target/arm: Pass memop to gen_mte_check1*
[qemu/ar7.git] / target / arm / tcg / translate-a64.c
blob85d896e9752c72a5d467ada1f17683951f422015
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
35 static const char *regnames[] = {
36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
42 enum a64_shift_type {
43 A64_SHIFT_TYPE_LSL = 0,
44 A64_SHIFT_TYPE_LSR = 1,
45 A64_SHIFT_TYPE_ASR = 2,
46 A64_SHIFT_TYPE_ROR = 3
50 * Include the generated decoders.
53 #include "decode-sme-fa64.c.inc"
54 #include "decode-a64.c.inc"
56 /* Table based decoder typedefs - used when the relevant bits for decode
57 * are too awkwardly scattered across the instruction (eg SIMD).
59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
61 typedef struct AArch64DecodeTable {
62 uint32_t pattern;
63 uint32_t mask;
64 AArch64DecodeFn *disas_fn;
65 } AArch64DecodeTable;
67 /* initialize TCG globals. */
68 void a64_translate_init(void)
70 int i;
72 cpu_pc = tcg_global_mem_new_i64(cpu_env,
73 offsetof(CPUARMState, pc),
74 "pc");
75 for (i = 0; i < 32; i++) {
76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
77 offsetof(CPUARMState, xregs[i]),
78 regnames[i]);
81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
82 offsetof(CPUARMState, exclusive_high), "exclusive_high");
86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
88 static int get_a64_user_mem_index(DisasContext *s)
91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
92 * which is the usual mmu_idx for this cpu state.
94 ARMMMUIdx useridx = s->mmu_idx;
96 if (s->unpriv) {
98 * We have pre-computed the condition for AccType_UNPRIV.
99 * Therefore we should never get here with a mmu_idx for
100 * which we do not know the corresponding user mmu_idx.
102 switch (useridx) {
103 case ARMMMUIdx_E10_1:
104 case ARMMMUIdx_E10_1_PAN:
105 useridx = ARMMMUIdx_E10_0;
106 break;
107 case ARMMMUIdx_E20_2:
108 case ARMMMUIdx_E20_2_PAN:
109 useridx = ARMMMUIdx_E20_0;
110 break;
111 default:
112 g_assert_not_reached();
115 return arm_to_core_mmu_idx(useridx);
118 static void set_btype_raw(int val)
120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
121 offsetof(CPUARMState, btype));
124 static void set_btype(DisasContext *s, int val)
126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
127 tcg_debug_assert(val >= 1 && val <= 3);
128 set_btype_raw(val);
129 s->btype = -1;
132 static void reset_btype(DisasContext *s)
134 if (s->btype != 0) {
135 set_btype_raw(0);
136 s->btype = 0;
140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
142 assert(s->pc_save != -1);
143 if (tb_cflags(s->base.tb) & CF_PCREL) {
144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
145 } else {
146 tcg_gen_movi_i64(dest, s->pc_curr + diff);
150 void gen_a64_update_pc(DisasContext *s, target_long diff)
152 gen_pc_plus_diff(s, cpu_pc, diff);
153 s->pc_save = s->pc_curr + diff;
157 * Handle Top Byte Ignore (TBI) bits.
159 * If address tagging is enabled via the TCR TBI bits:
160 * + for EL2 and EL3 there is only one TBI bit, and if it is set
161 * then the address is zero-extended, clearing bits [63:56]
162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163 * and TBI1 controls addressses with bit 55 == 1.
164 * If the appropriate TBI bit is set for the address then
165 * the address is sign-extended from bit 55 into bits [63:56]
167 * Here We have concatenated TBI{1,0} into tbi.
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170 TCGv_i64 src, int tbi)
172 if (tbi == 0) {
173 /* Load unmodified address */
174 tcg_gen_mov_i64(dst, src);
175 } else if (!regime_has_2_ranges(s->mmu_idx)) {
176 /* Force tag byte to all zero */
177 tcg_gen_extract_i64(dst, src, 0, 56);
178 } else {
179 /* Sign-extend from bit 55. */
180 tcg_gen_sextract_i64(dst, src, 0, 56);
182 switch (tbi) {
183 case 1:
184 /* tbi0 but !tbi1: only use the extension if positive */
185 tcg_gen_and_i64(dst, dst, src);
186 break;
187 case 2:
188 /* !tbi0 but tbi1: only use the extension if negative */
189 tcg_gen_or_i64(dst, dst, src);
190 break;
191 case 3:
192 /* tbi0 and tbi1: always use the extension */
193 break;
194 default:
195 g_assert_not_reached();
200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
203 * If address tagging is enabled for instructions via the TCR TBI bits,
204 * then loading an address into the PC will clear out any tag.
206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
207 s->pc_save = -1;
211 * Handle MTE and/or TBI.
213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
214 * for the tag to be present in the FAR_ELx register. But for user-only
215 * mode we do not have a TLB with which to implement this, so we must
216 * remove the top byte now.
218 * Always return a fresh temporary that we can increment independently
219 * of the write-back address.
222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
224 TCGv_i64 clean = tcg_temp_new_i64();
225 #ifdef CONFIG_USER_ONLY
226 gen_top_byte_ignore(s, clean, addr, s->tbid);
227 #else
228 tcg_gen_mov_i64(clean, addr);
229 #endif
230 return clean;
233 /* Insert a zero tag into src, with the result at dst. */
234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
240 MMUAccessType acc, int log2_size)
242 gen_helper_probe_access(cpu_env, ptr,
243 tcg_constant_i32(acc),
244 tcg_constant_i32(get_mem_index(s)),
245 tcg_constant_i32(1 << log2_size));
249 * For MTE, check a single logical or atomic access. This probes a single
250 * address, the exact one specified. The size and alignment of the access
251 * is not relevant to MTE, per se, but watchpoints do require the size,
252 * and we want to recognize those before making any other changes to state.
254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
255 bool is_write, bool tag_checked,
256 MemOp memop, bool is_unpriv,
257 int core_idx)
259 if (tag_checked && s->mte_active[is_unpriv]) {
260 TCGv_i64 ret;
261 int desc = 0;
263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
269 ret = tcg_temp_new_i64();
270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
272 return ret;
274 return clean_data_tbi(s, addr);
277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
278 bool tag_checked, MemOp memop)
280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
281 false, get_mem_index(s));
285 * For MTE, check multiple logical sequential accesses.
287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
288 bool tag_checked, int size)
290 if (tag_checked && s->mte_active[0]) {
291 TCGv_i64 ret;
292 int desc = 0;
294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
300 ret = tcg_temp_new_i64();
301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
303 return ret;
305 return clean_data_tbi(s, addr);
308 typedef struct DisasCompare64 {
309 TCGCond cond;
310 TCGv_i64 value;
311 } DisasCompare64;
313 static void a64_test_cc(DisasCompare64 *c64, int cc)
315 DisasCompare c32;
317 arm_test_cc(&c32, cc);
320 * Sign-extend the 32-bit value so that the GE/LT comparisons work
321 * properly. The NE/EQ comparisons are also fine with this choice.
323 c64->cond = c32.cond;
324 c64->value = tcg_temp_new_i64();
325 tcg_gen_ext_i32_i64(c64->value, c32.value);
328 static void gen_rebuild_hflags(DisasContext *s)
330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
333 static void gen_exception_internal(int excp)
335 assert(excp_is_internal(excp));
336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
339 static void gen_exception_internal_insn(DisasContext *s, int excp)
341 gen_a64_update_pc(s, 0);
342 gen_exception_internal(excp);
343 s->base.is_jmp = DISAS_NORETURN;
346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
348 gen_a64_update_pc(s, 0);
349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
350 s->base.is_jmp = DISAS_NORETURN;
353 static void gen_step_complete_exception(DisasContext *s)
355 /* We just completed step of an insn. Move from Active-not-pending
356 * to Active-pending, and then also take the swstep exception.
357 * This corresponds to making the (IMPDEF) choice to prioritize
358 * swstep exceptions over asynchronous exceptions taken to an exception
359 * level where debug is disabled. This choice has the advantage that
360 * we do not need to maintain internal state corresponding to the
361 * ISV/EX syndrome bits between completion of the step and generation
362 * of the exception, and our syndrome information is always correct.
364 gen_ss_advance(s);
365 gen_swstep_exception(s, 1, s->is_ldex);
366 s->base.is_jmp = DISAS_NORETURN;
369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
371 if (s->ss_active) {
372 return false;
374 return translator_use_goto_tb(&s->base, dest);
377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
379 if (use_goto_tb(s, s->pc_curr + diff)) {
381 * For pcrel, the pc must always be up-to-date on entry to
382 * the linked TB, so that it can use simple additions for all
383 * further adjustments. For !pcrel, the linked TB is compiled
384 * to know its full virtual address, so we can delay the
385 * update to pc to the unlinked path. A long chain of links
386 * can thus avoid many updates to the PC.
388 if (tb_cflags(s->base.tb) & CF_PCREL) {
389 gen_a64_update_pc(s, diff);
390 tcg_gen_goto_tb(n);
391 } else {
392 tcg_gen_goto_tb(n);
393 gen_a64_update_pc(s, diff);
395 tcg_gen_exit_tb(s->base.tb, n);
396 s->base.is_jmp = DISAS_NORETURN;
397 } else {
398 gen_a64_update_pc(s, diff);
399 if (s->ss_active) {
400 gen_step_complete_exception(s);
401 } else {
402 tcg_gen_lookup_and_goto_ptr();
403 s->base.is_jmp = DISAS_NORETURN;
409 * Register access functions
411 * These functions are used for directly accessing a register in where
412 * changes to the final register value are likely to be made. If you
413 * need to use a register for temporary calculation (e.g. index type
414 * operations) use the read_* form.
416 * B1.2.1 Register mappings
418 * In instruction register encoding 31 can refer to ZR (zero register) or
419 * the SP (stack pointer) depending on context. In QEMU's case we map SP
420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
421 * This is the point of the _sp forms.
423 TCGv_i64 cpu_reg(DisasContext *s, int reg)
425 if (reg == 31) {
426 TCGv_i64 t = tcg_temp_new_i64();
427 tcg_gen_movi_i64(t, 0);
428 return t;
429 } else {
430 return cpu_X[reg];
434 /* register access for when 31 == SP */
435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
437 return cpu_X[reg];
440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
441 * representing the register contents. This TCGv is an auto-freed
442 * temporary so it need not be explicitly freed, and may be modified.
444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
446 TCGv_i64 v = tcg_temp_new_i64();
447 if (reg != 31) {
448 if (sf) {
449 tcg_gen_mov_i64(v, cpu_X[reg]);
450 } else {
451 tcg_gen_ext32u_i64(v, cpu_X[reg]);
453 } else {
454 tcg_gen_movi_i64(v, 0);
456 return v;
459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
461 TCGv_i64 v = tcg_temp_new_i64();
462 if (sf) {
463 tcg_gen_mov_i64(v, cpu_X[reg]);
464 } else {
465 tcg_gen_ext32u_i64(v, cpu_X[reg]);
467 return v;
470 /* Return the offset into CPUARMState of a slice (from
471 * the least significant end) of FP register Qn (ie
472 * Dn, Sn, Hn or Bn).
473 * (Note that this is not the same mapping as for A32; see cpu.h)
475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
477 return vec_reg_offset(s, regno, 0, size);
480 /* Offset of the high half of the 128 bit vector Qn */
481 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
483 return vec_reg_offset(s, regno, 1, MO_64);
486 /* Convenience accessors for reading and writing single and double
487 * FP registers. Writing clears the upper parts of the associated
488 * 128 bit vector register, as required by the architecture.
489 * Note that unlike the GP register accessors, the values returned
490 * by the read functions must be manually freed.
492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
494 TCGv_i64 v = tcg_temp_new_i64();
496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
497 return v;
500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
502 TCGv_i32 v = tcg_temp_new_i32();
504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
505 return v;
508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
510 TCGv_i32 v = tcg_temp_new_i32();
512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
513 return v;
516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
517 * If SVE is not enabled, then there are only 128 bits in the vector.
519 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
521 unsigned ofs = fp_reg_offset(s, rd, MO_64);
522 unsigned vsz = vec_full_reg_size(s);
524 /* Nop move, with side effect of clearing the tail. */
525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
530 unsigned ofs = fp_reg_offset(s, reg, MO_64);
532 tcg_gen_st_i64(v, cpu_env, ofs);
533 clear_vec_high(s, false, reg);
536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
538 TCGv_i64 tmp = tcg_temp_new_i64();
540 tcg_gen_extu_i32_i64(tmp, v);
541 write_fp_dreg(s, reg, tmp);
544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
546 GVecGen2Fn *gvec_fn, int vece)
548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
549 is_q ? 16 : 8, vec_full_reg_size(s));
552 /* Expand a 2-operand + immediate AdvSIMD vector operation using
553 * an expander function.
555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
556 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
559 imm, is_q ? 16 : 8, vec_full_reg_size(s));
562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
564 GVecGen3Fn *gvec_fn, int vece)
566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
572 int rx, GVecGen4Fn *gvec_fn, int vece)
574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
576 is_q ? 16 : 8, vec_full_reg_size(s));
579 /* Expand a 2-operand operation using an out-of-line helper. */
580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
581 int rn, int data, gen_helper_gvec_2 *fn)
583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
584 vec_full_reg_offset(s, rn),
585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
588 /* Expand a 3-operand operation using an out-of-line helper. */
589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
590 int rn, int rm, int data, gen_helper_gvec_3 *fn)
592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
593 vec_full_reg_offset(s, rn),
594 vec_full_reg_offset(s, rm),
595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
599 * an out-of-line helper.
601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
602 int rm, bool is_fp16, int data,
603 gen_helper_gvec_3_ptr *fn)
605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
607 vec_full_reg_offset(s, rn),
608 vec_full_reg_offset(s, rm), fpst,
609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
614 int rm, gen_helper_gvec_3_ptr *fn)
616 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
620 vec_full_reg_offset(s, rn),
621 vec_full_reg_offset(s, rm), qc_ptr,
622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
625 /* Expand a 4-operand operation using an out-of-line helper. */
626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
627 int rm, int ra, int data, gen_helper_gvec_4 *fn)
629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
630 vec_full_reg_offset(s, rn),
631 vec_full_reg_offset(s, rm),
632 vec_full_reg_offset(s, ra),
633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
637 * Expand a 4-operand + fpstatus pointer + simd data value operation using
638 * an out-of-line helper.
640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
641 int rm, int ra, bool is_fp16, int data,
642 gen_helper_gvec_4_ptr *fn)
644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
646 vec_full_reg_offset(s, rn),
647 vec_full_reg_offset(s, rm),
648 vec_full_reg_offset(s, ra), fpst,
649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
653 * than the 32 bit equivalent.
655 static inline void gen_set_NZ64(TCGv_i64 result)
657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
662 static inline void gen_logic_CC(int sf, TCGv_i64 result)
664 if (sf) {
665 gen_set_NZ64(result);
666 } else {
667 tcg_gen_extrl_i64_i32(cpu_ZF, result);
668 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
670 tcg_gen_movi_i32(cpu_CF, 0);
671 tcg_gen_movi_i32(cpu_VF, 0);
674 /* dest = T0 + T1; compute C, N, V and Z flags */
675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
677 TCGv_i64 result, flag, tmp;
678 result = tcg_temp_new_i64();
679 flag = tcg_temp_new_i64();
680 tmp = tcg_temp_new_i64();
682 tcg_gen_movi_i64(tmp, 0);
683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
685 tcg_gen_extrl_i64_i32(cpu_CF, flag);
687 gen_set_NZ64(result);
689 tcg_gen_xor_i64(flag, result, t0);
690 tcg_gen_xor_i64(tmp, t0, t1);
691 tcg_gen_andc_i64(flag, flag, tmp);
692 tcg_gen_extrh_i64_i32(cpu_VF, flag);
694 tcg_gen_mov_i64(dest, result);
697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
699 TCGv_i32 t0_32 = tcg_temp_new_i32();
700 TCGv_i32 t1_32 = tcg_temp_new_i32();
701 TCGv_i32 tmp = tcg_temp_new_i32();
703 tcg_gen_movi_i32(tmp, 0);
704 tcg_gen_extrl_i64_i32(t0_32, t0);
705 tcg_gen_extrl_i64_i32(t1_32, t1);
706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
707 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
709 tcg_gen_xor_i32(tmp, t0_32, t1_32);
710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
711 tcg_gen_extu_i32_i64(dest, cpu_NF);
714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
716 if (sf) {
717 gen_add64_CC(dest, t0, t1);
718 } else {
719 gen_add32_CC(dest, t0, t1);
723 /* dest = T0 - T1; compute C, N, V and Z flags */
724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
726 /* 64 bit arithmetic */
727 TCGv_i64 result, flag, tmp;
729 result = tcg_temp_new_i64();
730 flag = tcg_temp_new_i64();
731 tcg_gen_sub_i64(result, t0, t1);
733 gen_set_NZ64(result);
735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
736 tcg_gen_extrl_i64_i32(cpu_CF, flag);
738 tcg_gen_xor_i64(flag, result, t0);
739 tmp = tcg_temp_new_i64();
740 tcg_gen_xor_i64(tmp, t0, t1);
741 tcg_gen_and_i64(flag, flag, tmp);
742 tcg_gen_extrh_i64_i32(cpu_VF, flag);
743 tcg_gen_mov_i64(dest, result);
746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
748 /* 32 bit arithmetic */
749 TCGv_i32 t0_32 = tcg_temp_new_i32();
750 TCGv_i32 t1_32 = tcg_temp_new_i32();
751 TCGv_i32 tmp;
753 tcg_gen_extrl_i64_i32(t0_32, t0);
754 tcg_gen_extrl_i64_i32(t1_32, t1);
755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
756 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
759 tmp = tcg_temp_new_i32();
760 tcg_gen_xor_i32(tmp, t0_32, t1_32);
761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
762 tcg_gen_extu_i32_i64(dest, cpu_NF);
765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
767 if (sf) {
768 gen_sub64_CC(dest, t0, t1);
769 } else {
770 gen_sub32_CC(dest, t0, t1);
774 /* dest = T0 + T1 + CF; do not compute flags. */
775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
777 TCGv_i64 flag = tcg_temp_new_i64();
778 tcg_gen_extu_i32_i64(flag, cpu_CF);
779 tcg_gen_add_i64(dest, t0, t1);
780 tcg_gen_add_i64(dest, dest, flag);
782 if (!sf) {
783 tcg_gen_ext32u_i64(dest, dest);
787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
790 if (sf) {
791 TCGv_i64 result = tcg_temp_new_i64();
792 TCGv_i64 cf_64 = tcg_temp_new_i64();
793 TCGv_i64 vf_64 = tcg_temp_new_i64();
794 TCGv_i64 tmp = tcg_temp_new_i64();
795 TCGv_i64 zero = tcg_constant_i64(0);
797 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
801 gen_set_NZ64(result);
803 tcg_gen_xor_i64(vf_64, result, t0);
804 tcg_gen_xor_i64(tmp, t0, t1);
805 tcg_gen_andc_i64(vf_64, vf_64, tmp);
806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
808 tcg_gen_mov_i64(dest, result);
809 } else {
810 TCGv_i32 t0_32 = tcg_temp_new_i32();
811 TCGv_i32 t1_32 = tcg_temp_new_i32();
812 TCGv_i32 tmp = tcg_temp_new_i32();
813 TCGv_i32 zero = tcg_constant_i32(0);
815 tcg_gen_extrl_i64_i32(t0_32, t0);
816 tcg_gen_extrl_i64_i32(t1_32, t1);
817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
820 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
822 tcg_gen_xor_i32(tmp, t0_32, t1_32);
823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
824 tcg_gen_extu_i32_i64(dest, cpu_NF);
829 * Load/Store generators
833 * Store from GPR register to memory.
835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
836 TCGv_i64 tcg_addr, MemOp memop, int memidx,
837 bool iss_valid,
838 unsigned int iss_srt,
839 bool iss_sf, bool iss_ar)
841 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
843 if (iss_valid) {
844 uint32_t syn;
846 syn = syn_data_abort_with_iss(0,
847 (memop & MO_SIZE),
848 false,
849 iss_srt,
850 iss_sf,
851 iss_ar,
852 0, 0, 0, 0, 0, false);
853 disas_set_insn_syndrome(s, syn);
857 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
858 TCGv_i64 tcg_addr, MemOp memop,
859 bool iss_valid,
860 unsigned int iss_srt,
861 bool iss_sf, bool iss_ar)
863 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
864 iss_valid, iss_srt, iss_sf, iss_ar);
868 * Load from memory to GPR register
870 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
871 MemOp memop, bool extend, int memidx,
872 bool iss_valid, unsigned int iss_srt,
873 bool iss_sf, bool iss_ar)
875 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
877 if (extend && (memop & MO_SIGN)) {
878 g_assert((memop & MO_SIZE) <= MO_32);
879 tcg_gen_ext32u_i64(dest, dest);
882 if (iss_valid) {
883 uint32_t syn;
885 syn = syn_data_abort_with_iss(0,
886 (memop & MO_SIZE),
887 (memop & MO_SIGN) != 0,
888 iss_srt,
889 iss_sf,
890 iss_ar,
891 0, 0, 0, 0, 0, false);
892 disas_set_insn_syndrome(s, syn);
896 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
897 MemOp memop, bool extend,
898 bool iss_valid, unsigned int iss_srt,
899 bool iss_sf, bool iss_ar)
901 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
902 iss_valid, iss_srt, iss_sf, iss_ar);
906 * Store from FP register to memory
908 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
910 /* This writes the bottom N bits of a 128 bit wide vector to memory */
911 TCGv_i64 tmplo = tcg_temp_new_i64();
913 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
915 if ((mop & MO_SIZE) < MO_128) {
916 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
917 } else {
918 TCGv_i64 tmphi = tcg_temp_new_i64();
919 TCGv_i128 t16 = tcg_temp_new_i128();
921 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
922 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
924 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
929 * Load from memory to FP register
931 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
933 /* This always zero-extends and writes to a full 128 bit wide vector */
934 TCGv_i64 tmplo = tcg_temp_new_i64();
935 TCGv_i64 tmphi = NULL;
937 if ((mop & MO_SIZE) < MO_128) {
938 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
939 } else {
940 TCGv_i128 t16 = tcg_temp_new_i128();
942 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
944 tmphi = tcg_temp_new_i64();
945 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
948 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
950 if (tmphi) {
951 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
953 clear_vec_high(s, tmphi != NULL, destidx);
957 * Vector load/store helpers.
959 * The principal difference between this and a FP load is that we don't
960 * zero extend as we are filling a partial chunk of the vector register.
961 * These functions don't support 128 bit loads/stores, which would be
962 * normal load/store operations.
964 * The _i32 versions are useful when operating on 32 bit quantities
965 * (eg for floating point single or using Neon helper functions).
968 /* Get value of an element within a vector register */
969 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
970 int element, MemOp memop)
972 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
973 switch ((unsigned)memop) {
974 case MO_8:
975 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
976 break;
977 case MO_16:
978 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
979 break;
980 case MO_32:
981 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
982 break;
983 case MO_8|MO_SIGN:
984 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
985 break;
986 case MO_16|MO_SIGN:
987 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
988 break;
989 case MO_32|MO_SIGN:
990 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
991 break;
992 case MO_64:
993 case MO_64|MO_SIGN:
994 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
995 break;
996 default:
997 g_assert_not_reached();
1001 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1002 int element, MemOp memop)
1004 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1005 switch (memop) {
1006 case MO_8:
1007 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1008 break;
1009 case MO_16:
1010 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1011 break;
1012 case MO_8|MO_SIGN:
1013 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1014 break;
1015 case MO_16|MO_SIGN:
1016 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1017 break;
1018 case MO_32:
1019 case MO_32|MO_SIGN:
1020 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1021 break;
1022 default:
1023 g_assert_not_reached();
1027 /* Set value of an element within a vector register */
1028 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1029 int element, MemOp memop)
1031 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1032 switch (memop) {
1033 case MO_8:
1034 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1035 break;
1036 case MO_16:
1037 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1038 break;
1039 case MO_32:
1040 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1041 break;
1042 case MO_64:
1043 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1044 break;
1045 default:
1046 g_assert_not_reached();
1050 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1051 int destidx, int element, MemOp memop)
1053 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1054 switch (memop) {
1055 case MO_8:
1056 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1057 break;
1058 case MO_16:
1059 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1060 break;
1061 case MO_32:
1062 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1063 break;
1064 default:
1065 g_assert_not_reached();
1069 /* Store from vector register to memory */
1070 static void do_vec_st(DisasContext *s, int srcidx, int element,
1071 TCGv_i64 tcg_addr, MemOp mop)
1073 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1075 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1076 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1079 /* Load from memory to vector register */
1080 static void do_vec_ld(DisasContext *s, int destidx, int element,
1081 TCGv_i64 tcg_addr, MemOp mop)
1083 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1085 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1086 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1089 /* Check that FP/Neon access is enabled. If it is, return
1090 * true. If not, emit code to generate an appropriate exception,
1091 * and return false; the caller should not emit any code for
1092 * the instruction. Note that this check must happen after all
1093 * unallocated-encoding checks (otherwise the syndrome information
1094 * for the resulting exception will be incorrect).
