleus(env
, addr
+ 8);
2065 bswap64s(&env
->regwptr
[rd
]);
2066 bswap64s(&env
->regwptr
[rd
+ 1]);
2072 helper_check_align(env
, addr
, 0x3);
2074 env
->gregs
[1] = helper_ld_asi(env
, addr
+ 4, asi
, 4, 0);
2075 } else if (rd
< 8) {
2076 env
->gregs
[rd
] = helper_ld_asi(env
, addr
, asi
, 4, 0);
2077 env
->gregs
[rd
+ 1] = helper_ld_asi(env
, addr
+ 4, asi
, 4, 0);
2079 env
->regwptr
[rd
] = helper_ld_asi(env
, addr
, asi
, 4, 0);
2080 env
->regwptr
[rd
+ 1] = helper_ld_asi(env
, addr
+ 4, asi
, 4, 0);
2086 void helper_ldf_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
2092 helper_check_align(env
, addr
, 3);
2093 addr
= asi_address_mask(env
, asi
, addr
);
2096 case 0xf0: /* UA2007/JPS1 Block load primary */
2097 case 0xf1: /* UA2007/JPS1 Block load secondary */
2098 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2099 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2101 helper_raise_exception(env
, TT_ILL_INSN
);
2104 helper_check_align(env
, addr
, 0x3f);
2105 for (i
= 0; i
< 8; i
++, rd
+= 2, addr
+= 8) {
2106 env
->fpr
[rd
/ 2].ll
= helper_ld_asi(env
, addr
, asi
& 0x8f, 8, 0);
2110 case 0x16: /* UA2007 Block load primary, user privilege */
2111 case 0x17: /* UA2007 Block load secondary, user privilege */
2112 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2113 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2114 case 0x70: /* JPS1 Block load primary, user privilege */
2115 case 0x71: /* JPS1 Block load secondary, user privilege */
2116 case 0x78: /* JPS1 Block load primary LE, user privilege */
2117 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2119 helper_raise_exception(env
, TT_ILL_INSN
);
2122 helper_check_align(env
, addr
, 0x3f);
2123 for (i
= 0; i
< 8; i
++, rd
+= 2, addr
+= 8) {
2124 env
->fpr
[rd
/ 2].ll
= helper_ld_asi(env
, addr
, asi
& 0x19, 8, 0);
2135 val
= helper_ld_asi(env
, addr
, asi
, size
, 0);
2137 env
->fpr
[rd
/ 2].l
.lower
= val
;
2139 env
->fpr
[rd
/ 2].l
.upper
= val
;
2143 env
->fpr
[rd
/ 2].ll
= helper_ld_asi(env
, addr
, asi
, size
, 0);
2146 env
->fpr
[rd
/ 2].ll
= helper_ld_asi(env
, addr
, asi
, 8, 0);
2147 env
->fpr
[rd
/ 2 + 1].ll
= helper_ld_asi(env
, addr
+ 8, asi
, 8, 0);
2152 void helper_stf_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
2158 addr
= asi_address_mask(env
, asi
, addr
);
2161 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2162 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2163 case 0xf0: /* UA2007/JPS1 Block store primary */
2164 case 0xf1: /* UA2007/JPS1 Block store secondary */
2165 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2166 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2168 helper_raise_exception(env
, TT_ILL_INSN
);
2171 helper_check_align(env
, addr
, 0x3f);
2172 for (i
= 0; i
< 8; i
++, rd
+= 2, addr
+= 8) {
2173 helper_st_asi(env
, addr
, env
->fpr
[rd
/ 2].ll
, asi
& 0x8f, 8);
2177 case 0x16: /* UA2007 Block load primary, user privilege */
2178 case 0x17: /* UA2007 Block load secondary, user privilege */
2179 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2180 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2181 case 0x70: /* JPS1 Block store primary, user privilege */
2182 case 0x71: /* JPS1 Block store secondary, user privilege */