1096 static bool fp_access_check_only(DisasContext *s)
1098 if (s->fp_excp_el) {
1099 assert(!s->fp_access_checked);
1100 s->fp_access_checked = true;
1102 gen_exception_insn_el(s, 0, EXCP_UDEF,
1103 syn_fp_access_trap(1, 0xe, false, 0),
1104 s->fp_excp_el);
1105 return false;
1107 s->fp_access_checked = true;
1108 return true;
1111 static bool fp_access_check(DisasContext *s)
1113 if (!fp_access_check_only(s)) {
1114 return false;
1116 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1117 gen_exception_insn(s, 0, EXCP_UDEF,
1118 syn_smetrap(SME_ET_Streaming, false));
1119 return false;
1121 return true;
1125 * Check that SVE access is enabled. If it is, return true.
1126 * If not, emit code to generate an appropriate exception and return false.
1127 * This function corresponds to CheckSVEEnabled().
1129 bool sve_access_check(DisasContext *s)
1131 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1132 assert(dc_isar_feature(aa64_sme, s));
1133 if (!sme_sm_enabled_check(s)) {
1134 goto fail_exit;
1136 } else if (s->sve_excp_el) {
1137 gen_exception_insn_el(s, 0, EXCP_UDEF,
1138 syn_sve_access_trap(), s->sve_excp_el);
1139 goto fail_exit;
1141 s->sve_access_checked = true;
1142 return fp_access_check(s);
1144 fail_exit:
1145 /* Assert that we only raise one exception per instruction. */
1146 assert(!s->sve_access_checked);
1147 s->sve_access_checked = true;
1148 return false;
1152 * Check that SME access is enabled, raise an exception if not.
1153 * Note that this function corresponds to CheckSMEAccess and is
1154 * only used directly for cpregs.
1156 static bool sme_access_check(DisasContext *s)
1158 if (s->sme_excp_el) {
1159 gen_exception_insn_el(s, 0, EXCP_UDEF,
1160 syn_smetrap(SME_ET_AccessTrap, false),
1161 s->sme_excp_el);
1162 return false;
1164 return true;
1167 /* This function corresponds to CheckSMEEnabled. */
1168 bool sme_enabled_check(DisasContext *s)
1171 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1172 * to be zero when fp_excp_el has priority. This is because we need
1173 * sme_excp_el by itself for cpregs access checks.
1175 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1176 s->fp_access_checked = true;
1177 return sme_access_check(s);
1179 return fp_access_check_only(s);
1182 /* Common subroutine for CheckSMEAnd*Enabled. */
1183 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1185 if (!sme_enabled_check(s)) {
1186 return false;
1188 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1189 gen_exception_insn(s, 0, EXCP_UDEF,
1190 syn_smetrap(SME_ET_NotStreaming, false));
1191 return false;
1193 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1194 gen_exception_insn(s, 0, EXCP_UDEF,
1195 syn_smetrap(SME_ET_InactiveZA, false));
1196 return false;
1198 return true;
1202 * This utility function is for doing register extension with an
1203 * optional shift. You will likely want to pass a temporary for the
1204 * destination register. See DecodeRegExtend() in the ARM ARM.
1206 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1207 int option, unsigned int shift)
1209 int extsize = extract32(option, 0, 2);
1210 bool is_signed = extract32(option, 2, 1);
1212 if (is_signed) {
1213 switch (extsize) {
1214 case 0:
1215 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1216 break;
1217 case 1:
1218 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1219 break;
1220 case 2:
1221 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1222 break;
1223 case 3:
1224 tcg_gen_mov_i64(tcg_out, tcg_in);
1225 break;
1227 } else {
1228 switch (extsize) {
1229 case 0:
1230 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1231 break;
1232 case 1:
1233 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1234 break;
1235 case 2:
1236 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1237 break;
1238 case 3:
1239 tcg_gen_mov_i64(tcg_out, tcg_in);
1240 break;
1244 if (shift) {
1245 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1249 static inline void gen_check_sp_alignment(DisasContext *s)
1251 /* The AArch64 architecture mandates that (if enabled via PSTATE
1252 * or SCTLR bits) there is a check that SP is 16-aligned on every
1253 * SP-relative load or store (with an exception generated if it is not).
1254 * In line with general QEMU practice regarding misaligned accesses,
1255 * we omit these checks for the sake of guest program performance.
1256 * This function is provided as a hook so we can more easily add these
1257 * checks in future (possibly as a "favour catching guest program bugs
1258 * over speed" user selectable option).
1263 * This provides a simple table based table lookup decoder. It is
1264 * intended to be used when the relevant bits for decode are too
1265 * awkwardly placed and switch/if based logic would be confusing and
1266 * deeply nested. Since it's a linear search through the table, tables
1267 * should be kept small.
1269 * It returns the first handler where insn & mask == pattern, or
1270 * NULL if there is no match.
1271 * The table is terminated by an empty mask (i.e. 0)
1273 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1274 uint32_t insn)
1276 const AArch64DecodeTable *tptr = table;
1278 while (tptr->mask) {
1279 if ((insn & tptr->mask) == tptr->pattern) {
1280 return tptr->disas_fn;
1282 tptr++;
1284 return NULL;
1288 * The instruction disassembly implemented here matches
1289 * the instruction encoding classifications in chapter C4
1290 * of the ARM Architecture Reference Manual (DDI0487B_a);
1291 * classification names and decode diagrams here should generally
1292 * match up with those in the manual.
1295 static bool trans_B(DisasContext *s, arg_i *a)
1297 reset_btype(s);
1298 gen_goto_tb(s, 0, a->imm);
1299 return true;
1302 static bool trans_BL(DisasContext *s, arg_i *a)
1304 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1305 reset_btype(s);
1306 gen_goto_tb(s, 0, a->imm);
1307 return true;
1311 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1313 DisasLabel match;
1314 TCGv_i64 tcg_cmp;
1316 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1317 reset_btype(s);
1319 match = gen_disas_label(s);
1320 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1321 tcg_cmp, 0, match.label);
1322 gen_goto_tb(s, 0, 4);
1323 set_disas_label(s, match);
1324 gen_goto_tb(s, 1, a->imm);
1325 return true;
1328 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1330 DisasLabel match;
1331 TCGv_i64 tcg_cmp;
1333 tcg_cmp = tcg_temp_new_i64();
1334 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1336 reset_btype(s);
1338 match = gen_disas_label(s);
1339 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1340 tcg_cmp, 0, match.label);
1341 gen_goto_tb(s, 0, 4);
1342 set_disas_label(s, match);
1343 gen_goto_tb(s, 1, a->imm);
1344 return true;
1347 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1349 reset_btype(s);
1350 if (a->cond < 0x0e) {
1351 /* genuinely conditional branches */
1352 DisasLabel match = gen_disas_label(s);
1353 arm_gen_test_cc(a->cond, match.label);
1354 gen_goto_tb(s, 0, 4);
1355 set_disas_label(s, match);
1356 gen_goto_tb(s, 1, a->imm);
1357 } else {
1358 /* 0xe and 0xf are both "always" conditions */
1359 gen_goto_tb(s, 0, a->imm);
1361 return true;
1364 static void set_btype_for_br(DisasContext *s, int rn)
1366 if (dc_isar_feature(aa64_bti, s)) {
1367 /* BR to {x16,x17} or !guard -> 1, else 3. */
1368 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1372 static void set_btype_for_blr(DisasContext *s)
1374 if (dc_isar_feature(aa64_bti, s)) {
1375 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1376 set_btype(s, 2);
1380 static bool trans_BR(DisasContext *s, arg_r *a)
1382 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1383 set_btype_for_br(s, a->rn);
1384 s->base.is_jmp = DISAS_JUMP;
1385 return true;
1388 static bool trans_BLR(DisasContext *s, arg_r *a)
1390 TCGv_i64 dst = cpu_reg(s, a->rn);
1391 TCGv_i64 lr = cpu_reg(s, 30);
1392 if (dst == lr) {
1393 TCGv_i64 tmp = tcg_temp_new_i64();
1394 tcg_gen_mov_i64(tmp, dst);
1395 dst = tmp;
1397 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1398 gen_a64_set_pc(s, dst);
1399 set_btype_for_blr(s);
1400 s->base.is_jmp = DISAS_JUMP;
1401 return true;
1404 static bool trans_RET(DisasContext *s, arg_r *a)
1406 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1407 s->base.is_jmp = DISAS_JUMP;
1408 return true;
1411 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1412 TCGv_i64 modifier, bool use_key_a)
1414 TCGv_i64 truedst;
1416 * Return the branch target for a BRAA/RETA/etc, which is either
1417 * just the destination dst, or that value with the pauth check
1418 * done and the code removed from the high bits.
1420 if (!s->pauth_active) {
1421 return dst;
1424 truedst = tcg_temp_new_i64();
1425 if (use_key_a) {
1426 gen_helper_autia(truedst, cpu_env, dst, modifier);
1427 } else {
1428 gen_helper_autib(truedst, cpu_env, dst, modifier);
1430 return truedst;
1433 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1435 TCGv_i64 dst;
1437 if (!dc_isar_feature(aa64_pauth, s)) {
1438 return false;
1441 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1442 gen_a64_set_pc(s, dst);
1443 set_btype_for_br(s, a->rn);
1444 s->base.is_jmp = DISAS_JUMP;
1445 return true;
1448 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1450 TCGv_i64 dst, lr;
1452 if (!dc_isar_feature(aa64_pauth, s)) {
1453 return false;
1456 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1457 lr = cpu_reg(s, 30);
1458 if (dst == lr) {
1459 TCGv_i64 tmp = tcg_temp_new_i64();
1460 tcg_gen_mov_i64(tmp, dst);
1461 dst = tmp;
1463 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1464 gen_a64_set_pc(s, dst);
1465 set_btype_for_blr(s);
1466 s->base.is_jmp = DISAS_JUMP;
1467 return true;
1470 static bool trans_RETA(DisasContext *s, arg_reta *a)
1472 TCGv_i64 dst;
1474 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1475 gen_a64_set_pc(s, dst);
1476 s->base.is_jmp = DISAS_JUMP;
1477 return true;
1480 static bool trans_BRA(DisasContext *s, arg_bra *a)
1482 TCGv_i64 dst;
1484 if (!dc_isar_feature(aa64_pauth, s)) {
1485 return false;
1487 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1488 gen_a64_set_pc(s, dst);
1489 set_btype_for_br(s, a->rn);
1490 s->base.is_jmp = DISAS_JUMP;
1491 return true;
1494 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1496 TCGv_i64 dst, lr;
1498 if (!dc_isar_feature(aa64_pauth, s)) {
1499 return false;
1501 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1502 lr = cpu_reg(s, 30);
1503 if (dst == lr) {
1504 TCGv_i64 tmp = tcg_temp_new_i64();
1505 tcg_gen_mov_i64(tmp, dst);
1506 dst = tmp;
1508 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1509 gen_a64_set_pc(s, dst);
1510 set_btype_for_blr(s);
1511 s->base.is_jmp = DISAS_JUMP;
1512 return true;
1515 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1517 TCGv_i64 dst;
1519 if (s->current_el == 0) {
1520 return false;
1522 if (s->fgt_eret) {
1523 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1524 return true;
1526 dst = tcg_temp_new_i64();
1527 tcg_gen_ld_i64(dst, cpu_env,
1528 offsetof(CPUARMState, elr_el[s->current_el]));
1530 translator_io_start(&s->base);
1532 gen_helper_exception_return(cpu_env, dst);
1533 /* Must exit loop to check un-masked IRQs */
1534 s->base.is_jmp = DISAS_EXIT;
1535 return true;
1538 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1540 TCGv_i64 dst;
1542 if (!dc_isar_feature(aa64_pauth, s)) {
1543 return false;
1545 if (s->current_el == 0) {
1546 return false;
1548 /* The FGT trap takes precedence over an auth trap. */
1549 if (s->fgt_eret) {
1550 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1551 return true;
1553 dst = tcg_temp_new_i64();
1554 tcg_gen_ld_i64(dst, cpu_env,
1555 offsetof(CPUARMState, elr_el[s->current_el]));
1557 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1559 translator_io_start(&s->base);
1561 gen_helper_exception_return(cpu_env, dst);
1562 /* Must exit loop to check un-masked IRQs */
1563 s->base.is_jmp = DISAS_EXIT;
1564 return true;
1567 /* HINT instruction group, including various allocated HINTs */
1568 static void handle_hint(DisasContext *s, uint32_t insn,
1569 unsigned int op1, unsigned int op2, unsigned int crm)
1571 unsigned int selector = crm << 3 | op2;
1573 if (op1 != 3) {
1574 unallocated_encoding(s);
1575 return;
1578 switch (selector) {
1579 case 0b00000: /* NOP */
1580 break;
1581 case 0b00011: /* WFI */
1582 s->base.is_jmp = DISAS_WFI;
1583 break;
1584 case 0b00001: /* YIELD */
1585 /* When running in MTTCG we don't generate jumps to the yield and
1586 * WFE helpers as it won't affect the scheduling of other vCPUs.
1587 * If we wanted to more completely model WFE/SEV so we don't busy
1588 * spin unnecessarily we would need to do something more involved.
1590 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1591 s->base.is_jmp = DISAS_YIELD;
1593 break;
1594 case 0b00010: /* WFE */
1595 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1596 s->base.is_jmp = DISAS_WFE;
1598 break;
1599 case 0b00100: /* SEV */
1600 case 0b00101: /* SEVL */
1601 case 0b00110: /* DGH */
1602 /* we treat all as NOP at least for now */
1603 break;
1604 case 0b00111: /* XPACLRI */
1605 if (s->pauth_active) {
1606 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1608 break;
1609 case 0b01000: /* PACIA1716 */
1610 if (s->pauth_active) {
1611 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1613 break;
1614 case 0b01010: /* PACIB1716 */
1615 if (s->pauth_active) {
1616 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1618 break;
1619 case 0b01100: /* AUTIA1716 */
1620 if (s->pauth_active) {
1621 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1623 break;
1624 case 0b01110: /* AUTIB1716 */
1625 if (s->pauth_active) {
1626 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1628 break;
1629 case 0b10000: /* ESB */
1630 /* Without RAS, we must implement this as NOP. */
1631 if (dc_isar_feature(aa64_ras, s)) {
1633 * QEMU does not have a source of physical SErrors,
1634 * so we are only concerned with virtual SErrors.
1635 * The pseudocode in the ARM for this case is
1636 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1637 * AArch64.vESBOperation();
1638 * Most of the condition can be evaluated at translation time.
1639 * Test for EL2 present, and defer test for SEL2 to runtime.
1641 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1642 gen_helper_vesb(cpu_env);
1645 break;
1646 case 0b11000: /* PACIAZ */
1647 if (s->pauth_active) {
1648 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1649 tcg_constant_i64(0));
1651 break;
1652 case 0b11001: /* PACIASP */
1653 if (s->pauth_active) {
1654 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1656 break;
1657 case 0b11010: /* PACIBZ */
1658 if (s->pauth_active) {
1659 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1660 tcg_constant_i64(0));
1662 break;
1663 case 0b11011: /* PACIBSP */
1664 if (s->pauth_active) {
1665 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1667 break;
1668 case 0b11100: /* AUTIAZ */
1669 if (s->pauth_active) {
1670 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1671 tcg_constant_i64(0));
1673 break;
1674 case 0b11101: /* AUTIASP */
1675 if (s->pauth_active) {
1676 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1678 break;
1679 case 0b11110: /* AUTIBZ */
1680 if (s->pauth_active) {
1681 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1682 tcg_constant_i64(0));
1684 break;
1685 case 0b11111: /* AUTIBSP */
1686 if (s->pauth_active) {
1687 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1689 break;
1690 default:
1691 /* default specified as NOP equivalent */
1692 break;
1696 static void gen_clrex(DisasContext *s, uint32_t insn)
1698 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1701 /* CLREX, DSB, DMB, ISB */
1702 static void handle_sync(DisasContext *s, uint32_t insn,
1703 unsigned int op1, unsigned int op2, unsigned int crm)
1705 TCGBar bar;
1707 if (op1 != 3) {
1708 unallocated_encoding(s);
1709 return;
1712 switch (op2) {
1713 case 2: /* CLREX */
1714 gen_clrex(s, insn);
1715 return;
1716 case 4: /* DSB */
1717 case 5: /* DMB */
1718 switch (crm & 3) {
1719 case 1: /* MBReqTypes_Reads */
1720 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1721 break;
1722 case 2: /* MBReqTypes_Writes */
1723 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1724 break;
1725 default: /* MBReqTypes_All */
1726 bar = TCG_BAR_SC | TCG_MO_ALL;
1727 break;
1729 tcg_gen_mb(bar);
1730 return;
1731 case 6: /* ISB */
1732 /* We need to break the TB after this insn to execute
1733 * a self-modified code correctly and also to take
1734 * any pending interrupts immediately.
1736 reset_btype(s);
1737 gen_goto_tb(s, 0, 4);
1738 return;
1740 case 7: /* SB */
1741 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1742 goto do_unallocated;
1745 * TODO: There is no speculation barrier opcode for TCG;
1746 * MB and end the TB instead.
1748 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1749 gen_goto_tb(s, 0, 4);
1750 return;
1752 default:
1753 do_unallocated:
1754 unallocated_encoding(s);
1755 return;
1759 static void gen_xaflag(void)
1761 TCGv_i32 z = tcg_temp_new_i32();
1763 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1766 * (!C & !Z) << 31
1767 * (!(C | Z)) << 31
1768 * ~((C | Z) << 31)
1769 * ~-(C | Z)
1770 * (C | Z) - 1
1772 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1773 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1775 /* !(Z & C) */
1776 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1777 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1779 /* (!C & Z) << 31 -> -(Z & ~C) */
1780 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1781 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1783 /* C | Z */
1784 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1787 static void gen_axflag(void)
1789 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1790 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1792 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1793 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1795 tcg_gen_movi_i32(cpu_NF, 0);
1796 tcg_gen_movi_i32(cpu_VF, 0);
1799 /* MSR (immediate) - move immediate to processor state field */
1800 static void handle_msr_i(DisasContext *s, uint32_t insn,
1801 unsigned int op1, unsigned int op2, unsigned int crm)
1803 int op = op1 << 3 | op2;
1805 /* End the TB by default, chaining is ok. */
1806 s->base.is_jmp = DISAS_TOO_MANY;
1808 switch (op) {
1809 case 0x00: /* CFINV */
1810 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1811 goto do_unallocated;
1813 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1814 s->base.is_jmp = DISAS_NEXT;
1815 break;
1817 case 0x01: /* XAFlag */
1818 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1819 goto do_unallocated;
1821 gen_xaflag();
1822 s->base.is_jmp = DISAS_NEXT;
1823 break;
1825 case 0x02: /* AXFlag */
1826 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1827 goto do_unallocated;
1829 gen_axflag();
1830 s->base.is_jmp = DISAS_NEXT;
1831 break;
1833 case 0x03: /* UAO */
1834 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1835 goto do_unallocated;
1837 if (crm & 1) {
1838 set_pstate_bits(PSTATE_UAO);
1839 } else {
1840 clear_pstate_bits(PSTATE_UAO);
1842 gen_rebuild_hflags(s);
1843 break;
1845 case 0x04: /* PAN */
1846 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1847 goto do_unallocated;
1849 if (crm & 1) {
1850 set_pstate_bits(PSTATE_PAN);
1851 } else {
1852 clear_pstate_bits(PSTATE_PAN);
1854 gen_rebuild_hflags(s);
1855 break;
1857 case 0x05: /* SPSel */
1858 if (s->current_el == 0) {
1859 goto do_unallocated;
1861 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1862 break;
1864 case 0x19: /* SSBS */
1865 if (!dc_isar_feature(aa64_ssbs, s)) {
1866 goto do_unallocated;
1868 if (crm & 1) {
1869 set_pstate_bits(PSTATE_SSBS);
1870 } else {
1871 clear_pstate_bits(PSTATE_SSBS);
1873 /* Don't need to rebuild hflags since SSBS is a nop */
1874 break;
1876 case 0x1a: /* DIT */
1877 if (!dc_isar_feature(aa64_dit, s)) {
1878 goto do_unallocated;
1880 if (crm & 1) {
1881 set_pstate_bits(PSTATE_DIT);
1882 } else {
1883 clear_pstate_bits(PSTATE_DIT);
1885 /* There's no need to rebuild hflags because DIT is a nop */
1886 break;
1888 case 0x1e: /* DAIFSet */
1889 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1890 break;
1892 case 0x1f: /* DAIFClear */
1893 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1894 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1895 s->base.is_jmp = DISAS_UPDATE_EXIT;
1896 break;
1898 case 0x1c: /* TCO */
1899 if (dc_isar_feature(aa64_mte, s)) {
1900 /* Full MTE is enabled -- set the TCO bit as directed. */
1901 if (crm & 1) {
1902 set_pstate_bits(PSTATE_TCO);
1903 } else {
1904 clear_pstate_bits(PSTATE_TCO);
1906 gen_rebuild_hflags(s);
1907 /* Many factors, including TCO, go into MTE_ACTIVE. */
1908 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1909 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1910 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1911 s->base.is_jmp = DISAS_NEXT;
1912 } else {
1913 goto do_unallocated;
1915 break;
1917 case 0x1b: /* SVCR* */
1918 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1919 goto do_unallocated;
1921 if (sme_access_check(s)) {
1922 int old = s->pstate_sm | (s->pstate_za << 1);
1923 int new = (crm & 1) * 3;
1924 int msk = (crm >> 1) & 3;
1926 if ((old ^ new) & msk) {
1927 /* At least one bit changes. */
1928 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1929 tcg_constant_i32(msk));
1930 } else {
1931 s->base.is_jmp = DISAS_NEXT;
1934 break;
1936 default:
1937 do_unallocated:
1938 unallocated_encoding(s);
1939 return;
1943 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1945 TCGv_i32 tmp = tcg_temp_new_i32();
1946 TCGv_i32 nzcv = tcg_temp_new_i32();
1948 /* build bit 31, N */
1949 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1950 /* build bit 30, Z */
1951 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1952 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1953 /* build bit 29, C */
1954 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1955 /* build bit 28, V */
1956 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1957 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1958 /* generate result */
1959 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1962 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1964 TCGv_i32 nzcv = tcg_temp_new_i32();
1966 /* take NZCV from R[t] */
1967 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1969 /* bit 31, N */
1970 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1971 /* bit 30, Z */
1972 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1973 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1974 /* bit 29, C */
1975 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1976 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1977 /* bit 28, V */
1978 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1979 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1982 static void gen_sysreg_undef(DisasContext *s, bool isread,
1983 uint8_t op0, uint8_t op1, uint8_t op2,
1984 uint8_t crn, uint8_t crm, uint8_t rt)
1987 * Generate code to emit an UNDEF with correct syndrome
1988 * information for a failed system register access.
1989 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1990 * but if FEAT_IDST is implemented then read accesses to registers
1991 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1992 * syndrome.
1994 uint32_t syndrome;
1996 if (isread && dc_isar_feature(aa64_ids, s) &&
1997 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
1998 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1999 } else {
2000 syndrome = syn_uncategorized();
2002 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2005 /* MRS - move from system register
2006 * MSR (register) - move to system register
2007 * SYS
2008 * SYSL
2009 * These are all essentially the same insn in 'read' and 'write'
2010 * versions, with varying op0 fields.
2012 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
2013 unsigned int op0, unsigned int op1, unsigned int op2,
2014 unsigned int crn, unsigned int crm, unsigned int rt)
2016 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2017 crn, crm, op0, op1, op2);
2018 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2019 bool need_exit_tb = false;
2020 TCGv_ptr tcg_ri = NULL;
2021 TCGv_i64 tcg_rt;
2023 if (!ri) {
2024 /* Unknown register; this might be a guest error or a QEMU
2025 * unimplemented feature.
2027 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2028 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2029 isread ? "read" : "write", op0, op1, crn, crm, op2);
2030 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2031 return;
2034 /* Check access permissions */
2035 if (!cp_access_ok(s->current_el, ri, isread)) {
2036 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2037 return;
2040 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2041 /* Emit code to perform further access permissions checks at
2042 * runtime; this may result in an exception.
2044 uint32_t syndrome;
2046 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2047 gen_a64_update_pc(s, 0);
2048 tcg_ri = tcg_temp_new_ptr();
2049 gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
2050 tcg_constant_i32(key),
2051 tcg_constant_i32(syndrome),
2052 tcg_constant_i32(isread));
2053 } else if (ri->type & ARM_CP_RAISES_EXC) {
2055 * The readfn or writefn might raise an exception;
2056 * synchronize the CPU state in case it does.
2058 gen_a64_update_pc(s, 0);
2061 /* Handle special cases first */
2062 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2063 case 0:
2064 break;
2065 case ARM_CP_NOP:
2066 return;
2067 case ARM_CP_NZCV:
2068 tcg_rt = cpu_reg(s, rt);
2069 if (isread) {
2070 gen_get_nzcv(tcg_rt);
2071 } else {
2072 gen_set_nzcv(tcg_rt);
2074 return;
2075 case ARM_CP_CURRENTEL:
2076 /* Reads as current EL value from pstate, which is
2077 * guaranteed to be constant by the tb flags.
2079 tcg_rt = cpu_reg(s, rt);
2080 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2081 return;
2082 case ARM_CP_DC_ZVA:
2083 /* Writes clear the aligned block of memory which rt points into. */
2084 if (s->mte_active[0]) {
2085 int desc = 0;
2087 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2088 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2089 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2091 tcg_rt = tcg_temp_new_i64();
2092 gen_helper_mte_check_zva(tcg_rt, cpu_env,
2093 tcg_constant_i32(desc), cpu_reg(s, rt));
2094 } else {
2095 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2097 gen_helper_dc_zva(cpu_env, tcg_rt);
2098 return;
2099 case ARM_CP_DC_GVA:
2101 TCGv_i64 clean_addr, tag;
2104 * DC_GVA, like DC_ZVA, requires that we supply the original
2105 * pointer for an invalid page. Probe that address first.
2107 tcg_rt = cpu_reg(s, rt);
2108 clean_addr = clean_data_tbi(s, tcg_rt);
2109 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2111 if (s->ata) {
2112 /* Extract the tag from the register to match STZGM. */
2113 tag = tcg_temp_new_i64();
2114 tcg_gen_shri_i64(tag, tcg_rt, 56);
2115 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2118 return;
2119 case ARM_CP_DC_GZVA:
2121 TCGv_i64 clean_addr, tag;
2123 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2124 tcg_rt = cpu_reg(s, rt);
2125 clean_addr = clean_data_tbi(s, tcg_rt);
2126 gen_helper_dc_zva(cpu_env, clean_addr);
2128 if (s->ata) {
2129 /* Extract the tag from the register to match STZGM. */
2130 tag = tcg_temp_new_i64();
2131 tcg_gen_shri_i64(tag, tcg_rt, 56);
2132 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2135 return;
2136 default:
2137 g_assert_not_reached();
2139 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2140 return;
2141 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2142 return;
2143 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2144 return;
2147 if (ri->type & ARM_CP_IO) {
2148 /* I/O operations must end the TB here (whether read or write) */
2149 need_exit_tb = translator_io_start(&s->base);
2152 tcg_rt = cpu_reg(s, rt);
2154 if (isread) {
2155 if (ri->type & ARM_CP_CONST) {
2156 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2157 } else if (ri->readfn) {
2158 if (!tcg_ri) {
2159 tcg_ri = gen_lookup_cp_reg(key);
2161 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2162 } else {
2163 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2165 } else {
2166 if (ri->type & ARM_CP_CONST) {
2167 /* If not forbidden by access permissions, treat as WI */
2168 return;
2169 } else if (ri->writefn) {
2170 if (!tcg_ri) {
2171 tcg_ri = gen_lookup_cp_reg(key);
2173 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2174 } else {
2175 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2179 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2181 * A write to any coprocessor regiser that ends a TB
2182 * must rebuild the hflags for the next TB.
2184 gen_rebuild_hflags(s);
2186 * We default to ending the TB on a coprocessor register write,
2187 * but allow this to be suppressed by the register definition
2188 * (usually only necessary to work around guest bugs).
2190 need_exit_tb = true;
2192 if (need_exit_tb) {
2193 s->base.is_jmp = DISAS_UPDATE_EXIT;
2197 /* System
2198 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
2199 * +---------------------+---+-----+-----+-------+-------+-----+------+
2200 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
2201 * +---------------------+---+-----+-----+-------+-------+-----+------+
2203 static void disas_system(DisasContext *s, uint32_t insn)
2205 unsigned int l, op0, op1, crn, crm, op2, rt;
2206 l = extract32(insn, 21, 1);
2207 op0 = extract32(insn, 19, 2);
2208 op1 = extract32(insn, 16, 3);
2209 crn = extract32(insn, 12, 4);
2210 crm = extract32(insn, 8, 4);
2211 op2 = extract32(insn, 5, 3);
2212 rt = extract32(insn, 0, 5);
2214 if (op0 == 0) {
2215 if (l || rt != 31) {
2216 unallocated_encoding(s);
2217 return;
2219 switch (crn) {
2220 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2221 handle_hint(s, insn, op1, op2, crm);
2222 break;
2223 case 3: /* CLREX, DSB, DMB, ISB */
2224 handle_sync(s, insn, op1, op2, crm);
2225 break;
2226 case 4: /* MSR (immediate) */
2227 handle_msr_i(s, insn, op1, op2, crm);
2228 break;
2229 default:
2230 unallocated_encoding(s);
2231 break;
2233 return;
2235 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2238 /* Exception generation
2240 * 31 24 23 21 20 5 4 2 1 0
2241 * +-----------------+-----+------------------------+-----+----+
2242 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2243 * +-----------------------+------------------------+----------+
2245 static void disas_exc(DisasContext *s, uint32_t insn)
2247 int opc = extract32(insn, 21, 3);
2248 int op2_ll = extract32(insn, 0, 5);
2249 int imm16 = extract32(insn, 5, 16);
2250 uint32_t syndrome;
2252 switch (opc) {
2253 case 0:
2254 /* For SVC, HVC and SMC we advance the single-step state
2255 * machine before taking the exception. This is architecturally
2256 * mandated, to ensure that single-stepping a system call
2257 * instruction works properly.
2259 switch (op2_ll) {
2260 case 1: /* SVC */
2261 syndrome = syn_aa64_svc(imm16);
2262 if (s->fgt_svc) {
2263 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2264 break;
2266 gen_ss_advance(s);
2267 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2268 break;
2269 case 2: /* HVC */
2270 if (s->current_el == 0) {
2271 unallocated_encoding(s);
2272 break;
2274 /* The pre HVC helper handles cases when HVC gets trapped
2275 * as an undefined insn by runtime configuration.
2277 gen_a64_update_pc(s, 0);
2278 gen_helper_pre_hvc(cpu_env);
2279 gen_ss_advance(s);
2280 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2281 break;
2282 case 3: /* SMC */
2283 if (s->current_el == 0) {
2284 unallocated_encoding(s);
2285 break;
2287 gen_a64_update_pc(s, 0);
2288 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2289 gen_ss_advance(s);
2290 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2291 break;
2292 default:
2293 unallocated_encoding(s);
2294 break;
2296 break;
2297 case 1:
2298 if (op2_ll != 0) {
2299 unallocated_encoding(s);
2300 break;
2302 /* BRK */
2303 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2304 break;
2305 case 2:
2306 if (op2_ll != 0) {
2307 unallocated_encoding(s);
2308 break;
2310 /* HLT. This has two purposes.
2311 * Architecturally, it is an external halting debug instruction.
2312 * Since QEMU doesn't implement external debug, we treat this as
2313 * it is required for halting debug disabled: it will UNDEF.
2314 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2316 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2317 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2318 } else {
2319 unallocated_encoding(s);
2321 break;
2322 case 5:
2323 if (op2_ll < 1 || op2_ll > 3) {
2324 unallocated_encoding(s);
2325 break;
2327 /* DCPS1, DCPS2, DCPS3 */
2328 unallocated_encoding(s);
2329 break;
2330 default:
2331 unallocated_encoding(s);
2332 break;
2336 /* Branches, exception generating and system instructions */
2337 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2339 switch (extract32(insn, 25, 7)) {
2340 case 0x6a: /* Exception generation / System */
2341 if (insn & (1 << 24)) {
2342 if (extract32(insn, 22, 2) == 0) {
2343 disas_system(s, insn);
2344 } else {
2345 unallocated_encoding(s);
2347 } else {
2348 disas_exc(s, insn);
2350 break;
2351 default:
2352 unallocated_encoding(s);
2353 break;
2358 * Load/Store exclusive instructions are implemented by remembering
2359 * the value/address loaded, and seeing if these are the same
2360 * when the store is performed. This is not actually the architecturally
2361 * mandated semantics, but it works for typical guest code sequences
2362 * and avoids having to monitor regular stores.
2364 * The store exclusive uses the atomic cmpxchg primitives to avoid
2365 * races in multi-threaded linux-user and when MTTCG softmmu is
2366 * enabled.
2368 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2369 int size, bool is_pair)
2371 int idx = get_mem_index(s);
2372 TCGv_i64 dirty_addr, clean_addr;
2373 MemOp memop;
2376 * For pairs:
2377 * if size == 2, the operation is single-copy atomic for the doubleword.
2378 * if size == 3, the operation is single-copy atomic for *each* doubleword,
2379 * not the entire quadword, however it must be quadword aligned.
2381 memop = size + is_pair;
2382 if (memop == MO_128) {
2383 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN,
2384 MO_ATOM_IFALIGN_PAIR);
2385 } else {
2386 memop = finalize_memop(s, memop | MO_ALIGN);
2389 s->is_ldex = true;
2390 dirty_addr = cpu_reg_sp(s, rn);
2391 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2393 g_assert(size <= 3);
2394 if (is_pair) {
2395 g_assert(size >= 2);
2396 if (size == 2) {
2397 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2398 if (s->be_data == MO_LE) {
2399 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2400 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2401 } else {
2402 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2403 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2405 } else {
2406 TCGv_i128 t16 = tcg_temp_new_i128();
2408 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2410 if (s->be_data == MO_LE) {
2411 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2412 cpu_exclusive_high, t16);
2413 } else {
2414 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2415 cpu_exclusive_val, t16);
2417 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2418 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2420 } else {
2421 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2422 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2424 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2427 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2428 int rn, int size, int is_pair)
2430 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2431 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2432 * [addr] = {Rt};
2433 * if (is_pair) {
2434 * [addr + datasize] = {Rt2};
2436 * {Rd} = 0;
2437 * } else {
2438 * {Rd} = 1;
2440 * env->exclusive_addr = -1;
2442 TCGLabel *fail_label = gen_new_label();
2443 TCGLabel *done_label = gen_new_label();
2444 TCGv_i64 tmp, dirty_addr, clean_addr;
2445 MemOp memop;
2447 memop = (size + is_pair) | MO_ALIGN;
2448 memop = finalize_memop(s, memop);
2450 dirty_addr = cpu_reg_sp(s, rn);
2451 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, memop);
2453 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2455 tmp = tcg_temp_new_i64();
2456 if (is_pair) {
2457 if (size == 2) {
2458 if (s->be_data == MO_LE) {
2459 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2460 } else {
2461 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2463 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2464 cpu_exclusive_val, tmp,
2465 get_mem_index(s), memop);
2466 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2467 } else {
2468 TCGv_i128 t16 = tcg_temp_new_i128();
2469 TCGv_i128 c16 = tcg_temp_new_i128();
2470 TCGv_i64 a, b;
2472 if (s->be_data == MO_LE) {
2473 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2474 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2475 cpu_exclusive_high);
2476 } else {
2477 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2478 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2479 cpu_exclusive_val);
2482 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2483 get_mem_index(s), memop);
2485 a = tcg_temp_new_i64();
2486 b = tcg_temp_new_i64();
2487 if (s->be_data == MO_LE) {
2488 tcg_gen_extr_i128_i64(a, b, t16);
2489 } else {
2490 tcg_gen_extr_i128_i64(b, a, t16);
2493 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2494 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2495 tcg_gen_or_i64(tmp, a, b);
2497 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2499 } else {
2500 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2501 cpu_reg(s, rt), get_mem_index(s), memop);
2502 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2504 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2505 tcg_gen_br(done_label);
2507 gen_set_label(fail_label);
2508 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2509 gen_set_label(done_label);
2510 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2513 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2514 int rn, int size)
2516 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2517 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2518 int memidx = get_mem_index(s);
2519 TCGv_i64 clean_addr;
2520 MemOp memop;
2522 if (rn == 31) {
2523 gen_check_sp_alignment(s);
2525 memop = finalize_memop(s, size | MO_ALIGN);
2526 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2527 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2528 memidx, memop);
2531 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2532 int rn, int size)
2534 TCGv_i64 s1 = cpu_reg(s, rs);
2535 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2536 TCGv_i64 t1 = cpu_reg(s, rt);
2537 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2538 TCGv_i64 clean_addr;
2539 int memidx = get_mem_index(s);
2540 MemOp memop;
2542 if (rn == 31) {
2543 gen_check_sp_alignment(s);
2546 /* This is a single atomic access, despite the "pair". */
2547 memop = finalize_memop(s, (size + 1) | MO_ALIGN);
2548 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2550 if (size == 2) {
2551 TCGv_i64 cmp = tcg_temp_new_i64();
2552 TCGv_i64 val = tcg_temp_new_i64();
2554 if (s->be_data == MO_LE) {
2555 tcg_gen_concat32_i64(val, t1, t2);
2556 tcg_gen_concat32_i64(cmp, s1, s2);
2557 } else {
2558 tcg_gen_concat32_i64(val, t2, t1);
2559 tcg_gen_concat32_i64(cmp, s2, s1);
2562 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2564 if (s->be_data == MO_LE) {
2565 tcg_gen_extr32_i64(s1, s2, cmp);
2566 } else {
2567 tcg_gen_extr32_i64(s2, s1, cmp);
2569 } else {
2570 TCGv_i128 cmp = tcg_temp_new_i128();
2571 TCGv_i128 val = tcg_temp_new_i128();
2573 if (s->be_data == MO_LE) {
2574 tcg_gen_concat_i64_i128(val, t1, t2);
2575 tcg_gen_concat_i64_i128(cmp, s1, s2);
2576 } else {
2577 tcg_gen_concat_i64_i128(val, t2, t1);
2578 tcg_gen_concat_i64_i128(cmp, s2, s1);
2581 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2583 if (s->be_data == MO_LE) {
2584 tcg_gen_extr_i128_i64(s1, s2, cmp);
2585 } else {
2586 tcg_gen_extr_i128_i64(s2, s1, cmp);
2591 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2592 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2594 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2596 int opc0 = extract32(opc, 0, 1);
2597 int regsize;
2599 if (is_signed) {
2600 regsize = opc0 ? 32 : 64;
2601 } else {
2602 regsize = size == 3 ? 64 : 32;
2604 return regsize == 64;
2607 /* Load/store exclusive
2609 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2610 * +-----+-------------+----+---+----+------+----+-------+------+------+
2611 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2612 * +-----+-------------+----+---+----+------+----+-------+------+------+
2614 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2615 * L: 0 -> store, 1 -> load
2616 * o2: 0 -> exclusive, 1 -> not
2617 * o1: 0 -> single register, 1 -> register pair
2618 * o0: 1 -> load-acquire/store-release, 0 -> not
2620 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2622 int rt = extract32(insn, 0, 5);
2623 int rn = extract32(insn, 5, 5);
2624 int rt2 = extract32(insn, 10, 5);
2625 int rs = extract32(insn, 16, 5);
2626 int is_lasr = extract32(insn, 15, 1);
2627 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2628 int size = extract32(insn, 30, 2);
2629 TCGv_i64 clean_addr;
2630 MemOp memop;
2632 switch (o2_L_o1_o0) {
2633 case 0x0: /* STXR */
2634 case 0x1: /* STLXR */
2635 if (rn == 31) {
2636 gen_check_sp_alignment(s);
2638 if (is_lasr) {
2639 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2641 gen_store_exclusive(s, rs, rt, rt2, rn, size, false);
2642 return;
2644 case 0x4: /* LDXR */
2645 case 0x5: /* LDAXR */
2646 if (rn == 31) {
2647 gen_check_sp_alignment(s);
2649 gen_load_exclusive(s, rt, rt2, rn, size, false);
2650 if (is_lasr) {
2651 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2653 return;
2655 case 0x8: /* STLLR */
2656 if (!dc_isar_feature(aa64_lor, s)) {
2657 break;
2659 /* StoreLORelease is the same as Store-Release for QEMU. */
2660 /* fall through */
2661 case 0x9: /* STLR */
2662 /* Generate ISS for non-exclusive accesses including LASR. */
2663 if (rn == 31) {
2664 gen_check_sp_alignment(s);
2666 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2667 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2668 memop = finalize_memop(s, size | MO_ALIGN);
2669 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2670 true, rn != 31, memop);
2671 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt,
2672 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2673 return;
2675 case 0xc: /* LDLAR */
2676 if (!dc_isar_feature(aa64_lor, s)) {
2677 break;
2679 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2680 /* fall through */
2681 case 0xd: /* LDAR */
2682 /* Generate ISS for non-exclusive accesses including LASR. */
2683 if (rn == 31) {
2684 gen_check_sp_alignment(s);
2686 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2687 memop = finalize_memop(s, size | MO_ALIGN);
2688 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2689 false, rn != 31, memop);
2690 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true,
2691 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2692 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2693 return;
2695 case 0x2: case 0x3: /* CASP / STXP */
2696 if (size & 2) { /* STXP / STLXP */
2697 if (rn == 31) {
2698 gen_check_sp_alignment(s);
2700 if (is_lasr) {
2701 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2703 gen_store_exclusive(s, rs, rt, rt2, rn, size, true);
2704 return;
2706 if (rt2 == 31
2707 && ((rt | rs) & 1) == 0
2708 && dc_isar_feature(aa64_atomics, s)) {
2709 /* CASP / CASPL */
2710 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2711 return;
2713 break;
2715 case 0x6: case 0x7: /* CASPA / LDXP */
2716 if (size & 2) { /* LDXP / LDAXP */
2717 if (rn == 31) {
2718 gen_check_sp_alignment(s);
2720 gen_load_exclusive(s, rt, rt2, rn, size, true);
2721 if (is_lasr) {
2722 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2724 return;
2726 if (rt2 == 31
2727 && ((rt | rs) & 1) == 0
2728 && dc_isar_feature(aa64_atomics, s)) {
2729 /* CASPA / CASPAL */
2730 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2731 return;
2733 break;
2735 case 0xa: /* CAS */
2736 case 0xb: /* CASL */
2737 case 0xe: /* CASA */
2738 case 0xf: /* CASAL */
2739 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2740 gen_compare_and_swap(s, rs, rt, rn, size);
2741 return;
2743 break;
2745 unallocated_encoding(s);
2749 * Load register (literal)
2751 * 31 30 29 27 26 25 24 23 5 4 0
2752 * +-----+-------+---+-----+-------------------+-------+
2753 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2754 * +-----+-------+---+-----+-------------------+-------+
2756 * V: 1 -> vector (simd/fp)
2757 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2758 * 10-> 32 bit signed, 11 -> prefetch
2759 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2761 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2763 int rt = extract32(insn, 0, 5);
2764 int64_t imm = sextract32(insn, 5, 19) << 2;
2765 bool is_vector = extract32(insn, 26, 1);
2766 int opc = extract32(insn, 30, 2);
2767 bool is_signed = false;
2768 int size = 2;
2769 TCGv_i64 tcg_rt, clean_addr;
2770 MemOp memop;
2772 if (is_vector) {
2773 if (opc == 3) {
2774 unallocated_encoding(s);
2775 return;
2777 size = 2 + opc;
2778 if (!fp_access_check(s)) {
2779 return;
2781 memop = finalize_memop_asimd(s, size);
2782 } else {
2783 if (opc == 3) {
2784 /* PRFM (literal) : prefetch */
2785 return;
2787 size = 2 + extract32(opc, 0, 1);
2788 is_signed = extract32(opc, 1, 1);
2789 memop = finalize_memop(s, size + is_signed * MO_SIGN);
2792 tcg_rt = cpu_reg(s, rt);
2794 clean_addr = tcg_temp_new_i64();
2795 gen_pc_plus_diff(s, clean_addr, imm);
2797 if (is_vector) {
2798 do_fp_ld(s, rt, clean_addr, memop);
2799 } else {
2800 /* Only unsigned 32bit loads target 32bit registers. */
2801 bool iss_sf = opc != 0;
2802 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false);
2807 * LDNP (Load Pair - non-temporal hint)
2808 * LDP (Load Pair - non vector)
2809 * LDPSW (Load Pair Signed Word - non vector)
2810 * STNP (Store Pair - non-temporal hint)
2811 * STP (Store Pair - non vector)
2812 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2813 * LDP (Load Pair of SIMD&FP)
2814 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2815 * STP (Store Pair of SIMD&FP)
2817 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2818 * +-----+-------+---+---+-------+---+-----------------------------+
2819 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2820 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2822 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2823 * LDPSW/STGP 01
2824 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2825 * V: 0 -> GPR, 1 -> Vector
2826 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2827 * 10 -> signed offset, 11 -> pre-index
2828 * L: 0 -> Store 1 -> Load
2830 * Rt, Rt2 = GPR or SIMD registers to be stored
2831 * Rn = general purpose register containing address
2832 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2834 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2836 int rt = extract32(insn, 0, 5);
2837 int rn = extract32(insn, 5, 5);
2838 int rt2 = extract32(insn, 10, 5);
2839 uint64_t offset = sextract64(insn, 15, 7);
2840 int index = extract32(insn, 23, 2);
2841 bool is_vector = extract32(insn, 26, 1);
2842 bool is_load = extract32(insn, 22, 1);
2843 int opc = extract32(insn, 30, 2);
2845 bool is_signed = false;
2846 bool postindex = false;
2847 bool wback = false;
2848 bool set_tag = false;
2850 TCGv_i64 clean_addr, dirty_addr;
2852 int size;
2854 if (opc == 3) {
2855 unallocated_encoding(s);
2856 return;
2859 if (is_vector) {
2860 size = 2 + opc;
2861 } else if (opc == 1 && !is_load) {
2862 /* STGP */
2863 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2864 unallocated_encoding(s);
2865 return;
2867 size = 3;
2868 set_tag = true;
2869 } else {
2870 size = 2 + extract32(opc, 1, 1);
2871 is_signed = extract32(opc, 0, 1);
2872 if (!is_load && is_signed) {
2873 unallocated_encoding(s);
2874 return;
2878 switch (index) {
2879 case 1: /* post-index */
2880 postindex = true;
2881 wback = true;
2882 break;
2883 case 0:
2884 /* signed offset with "non-temporal" hint. Since we don't emulate
2885 * caches we don't care about hints to the cache system about
2886 * data access patterns, and handle this identically to plain
2887 * signed offset.