2183 case 0x78: /* JPS1 Block load primary LE, user privilege */
2184 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2186 helper_raise_exception(env
, TT_ILL_INSN
);
2189 helper_check_align(env
, addr
, 0x3f);
2190 for (i
= 0; i
< 8; i
++, rd
+= 2, addr
+= 8) {
2191 helper_st_asi(env
, addr
, env
->fpr
[rd
/ 2].ll
, asi
& 0x19, 8);
2195 case 0xd2: /* 16-bit floating point load primary */
2196 case 0xd3: /* 16-bit floating point load secondary */
2197 case 0xda: /* 16-bit floating point load primary, LE */
2198 case 0xdb: /* 16-bit floating point load secondary, LE */
2199 helper_check_align(env
, addr
, 1);
2201 case 0xd0: /* 8-bit floating point load primary */
2202 case 0xd1: /* 8-bit floating point load secondary */
2203 case 0xd8: /* 8-bit floating point load primary, LE */
2204 case 0xd9: /* 8-bit floating point load secondary, LE */
2205 val
= env
->fpr
[rd
/ 2].l
.lower
;
2206 helper_st_asi(env
, addr
, val
, asi
& 0x8d, ((asi
& 2) >> 1) + 1);
2209 helper_check_align(env
, addr
, 3);
2217 val
= env
->fpr
[rd
/ 2].l
.lower
;
2219 val
= env
->fpr
[rd
/ 2].l
.upper
;
2221 helper_st_asi(env
, addr
, val
, asi
, size
);
2224 helper_st_asi(env
, addr
, env
->fpr
[rd
/ 2].ll
, asi
, size
);
2227 helper_st_asi(env
, addr
, env
->fpr
[rd
/ 2].ll
, asi
, 8);
2228 helper_st_asi(env
, addr
+ 8, env
->fpr
[rd
/ 2 + 1].ll
, asi
, 8);
2233 target_ulong
helper_casx_asi(CPUSPARCState
*env
, target_ulong addr
,
2234 target_ulong val1
, target_ulong val2
,
2239 ret
= helper_ld_asi(env
, addr
, asi
, 8, 0);
2241 helper_st_asi(env
, addr
, val1
, asi
, 8);
2245 #endif /* TARGET_SPARC64 */
2247 #if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
2248 target_ulong
helper_cas_asi(CPUSPARCState
*env
, target_ulong addr
,
2249 target_ulong val1
, target_ulong val2
, uint32_t asi
)
2253 val2
&= 0xffffffffUL
;
2254 ret
= helper_ld_asi(env
, addr
, asi
, 4, 0);
2255 ret
&= 0xffffffffUL
;
2257 helper_st_asi(env
, addr
, val1
& 0xffffffffUL
, asi
, 4);
2261 #endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */
2263 void helper_ldqf(CPUSPARCState
*env
, target_ulong addr
, int mem_idx
)
2265 /* XXX add 128 bit load */
2268 helper_check_align(env
, addr
, 7);
2269 #if !defined(CONFIG_USER_ONLY)
2272 u
.ll
.upper
= cpu_ldq_user(env
, addr
);
2273 u
.ll
.lower
= cpu_ldq_user(env
, addr
+ 8);
2276 case MMU_KERNEL_IDX
:
2277 u
.ll
.upper
= cpu_ldq_kernel(env
, addr
);
2278 u
.ll
.lower
= cpu_ldq_kernel(env
, addr
+ 8);
2281 #ifdef TARGET_SPARC64
2283 u
.ll
.upper
= cpu_ldq_hypv(env
, addr
);
2284 u
.ll
.lower
= cpu_ldq_hypv(env
, addr
+ 8);
2289 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx
);
2293 u
.ll
.upper
= cpu_ldq_data(env
, address_mask(env
, addr
));
2294 u
.ll
.lower
= cpu_ldq_data(env
, address_mask(env
, addr
+ 8));
2299 void helper_stqf(CPUSPARCState
*env
, target_ulong addr
, int mem_idx
)
2301 /* XXX add 128 bit store */
2304 helper_check_align(env
, addr
, 7);
2305 #if !defined(CONFIG_USER_ONLY)
2309 cpu_stq_user(env
, addr
, u
.ll
.upper
);
2310 cpu_stq_user(env
, addr
+ 8, u
.ll
.lower
);
2312 case MMU_KERNEL_IDX
:
2314 cpu_stq_kernel(env
, addr
, u
.ll
.upper
);
2315 cpu_stq_kernel(env
, addr
+ 8, u
.ll
.lower
);
2317 #ifdef TARGET_SPARC64
2320 cpu_stq_hypv(env
, addr
, u
.ll
.upper
);
2321 cpu_stq_hypv(env
, addr
+ 8, u