2889 if (is_signed) {
2890 /* There is no non-temporal-hint version of LDPSW */
2891 unallocated_encoding(s);
2892 return;
2894 postindex = false;
2895 break;
2896 case 2: /* signed offset, rn not updated */
2897 postindex = false;
2898 break;
2899 case 3: /* pre-index */
2900 postindex = false;
2901 wback = true;
2902 break;
2905 if (is_vector && !fp_access_check(s)) {
2906 return;
2909 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2911 if (rn == 31) {
2912 gen_check_sp_alignment(s);
2915 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2916 if (!postindex) {
2917 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2920 if (set_tag) {
2921 if (!s->ata) {
2923 * TODO: We could rely on the stores below, at least for
2924 * system mode, if we arrange to add MO_ALIGN_16.
2926 gen_helper_stg_stub(cpu_env, dirty_addr);
2927 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2928 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2929 } else {
2930 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2934 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2935 (wback || rn != 31) && !set_tag, 2 << size);
2937 if (is_vector) {
2938 MemOp mop = finalize_memop_asimd(s, size);
2940 if (is_load) {
2941 do_fp_ld(s, rt, clean_addr, mop);
2942 } else {
2943 do_fp_st(s, rt, clean_addr, mop);
2945 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2946 if (is_load) {
2947 do_fp_ld(s, rt2, clean_addr, mop);
2948 } else {
2949 do_fp_st(s, rt2, clean_addr, mop);
2951 } else {
2952 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2953 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2954 MemOp mop = size + 1;
2957 * With LSE2, non-sign-extending pairs are treated atomically if
2958 * aligned, and if unaligned one of the pair will be completely
2959 * within a 16-byte block and that element will be atomic.
2960 * Otherwise each element is separately atomic.
2961 * In all cases, issue one operation with the correct atomicity.
2963 * This treats sign-extending loads like zero-extending loads,
2964 * since that reuses the most code below.
2966 if (s->align_mem) {
2967 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2969 mop = finalize_memop_pair(s, mop);
2971 if (is_load) {
2972 if (size == 2) {
2973 int o2 = s->be_data == MO_LE ? 32 : 0;
2974 int o1 = o2 ^ 32;
2976 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
2977 if (is_signed) {
2978 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
2979 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
2980 } else {
2981 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
2982 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
2984 } else {
2985 TCGv_i128 tmp = tcg_temp_new_i128();
2987 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
2988 if (s->be_data == MO_LE) {
2989 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
2990 } else {
2991 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
2994 } else {
2995 if (size == 2) {
2996 TCGv_i64 tmp = tcg_temp_new_i64();
2998 if (s->be_data == MO_LE) {
2999 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3000 } else {
3001 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3003 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3004 } else {
3005 TCGv_i128 tmp = tcg_temp_new_i128();
3007 if (s->be_data == MO_LE) {
3008 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3009 } else {
3010 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3012 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3017 if (wback) {
3018 if (postindex) {
3019 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3021 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3026 * Load/store (immediate post-indexed)
3027 * Load/store (immediate pre-indexed)
3028 * Load/store (unscaled immediate)
3030 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
3031 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3032 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
3033 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3035 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3036 10 -> unprivileged
3037 * V = 0 -> non-vector
3038 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3039 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3041 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3042 int opc,
3043 int size,
3044 int rt,
3045 bool is_vector)
3047 int rn = extract32(insn, 5, 5);
3048 int imm9 = sextract32(insn, 12, 9);
3049 int idx = extract32(insn, 10, 2);
3050 bool is_signed = false;
3051 bool is_store = false;
3052 bool is_extended = false;
3053 bool is_unpriv = (idx == 2);
3054 bool iss_valid;
3055 bool post_index;
3056 bool writeback;
3057 int memidx;
3058 MemOp memop;
3059 TCGv_i64 clean_addr, dirty_addr;
3061 if (is_vector) {
3062 size |= (opc & 2) << 1;
3063 if (size > 4 || is_unpriv) {
3064 unallocated_encoding(s);
3065 return;
3067 is_store = ((opc & 1) == 0);
3068 if (!fp_access_check(s)) {
3069 return;
3071 memop = finalize_memop_asimd(s, size);
3072 } else {
3073 if (size == 3 && opc == 2) {
3074 /* PRFM - prefetch */
3075 if (idx != 0) {
3076 unallocated_encoding(s);
3077 return;
3079 return;
3081 if (opc == 3 && size > 1) {
3082 unallocated_encoding(s);
3083 return;
3085 is_store = (opc == 0);
3086 is_signed = !is_store && extract32(opc, 1, 1);
3087 is_extended = (size < 3) && extract32(opc, 0, 1);
3088 memop = finalize_memop(s, size + is_signed * MO_SIGN);
3091 switch (idx) {
3092 case 0:
3093 case 2:
3094 post_index = false;
3095 writeback = false;
3096 break;
3097 case 1:
3098 post_index = true;
3099 writeback = true;
3100 break;
3101 case 3:
3102 post_index = false;
3103 writeback = true;
3104 break;
3105 default:
3106 g_assert_not_reached();
3109 iss_valid = !is_vector && !writeback;
3111 if (rn == 31) {
3112 gen_check_sp_alignment(s);
3115 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3116 if (!post_index) {
3117 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3120 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3122 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3123 writeback || rn != 31,
3124 size, is_unpriv, memidx);
3126 if (is_vector) {
3127 if (is_store) {
3128 do_fp_st(s, rt, clean_addr, memop);
3129 } else {
3130 do_fp_ld(s, rt, clean_addr, memop);
3132 } else {
3133 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3134 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3136 if (is_store) {
3137 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx,
3138 iss_valid, rt, iss_sf, false);
3139 } else {
3140 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop,
3141 is_extended, memidx,
3142 iss_valid, rt, iss_sf, false);
3146 if (writeback) {
3147 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3148 if (post_index) {
3149 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3151 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3156 * Load/store (register offset)
3158 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3159 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3160 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3161 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3163 * For non-vector:
3164 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3165 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3166 * For vector:
3167 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3168 * opc<0>: 0 -> store, 1 -> load
3169 * V: 1 -> vector/simd
3170 * opt: extend encoding (see DecodeRegExtend)
3171 * S: if S=1 then scale (essentially index by sizeof(size))
3172 * Rt: register to transfer into/out of
3173 * Rn: address register or SP for base
3174 * Rm: offset register or ZR for offset
3176 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3177 int opc,
3178 int size,
3179 int rt,
3180 bool is_vector)
3182 int rn = extract32(insn, 5, 5);
3183 int shift = extract32(insn, 12, 1);
3184 int rm = extract32(insn, 16, 5);
3185 int opt = extract32(insn, 13, 3);
3186 bool is_signed = false;
3187 bool is_store = false;
3188 bool is_extended = false;
3189 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3190 MemOp memop;
3192 if (extract32(opt, 1, 1) == 0) {
3193 unallocated_encoding(s);
3194 return;
3197 if (is_vector) {
3198 size |= (opc & 2) << 1;
3199 if (size > 4) {
3200 unallocated_encoding(s);
3201 return;
3203 is_store = !extract32(opc, 0, 1);
3204 if (!fp_access_check(s)) {
3205 return;
3207 } else {
3208 if (size == 3 && opc == 2) {
3209 /* PRFM - prefetch */
3210 return;
3212 if (opc == 3 && size > 1) {
3213 unallocated_encoding(s);
3214 return;
3216 is_store = (opc == 0);
3217 is_signed = !is_store && extract32(opc, 1, 1);
3218 is_extended = (size < 3) && extract32(opc, 0, 1);
3221 if (rn == 31) {
3222 gen_check_sp_alignment(s);
3224 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3226 tcg_rm = read_cpu_reg(s, rm, 1);
3227 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3229 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3231 memop = finalize_memop(s, size + is_signed * MO_SIGN);
3232 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop);
3234 if (is_vector) {
3235 if (is_store) {
3236 do_fp_st(s, rt, clean_addr, memop);
3237 } else {
3238 do_fp_ld(s, rt, clean_addr, memop);
3240 } else {
3241 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3242 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3244 if (is_store) {
3245 do_gpr_st(s, tcg_rt, clean_addr, memop,
3246 true, rt, iss_sf, false);
3247 } else {
3248 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3249 is_extended, true, rt, iss_sf, false);
3255 * Load/store (unsigned immediate)
3257 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3258 * +----+-------+---+-----+-----+------------+-------+------+
3259 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3260 * +----+-------+---+-----+-----+------------+-------+------+
3262 * For non-vector:
3263 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3264 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3265 * For vector:
3266 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3267 * opc<0>: 0 -> store, 1 -> load
3268 * Rn: base address register (inc SP)
3269 * Rt: target register
3271 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3272 int opc,
3273 int size,
3274 int rt,
3275 bool is_vector)
3277 int rn = extract32(insn, 5, 5);
3278 unsigned int imm12 = extract32(insn, 10, 12);
3279 unsigned int offset;
3280 TCGv_i64 clean_addr, dirty_addr;
3281 bool is_store;
3282 bool is_signed = false;
3283 bool is_extended = false;
3284 MemOp memop;
3286 if (is_vector) {
3287 size |= (opc & 2) << 1;
3288 if (size > 4) {
3289 unallocated_encoding(s);
3290 return;
3292 is_store = !extract32(opc, 0, 1);
3293 if (!fp_access_check(s)) {
3294 return;
3296 } else {
3297 if (size == 3 && opc == 2) {
3298 /* PRFM - prefetch */
3299 return;
3301 if (opc == 3 && size > 1) {
3302 unallocated_encoding(s);
3303 return;
3305 is_store = (opc == 0);
3306 is_signed = !is_store && extract32(opc, 1, 1);
3307 is_extended = (size < 3) && extract32(opc, 0, 1);
3310 if (rn == 31) {
3311 gen_check_sp_alignment(s);
3313 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3314 offset = imm12 << size;
3315 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317 memop = finalize_memop(s, size + is_signed * MO_SIGN);
3318 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop);
3320 if (is_vector) {
3321 if (is_store) {
3322 do_fp_st(s, rt, clean_addr, memop);
3323 } else {
3324 do_fp_ld(s, rt, clean_addr, memop);
3326 } else {
3327 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3328 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3329 if (is_store) {
3330 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false);
3331 } else {
3332 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3333 is_extended, true, rt, iss_sf, false);
3338 /* Atomic memory operations
3340 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3341 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3342 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3343 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3345 * Rt: the result register
3346 * Rn: base address or SP
3347 * Rs: the source register for the operation
3348 * V: vector flag (always 0 as of v8.3)
3349 * A: acquire flag
3350 * R: release flag
3352 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3353 int size, int rt, bool is_vector)
3355 int rs = extract32(insn, 16, 5);
3356 int rn = extract32(insn, 5, 5);
3357 int o3_opc = extract32(insn, 12, 4);
3358 bool r = extract32(insn, 22, 1);
3359 bool a = extract32(insn, 23, 1);
3360 TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3361 AtomicThreeOpFn *fn = NULL;
3362 MemOp mop = finalize_memop(s, size | MO_ALIGN);
3364 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3365 unallocated_encoding(s);
3366 return;
3368 switch (o3_opc) {
3369 case 000: /* LDADD */
3370 fn = tcg_gen_atomic_fetch_add_i64;
3371 break;
3372 case 001: /* LDCLR */
3373 fn = tcg_gen_atomic_fetch_and_i64;
3374 break;
3375 case 002: /* LDEOR */
3376 fn = tcg_gen_atomic_fetch_xor_i64;
3377 break;
3378 case 003: /* LDSET */
3379 fn = tcg_gen_atomic_fetch_or_i64;
3380 break;
3381 case 004: /* LDSMAX */
3382 fn = tcg_gen_atomic_fetch_smax_i64;
3383 mop |= MO_SIGN;
3384 break;
3385 case 005: /* LDSMIN */
3386 fn = tcg_gen_atomic_fetch_smin_i64;
3387 mop |= MO_SIGN;
3388 break;
3389 case 006: /* LDUMAX */
3390 fn = tcg_gen_atomic_fetch_umax_i64;
3391 break;
3392 case 007: /* LDUMIN */
3393 fn = tcg_gen_atomic_fetch_umin_i64;
3394 break;
3395 case 010: /* SWP */
3396 fn = tcg_gen_atomic_xchg_i64;
3397 break;
3398 case 014: /* LDAPR, LDAPRH, LDAPRB */
3399 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3400 rs != 31 || a != 1 || r != 0) {
3401 unallocated_encoding(s);
3402 return;
3404 break;
3405 default:
3406 unallocated_encoding(s);
3407 return;
3410 if (rn == 31) {
3411 gen_check_sp_alignment(s);
3413 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop);
3415 if (o3_opc == 014) {
3417 * LDAPR* are a special case because they are a simple load, not a
3418 * fetch-and-do-something op.
3419 * The architectural consistency requirements here are weaker than
3420 * full load-acquire (we only need "load-acquire processor consistent"),
3421 * but we choose to implement them as full LDAQ.
3423 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false,
3424 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3425 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3426 return;
3429 tcg_rs = read_cpu_reg(s, rs, true);
3430 tcg_rt = cpu_reg(s, rt);
3432 if (o3_opc == 1) { /* LDCLR */
3433 tcg_gen_not_i64(tcg_rs, tcg_rs);
3436 /* The tcg atomic primitives are all full barriers. Therefore we
3437 * can ignore the Acquire and Release bits of this instruction.
3439 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3441 if ((mop & MO_SIGN) && size != MO_64) {
3442 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3447 * PAC memory operations
3449 * 31 30 27 26 24 22 21 12 11 10 5 0
3450 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3451 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3452 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3454 * Rt: the result register
3455 * Rn: base address or SP
3456 * V: vector flag (always 0 as of v8.3)
3457 * M: clear for key DA, set for key DB
3458 * W: pre-indexing flag
3459 * S: sign for imm9.
3461 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3462 int size, int rt, bool is_vector)
3464 int rn = extract32(insn, 5, 5);
3465 bool is_wback = extract32(insn, 11, 1);
3466 bool use_key_a = !extract32(insn, 23, 1);
3467 int offset;
3468 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3469 MemOp memop;
3471 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3472 unallocated_encoding(s);
3473 return;
3476 if (rn == 31) {
3477 gen_check_sp_alignment(s);
3479 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3481 if (s->pauth_active) {
3482 if (use_key_a) {
3483 gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3484 tcg_constant_i64(0));
3485 } else {
3486 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3487 tcg_constant_i64(0));
3491 /* Form the 10-bit signed, scaled offset. */
3492 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3493 offset = sextract32(offset << size, 0, 10 + size);
3494 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3496 memop = finalize_memop(s, size);
3498 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3499 clean_addr = gen_mte_check1(s, dirty_addr, false,
3500 is_wback || rn != 31, memop);
3502 tcg_rt = cpu_reg(s, rt);
3503 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3504 /* extend */ false, /* iss_valid */ !is_wback,
3505 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3507 if (is_wback) {
3508 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3513 * LDAPR/STLR (unscaled immediate)
3515 * 31 30 24 22 21 12 10 5 0
3516 * +------+-------------+-----+---+--------+-----+----+-----+
3517 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3518 * +------+-------------+-----+---+--------+-----+----+-----+
3520 * Rt: source or destination register
3521 * Rn: base register
3522 * imm9: unscaled immediate offset
3523 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3524 * size: size of load/store
3526 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3528 int rt = extract32(insn, 0, 5);
3529 int rn = extract32(insn, 5, 5);
3530 int offset = sextract32(insn, 12, 9);
3531 int opc = extract32(insn, 22, 2);
3532 int size = extract32(insn, 30, 2);
3533 TCGv_i64 clean_addr, dirty_addr;
3534 bool is_store = false;
3535 bool extend = false;
3536 bool iss_sf;
3537 MemOp mop;
3539 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3540 unallocated_encoding(s);
3541 return;
3544 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3545 mop = finalize_memop(s, size | MO_ALIGN);
3547 switch (opc) {
3548 case 0: /* STLURB */
3549 is_store = true;
3550 break;
3551 case 1: /* LDAPUR* */
3552 break;
3553 case 2: /* LDAPURS* 64-bit variant */
3554 if (size == 3) {
3555 unallocated_encoding(s);
3556 return;
3558 mop |= MO_SIGN;
3559 break;
3560 case 3: /* LDAPURS* 32-bit variant */
3561 if (size > 1) {
3562 unallocated_encoding(s);
3563 return;
3565 mop |= MO_SIGN;
3566 extend = true; /* zero-extend 32->64 after signed load */
3567 break;
3568 default:
3569 g_assert_not_reached();
3572 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3574 if (rn == 31) {
3575 gen_check_sp_alignment(s);
3578 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3579 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3580 clean_addr = clean_data_tbi(s, dirty_addr);
3582 if (is_store) {
3583 /* Store-Release semantics */
3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3585 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3586 } else {
3588 * Load-AcquirePC semantics; we implement as the slightly more
3589 * restrictive Load-Acquire.
3591 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3592 extend, true, rt, iss_sf, true);
3593 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3597 /* Load/store register (all forms) */
3598 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3600 int rt = extract32(insn, 0, 5);
3601 int opc = extract32(insn, 22, 2);
3602 bool is_vector = extract32(insn, 26, 1);
3603 int size = extract32(insn, 30, 2);
3605 switch (extract32(insn, 24, 2)) {
3606 case 0:
3607 if (extract32(insn, 21, 1) == 0) {
3608 /* Load/store register (unscaled immediate)
3609 * Load/store immediate pre/post-indexed
3610 * Load/store register unprivileged
3612 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3613 return;
3615 switch (extract32(insn, 10, 2)) {
3616 case 0:
3617 disas_ldst_atomic(s, insn, size, rt, is_vector);
3618 return;
3619 case 2:
3620 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3621 return;
3622 default:
3623 disas_ldst_pac(s, insn, size, rt, is_vector);
3624 return;
3626 break;
3627 case 1:
3628 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3629 return;
3631 unallocated_encoding(s);
3634 /* AdvSIMD load/store multiple structures
3636 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3637 * +---+---+---------------+---+-------------+--------+------+------+------+
3638 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3639 * +---+---+---------------+---+-------------+--------+------+------+------+
3641 * AdvSIMD load/store multiple structures (post-indexed)
3643 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3644 * +---+---+---------------+---+---+---------+--------+------+------+------+
3645 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3646 * +---+---+---------------+---+---+---------+--------+------+------+------+
3648 * Rt: first (or only) SIMD&FP register to be transferred
3649 * Rn: base address or SP
3650 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3652 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3654 int rt = extract32(insn, 0, 5);
3655 int rn = extract32(insn, 5, 5);
3656 int rm = extract32(insn, 16, 5);
3657 int size = extract32(insn, 10, 2);
3658 int opcode = extract32(insn, 12, 4);
3659 bool is_store = !extract32(insn, 22, 1);
3660 bool is_postidx = extract32(insn, 23, 1);
3661 bool is_q = extract32(insn, 30, 1);
3662 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3663 MemOp endian, align, mop;
3665 int total; /* total bytes */
3666 int elements; /* elements per vector */
3667 int rpt; /* num iterations */
3668 int selem; /* structure elements */
3669 int r;
3671 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3672 unallocated_encoding(s);
3673 return;
3676 if (!is_postidx && rm != 0) {
3677 unallocated_encoding(s);
3678 return;
3681 /* From the shared decode logic */
3682 switch (opcode) {
3683 case 0x0:
3684 rpt = 1;
3685 selem = 4;
3686 break;
3687 case 0x2:
3688 rpt = 4;
3689 selem = 1;
3690 break;
3691 case 0x4:
3692 rpt = 1;
3693 selem = 3;
3694 break;
3695 case 0x6:
3696 rpt = 3;
3697 selem = 1;
3698 break;
3699 case 0x7:
3700 rpt = 1;
3701 selem = 1;
3702 break;
3703 case 0x8:
3704 rpt = 1;
3705 selem = 2;
3706 break;
3707 case 0xa:
3708 rpt = 2;
3709 selem = 1;
3710 break;
3711 default:
3712 unallocated_encoding(s);
3713 return;
3716 if (size == 3 && !is_q && selem != 1) {
3717 /* reserved */
3718 unallocated_encoding(s);
3719 return;
3722 if (!fp_access_check(s)) {
3723 return;
3726 if (rn == 31) {
3727 gen_check_sp_alignment(s);
3730 /* For our purposes, bytes are always little-endian. */
3731 endian = s->be_data;
3732 if (size == 0) {
3733 endian = MO_LE;
3736 total = rpt * selem * (is_q ? 16 : 8);
3737 tcg_rn = cpu_reg_sp(s, rn);
3740 * Issue the MTE check vs the logical repeat count, before we
3741 * promote consecutive little-endian elements below.
3743 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3744 total);
3747 * Consecutive little-endian elements from a single register
3748 * can be promoted to a larger little-endian operation.
3750 align = MO_ALIGN;
3751 if (selem == 1 && endian == MO_LE) {
3752 align = pow2_align(size);
3753 size = 3;
3755 if (!s->align_mem) {
3756 align = 0;
3758 mop = endian | size | align;
3760 elements = (is_q ? 16 : 8) >> size;
3761 tcg_ebytes = tcg_constant_i64(1 << size);
3762 for (r = 0; r < rpt; r++) {
3763 int e;
3764 for (e = 0; e < elements; e++) {
3765 int xs;
3766 for (xs = 0; xs < selem; xs++) {
3767 int tt = (rt + r + xs) % 32;
3768 if (is_store) {
3769 do_vec_st(s, tt, e, clean_addr, mop);
3770 } else {
3771 do_vec_ld(s, tt, e, clean_addr, mop);
3773 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3778 if (!is_store) {
3779 /* For non-quad operations, setting a slice of the low
3780 * 64 bits of the register clears the high 64 bits (in
3781 * the ARM ARM pseudocode this is implicit in the fact
3782 * that 'rval' is a 64 bit wide variable).
3783 * For quad operations, we might still need to zero the
3784 * high bits of SVE.
3786 for (r = 0; r < rpt * selem; r++) {
3787 int tt = (rt + r) % 32;
3788 clear_vec_high(s, is_q, tt);
3792 if (is_postidx) {
3793 if (rm == 31) {
3794 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3795 } else {
3796 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3801 /* AdvSIMD load/store single structure
3803 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3804 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3805 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3806 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3808 * AdvSIMD load/store single structure (post-indexed)
3810 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3811 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3812 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3813 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3815 * Rt: first (or only) SIMD&FP register to be transferred
3816 * Rn: base address or SP
3817 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3818 * index = encoded in Q:S:size dependent on size
3820 * lane_size = encoded in R, opc
3821 * transfer width = encoded in opc, S, size
3823 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3825 int rt = extract32(insn, 0, 5);
3826 int rn = extract32(insn, 5, 5);
3827 int rm = extract32(insn, 16, 5);
3828 int size = extract32(insn, 10, 2);
3829 int S = extract32(insn, 12, 1);
3830 int opc = extract32(insn, 13, 3);
3831 int R = extract32(insn, 21, 1);
3832 int is_load = extract32(insn, 22, 1);
3833 int is_postidx = extract32(insn, 23, 1);
3834 int is_q = extract32(insn, 30, 1);
3836 int scale = extract32(opc, 1, 2);
3837 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3838 bool replicate = false;
3839 int index = is_q << 3 | S << 2 | size;
3840 int xs, total;
3841 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3842 MemOp mop;
3844 if (extract32(insn, 31, 1)) {
3845 unallocated_encoding(s);
3846 return;
3848 if (!is_postidx && rm != 0) {
3849 unallocated_encoding(s);
3850 return;
3853 switch (scale) {
3854 case 3:
3855 if (!is_load || S) {
3856 unallocated_encoding(s);
3857 return;
3859 scale = size;
3860 replicate = true;
3861 break;
3862 case 0:
3863 break;
3864 case 1:
3865 if (extract32(size, 0, 1)) {
3866 unallocated_encoding(s);
3867 return;
3869 index >>= 1;
3870 break;
3871 case 2:
3872 if (extract32(size, 1, 1)) {
3873 unallocated_encoding(s);
3874 return;
3876 if (!extract32(size, 0, 1)) {
3877 index >>= 2;
3878 } else {
3879 if (S) {
3880 unallocated_encoding(s);
3881 return;
3883 index >>= 3;
3884 scale = 3;
3886 break;
3887 default:
3888 g_assert_not_reached();
3891 if (!fp_access_check(s)) {
3892 return;
3895 if (rn == 31) {
3896 gen_check_sp_alignment(s);
3899 total = selem << scale;
3900 tcg_rn = cpu_reg_sp(s, rn);
3902 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3903 total);
3904 mop = finalize_memop(s, scale);
3906 tcg_ebytes = tcg_constant_i64(1 << scale);
3907 for (xs = 0; xs < selem; xs++) {
3908 if (replicate) {
3909 /* Load and replicate to all elements */
3910 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3912 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3913 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3914 (is_q + 1) * 8, vec_full_reg_size(s),
3915 tcg_tmp);
3916 } else {
3917 /* Load/store one element per register */
3918 if (is_load) {
3919 do_vec_ld(s, rt, index, clean_addr, mop);
3920 } else {
3921 do_vec_st(s, rt, index, clean_addr, mop);
3924 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3925 rt = (rt + 1) % 32;
3928 if (is_postidx) {
3929 if (rm == 31) {
3930 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3931 } else {
3932 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3938 * Load/Store memory tags
3940 * 31 30 29 24 22 21 12 10 5 0
3941 * +-----+-------------+-----+---+------+-----+------+------+
3942 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
3943 * +-----+-------------+-----+---+------+-----+------+------+
3945 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3947 int rt = extract32(insn, 0, 5);
3948 int rn = extract32(insn, 5, 5);
3949 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3950 int op2 = extract32(insn, 10, 2);
3951 int op1 = extract32(insn, 22, 2);
3952 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3953 int index = 0;
3954 TCGv_i64 addr, clean_addr, tcg_rt;
3956 /* We checked insn bits [29:24,21] in the caller. */
3957 if (extract32(insn, 30, 2) != 3) {
3958 goto do_unallocated;
3962 * @index is a tri-state variable which has 3 states:
3963 * < 0 : post-index, writeback
3964 * = 0 : signed offset
3965 * > 0 : pre-index, writeback
3967 switch (op1) {
3968 case 0:
3969 if (op2 != 0) {
3970 /* STG */
3971 index = op2 - 2;
3972 } else {
3973 /* STZGM */
3974 if (s->current_el == 0 || offset != 0) {
3975 goto do_unallocated;
3977 is_mult = is_zero = true;
3979 break;
3980 case 1:
3981 if (op2 != 0) {
3982 /* STZG */
3983 is_zero = true;
3984 index = op2 - 2;
3985 } else {
3986 /* LDG */
3987 is_load = true;
3989 break;
3990 case 2:
3991 if (op2 != 0) {
3992 /* ST2G */
3993 is_pair = true;
3994 index = op2 - 2;
3995 } else {
3996 /* STGM */
3997 if (s->current_el == 0 || offset != 0) {
3998 goto do_unallocated;
4000 is_mult = true;
4002 break;
4003 case 3:
4004 if (op2 != 0) {
4005 /* STZ2G */
4006 is_pair = is_zero = true;
4007 index = op2 - 2;
4008 } else {
4009 /* LDGM */
4010 if (s->current_el == 0 || offset != 0) {
4011 goto do_unallocated;
4013 is_mult = is_load = true;
4015 break;
4017 default:
4018 do_unallocated:
4019 unallocated_encoding(s);
4020 return;
4023 if (is_mult
4024 ? !dc_isar_feature(aa64_mte, s)
4025 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4026 goto do_unallocated;
4029 if (rn == 31) {
4030 gen_check_sp_alignment(s);
4033 addr = read_cpu_reg_sp(s, rn, true);
4034 if (index >= 0) {
4035 /* pre-index or signed offset */
4036 tcg_gen_addi_i64(addr, addr, offset);
4039 if (is_mult) {
4040 tcg_rt = cpu_reg(s, rt);
4042 if (is_zero) {
4043 int size = 4 << s->dcz_blocksize;
4045 if (s->ata) {
4046 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4049 * The non-tags portion of STZGM is mostly like DC_ZVA,
4050 * except the alignment happens before the access.
4052 clean_addr = clean_data_tbi(s, addr);
4053 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4054 gen_helper_dc_zva(cpu_env, clean_addr);
4055 } else if (s->ata) {
4056 if (is_load) {
4057 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4058 } else {
4059 gen_helper_stgm(cpu_env, addr, tcg_rt);
4061 } else {
4062 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4063 int size = 4 << GMID_EL1_BS;
4065 clean_addr = clean_data_tbi(s, addr);
4066 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4067 gen_probe_access(s, clean_addr, acc, size);
4069 if (is_load) {
4070 /* The result tags are zeros. */
4071 tcg_gen_movi_i64(tcg_rt, 0);
4074 return;
4077 if (is_load) {
4078 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4079 tcg_rt = cpu_reg(s, rt);
4080 if (s->ata) {
4081 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4082 } else {
4083 clean_addr = clean_data_tbi(s, addr);
4084 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085 gen_address_with_allocation_tag0(tcg_rt, addr);
4087 } else {
4088 tcg_rt = cpu_reg_sp(s, rt);
4089 if (!s->ata) {
4091 * For STG and ST2G, we need to check alignment and probe memory.
4092 * TODO: For STZG and STZ2G, we could rely on the stores below,
4093 * at least for system mode; user-only won't enforce alignment.
4095 if (is_pair) {
4096 gen_helper_st2g_stub(cpu_env, addr);
4097 } else {
4098 gen_helper_stg_stub(cpu_env, addr);
4100 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4101 if (is_pair) {
4102 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4103 } else {
4104 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4106 } else {
4107 if (is_pair) {
4108 gen_helper_st2g(cpu_env, addr, tcg_rt);
4109 } else {
4110 gen_helper_stg(cpu_env, addr, tcg_rt);
4115 if (is_zero) {
4116 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4117 TCGv_i64 zero64 = tcg_constant_i64(0);
4118 TCGv_i128 zero128 = tcg_temp_new_i128();
4119 int mem_index = get_mem_index(s);
4120 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4122 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4124 /* This is 1 or 2 atomic 16-byte operations. */
4125 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4126 if (is_pair) {
4127 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4128 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4132 if (index != 0) {
4133 /* pre-index or post-index */
4134 if (index < 0) {
4135 /* post-index */
4136 tcg_gen_addi_i64(addr, addr, offset);
4138 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4142 /* Loads and stores */
4143 static void disas_ldst(DisasContext *s, uint32_t insn)
4145 switch (extract32(insn, 24, 6)) {
4146 case 0x08: /* Load/store exclusive */
4147 disas_ldst_excl(s, insn);
4148 break;
4149 case 0x18: case 0x1c: /* Load register (literal) */
4150 disas_ld_lit(s, insn);
4151 break;
4152 case 0x28: case 0x29:
4153 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4154 disas_ldst_pair(s, insn);
4155 break;
4156 case 0x38: case 0x39:
4157 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4158 disas_ldst_reg(s, insn);
4159 break;
4160 case 0x0c: /* AdvSIMD load/store multiple structures */
4161 disas_ldst_multiple_struct(s, insn);
4162 break;
4163 case 0x0d: /* AdvSIMD load/store single structure */
4164 disas_ldst_single_struct(s, insn);
4165 break;
4166 case 0x19:
4167 if (extract32(insn, 21, 1) != 0) {
4168 disas_ldst_tag(s, insn);
4169 } else if (extract32(insn, 10, 2) == 0) {
4170 disas_ldst_ldapr_stlr(s, insn);
4171 } else {
4172 unallocated_encoding(s);
4174 break;
4175 default:
4176 unallocated_encoding(s);
4177 break;
4181 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4183 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4184 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4186 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4187 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4188 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4190 fn(tcg_rd, tcg_rn, tcg_imm);
4191 if (!a->sf) {
4192 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4194 return true;
4198 * PC-rel. addressing
4201 static bool trans_ADR(DisasContext *s, arg_ri *a)
4203 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4204 return true;
4207 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4209 int64_t offset = (int64_t)a->imm << 12;
4211 /* The page offset is ok for CF_PCREL. */
4212 offset -= s->pc_curr & 0xfff;
4213 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4214 return true;
4218 * Add/subtract (immediate)
4220 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4221 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4222 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4223 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4226 * Add/subtract (immediate, with tags)
4229 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4230 bool sub_op)
4232 TCGv_i64 tcg_rn, tcg_rd;
4233 int imm;
4235 imm = a->uimm6 << LOG2_TAG_GRANULE;
4236 if (sub_op) {
4237 imm = -imm;
4240 tcg_rn = cpu_reg_sp(s, a->rn);
4241 tcg_rd = cpu_reg_sp(s, a->rd);
4243 if (s->ata) {
4244 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4245 tcg_constant_i32(imm),
4246 tcg_constant_i32(a->uimm4));
4247 } else {
4248 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4249 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4251 return true;
4254 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4255 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4257 /* The input should be a value in the bottom e bits (with higher
4258 * bits zero); returns that value replicated into every element
4259 * of size e in a 64 bit integer.
4261 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4263 assert(e != 0);
4264 while (e < 64) {
4265 mask |= mask << e;
4266 e *= 2;
4268 return mask;
4272 * Logical (immediate)
4276 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4277 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4278 * value (ie should cause a guest UNDEF exception), and true if they are
4279 * valid, in which case the decoded bit pattern is written to result.
4281 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4282 unsigned int imms, unsigned int immr)
4284 uint64_t mask;
4285 unsigned e, levels, s, r;
4286 int len;
4288 assert(immn < 2 && imms < 64 && immr < 64);
4290 /* The bit patterns we create here are 64 bit patterns which
4291 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4292 * 64 bits each. Each element contains the same value: a run
4293 * of between 1 and e-1 non-zero bits, rotated within the
4294 * element by between 0 and e-1 bits.
4296 * The element size and run length are encoded into immn (1 bit)
4297 * and imms (6 bits) as follows:
4298 * 64 bit elements: immn = 1, imms = <length of run - 1>
4299 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4300 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4301 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4302 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4303 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4304 * Notice that immn = 0, imms = 11111x is the only combination
4305 * not covered by one of the above options; this is reserved.
4306 * Further, <length of run - 1> all-ones is a reserved pattern.
4308 * In all cases the rotation is by immr % e (and immr is 6 bits).
4311 /* First determine the element size */
4312 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4313 if (len < 1) {
4314 /* This is the immn == 0, imms == 0x11111x case */
4315 return false;
4317 e = 1 << len;
4319 levels = e - 1;
4320 s = imms & levels;
4321 r = immr & levels;
4323 if (s == levels) {
4324 /* <length of run - 1> mustn't be all-ones. */
4325 return false;
4328 /* Create the value of one element: s+1 set bits rotated
4329 * by r within the element (which is e bits wide)...
4331 mask = MAKE_64BIT_MASK(0, s + 1);
4332 if (r) {
4333 mask = (mask >> r) | (mask << (e - r));
4334 mask &= MAKE_64BIT_MASK(0, e);
4336 /* ...then replicate the element over the whole 64 bit value */
4337 mask = bitfield_replicate(mask, e);
4338 *result = mask;
4339 return true;
4342 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4343 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4345 TCGv_i64 tcg_rd, tcg_rn;
4346 uint64_t imm;
4348 /* Some immediate field values are reserved. */
4349 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4350 extract32(a->dbm, 0, 6),
4351 extract32(a->dbm, 6, 6))) {
4352 return false;
4354 if (!a->sf) {
4355 imm &= 0xffffffffull;
4358 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4359 tcg_rn = cpu_reg(s, a->rn);
4361 fn(tcg_rd, tcg_rn, imm);
4362 if (set_cc) {
4363 gen_logic_CC(a->sf, tcg_rd);
4365 if (!a->sf) {
4366 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4368 return true;
4371 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4372 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4373 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4374 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4377 * Move wide (immediate)
4380 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4382 int pos = a->hw << 4;
4383 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4384 return true;
4387 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4389 int pos = a->hw << 4;
4390 uint64_t imm = a->imm;
4392 imm = ~(imm << pos);
4393 if (!a->sf) {
4394 imm = (uint32_t)imm;
4396 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4397 return true;
4400 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4402 int pos = a->hw << 4;
4403 TCGv_i64 tcg_rd, tcg_im;
4405 tcg_rd = cpu_reg(s, a->rd);
4406 tcg_im = tcg_constant_i64(a->imm);
4407 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4408 if (!a->sf) {
4409 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4411 return true;
4415 * Bitfield
4418 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4420 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4421 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4422 unsigned int bitsize = a->sf ? 64 : 32;
4423 unsigned int ri = a->immr;
4424 unsigned int si = a->imms;
4425 unsigned int pos, len;
4427 if (si >= ri) {
4428 /* Wd<s-r:0> = Wn<s:r> */
4429 len = (si - ri) + 1;
4430 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4431 if (!a->sf) {
4432 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4434 } else {
4435 /* Wd<32+s-r,32-r> = Wn<s:0> */
4436 len = si + 1;
4437 pos = (bitsize - ri) & (bitsize - 1);
4439 if (len < ri) {
4441 * Sign extend the destination field from len to fill the
4442 * balance of the word. Let the deposit below insert all
4443 * of those sign bits.
4445 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4446 len = ri;
4450 * We start with zero, and we haven't modified any bits outside
4451 * bitsize, therefore no final zero-extension is unneeded for !sf.
4453 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4455 return true;
4458 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4460 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4461 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4462 unsigned int bitsize = a->sf ? 64 : 32;
4463 unsigned int ri = a->immr;
4464 unsigned int si = a->imms;
4465 unsigned int pos, len;
4467 tcg_rd = cpu_reg(s, a->rd);
4468 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4470 if (si >= ri) {
4471 /* Wd<s-r:0> = Wn<s:r> */
4472 len = (si - ri) + 1;
4473 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4474 } else {
4475 /* Wd<32+s-r,32-r> = Wn<s:0> */
4476 len = si + 1;
4477 pos = (bitsize - ri) & (bitsize - 1);
4478 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4480 return true;
4483 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4485 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4486 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4487 unsigned int bitsize = a->sf ? 64 : 32;
4488 unsigned int ri = a->immr;
4489 unsigned int si = a->imms;
4490 unsigned int pos, len;
4492 tcg_rd = cpu_reg(s, a->rd);
4493 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4495 if (si >= ri) {
4496 /* Wd<s-r:0> = Wn<s:r> */
4497 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4498 len = (si - ri) + 1;
4499 pos = 0;
4500 } else {
4501 /* Wd<32+s-r,32-r> = Wn<s:0> */
4502 len = si + 1;
4503 pos = (bitsize - ri) & (bitsize - 1);
4506 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4507 if (!a->sf) {
4508 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4510 return true;
4513 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4515 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4517 tcg_rd = cpu_reg(s, a->rd);
4519 if (unlikely(a->imm == 0)) {
4521 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4522 * so an extract from bit 0 is a special case.
4524 if (a->sf) {
4525 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4526 } else {
4527 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4529 } else {
4530 tcg_rm = cpu_reg(s, a->rm);
4531 tcg_rn = cpu_reg(s, a->rn);
4533 if (a->sf) {
4534 /* Specialization to ROR happens in EXTRACT2. */
4535 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4536 } else {
4537 TCGv_i32 t0 = tcg_temp_new_i32();
4539 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4540 if (a->rm == a->rn) {
4541 tcg_gen_rotri_i32(t0, t0, a->imm);
4542 } else {
4543 TCGv_i32 t1 = tcg_temp_new_i32();
4544 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4545 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4547 tcg_gen_extu_i32_i64(tcg_rd, t0);
4550 return true;
4553 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4554 * Note that it is the caller's responsibility to ensure that the
4555 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4556 * mandated semantics for out of range shifts.
4558 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4559 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4561 switch (shift_type) {
4562 case A64_SHIFT_TYPE_LSL:
4563 tcg_gen_shl_i64(dst, src, shift_amount);
4564 break;
4565 case A64_SHIFT_TYPE_LSR:
4566 tcg_gen_shr_i64(dst, src, shift_amount);
4567 break;
4568 case A64_SHIFT_TYPE_ASR:
4569 if (!sf) {
4570 tcg_gen_ext32s_i64(dst, src);
4572 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4573 break;
4574 case A64_SHIFT_TYPE_ROR:
4575 if (sf) {
4576 tcg_gen_rotr_i64(dst, src, shift_amount);
4577 } else {
4578 TCGv_i32 t0, t1;
4579 t0 = tcg_temp_new_i32();
4580 t1 = tcg_temp_new_i32();
4581 tcg_gen_extrl_i64_i32(t0, src);
4582 tcg_gen_extrl_i64_i32(t1, shift_amount);
4583 tcg_gen_rotr_i32(t0, t0, t1);
4584 tcg_gen_extu_i32_i64(dst, t0);
4586 break;
4587 default:
4588 assert(FALSE); /* all shift types should be handled */
4589 break;
4592 if (!sf) { /* zero extend final result */
4593 tcg_gen_ext32u_i64(dst, dst);
4597 /* Shift a TCGv src by immediate, put result in dst.
4598 * The shift amount must be in range (this should always be true as the
4599 * relevant instructions will UNDEF on bad shift immediates).
4601 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4602 enum a64_shift_type shift_type, unsigned int shift_i)
4604 assert(shift_i < (sf ? 64 : 32));
4606 if (shift_i == 0) {
4607 tcg_gen_mov_i64(dst, src);
4608 } else {
4609 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4613 /* Logical (shifted register)
4614 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4615 * +----+-----+-----------+-------+---+------+--------+------+------+
4616 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4617 * +----+-----+-----------+-------+---+------+--------+------+------+
4619 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4621 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4622 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4624 sf = extract32(insn, 31, 1);
4625 opc = extract32(insn, 29, 2);
4626 shift_type = extract32(insn, 22, 2);
4627 invert = extract32(insn, 21, 1);
4628 rm = extract32(insn, 16, 5);
4629 shift_amount = extract32(insn, 10, 6);
4630 rn = extract32(insn, 5, 5);
4631 rd = extract32(insn, 0, 5);
4633 if (!sf && (shift_amount & (1 << 5))) {
4634 unallocated_encoding(s);
4635 return;
4638 tcg_rd = cpu_reg(s, rd);
4640 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4641 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4642 * register-register MOV and MVN, so it is worth special casing.
4644 tcg_rm = cpu_reg(s, rm);
4645 if (invert) {
4646 tcg_gen_not_i64(tcg_rd, tcg_rm);
4647 if (!sf) {
4648 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4650 } else {
4651 if (sf) {
4652 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4653 } else {
4654 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4657 return;
4660 tcg_rm = read_cpu_reg(s, rm, sf);
4662 if (shift_amount) {
4663 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4666 tcg_rn = cpu_reg(s, rn);
4668 switch (opc | (invert << 2)) {
4669 case 0: /* AND */
4670 case 3: /* ANDS */
4671 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4672 break;
4673 case 1: /* ORR */
4674 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4675 break;
4676 case 2: /* EOR */
4677 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4678 break;
4679 case 4: /* BIC */
4680 case 7: /* BICS */
4681 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4682 break;
4683 case 5: /* ORN */
4684 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4685 break;
4686 case 6: /* EON */
4687 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4688 break;
4689 default:
4690 assert(FALSE);
4691 break;
4694 if (!sf) {
4695 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4698 if (opc == 3) {
4699 gen_logic_CC(sf, tcg_rd);
4704 * Add/subtract (extended register)
4706 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4707 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4708 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4709 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4711 * sf: 0 -> 32bit, 1 -> 64bit
4712 * op: 0 -> add , 1 -> sub
4713 * S: 1 -> set flags
4714 * opt: 00
4715 * option: extension type (see DecodeRegExtend)
4716 * imm3: optional shift to Rm
4718 * Rd = Rn + LSL(extend(Rm), amount)
4720 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4722 int rd = extract32(insn, 0, 5);
4723 int rn = extract32(insn, 5, 5);
4724 int imm3 = extract32(insn, 10, 3);
4725 int option = extract32(insn, 13, 3);
4726 int rm = extract32(insn, 16, 5);
4727 int opt = extract32(insn, 22, 2);
4728 bool setflags = extract32(insn, 29, 1);
4729 bool sub_op = extract32(insn, 30, 1);
4730 bool sf = extract32(insn, 31, 1);
4732 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4733 TCGv_i64 tcg_rd;
4734 TCGv_i64 tcg_result;
4736 if (imm3 > 4 || opt != 0) {
4737 unallocated_encoding(s);
4738 return;
4741 /* non-flag setting ops may use SP */
4742 if (!setflags) {
4743 tcg_rd = cpu_reg_sp(s, rd);
4744 } else {
4745 tcg_rd = cpu_reg(s, rd);
4747 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4749 tcg_rm = read_cpu_reg(s, rm, sf);
4750 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4752 tcg_result = tcg_temp_new_i64();
4754 if (!setflags) {
4755 if (sub_op) {
4756 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4757 } else {
4758 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4760 } else {
4761 if (sub_op) {
4762 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4763 } else {
4764 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4768 if (sf) {
4769 tcg_gen_mov_i64(tcg_rd, tcg_result);
4770 } else {
4771 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4776 * Add/subtract (shifted register)
4778 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4779 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4780 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4781 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4783 * sf: 0 -> 32bit, 1 -> 64bit
4784 * op: 0 -> add , 1 -> sub
4785 * S: 1 -> set flags
4786 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4787 * imm6: Shift amount to apply to Rm before the add/sub
4789 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4791 int rd = extract32(insn, 0, 5);
4792 int rn = extract32(insn, 5, 5);
4793 int imm6 = extract32(insn, 10, 6);
4794 int rm = extract32(insn, 16, 5);
4795 int shift_type = extract32(insn, 22, 2);
4796 bool setflags = extract32(insn, 29, 1);
4797 bool sub_op = extract32(insn, 30, 1);
4798 bool sf = extract32(insn, 31, 1);
4800 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4801 TCGv_i64 tcg_rn, tcg_rm;
4802 TCGv_i64 tcg_result;
4804 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4805 unallocated_encoding(s);
4806 return;
4809 tcg_rn = read_cpu_reg(s, rn, sf);
4810 tcg_rm = read_cpu_reg(s, rm, sf);
4812 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4814 tcg_result = tcg_temp_new_i64();
4816 if (!setflags) {
4817 if (sub_op) {
4818 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4819 } else {
4820 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4822 } else {
4823 if (sub_op) {
4824 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4825 } else {
4826 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4830 if (sf) {
4831 tcg_gen_mov_i64(tcg_rd, tcg_result);
4832 } else {
4833 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4837 /* Data-processing (3 source)
4839 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4840 * +--+------+-----------+------+------+----+------+------+------+
4841 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4842 * +--+------+-----------+------+------+----+------+------+------+
4844 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4846 int rd = extract32(insn, 0, 5);
4847 int rn = extract32(insn, 5, 5);
4848 int ra = extract32(insn, 10, 5);
4849 int rm = extract32(insn, 16, 5);
4850 int op_id = (extract32(insn, 29, 3) << 4) |
4851 (extract32(insn, 21, 3) << 1) |
4852 extract32(insn, 15, 1);
4853 bool sf = extract32(insn, 31, 1);
4854 bool is_sub = extract32(op_id, 0, 1);
4855 bool is_high = extract32(op_id, 2, 1);
4856 bool is_signed = false;
4857 TCGv_i64 tcg_op1;
4858 TCGv_i64 tcg_op2;
4859 TCGv_i64 tcg_tmp;
4861 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4862 switch (op_id) {
4863 case 0x42: /* SMADDL */
4864 case 0x43: /* SMSUBL */
4865 case 0x44: /* SMULH */
4866 is_signed = true;
4867 break;
4868 case 0x0: /* MADD (32bit) */
4869 case 0x1: /* MSUB (32bit) */
4870 case 0x40: /* MADD (64bit) */
4871 case 0x41: /* MSUB (64bit) */
4872 case 0x4a: /* UMADDL */
4873 case 0x4b: /* UMSUBL */
4874 case 0x4c: /* UMULH */
4875 break;
4876 default:
4877 unallocated_encoding(s);
4878 return;
4881 if (is_high) {
4882 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4883 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4884 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4885 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4887 if (is_signed) {
4888 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4889 } else {
4890 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4892 return;
4895 tcg_op1 = tcg_temp_new_i64();
4896 tcg_op2 = tcg_temp_new_i64();
4897 tcg_tmp = tcg_temp_new_i64();
4899 if (op_id < 0x42) {
4900 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4901 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4902 } else {
4903 if (is_signed) {
4904 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4905 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4906 } else {
4907 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4908 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4912 if (ra == 31 && !is_sub) {
4913 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4914 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4915 } else {
4916 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4917 if (is_sub) {
4918 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4919 } else {
4920 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4924 if (!sf) {
4925 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4929 /* Add/subtract (with carry)
4930 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4931 * +--+--+--+------------------------+------+-------------+------+-----+
4932 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4933 * +--+--+--+------------------------+------+-------------+------+-----+
4936 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4938 unsigned int sf, op, setflags, rm, rn, rd;
4939 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4941 sf = extract32(insn, 31, 1);
4942 op = extract32(insn, 30, 1);
4943 setflags = extract32(insn, 29, 1);
4944 rm = extract32(insn, 16, 5);
4945 rn = extract32(insn, 5, 5);
4946 rd = extract32(insn, 0, 5);
4948 tcg_rd = cpu_reg(s, rd);
4949 tcg_rn = cpu_reg(s, rn);
4951 if (op) {
4952 tcg_y = tcg_temp_new_i64();
4953 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4954 } else {
4955 tcg_y = cpu_reg(s, rm);
4958 if (setflags) {
4959 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4960 } else {
4961 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4966 * Rotate right into flags
4967 * 31 30 29 21 15 10 5 4 0
4968 * +--+--+--+-----------------+--------+-----------+------+--+------+
4969 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4970 * +--+--+--+-----------------+--------+-----------+------+--+------+
4972 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4974 int mask = extract32(insn, 0, 4);
4975 int o2 = extract32(insn, 4, 1);
4976 int rn = extract32(insn, 5, 5);
4977 int imm6 = extract32(insn, 15, 6);
4978 int sf_op_s = extract32(insn, 29, 3);
4979 TCGv_i64 tcg_rn;
4980 TCGv_i32 nzcv;
4982 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4983 unallocated_encoding(s);
4984 return;
4987 tcg_rn = read_cpu_reg(s, rn, 1);
4988 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4990 nzcv = tcg_temp_new_i32();
4991 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4993 if (mask & 8) { /* N */
4994 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4996 if (mask & 4) { /* Z */
4997 tcg_gen_not_i32(cpu_ZF, nzcv);
4998 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5000 if (mask & 2) { /* C */
5001 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5003 if (mask & 1) { /* V */
5004 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5009 * Evaluate into flags
5010 * 31 30 29 21 15 14 10 5 4 0
5011 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5012 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5013 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5015 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5017 int o3_mask = extract32(insn, 0, 5);
5018 int rn = extract32(insn, 5, 5);
5019 int o2 = extract32(insn, 15, 6);
5020 int sz = extract32(insn, 14, 1);
5021 int sf_op_s = extract32(insn, 29, 3);
5022 TCGv_i32 tmp;
5023 int shift;
5025 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5026 !dc_isar_feature(aa64_condm_4, s)) {
5027 unallocated_encoding(s);
5028 return;
5030 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5032 tmp = tcg_temp_new_i32();
5033 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5034 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5035 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5036 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5037 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5040 /* Conditional compare (immediate / register)
5041 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5042 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5043 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5044 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5045 * [1] y [0] [0]
5047 static void disas_cc(DisasContext *s, uint32_t insn)
5049 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5050 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5051 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5052 DisasCompare c;
5054 if (!extract32(insn, 29, 1)) {
5055 unallocated_encoding(s);
5056 return;
5058 if (insn & (1 << 10 | 1 << 4)) {
5059 unallocated_encoding(s);
5060 return;
5062 sf = extract32(insn, 31, 1);
5063 op = extract32(insn, 30, 1);
5064 is_imm = extract32(insn, 11, 1);
5065 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5066 cond = extract32(insn, 12, 4);
5067 rn = extract32(insn, 5, 5);
5068 nzcv = extract32(insn, 0, 4);
5070 /* Set T0 = !COND. */
5071 tcg_t0 = tcg_temp_new_i32();
5072 arm_test_cc(&c, cond);
5073 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5075 /* Load the arguments for the new comparison. */
5076 if (is_imm) {
5077 tcg_y = tcg_temp_new_i64();
5078 tcg_gen_movi_i64(tcg_y, y);
5079 } else {
5080 tcg_y = cpu_reg(s, y);
5082 tcg_rn = cpu_reg(s, rn);
5084 /* Set the flags for the new comparison. */
5085 tcg_tmp = tcg_temp_new_i64();
5086 if (op) {
5087 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5088 } else {
5089 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5092 /* If COND was false, force the flags to #nzcv. Compute two masks
5093 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5094 * For tcg hosts that support ANDC, we can make do with just T1.