.ll
.lower
);
2325 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx
);
2330 cpu_stq_data(env
, address_mask(env
, addr
), u
.ll
.upper
);
2331 cpu_stq_data(env
, address_mask(env
, addr
+ 8), u
.ll
.lower
);
2335 #if !defined(CONFIG_USER_ONLY)
2336 #ifndef TARGET_SPARC64
2337 void sparc_cpu_unassigned_access(CPUState
*cs
, hwaddr addr
,
2338 bool is_write
, bool is_exec
, int is_asi
,
2341 SPARCCPU
*cpu
= SPARC_CPU(cs
);
2342 CPUSPARCState
*env
= &cpu
->env
;
2345 #ifdef DEBUG_UNASSIGNED
2347 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2348 " asi 0x%02x from " TARGET_FMT_lx
"\n",
2349 is_exec
? "exec" : is_write
? "write" : "read", size
,
2350 size
== 1 ? "" : "s", addr
, is_asi
, env
->pc
);
2352 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2353 " from " TARGET_FMT_lx
"\n",
2354 is_exec
? "exec" : is_write
? "write" : "read", size
,
2355 size
== 1 ? "" : "s", addr
, env
->pc
);
2358 /* Don't overwrite translation and access faults */
2359 fault_type
= (env
->mmuregs
[3] & 0x1c) >> 2;
2360 if ((fault_type
> 4) || (fault_type
== 0)) {
2361 env
->mmuregs
[3] = 0; /* Fault status register */
2363 env
->mmuregs
[3] |= 1 << 16;
2366 env
->mmuregs
[3] |= 1 << 5;
2369 env
->mmuregs
[3] |= 1 << 6;
2372 env
->mmuregs
[3] |= 1 << 7;
2374 env
->mmuregs
[3] |= (5 << 2) | 2;
2375 /* SuperSPARC will never place instruction fault addresses in the FAR */
2377 env
->mmuregs
[4] = addr
; /* Fault address register */
2380 /* overflow (same type fault was not read before another fault) */
2381 if (fault_type
== ((env
->mmuregs
[3] & 0x1c)) >> 2) {
2382 env
->mmuregs
[3] |= 1;
2385 if ((env
->mmuregs
[0] & MMU_E
) && !(env
->mmuregs
[0] & MMU_NF
)) {
2387 helper_raise_exception(env
, TT_CODE_ACCESS
);
2389 helper_raise_exception(env
, TT_DATA_ACCESS
);
2393 /* flush neverland mappings created during no-fault mode,
2394 so the sequential MMU faults report proper fault types */
2395 if (env
->mmuregs
[0] & MMU_NF
) {
2400 void sparc_cpu_unassigned_access(CPUState
*cs
, hwaddr addr
,
2401 bool is_write
, bool is_exec
, int is_asi
,
2404 SPARCCPU
*cpu
= SPARC_CPU(cs
);
2405 CPUSPARCState
*env
= &cpu
->env
;
2407 #ifdef DEBUG_UNASSIGNED
2408 printf("Unassigned mem access to " TARGET_FMT_plx
" from " TARGET_FMT_lx
2409 "\n", addr
, env
->pc
);
2413 helper_raise_exception(env
, TT_CODE_ACCESS
);
2415 helper_raise_exception(env
, TT_DATA_ACCESS
);
2421 #if !defined(CONFIG_USER_ONLY)
2422 void QEMU_NORETURN
sparc_cpu_do_unaligned_access(CPUState
*cs
,
2423 vaddr addr
, int is_write
,
2424 int is_user
, uintptr_t retaddr
)
2426 SPARCCPU
*cpu
= SPARC_CPU(cs
);
2427 CPUSPARCState
*env
= &cpu
->env
;
2429 #ifdef DEBUG_UNALIGNED
2430 printf("Unaligned access to 0x" TARGET_FMT_lx
" from 0x" TARGET_FMT_lx
2431 "\n", addr
, env
->pc
);
2434 cpu_restore_state(CPU(cpu
), retaddr
);
2436 helper_raise_exception(env
, TT_UNALIGNED
);
2439 /* try to fill the TLB and return an exception if error. If retaddr is
2440 NULL, it means that the function was called in C code (i.e. not
2441 from generated code or from helper.c) */
2442 /* XXX: fix it to restore all registers */
2443 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
2448 ret
= sparc_cpu_handle_mmu_fault(cs
, addr
, is_write
, mmu_idx
);
2451 cpu_restore_state(cs
, retaddr
);