5095 * In either case, allow the tcg optimizer to delete any unused mask.
5097 tcg_t1 = tcg_temp_new_i32();
5098 tcg_t2 = tcg_temp_new_i32();
5099 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5100 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5102 if (nzcv & 8) { /* N */
5103 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5104 } else {
5105 if (TCG_TARGET_HAS_andc_i32) {
5106 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5107 } else {
5108 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5111 if (nzcv & 4) { /* Z */
5112 if (TCG_TARGET_HAS_andc_i32) {
5113 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5114 } else {
5115 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5117 } else {
5118 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5120 if (nzcv & 2) { /* C */
5121 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5122 } else {
5123 if (TCG_TARGET_HAS_andc_i32) {
5124 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5125 } else {
5126 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5129 if (nzcv & 1) { /* V */
5130 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5131 } else {
5132 if (TCG_TARGET_HAS_andc_i32) {
5133 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5134 } else {
5135 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5140 /* Conditional select
5141 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5142 * +----+----+---+-----------------+------+------+-----+------+------+
5143 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5144 * +----+----+---+-----------------+------+------+-----+------+------+
5146 static void disas_cond_select(DisasContext *s, uint32_t insn)
5148 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5149 TCGv_i64 tcg_rd, zero;
5150 DisasCompare64 c;
5152 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5153 /* S == 1 or op2<1> == 1 */
5154 unallocated_encoding(s);
5155 return;
5157 sf = extract32(insn, 31, 1);
5158 else_inv = extract32(insn, 30, 1);
5159 rm = extract32(insn, 16, 5);
5160 cond = extract32(insn, 12, 4);
5161 else_inc = extract32(insn, 10, 1);
5162 rn = extract32(insn, 5, 5);
5163 rd = extract32(insn, 0, 5);
5165 tcg_rd = cpu_reg(s, rd);
5167 a64_test_cc(&c, cond);
5168 zero = tcg_constant_i64(0);
5170 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5171 /* CSET & CSETM. */
5172 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5173 if (else_inv) {
5174 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5176 } else {
5177 TCGv_i64 t_true = cpu_reg(s, rn);
5178 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5179 if (else_inv && else_inc) {
5180 tcg_gen_neg_i64(t_false, t_false);
5181 } else if (else_inv) {
5182 tcg_gen_not_i64(t_false, t_false);
5183 } else if (else_inc) {
5184 tcg_gen_addi_i64(t_false, t_false, 1);
5186 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5189 if (!sf) {
5190 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5194 static void handle_clz(DisasContext *s, unsigned int sf,
5195 unsigned int rn, unsigned int rd)
5197 TCGv_i64 tcg_rd, tcg_rn;
5198 tcg_rd = cpu_reg(s, rd);
5199 tcg_rn = cpu_reg(s, rn);
5201 if (sf) {
5202 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5203 } else {
5204 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5205 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5206 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5207 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5211 static void handle_cls(DisasContext *s, unsigned int sf,
5212 unsigned int rn, unsigned int rd)
5214 TCGv_i64 tcg_rd, tcg_rn;
5215 tcg_rd = cpu_reg(s, rd);
5216 tcg_rn = cpu_reg(s, rn);
5218 if (sf) {
5219 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5220 } else {
5221 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5222 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5223 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5224 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5228 static void handle_rbit(DisasContext *s, unsigned int sf,
5229 unsigned int rn, unsigned int rd)
5231 TCGv_i64 tcg_rd, tcg_rn;
5232 tcg_rd = cpu_reg(s, rd);
5233 tcg_rn = cpu_reg(s, rn);
5235 if (sf) {
5236 gen_helper_rbit64(tcg_rd, tcg_rn);
5237 } else {
5238 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5239 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5240 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5241 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5245 /* REV with sf==1, opcode==3 ("REV64") */
5246 static void handle_rev64(DisasContext *s, unsigned int sf,
5247 unsigned int rn, unsigned int rd)
5249 if (!sf) {
5250 unallocated_encoding(s);
5251 return;
5253 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5256 /* REV with sf==0, opcode==2
5257 * REV32 (sf==1, opcode==2)
5259 static void handle_rev32(DisasContext *s, unsigned int sf,
5260 unsigned int rn, unsigned int rd)
5262 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5263 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5265 if (sf) {
5266 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5267 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5268 } else {
5269 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5273 /* REV16 (opcode==1) */
5274 static void handle_rev16(DisasContext *s, unsigned int sf,
5275 unsigned int rn, unsigned int rd)
5277 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5278 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5279 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5280 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5282 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5283 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5284 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5285 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5286 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5289 /* Data-processing (1 source)
5290 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5291 * +----+---+---+-----------------+---------+--------+------+------+
5292 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5293 * +----+---+---+-----------------+---------+--------+------+------+
5295 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5297 unsigned int sf, opcode, opcode2, rn, rd;
5298 TCGv_i64 tcg_rd;
5300 if (extract32(insn, 29, 1)) {
5301 unallocated_encoding(s);
5302 return;
5305 sf = extract32(insn, 31, 1);
5306 opcode = extract32(insn, 10, 6);
5307 opcode2 = extract32(insn, 16, 5);
5308 rn = extract32(insn, 5, 5);
5309 rd = extract32(insn, 0, 5);
5311 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5313 switch (MAP(sf, opcode2, opcode)) {
5314 case MAP(0, 0x00, 0x00): /* RBIT */
5315 case MAP(1, 0x00, 0x00):
5316 handle_rbit(s, sf, rn, rd);
5317 break;
5318 case MAP(0, 0x00, 0x01): /* REV16 */
5319 case MAP(1, 0x00, 0x01):
5320 handle_rev16(s, sf, rn, rd);
5321 break;
5322 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5323 case MAP(1, 0x00, 0x02):
5324 handle_rev32(s, sf, rn, rd);
5325 break;
5326 case MAP(1, 0x00, 0x03): /* REV64 */
5327 handle_rev64(s, sf, rn, rd);
5328 break;
5329 case MAP(0, 0x00, 0x04): /* CLZ */
5330 case MAP(1, 0x00, 0x04):
5331 handle_clz(s, sf, rn, rd);
5332 break;
5333 case MAP(0, 0x00, 0x05): /* CLS */
5334 case MAP(1, 0x00, 0x05):
5335 handle_cls(s, sf, rn, rd);
5336 break;
5337 case MAP(1, 0x01, 0x00): /* PACIA */
5338 if (s->pauth_active) {
5339 tcg_rd = cpu_reg(s, rd);
5340 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5341 } else if (!dc_isar_feature(aa64_pauth, s)) {
5342 goto do_unallocated;
5344 break;
5345 case MAP(1, 0x01, 0x01): /* PACIB */
5346 if (s->pauth_active) {
5347 tcg_rd = cpu_reg(s, rd);
5348 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5349 } else if (!dc_isar_feature(aa64_pauth, s)) {
5350 goto do_unallocated;
5352 break;
5353 case MAP(1, 0x01, 0x02): /* PACDA */
5354 if (s->pauth_active) {
5355 tcg_rd = cpu_reg(s, rd);
5356 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5357 } else if (!dc_isar_feature(aa64_pauth, s)) {
5358 goto do_unallocated;
5360 break;
5361 case MAP(1, 0x01, 0x03): /* PACDB */
5362 if (s->pauth_active) {
5363 tcg_rd = cpu_reg(s, rd);
5364 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5365 } else if (!dc_isar_feature(aa64_pauth, s)) {
5366 goto do_unallocated;
5368 break;
5369 case MAP(1, 0x01, 0x04): /* AUTIA */
5370 if (s->pauth_active) {
5371 tcg_rd = cpu_reg(s, rd);
5372 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5373 } else if (!dc_isar_feature(aa64_pauth, s)) {
5374 goto do_unallocated;
5376 break;
5377 case MAP(1, 0x01, 0x05): /* AUTIB */
5378 if (s->pauth_active) {
5379 tcg_rd = cpu_reg(s, rd);
5380 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5381 } else if (!dc_isar_feature(aa64_pauth, s)) {
5382 goto do_unallocated;
5384 break;
5385 case MAP(1, 0x01, 0x06): /* AUTDA */
5386 if (s->pauth_active) {
5387 tcg_rd = cpu_reg(s, rd);
5388 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5389 } else if (!dc_isar_feature(aa64_pauth, s)) {
5390 goto do_unallocated;
5392 break;
5393 case MAP(1, 0x01, 0x07): /* AUTDB */
5394 if (s->pauth_active) {
5395 tcg_rd = cpu_reg(s, rd);
5396 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5397 } else if (!dc_isar_feature(aa64_pauth, s)) {
5398 goto do_unallocated;
5400 break;
5401 case MAP(1, 0x01, 0x08): /* PACIZA */
5402 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5403 goto do_unallocated;
5404 } else if (s->pauth_active) {
5405 tcg_rd = cpu_reg(s, rd);
5406 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5408 break;
5409 case MAP(1, 0x01, 0x09): /* PACIZB */
5410 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5411 goto do_unallocated;
5412 } else if (s->pauth_active) {
5413 tcg_rd = cpu_reg(s, rd);
5414 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5416 break;
5417 case MAP(1, 0x01, 0x0a): /* PACDZA */
5418 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5419 goto do_unallocated;
5420 } else if (s->pauth_active) {
5421 tcg_rd = cpu_reg(s, rd);
5422 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5424 break;
5425 case MAP(1, 0x01, 0x0b): /* PACDZB */
5426 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5427 goto do_unallocated;
5428 } else if (s->pauth_active) {
5429 tcg_rd = cpu_reg(s, rd);
5430 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5432 break;
5433 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5434 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5435 goto do_unallocated;
5436 } else if (s->pauth_active) {
5437 tcg_rd = cpu_reg(s, rd);
5438 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5440 break;
5441 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5442 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5443 goto do_unallocated;
5444 } else if (s->pauth_active) {
5445 tcg_rd = cpu_reg(s, rd);
5446 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5448 break;
5449 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5450 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5451 goto do_unallocated;
5452 } else if (s->pauth_active) {
5453 tcg_rd = cpu_reg(s, rd);
5454 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5456 break;
5457 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5458 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5459 goto do_unallocated;
5460 } else if (s->pauth_active) {
5461 tcg_rd = cpu_reg(s, rd);
5462 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5464 break;
5465 case MAP(1, 0x01, 0x10): /* XPACI */
5466 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5467 goto do_unallocated;
5468 } else if (s->pauth_active) {
5469 tcg_rd = cpu_reg(s, rd);
5470 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5472 break;
5473 case MAP(1, 0x01, 0x11): /* XPACD */
5474 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5475 goto do_unallocated;
5476 } else if (s->pauth_active) {
5477 tcg_rd = cpu_reg(s, rd);
5478 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5480 break;
5481 default:
5482 do_unallocated:
5483 unallocated_encoding(s);
5484 break;
5487 #undef MAP
5490 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5491 unsigned int rm, unsigned int rn, unsigned int rd)
5493 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5494 tcg_rd = cpu_reg(s, rd);
5496 if (!sf && is_signed) {
5497 tcg_n = tcg_temp_new_i64();
5498 tcg_m = tcg_temp_new_i64();
5499 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5500 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5501 } else {
5502 tcg_n = read_cpu_reg(s, rn, sf);
5503 tcg_m = read_cpu_reg(s, rm, sf);
5506 if (is_signed) {
5507 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5508 } else {
5509 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5512 if (!sf) { /* zero extend final result */
5513 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5517 /* LSLV, LSRV, ASRV, RORV */
5518 static void handle_shift_reg(DisasContext *s,
5519 enum a64_shift_type shift_type, unsigned int sf,
5520 unsigned int rm, unsigned int rn, unsigned int rd)
5522 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5523 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5524 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5526 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5527 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5530 /* CRC32[BHWX], CRC32C[BHWX] */
5531 static void handle_crc32(DisasContext *s,
5532 unsigned int sf, unsigned int sz, bool crc32c,
5533 unsigned int rm, unsigned int rn, unsigned int rd)
5535 TCGv_i64 tcg_acc, tcg_val;
5536 TCGv_i32 tcg_bytes;
5538 if (!dc_isar_feature(aa64_crc32, s)
5539 || (sf == 1 && sz != 3)
5540 || (sf == 0 && sz == 3)) {
5541 unallocated_encoding(s);
5542 return;
5545 if (sz == 3) {
5546 tcg_val = cpu_reg(s, rm);
5547 } else {
5548 uint64_t mask;
5549 switch (sz) {
5550 case 0:
5551 mask = 0xFF;
5552 break;
5553 case 1:
5554 mask = 0xFFFF;
5555 break;
5556 case 2:
5557 mask = 0xFFFFFFFF;
5558 break;
5559 default:
5560 g_assert_not_reached();
5562 tcg_val = tcg_temp_new_i64();
5563 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5566 tcg_acc = cpu_reg(s, rn);
5567 tcg_bytes = tcg_constant_i32(1 << sz);
5569 if (crc32c) {
5570 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5571 } else {
5572 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5576 /* Data-processing (2 source)
5577 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5578 * +----+---+---+-----------------+------+--------+------+------+
5579 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5580 * +----+---+---+-----------------+------+--------+------+------+
5582 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5584 unsigned int sf, rm, opcode, rn, rd, setflag;
5585 sf = extract32(insn, 31, 1);
5586 setflag = extract32(insn, 29, 1);
5587 rm = extract32(insn, 16, 5);
5588 opcode = extract32(insn, 10, 6);
5589 rn = extract32(insn, 5, 5);
5590 rd = extract32(insn, 0, 5);
5592 if (setflag && opcode != 0) {
5593 unallocated_encoding(s);
5594 return;
5597 switch (opcode) {
5598 case 0: /* SUBP(S) */
5599 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5600 goto do_unallocated;
5601 } else {
5602 TCGv_i64 tcg_n, tcg_m, tcg_d;
5604 tcg_n = read_cpu_reg_sp(s, rn, true);
5605 tcg_m = read_cpu_reg_sp(s, rm, true);
5606 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5607 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5608 tcg_d = cpu_reg(s, rd);
5610 if (setflag) {
5611 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5612 } else {
5613 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5616 break;
5617 case 2: /* UDIV */
5618 handle_div(s, false, sf, rm, rn, rd);
5619 break;
5620 case 3: /* SDIV */
5621 handle_div(s, true, sf, rm, rn, rd);
5622 break;
5623 case 4: /* IRG */
5624 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5625 goto do_unallocated;
5627 if (s->ata) {
5628 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5629 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5630 } else {
5631 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5632 cpu_reg_sp(s, rn));
5634 break;
5635 case 5: /* GMI */
5636 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5637 goto do_unallocated;
5638 } else {
5639 TCGv_i64 t = tcg_temp_new_i64();
5641 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5642 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5643 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5645 break;
5646 case 8: /* LSLV */
5647 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5648 break;
5649 case 9: /* LSRV */
5650 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5651 break;
5652 case 10: /* ASRV */
5653 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5654 break;
5655 case 11: /* RORV */
5656 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5657 break;
5658 case 12: /* PACGA */
5659 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5660 goto do_unallocated;
5662 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5663 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5664 break;
5665 case 16:
5666 case 17:
5667 case 18:
5668 case 19:
5669 case 20:
5670 case 21:
5671 case 22:
5672 case 23: /* CRC32 */
5674 int sz = extract32(opcode, 0, 2);
5675 bool crc32c = extract32(opcode, 2, 1);
5676 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5677 break;
5679 default:
5680 do_unallocated:
5681 unallocated_encoding(s);
5682 break;
5687 * Data processing - register
5688 * 31 30 29 28 25 21 20 16 10 0
5689 * +--+---+--+---+-------+-----+-------+-------+---------+
5690 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5691 * +--+---+--+---+-------+-----+-------+-------+---------+
5693 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5695 int op0 = extract32(insn, 30, 1);
5696 int op1 = extract32(insn, 28, 1);
5697 int op2 = extract32(insn, 21, 4);
5698 int op3 = extract32(insn, 10, 6);
5700 if (!op1) {
5701 if (op2 & 8) {
5702 if (op2 & 1) {
5703 /* Add/sub (extended register) */
5704 disas_add_sub_ext_reg(s, insn);
5705 } else {
5706 /* Add/sub (shifted register) */
5707 disas_add_sub_reg(s, insn);
5709 } else {
5710 /* Logical (shifted register) */
5711 disas_logic_reg(s, insn);
5713 return;
5716 switch (op2) {
5717 case 0x0:
5718 switch (op3) {
5719 case 0x00: /* Add/subtract (with carry) */
5720 disas_adc_sbc(s, insn);
5721 break;
5723 case 0x01: /* Rotate right into flags */
5724 case 0x21:
5725 disas_rotate_right_into_flags(s, insn);
5726 break;
5728 case 0x02: /* Evaluate into flags */
5729 case 0x12:
5730 case 0x22:
5731 case 0x32:
5732 disas_evaluate_into_flags(s, insn);
5733 break;
5735 default:
5736 goto do_unallocated;
5738 break;
5740 case 0x2: /* Conditional compare */
5741 disas_cc(s, insn); /* both imm and reg forms */
5742 break;
5744 case 0x4: /* Conditional select */
5745 disas_cond_select(s, insn);
5746 break;
5748 case 0x6: /* Data-processing */
5749 if (op0) { /* (1 source) */
5750 disas_data_proc_1src(s, insn);
5751 } else { /* (2 source) */
5752 disas_data_proc_2src(s, insn);
5754 break;
5755 case 0x8 ... 0xf: /* (3 source) */
5756 disas_data_proc_3src(s, insn);
5757 break;
5759 default:
5760 do_unallocated:
5761 unallocated_encoding(s);
5762 break;
5766 static void handle_fp_compare(DisasContext *s, int size,
5767 unsigned int rn, unsigned int rm,
5768 bool cmp_with_zero, bool signal_all_nans)
5770 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5771 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5773 if (size == MO_64) {
5774 TCGv_i64 tcg_vn, tcg_vm;
5776 tcg_vn = read_fp_dreg(s, rn);
5777 if (cmp_with_zero) {
5778 tcg_vm = tcg_constant_i64(0);
5779 } else {
5780 tcg_vm = read_fp_dreg(s, rm);
5782 if (signal_all_nans) {
5783 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5784 } else {
5785 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5787 } else {
5788 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5789 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5791 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5792 if (cmp_with_zero) {
5793 tcg_gen_movi_i32(tcg_vm, 0);
5794 } else {
5795 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5798 switch (size) {
5799 case MO_32:
5800 if (signal_all_nans) {
5801 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5802 } else {
5803 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5805 break;
5806 case MO_16:
5807 if (signal_all_nans) {
5808 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5809 } else {
5810 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5812 break;
5813 default:
5814 g_assert_not_reached();
5818 gen_set_nzcv(tcg_flags);
5821 /* Floating point compare
5822 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5823 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5824 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5825 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5827 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5829 unsigned int mos, type, rm, op, rn, opc, op2r;
5830 int size;
5832 mos = extract32(insn, 29, 3);
5833 type = extract32(insn, 22, 2);
5834 rm = extract32(insn, 16, 5);
5835 op = extract32(insn, 14, 2);
5836 rn = extract32(insn, 5, 5);
5837 opc = extract32(insn, 3, 2);
5838 op2r = extract32(insn, 0, 3);
5840 if (mos || op || op2r) {
5841 unallocated_encoding(s);
5842 return;
5845 switch (type) {
5846 case 0:
5847 size = MO_32;
5848 break;
5849 case 1:
5850 size = MO_64;
5851 break;
5852 case 3:
5853 size = MO_16;
5854 if (dc_isar_feature(aa64_fp16, s)) {
5855 break;
5857 /* fallthru */
5858 default:
5859 unallocated_encoding(s);
5860 return;
5863 if (!fp_access_check(s)) {
5864 return;
5867 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5870 /* Floating point conditional compare
5871 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5872 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5873 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5874 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5876 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5878 unsigned int mos, type, rm, cond, rn, op, nzcv;
5879 TCGLabel *label_continue = NULL;
5880 int size;
5882 mos = extract32(insn, 29, 3);
5883 type = extract32(insn, 22, 2);
5884 rm = extract32(insn, 16, 5);
5885 cond = extract32(insn, 12, 4);
5886 rn = extract32(insn, 5, 5);
5887 op = extract32(insn, 4, 1);
5888 nzcv = extract32(insn, 0, 4);
5890 if (mos) {
5891 unallocated_encoding(s);
5892 return;
5895 switch (type) {
5896 case 0:
5897 size = MO_32;
5898 break;
5899 case 1:
5900 size = MO_64;
5901 break;
5902 case 3:
5903 size = MO_16;
5904 if (dc_isar_feature(aa64_fp16, s)) {
5905 break;
5907 /* fallthru */
5908 default:
5909 unallocated_encoding(s);
5910 return;
5913 if (!fp_access_check(s)) {
5914 return;
5917 if (cond < 0x0e) { /* not always */
5918 TCGLabel *label_match = gen_new_label();
5919 label_continue = gen_new_label();
5920 arm_gen_test_cc(cond, label_match);
5921 /* nomatch: */
5922 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5923 tcg_gen_br(label_continue);
5924 gen_set_label(label_match);
5927 handle_fp_compare(s, size, rn, rm, false, op);
5929 if (cond < 0x0e) {
5930 gen_set_label(label_continue);
5934 /* Floating point conditional select
5935 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5936 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5937 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5938 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5940 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5942 unsigned int mos, type, rm, cond, rn, rd;
5943 TCGv_i64 t_true, t_false;
5944 DisasCompare64 c;
5945 MemOp sz;
5947 mos = extract32(insn, 29, 3);
5948 type = extract32(insn, 22, 2);
5949 rm = extract32(insn, 16, 5);
5950 cond = extract32(insn, 12, 4);
5951 rn = extract32(insn, 5, 5);
5952 rd = extract32(insn, 0, 5);
5954 if (mos) {
5955 unallocated_encoding(s);
5956 return;
5959 switch (type) {
5960 case 0:
5961 sz = MO_32;
5962 break;
5963 case 1:
5964 sz = MO_64;
5965 break;
5966 case 3:
5967 sz = MO_16;
5968 if (dc_isar_feature(aa64_fp16, s)) {
5969 break;
5971 /* fallthru */
5972 default:
5973 unallocated_encoding(s);
5974 return;
5977 if (!fp_access_check(s)) {
5978 return;
5981 /* Zero extend sreg & hreg inputs to 64 bits now. */
5982 t_true = tcg_temp_new_i64();
5983 t_false = tcg_temp_new_i64();
5984 read_vec_element(s, t_true, rn, 0, sz);
5985 read_vec_element(s, t_false, rm, 0, sz);
5987 a64_test_cc(&c, cond);
5988 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5989 t_true, t_false);
5991 /* Note that sregs & hregs write back zeros to the high bits,
5992 and we've already done the zero-extension. */
5993 write_fp_dreg(s, rd, t_true);
5996 /* Floating-point data-processing (1 source) - half precision */
5997 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5999 TCGv_ptr fpst = NULL;
6000 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6001 TCGv_i32 tcg_res = tcg_temp_new_i32();
6003 switch (opcode) {
6004 case 0x0: /* FMOV */
6005 tcg_gen_mov_i32(tcg_res, tcg_op);
6006 break;
6007 case 0x1: /* FABS */
6008 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6009 break;
6010 case 0x2: /* FNEG */
6011 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6012 break;
6013 case 0x3: /* FSQRT */
6014 fpst = fpstatus_ptr(FPST_FPCR_F16);
6015 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6016 break;
6017 case 0x8: /* FRINTN */
6018 case 0x9: /* FRINTP */
6019 case 0xa: /* FRINTM */
6020 case 0xb: /* FRINTZ */
6021 case 0xc: /* FRINTA */
6023 TCGv_i32 tcg_rmode;
6025 fpst = fpstatus_ptr(FPST_FPCR_F16);
6026 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6027 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6028 gen_restore_rmode(tcg_rmode, fpst);
6029 break;
6031 case 0xe: /* FRINTX */
6032 fpst = fpstatus_ptr(FPST_FPCR_F16);
6033 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6034 break;
6035 case 0xf: /* FRINTI */
6036 fpst = fpstatus_ptr(FPST_FPCR_F16);
6037 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6038 break;
6039 default:
6040 g_assert_not_reached();
6043 write_fp_sreg(s, rd, tcg_res);
6046 /* Floating-point data-processing (1 source) - single precision */
6047 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6049 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6050 TCGv_i32 tcg_op, tcg_res;
6051 TCGv_ptr fpst;
6052 int rmode = -1;
6054 tcg_op = read_fp_sreg(s, rn);
6055 tcg_res = tcg_temp_new_i32();
6057 switch (opcode) {
6058 case 0x0: /* FMOV */
6059 tcg_gen_mov_i32(tcg_res, tcg_op);
6060 goto done;
6061 case 0x1: /* FABS */
6062 gen_helper_vfp_abss(tcg_res, tcg_op);
6063 goto done;
6064 case 0x2: /* FNEG */
6065 gen_helper_vfp_negs(tcg_res, tcg_op);
6066 goto done;
6067 case 0x3: /* FSQRT */
6068 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6069 goto done;
6070 case 0x6: /* BFCVT */
6071 gen_fpst = gen_helper_bfcvt;
6072 break;
6073 case 0x8: /* FRINTN */
6074 case 0x9: /* FRINTP */
6075 case 0xa: /* FRINTM */
6076 case 0xb: /* FRINTZ */
6077 case 0xc: /* FRINTA */
6078 rmode = opcode & 7;
6079 gen_fpst = gen_helper_rints;
6080 break;
6081 case 0xe: /* FRINTX */
6082 gen_fpst = gen_helper_rints_exact;
6083 break;
6084 case 0xf: /* FRINTI */
6085 gen_fpst = gen_helper_rints;
6086 break;
6087 case 0x10: /* FRINT32Z */
6088 rmode = FPROUNDING_ZERO;
6089 gen_fpst = gen_helper_frint32_s;
6090 break;
6091 case 0x11: /* FRINT32X */
6092 gen_fpst = gen_helper_frint32_s;
6093 break;
6094 case 0x12: /* FRINT64Z */
6095 rmode = FPROUNDING_ZERO;
6096 gen_fpst = gen_helper_frint64_s;
6097 break;
6098 case 0x13: /* FRINT64X */
6099 gen_fpst = gen_helper_frint64_s;
6100 break;
6101 default:
6102 g_assert_not_reached();
6105 fpst = fpstatus_ptr(FPST_FPCR);
6106 if (rmode >= 0) {
6107 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6108 gen_fpst(tcg_res, tcg_op, fpst);
6109 gen_restore_rmode(tcg_rmode, fpst);
6110 } else {
6111 gen_fpst(tcg_res, tcg_op, fpst);
6114 done:
6115 write_fp_sreg(s, rd, tcg_res);
6118 /* Floating-point data-processing (1 source) - double precision */
6119 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6121 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6122 TCGv_i64 tcg_op, tcg_res;
6123 TCGv_ptr fpst;
6124 int rmode = -1;
6126 switch (opcode) {
6127 case 0x0: /* FMOV */
6128 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6129 return;
6132 tcg_op = read_fp_dreg(s, rn);
6133 tcg_res = tcg_temp_new_i64();
6135 switch (opcode) {
6136 case 0x1: /* FABS */
6137 gen_helper_vfp_absd(tcg_res, tcg_op);
6138 goto done;
6139 case 0x2: /* FNEG */
6140 gen_helper_vfp_negd(tcg_res, tcg_op);
6141 goto done;
6142 case 0x3: /* FSQRT */
6143 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6144 goto done;
6145 case 0x8: /* FRINTN */
6146 case 0x9: /* FRINTP */
6147 case 0xa: /* FRINTM */
6148 case 0xb: /* FRINTZ */
6149 case 0xc: /* FRINTA */
6150 rmode = opcode & 7;
6151 gen_fpst = gen_helper_rintd;
6152 break;
6153 case 0xe: /* FRINTX */
6154 gen_fpst = gen_helper_rintd_exact;
6155 break;
6156 case 0xf: /* FRINTI */
6157 gen_fpst = gen_helper_rintd;
6158 break;
6159 case 0x10: /* FRINT32Z */
6160 rmode = FPROUNDING_ZERO;
6161 gen_fpst = gen_helper_frint32_d;
6162 break;
6163 case 0x11: /* FRINT32X */
6164 gen_fpst = gen_helper_frint32_d;
6165 break;
6166 case 0x12: /* FRINT64Z */
6167 rmode = FPROUNDING_ZERO;
6168 gen_fpst = gen_helper_frint64_d;
6169 break;
6170 case 0x13: /* FRINT64X */
6171 gen_fpst = gen_helper_frint64_d;
6172 break;
6173 default:
6174 g_assert_not_reached();
6177 fpst = fpstatus_ptr(FPST_FPCR);
6178 if (rmode >= 0) {
6179 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6180 gen_fpst(tcg_res, tcg_op, fpst);
6181 gen_restore_rmode(tcg_rmode, fpst);
6182 } else {
6183 gen_fpst(tcg_res, tcg_op, fpst);
6186 done:
6187 write_fp_dreg(s, rd, tcg_res);
6190 static void handle_fp_fcvt(DisasContext *s, int opcode,
6191 int rd, int rn, int dtype, int ntype)
6193 switch (ntype) {
6194 case 0x0:
6196 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6197 if (dtype == 1) {
6198 /* Single to double */
6199 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6200 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6201 write_fp_dreg(s, rd, tcg_rd);
6202 } else {
6203 /* Single to half */
6204 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6205 TCGv_i32 ahp = get_ahp_flag();
6206 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6208 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6209 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6210 write_fp_sreg(s, rd, tcg_rd);
6212 break;
6214 case 0x1:
6216 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6217 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6218 if (dtype == 0) {
6219 /* Double to single */
6220 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6221 } else {
6222 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6223 TCGv_i32 ahp = get_ahp_flag();
6224 /* Double to half */
6225 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6226 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6228 write_fp_sreg(s, rd, tcg_rd);
6229 break;
6231 case 0x3:
6233 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6234 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6235 TCGv_i32 tcg_ahp = get_ahp_flag();
6236 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6237 if (dtype == 0) {
6238 /* Half to single */
6239 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6240 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6241 write_fp_sreg(s, rd, tcg_rd);
6242 } else {
6243 /* Half to double */
6244 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6245 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6246 write_fp_dreg(s, rd, tcg_rd);
6248 break;
6250 default:
6251 g_assert_not_reached();
6255 /* Floating point data-processing (1 source)
6256 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6257 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6258 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6259 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6261 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6263 int mos = extract32(insn, 29, 3);
6264 int type = extract32(insn, 22, 2);
6265 int opcode = extract32(insn, 15, 6);
6266 int rn = extract32(insn, 5, 5);
6267 int rd = extract32(insn, 0, 5);
6269 if (mos) {
6270 goto do_unallocated;
6273 switch (opcode) {
6274 case 0x4: case 0x5: case 0x7:
6276 /* FCVT between half, single and double precision */
6277 int dtype = extract32(opcode, 0, 2);
6278 if (type == 2 || dtype == type) {
6279 goto do_unallocated;
6281 if (!fp_access_check(s)) {
6282 return;
6285 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6286 break;
6289 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6290 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6291 goto do_unallocated;
6293 /* fall through */
6294 case 0x0 ... 0x3:
6295 case 0x8 ... 0xc:
6296 case 0xe ... 0xf:
6297 /* 32-to-32 and 64-to-64 ops */
6298 switch (type) {
6299 case 0:
6300 if (!fp_access_check(s)) {
6301 return;
6303 handle_fp_1src_single(s, opcode, rd, rn);
6304 break;
6305 case 1:
6306 if (!fp_access_check(s)) {
6307 return;
6309 handle_fp_1src_double(s, opcode, rd, rn);
6310 break;
6311 case 3:
6312 if (!dc_isar_feature(aa64_fp16, s)) {
6313 goto do_unallocated;
6316 if (!fp_access_check(s)) {
6317 return;
6319 handle_fp_1src_half(s, opcode, rd, rn);
6320 break;
6321 default:
6322 goto do_unallocated;
6324 break;
6326 case 0x6:
6327 switch (type) {
6328 case 1: /* BFCVT */
6329 if (!dc_isar_feature(aa64_bf16, s)) {
6330 goto do_unallocated;
6332 if (!fp_access_check(s)) {
6333 return;
6335 handle_fp_1src_single(s, opcode, rd, rn);
6336 break;
6337 default:
6338 goto do_unallocated;
6340 break;
6342 default:
6343 do_unallocated:
6344 unallocated_encoding(s);
6345 break;
6349 /* Floating-point data-processing (2 source) - single precision */
6350 static void handle_fp_2src_single(DisasContext *s, int opcode,
6351 int rd, int rn, int rm)
6353 TCGv_i32 tcg_op1;
6354 TCGv_i32 tcg_op2;
6355 TCGv_i32 tcg_res;
6356 TCGv_ptr fpst;
6358 tcg_res = tcg_temp_new_i32();
6359 fpst = fpstatus_ptr(FPST_FPCR);
6360 tcg_op1 = read_fp_sreg(s, rn);
6361 tcg_op2 = read_fp_sreg(s, rm);
6363 switch (opcode) {
6364 case 0x0: /* FMUL */
6365 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6366 break;
6367 case 0x1: /* FDIV */
6368 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6369 break;
6370 case 0x2: /* FADD */
6371 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6372 break;
6373 case 0x3: /* FSUB */
6374 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6375 break;
6376 case 0x4: /* FMAX */
6377 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6378 break;
6379 case 0x5: /* FMIN */
6380 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6381 break;
6382 case 0x6: /* FMAXNM */
6383 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6384 break;
6385 case 0x7: /* FMINNM */
6386 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6387 break;
6388 case 0x8: /* FNMUL */
6389 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6390 gen_helper_vfp_negs(tcg_res, tcg_res);
6391 break;
6394 write_fp_sreg(s, rd, tcg_res);
6397 /* Floating-point data-processing (2 source) - double precision */
6398 static void handle_fp_2src_double(DisasContext *s, int opcode,
6399 int rd, int rn, int rm)
6401 TCGv_i64 tcg_op1;
6402 TCGv_i64 tcg_op2;
6403 TCGv_i64 tcg_res;
6404 TCGv_ptr fpst;
6406 tcg_res = tcg_temp_new_i64();
6407 fpst = fpstatus_ptr(FPST_FPCR);
6408 tcg_op1 = read_fp_dreg(s, rn);
6409 tcg_op2 = read_fp_dreg(s, rm);
6411 switch (opcode) {
6412 case 0x0: /* FMUL */
6413 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6414 break;
6415 case 0x1: /* FDIV */
6416 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6417 break;
6418 case 0x2: /* FADD */
6419 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6420 break;
6421 case 0x3: /* FSUB */
6422 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6423 break;
6424 case 0x4: /* FMAX */
6425 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6426 break;
6427 case 0x5: /* FMIN */
6428 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6429 break;
6430 case 0x6: /* FMAXNM */
6431 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6432 break;
6433 case 0x7: /* FMINNM */
6434 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6435 break;
6436 case 0x8: /* FNMUL */
6437 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6438 gen_helper_vfp_negd(tcg_res, tcg_res);
6439 break;
6442 write_fp_dreg(s, rd, tcg_res);
6445 /* Floating-point data-processing (2 source) - half precision */
6446 static void handle_fp_2src_half(DisasContext *s, int opcode,
6447 int rd, int rn, int rm)
6449 TCGv_i32 tcg_op1;
6450 TCGv_i32 tcg_op2;
6451 TCGv_i32 tcg_res;
6452 TCGv_ptr fpst;
6454 tcg_res = tcg_temp_new_i32();
6455 fpst = fpstatus_ptr(FPST_FPCR_F16);
6456 tcg_op1 = read_fp_hreg(s, rn);
6457 tcg_op2 = read_fp_hreg(s, rm);
6459 switch (opcode) {
6460 case 0x0: /* FMUL */
6461 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6462 break;
6463 case 0x1: /* FDIV */
6464 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6465 break;
6466 case 0x2: /* FADD */
6467 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6468 break;
6469 case 0x3: /* FSUB */
6470 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6471 break;
6472 case 0x4: /* FMAX */
6473 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6474 break;
6475 case 0x5: /* FMIN */
6476 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6477 break;
6478 case 0x6: /* FMAXNM */
6479 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6480 break;
6481 case 0x7: /* FMINNM */
6482 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6483 break;
6484 case 0x8: /* FNMUL */
6485 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6486 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6487 break;
6488 default:
6489 g_assert_not_reached();
6492 write_fp_sreg(s, rd, tcg_res);
6495 /* Floating point data-processing (2 source)
6496 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6497 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6498 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6499 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6501 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6503 int mos = extract32(insn, 29, 3);
6504 int type = extract32(insn, 22, 2);
6505 int rd = extract32(insn, 0, 5);
6506 int rn = extract32(insn, 5, 5);
6507 int rm = extract32(insn, 16, 5);
6508 int opcode = extract32(insn, 12, 4);
6510 if (opcode > 8 || mos) {
6511 unallocated_encoding(s);
6512 return;
6515 switch (type) {
6516 case 0:
6517 if (!fp_access_check(s)) {
6518 return;
6520 handle_fp_2src_single(s, opcode, rd, rn, rm);
6521 break;
6522 case 1:
6523 if (!fp_access_check(s)) {
6524 return;
6526 handle_fp_2src_double(s, opcode, rd, rn, rm);
6527 break;
6528 case 3:
6529 if (!dc_isar_feature(aa64_fp16, s)) {
6530 unallocated_encoding(s);
6531 return;
6533 if (!fp_access_check(s)) {
6534 return;
6536 handle_fp_2src_half(s, opcode, rd, rn, rm);
6537 break;
6538 default:
6539 unallocated_encoding(s);
6543 /* Floating-point data-processing (3 source) - single precision */
6544 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6545 int rd, int rn, int rm, int ra)
6547 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6548 TCGv_i32 tcg_res = tcg_temp_new_i32();
6549 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6551 tcg_op1 = read_fp_sreg(s, rn);
6552 tcg_op2 = read_fp_sreg(s, rm);
6553 tcg_op3 = read_fp_sreg(s, ra);
6555 /* These are fused multiply-add, and must be done as one
6556 * floating point operation with no rounding between the
6557 * multiplication and addition steps.
6558 * NB that doing the negations here as separate steps is
6559 * correct : an input NaN should come out with its sign bit
6560 * flipped if it is a negated-input.
6562 if (o1 == true) {
6563 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6566 if (o0 != o1) {
6567 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6570 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6572 write_fp_sreg(s, rd, tcg_res);
6575 /* Floating-point data-processing (3 source) - double precision */
6576 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6577 int rd, int rn, int rm, int ra)
6579 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6580 TCGv_i64 tcg_res = tcg_temp_new_i64();
6581 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6583 tcg_op1 = read_fp_dreg(s, rn);
6584 tcg_op2 = read_fp_dreg(s, rm);
6585 tcg_op3 = read_fp_dreg(s, ra);
6587 /* These are fused multiply-add, and must be done as one
6588 * floating point operation with no rounding between the
6589 * multiplication and addition steps.
6590 * NB that doing the negations here as separate steps is
6591 * correct : an input NaN should come out with its sign bit
6592 * flipped if it is a negated-input.
6594 if (o1 == true) {
6595 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6598 if (o0 != o1) {
6599 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6602 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6604 write_fp_dreg(s, rd, tcg_res);
6607 /* Floating-point data-processing (3 source) - half precision */
6608 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6609 int rd, int rn, int rm, int ra)
6611 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6612 TCGv_i32 tcg_res = tcg_temp_new_i32();
6613 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6615 tcg_op1 = read_fp_hreg(s, rn);
6616 tcg_op2 = read_fp_hreg(s, rm);
6617 tcg_op3 = read_fp_hreg(s, ra);
6619 /* These are fused multiply-add, and must be done as one
6620 * floating point operation with no rounding between the
6621 * multiplication and addition steps.
6622 * NB that doing the negations here as separate steps is
6623 * correct : an input NaN should come out with its sign bit
6624 * flipped if it is a negated-input.
6626 if (o1 == true) {
6627 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6630 if (o0 != o1) {
6631 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6634 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6636 write_fp_sreg(s, rd, tcg_res);
6639 /* Floating point data-processing (3 source)
6640 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6641 * +---+---+---+-----------+------+----+------+----+------+------+------+
6642 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6643 * +---+---+---+-----------+------+----+------+----+------+------+------+
6645 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6647 int mos = extract32(insn, 29, 3);
6648 int type = extract32(insn, 22, 2);
6649 int rd = extract32(insn, 0, 5);
6650 int rn = extract32(insn, 5, 5);
6651 int ra = extract32(insn, 10, 5);
6652 int rm = extract32(insn, 16, 5);
6653 bool o0 = extract32(insn, 15, 1);
6654 bool o1 = extract32(insn, 21, 1);
6656 if (mos) {
6657 unallocated_encoding(s);
6658 return;
6661 switch (type) {
6662 case 0:
6663 if (!fp_access_check(s)) {
6664 return;
6666 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6667 break;
6668 case 1:
6669 if (!fp_access_check(s)) {
6670 return;
6672 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6673 break;
6674 case 3:
6675 if (!dc_isar_feature(aa64_fp16, s)) {
6676 unallocated_encoding(s);
6677 return;
6679 if (!fp_access_check(s)) {
6680 return;
6682 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6683 break;
6684 default:
6685 unallocated_encoding(s);
6689 /* Floating point immediate
6690 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6691 * +---+---+---+-----------+------+---+------------+-------+------+------+
6692 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6693 * +---+---+---+-----------+------+---+------------+-------+------+------+
6695 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6697 int rd = extract32(insn, 0, 5);
6698 int imm5 = extract32(insn, 5, 5);
6699 int imm8 = extract32(insn, 13, 8);
6700 int type = extract32(insn, 22, 2);
6701 int mos = extract32(insn, 29, 3);
6702 uint64_t imm;
6703 MemOp sz;
6705 if (mos || imm5) {
6706 unallocated_encoding(s);
6707 return;
6710 switch (type) {
6711 case 0:
6712 sz = MO_32;
6713 break;
6714 case 1:
6715 sz = MO_64;
6716 break;
6717 case 3:
6718 sz = MO_16;
6719 if (dc_isar_feature(aa64_fp16, s)) {
6720 break;
6722 /* fallthru */
6723 default:
6724 unallocated_encoding(s);
6725 return;
6728 if (!fp_access_check(s)) {
6729 return;
6732 imm = vfp_expand_imm(sz, imm8);
6733 write_fp_dreg(s, rd, tcg_constant_i64(imm));
6736 /* Handle floating point <=> fixed point conversions. Note that we can
6737 * also deal with fp <=> integer conversions as a special case (scale == 64)
6738 * OPTME: consider handling that special case specially or at least skipping
6739 * the call to scalbn in the helpers for zero shifts.
6741 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6742 bool itof, int rmode, int scale, int sf, int type)
6744 bool is_signed = !(opcode & 1);
6745 TCGv_ptr tcg_fpstatus;
6746 TCGv_i32 tcg_shift, tcg_single;
6747 TCGv_i64 tcg_double;
6749 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6751 tcg_shift = tcg_constant_i32(64 - scale);
6753 if (itof) {
6754 TCGv_i64 tcg_int = cpu_reg(s, rn);
6755 if (!sf) {
6756 TCGv_i64 tcg_extend = tcg_temp_new_i64();
6758 if (is_signed) {
6759 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6760 } else {
6761 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6764 tcg_int = tcg_extend;
6767 switch (type) {
6768 case 1: /* float64 */
6769 tcg_double = tcg_temp_new_i64();
6770 if (is_signed) {
6771 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6772 tcg_shift, tcg_fpstatus);
6773 } else {
6774 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6775 tcg_shift, tcg_fpstatus);
6777 write_fp_dreg(s, rd, tcg_double);
6778 break;
6780 case 0: /* float32 */
6781 tcg_single = tcg_temp_new_i32();
6782 if (is_signed) {
6783 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6784 tcg_shift, tcg_fpstatus);
6785 } else {
6786 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6787 tcg_shift, tcg_fpstatus);
6789 write_fp_sreg(s, rd, tcg_single);
6790 break;
6792 case 3: /* float16 */
6793 tcg_single = tcg_temp_new_i32();
6794 if (is_signed) {
6795 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6796 tcg_shift, tcg_fpstatus);
6797 } else {
6798 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6799 tcg_shift, tcg_fpstatus);
6801 write_fp_sreg(s, rd, tcg_single);
6802 break;
6804 default:
6805 g_assert_not_reached();
6807 } else {
6808 TCGv_i64 tcg_int = cpu_reg(s, rd);
6809 TCGv_i32 tcg_rmode;
6811 if (extract32(opcode, 2, 1)) {
6812 /* There are too many rounding modes to all fit into rmode,
6813 * so FCVTA[US] is a special case.
6815 rmode = FPROUNDING_TIEAWAY;
6818 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6820 switch (type) {
6821 case 1: /* float64 */
6822 tcg_double = read_fp_dreg(s, rn);
6823 if (is_signed) {
6824 if (!sf) {
6825 gen_helper_vfp_tosld(tcg_int, tcg_double,
6826 tcg_shift, tcg_fpstatus);
6827 } else {
6828 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6829 tcg_shift, tcg_fpstatus);
6831 } else {
6832 if (!sf) {
6833 gen_helper_vfp_tould(tcg_int, tcg_double,
6834 tcg_shift, tcg_fpstatus);
6835 } else {
6836 gen_helper_vfp_touqd(tcg_int, tcg_double,
6837 tcg_shift, tcg_fpstatus);
6840 if (!sf) {
6841 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6843 break;
6845 case 0: /* float32 */
6846 tcg_single = read_fp_sreg(s, rn);
6847 if (sf) {
6848 if (is_signed) {
6849 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6850 tcg_shift, tcg_fpstatus);
6851 } else {
6852 gen_helper_vfp_touqs(tcg_int, tcg_single,
6853 tcg_shift, tcg_fpstatus);
6855 } else {
6856 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6857 if (is_signed) {
6858 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6859 tcg_shift, tcg_fpstatus);
6860 } else {
6861 gen_helper_vfp_touls(tcg_dest, tcg_single,
6862 tcg_shift, tcg_fpstatus);
6864 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6866 break;
6868 case 3: /* float16 */
6869 tcg_single = read_fp_sreg(s, rn);
6870 if (sf) {
6871 if (is_signed) {
6872 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6873 tcg_shift, tcg_fpstatus);
6874 } else {
6875 gen_helper_vfp_touqh(tcg_int, tcg_single,
6876 tcg_shift, tcg_fpstatus);
6878 } else {
6879 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6880 if (is_signed) {
6881 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6882 tcg_shift, tcg_fpstatus);
6883 } else {
6884 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6885 tcg_shift, tcg_fpstatus);
6887 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6889 break;
6891 default:
6892 g_assert_not_reached();
6895 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6899 /* Floating point <-> fixed point conversions
6900 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6901 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6902 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6903 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6905 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6907 int rd = extract32(insn, 0, 5);
6908 int rn = extract32(insn, 5, 5);
6909 int scale = extract32(insn, 10, 6);
6910 int opcode = extract32(insn, 16, 3);
6911 int rmode = extract32(insn, 19, 2);
6912 int type = extract32(insn, 22, 2);
6913 bool sbit = extract32(insn, 29, 1);
6914 bool sf = extract32(insn, 31, 1);
6915 bool itof;
6917 if (sbit || (!sf && scale < 32)) {
6918 unallocated_encoding(s);
6919 return;
6922 switch (type) {
6923 case 0: /* float32 */
6924 case 1: /* float64 */
6925 break;
6926 case 3: /* float16 */
6927 if (dc_isar_feature(aa64_fp16, s)) {
6928 break;
6930 /* fallthru */
6931 default:
6932 unallocated_encoding(s);
6933 return;
6936 switch ((rmode << 3) | opcode) {
6937 case 0x2: /* SCVTF */
6938 case 0x3: /* UCVTF */
6939 itof = true;
6940 break;
6941 case 0x18: /* FCVTZS */
6942 case 0x19: /* FCVTZU */
6943 itof = false;
6944 break;
6945 default:
6946 unallocated_encoding(s);
6947 return;
6950 if (!fp_access_check(s)) {
6951 return;
6954 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6957 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6959 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6960 * without conversion.
6963 if (itof) {
6964 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6965 TCGv_i64 tmp;
6967 switch (type) {
6968 case 0:
6969 /* 32 bit */
6970 tmp = tcg_temp_new_i64();
6971 tcg_gen_ext32u_i64(tmp, tcg_rn);
6972 write_fp_dreg(s, rd, tmp);
6973 break;
6974 case 1:
6975 /* 64 bit */
6976 write_fp_dreg(s, rd, tcg_rn);
6977 break;
6978 case 2:
6979 /* 64 bit to top half. */
6980 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6981 clear_vec_high(s, true, rd);
6982 break;
6983 case 3:
6984 /* 16 bit */
6985 tmp = tcg_temp_new_i64();
6986 tcg_gen_ext16u_i64(tmp, tcg_rn);
6987 write_fp_dreg(s, rd, tmp);
6988 break;
6989 default:
6990 g_assert_not_reached();
6992 } else {
6993 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6995 switch (type) {
6996 case 0:
6997 /* 32 bit */
6998 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6999 break;
7000 case 1:
7001 /* 64 bit */
7002 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7003 break;
7004 case 2:
7005 /* 64 bits from top half */
7006 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7007 break;
7008 case 3:
7009 /* 16 bit */
7010 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7011 break;
7012 default:
7013 g_assert_not_reached();
7018 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7020 TCGv_i64 t = read_fp_dreg(s, rn);
7021 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7023 gen_helper_fjcvtzs(t, t, fpstatus);
7025 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7026 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7027 tcg_gen_movi_i32(cpu_CF, 0);
7028 tcg_gen_movi_i32(cpu_NF, 0);
7029 tcg_gen_movi_i32(cpu_VF, 0);
7032 /* Floating point <-> integer conversions
7033 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7034 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7035 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7036 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7038 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7040 int rd = extract32(insn, 0, 5);
7041 int rn = extract32(insn, 5, 5);
7042 int opcode = extract32(insn, 16, 3);
7043 int rmode = extract32(insn, 19, 2);
7044 int type = extract32(insn, 22, 2);
7045 bool sbit = extract32(insn, 29, 1);
7046 bool sf = extract32(insn, 31, 1);
7047 bool itof = false;
7049 if (sbit) {
7050 goto do_unallocated;
7053 switch (opcode) {
7054 case 2: /* SCVTF */
7055 case 3: /* UCVTF */
7056 itof = true;
7057 /* fallthru */
7058 case 4: /* FCVTAS */
7059 case 5: /* FCVTAU */
7060 if (rmode != 0) {
7061 goto do_unallocated;
7063 /* fallthru */
7064 case 0: /* FCVT[NPMZ]S */
7065 case 1: /* FCVT[NPMZ]U */
7066 switch (type) {
7067 case 0: /* float32 */
7068 case 1: /* float64 */
7069 break;
7070 case 3: /* float16 */
7071 if (!dc_isar_feature(aa64_fp16, s)) {
7072 goto do_unallocated;
7074 break;
7075 default:
7076 goto do_unallocated;
7078 if (!fp_access_check(s)) {
7079 return;
7081 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7082 break;
7084 default:
7085 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7086 case 0b01100110: /* FMOV half <-> 32-bit int */
7087 case 0b01100111:
7088 case 0b11100110: /* FMOV half <-> 64-bit int */
7089 case 0b11100111:
7090 if (!dc_isar_feature(aa64_fp16, s)) {
7091 goto do_unallocated;
7093 /* fallthru */
7094 case 0b00000110: /* FMOV 32-bit */
7095 case 0b00000111:
7096 case 0b10100110: /* FMOV 64-bit */
7097 case 0b10100111:
7098 case 0b11001110: /* FMOV top half of 128-bit */
7099 case 0b11001111:
7100 if (!fp_access_check(s)) {
7101 return;
7103 itof = opcode & 1;
7104 handle_fmov(s, rd, rn, type, itof);
7105 break;
7107 case 0b00111110: /* FJCVTZS */
7108 if (!dc_isar_feature(aa64_jscvt, s)) {
7109 goto do_unallocated;
7110 } else if (fp_access_check(s)) {
7111 handle_fjcvtzs(s, rd, rn);
7113 break;
7115 default:
7116 do_unallocated:
7117 unallocated_encoding(s);
7118 return;
7120 break;
7124 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7125 * 31 30 29 28 25 24 0
7126 * +---+---+---+---------+-----------------------------+
7127 * | | 0 | | 1 1 1 1 | |
7128 * +---+---+---+---------+-----------------------------+
7130 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7132 if (extract32(insn, 24, 1)) {
7133 /* Floating point data-processing (3 source) */
7134 disas_fp_3src(s, insn);
7135 } else if (extract32(insn, 21, 1) == 0) {
7136 /* Floating point to fixed point conversions */
7137 disas_fp_fixed_conv(s, insn);
7138 } else {
7139 switch (extract32(insn, 10, 2)) {
7140 case 1:
7141 /* Floating point conditional compare */
7142 disas_fp_ccomp(s, insn);
7143 break;
7144 case 2:
7145 /* Floating point data-processing (2 source) */
7146 disas_fp_2src(s, insn);
7147 break;
7148 case 3:
7149 /* Floating point conditional select */
7150 disas_fp_csel(s, insn);
7151 break;
7152 case 0:
7153 switch (ctz32(extract32(insn, 12, 4))) {
7154 case 0: /* [15:12] == xxx1 */
7155 /* Floating point immediate */
7156 disas_fp_imm(s, insn);
7157 break;
7158 case 1: /* [15:12] == xx10 */
7159 /* Floating point compare */
7160 disas_fp_compare(s, insn);
7161 break;
7162 case 2: /* [15:12] == x100 */
7163 /* Floating point data-processing (1 source) */
7164 disas_fp_1src(s, insn);
7165 break;
7166 case 3: /* [15:12] == 1000 */
7167 unallocated_encoding(s);
7168 break;
7169 default: /* [15:12] == 0000 */
7170 /* Floating point <-> integer conversions */
7171 disas_fp_int_conv(s, insn);
7172 break;
7174 break;
7179 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7180 int pos)
7182 /* Extract 64 bits from the middle of two concatenated 64 bit
7183 * vector register slices left:right. The extracted bits start
7184 * at 'pos' bits into the right (least significant) side.
7185 * We return the result in tcg_right, and guarantee not to
7186 * trash tcg_left.
7188 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7189 assert(pos > 0 && pos < 64);
7191 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7192 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7193 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7196 /* EXT
7197 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7198 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7199 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7200 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7202 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7204 int is_q = extract32(insn, 30, 1);
7205 int op2 = extract32(insn, 22, 2);
7206 int imm4 = extract32(insn, 11, 4);
7207 int rm = extract32(insn, 16, 5);
7208 int rn = extract32(insn, 5, 5);
7209 int rd = extract32(insn, 0, 5);
7210 int pos = imm4 << 3;
7211 TCGv_i64 tcg_resl, tcg_resh;
7213 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7214 unallocated_encoding(s);
7215 return;
7218 if (!fp_access_check(s)) {
7219 return;
7222 tcg_resh = tcg_temp_new_i64();
7223 tcg_resl = tcg_temp_new_i64();
7225 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7226 * either extracting 128 bits from a 128:128 concatenation, or
7227 * extracting 64 bits from a 64:64 concatenation.
7229 if (!is_q) {
7230 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7231 if (pos != 0) {
7232 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7233 do_ext64(s, tcg_resh, tcg_resl, pos);
7235 } else {
7236 TCGv_i64 tcg_hh;
7237 typedef struct {
7238 int reg;
7239 int elt;
7240 } EltPosns;
7241 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7242 EltPosns *elt = eltposns;
7244 if (pos >= 64) {
7245 elt++;
7246 pos -= 64;
7249 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7250 elt++;
7251 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7252 elt++;
7253 if (pos != 0) {
7254 do_ext64(s, tcg_resh, tcg_resl, pos);
7255 tcg_hh = tcg_temp_new_i64();
7256 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7257 do_ext64(s, tcg_hh, tcg_resh, pos);
7261 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7262 if (is_q) {
7263 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7265 clear_vec_high(s, is_q, rd);
7268 /* TBL/TBX
7269 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7270 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7271 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7272 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7274 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7276 int op2 = extract32(insn, 22, 2);
7277 int is_q = extract32(insn, 30, 1);
7278 int rm = extract32(insn, 16, 5);
7279 int rn = extract32(insn, 5, 5);
7280 int rd = extract32(insn, 0, 5);
7281 int is_tbx = extract32(insn, 12, 1);
7282 int len = (extract32(insn, 13, 2) + 1) * 16;
7284 if (op2 != 0) {
7285 unallocated_encoding(s);
7286 return;
7289 if (!fp_access_check(s)) {
7290 return;
7293 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7294 vec_full_reg_offset(s, rm), cpu_env,
7295 is_q ? 16 : 8, vec_full_reg_size(s),
7296 (len << 6) | (is_tbx << 5) | rn,
7297 gen_helper_simd_tblx);
7300 /* ZIP/UZP/TRN
7301 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7302 * +---+---+-------------+------+---+------+---+------------------+------+
7303 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7304 * +---+---+-------------+------+---+------+---+------------------+------+
7306 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7308 int rd = extract32(insn, 0, 5);
7309 int rn = extract32(insn, 5, 5);
7310 int rm = extract32(insn, 16, 5);
7311 int size = extract32(insn, 22, 2);
7312 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7313 * bit 2 indicates 1 vs 2 variant of the insn.
7315 int opcode = extract32(insn, 12, 2);
7316 bool part = extract32(insn, 14, 1);
7317 bool is_q = extract32(insn, 30, 1);
7318 int esize = 8 << size;
7319 int i;
7320 int datasize = is_q ? 128 : 64;
7321 int elements = datasize / esize;
7322 TCGv_i64 tcg_res[2], tcg_ele;
7324 if (opcode == 0 || (size == 3 && !is_q)) {
7325 unallocated_encoding(s);
7326 return;
7329 if (!fp_access_check(s)) {
7330 return;
7333 tcg_res[0] = tcg_temp_new_i64();
7334 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7335 tcg_ele = tcg_temp_new_i64();
7337 for (i = 0; i < elements; i++) {
7338 int o, w;
7340 switch (opcode) {
7341 case 1: /* UZP1/2 */
7343 int midpoint = elements / 2;
7344 if (i < midpoint) {
7345 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7346 } else {
7347 read_vec_element(s, tcg_ele, rm,
7348 2 * (i - midpoint) + part, size);
7350 break;
7352 case 2: /* TRN1/2 */
7353 if (i & 1) {
7354 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7355 } else {
7356 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7358 break;
7359 case 3: /* ZIP1/2 */
7361 int base = part * elements / 2;
7362 if (i & 1) {
7363 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7364 } else {
7365 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7367 break;
7369 default:
7370 g_assert_not_reached();
7373 w = (i * esize) / 64;
7374 o = (i * esize) % 64;
7375 if (o == 0) {
7376 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7377 } else {
7378 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7379 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7383 for (i = 0; i <= is_q; ++i) {
7384 write_vec_element(s, tcg_res[i], rd, i, MO_64);
7386 clear_vec_high(s, is_q, rd);
7390 * do_reduction_op helper
7392 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7393 * important for correct NaN propagation that we do these
7394 * operations in exactly the order specified by the pseudocode.
7396 * This is a recursive function, TCG temps should be freed by the
7397 * calling function once it is done with the values.
7399 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7400 int esize, int size, int vmap, TCGv_ptr fpst)
7402 if (esize == size) {
7403 int element;
7404 MemOp msize = esize == 16 ? MO_16 : MO_32;
7405 TCGv_i32 tcg_elem;
7407 /* We should have one register left here */
7408 assert(ctpop8(vmap) == 1);
7409 element = ctz32(vmap);
7410 assert(element < 8);
7412 tcg_elem = tcg_temp_new_i32();
7413 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7414 return tcg_elem;
7415 } else {
7416 int bits = size / 2;
7417 int shift = ctpop8(vmap) / 2;
7418 int vmap_lo = (vmap >> shift) & vmap;
7419 int vmap_hi = (vmap & ~vmap_lo);
7420 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7422 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7423 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7424 tcg_res = tcg_temp_new_i32();
7426 switch (fpopcode) {
7427 case 0x0c: /* fmaxnmv half-precision */
7428 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7429 break;
7430 case 0x0f: /* fmaxv half-precision */
7431 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7432 break;
7433 case 0x1c: /* fminnmv half-precision */
7434 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7435 break;
7436 case 0x1f: /* fminv half-precision */
7437 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7438 break;
7439 case 0x2c: /* fmaxnmv */
7440 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7441 break;
7442 case 0x2f: /* fmaxv */
7443 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7444 break;
7445 case 0x3c: /* fminnmv */
7446 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7447 break;
7448 case 0x3f: /* fminv */
7449 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7450 break;
7451 default:
7452 g_assert_not_reached();
7454 return tcg_res;
7458 /* AdvSIMD across lanes
7459 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7460 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7461 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7462 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7464 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7466 int rd = extract32(insn, 0, 5);
7467 int rn = extract32(insn, 5, 5);
7468 int size = extract32(insn, 22, 2);
7469 int opcode = extract32(insn, 12, 5);
7470 bool is_q = extract32(insn, 30, 1);
7471 bool is_u = extract32(insn, 29, 1);
7472 bool is_fp = false;
7473 bool is_min = false;
7474 int esize;
7475 int elements;
7476 int i;
7477 TCGv_i64 tcg_res, tcg_elt;
7479 switch (opcode) {
7480 case 0x1b: /* ADDV */
7481 if (is_u) {
7482 unallocated_encoding(s);
7483 return;
7485 /* fall through */
7486 case 0x3: /* SADDLV, UADDLV */
7487 case 0xa: /* SMAXV, UMAXV */
7488 case 0x1a: /* SMINV, UMINV */
7489 if (size == 3 || (size == 2 && !is_q)) {
7490 unallocated_encoding(s);
7491 return;
7493 break;
7494 case 0xc: /* FMAXNMV, FMINNMV */
7495 case 0xf: /* FMAXV, FMINV */
7496 /* Bit 1 of size field encodes min vs max and the actual size
7497 * depends on the encoding of the U bit. If not set (and FP16
7498 * enabled) then we do half-precision float instead of single
7499 * precision.
7501 is_min = extract32(size, 1, 1);
7502 is_fp = true;
7503 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7504 size = 1;
7505 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7506 unallocated_encoding(s);
7507 return;
7508 } else {
7509 size = 2;
7511 break;
7512 default:
7513 unallocated_encoding(s);
7514 return;
7517 if (!fp_access_check(s)) {
7518 return;
7521 esize = 8 << size;
7522 elements = (is_q ? 128 : 64) / esize;
7524 tcg_res = tcg_temp_new_i64();
7525 tcg_elt = tcg_temp_new_i64();
7527 /* These instructions operate across all lanes of a vector
7528 * to produce a single result. We can guarantee that a 64
7529 * bit intermediate is sufficient:
7530 * + for [US]ADDLV the maximum element size is 32 bits, and
7531 * the result type is 64 bits
7532 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7533 * same as the element size, which is 32 bits at most
7534 * For the integer operations we can choose to work at 64
7535 * or 32 bits and truncate at the end; for simplicity
7536 * we use 64 bits always. The floating point
7537 * ops do require 32 bit intermediates, though.
7539 if (!is_fp) {
7540 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7542 for (i = 1; i < elements; i++) {
7543 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7545 switch (opcode) {
7546 case 0x03: /* SADDLV / UADDLV */
7547 case 0x1b: /* ADDV */
7548 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7549 break;
7550 case 0x0a: /* SMAXV / UMAXV */
7551 if (is_u) {
7552 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7553 } else {
7554 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7556 break;
7557 case 0x1a: /* SMINV / UMINV */
7558 if (is_u) {
7559 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7560 } else {
7561 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7563 break;
7564 default:
7565 g_assert_not_reached();
7569 } else {
7570 /* Floating point vector reduction ops which work across 32
7571 * bit (single) or 16 bit (half-precision) intermediates.
7572 * Note that correct NaN propagation requires that we do these
7573 * operations in exactly the order specified by the pseudocode.
7575 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7576 int fpopcode = opcode | is_min << 4 | is_u << 5;
7577 int vmap = (1 << elements) - 1;
7578 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7579 (is_q ? 128 : 64), vmap, fpst);
7580 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7583 /* Now truncate the result to the width required for the final output */
7584 if (opcode == 0x03) {
7585 /* SADDLV, UADDLV: result is 2*esize */
7586 size++;
7589 switch (size) {
7590 case 0:
7591 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7592 break;
7593 case 1:
7594 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7595 break;
7596 case 2:
7597 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7598 break;
7599 case 3:
7600 break;
7601 default:
7602 g_assert_not_reached();
7605 write_fp_dreg(s, rd, tcg_res);
7608 /* DUP (Element, Vector)
7610 * 31 30 29 21 20 16 15 10 9 5 4 0
7611 * +---+---+-------------------+--------+-------------+------+------+
7612 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7613 * +---+---+-------------------+--------+-------------+------+------+
7615 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7617 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7618 int imm5)
7620 int size = ctz32(imm5);
7621 int index;
7623 if (size > 3 || (size == 3 && !is_q)) {
7624 unallocated_encoding(s);
7625 return;
7628 if (!fp_access_check(s)) {
7629 return;
7632 index = imm5 >> (size + 1);
7633 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7634 vec_reg_offset(s, rn, index, size),
7635 is_q ? 16 : 8, vec_full_reg_size(s));
7638 /* DUP (element, scalar)
7639 * 31 21 20 16 15 10 9 5 4 0
7640 * +-----------------------+--------+-------------+------+------+
7641 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7642 * +-----------------------+--------+-------------+------+------+
7644 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7645 int imm5)
7647 int size = ctz32(imm5);
7648 int index;
7649 TCGv_i64 tmp;
7651 if (size > 3) {
7652 unallocated_encoding(s);
7653 return;
7656 if (!fp_access_check(s)) {
7657 return;
7660 index = imm5 >> (size + 1);
7662 /* This instruction just extracts the specified element and
7663 * zero-extends it into the bottom of the destination register.
7665 tmp = tcg_temp_new_i64();
7666 read_vec_element(s, tmp, rn, index, size);
7667 write_fp_dreg(s, rd, tmp);
7670 /* DUP (General)
7672 * 31 30 29 21 20 16 15 10 9 5 4 0
7673 * +---+---+-------------------+--------+-------------+------+------+
7674 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7675 * +---+---+-------------------+--------+-------------+------+------+
7677 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7679 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7680 int imm5)
7682 int size = ctz32(imm5);
7683 uint32_t dofs, oprsz, maxsz;
7685 if (size > 3 || ((size == 3) && !is_q)) {
7686 unallocated_encoding(s);
7687 return;
7690 if (!fp_access_check(s)) {
7691 return;
7694 dofs = vec_full_reg_offset(s, rd);
7695 oprsz = is_q ? 16 : 8;
7696 maxsz = vec_full_reg_size(s);
7698 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7701 /* INS (Element)
7703 * 31 21 20 16 15 14 11 10 9 5 4 0
7704 * +-----------------------+--------+------------+---+------+------+
7705 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7706 * +-----------------------+--------+------------+---+------+------+
7708 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7709 * index: encoded in imm5<4:size+1>
7711 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7712 int imm4, int imm5)
7714 int size = ctz32(imm5);
7715 int src_index, dst_index;
7716 TCGv_i64 tmp;
7718 if (size > 3) {
7719 unallocated_encoding(s);
7720 return;
7723 if (!fp_access_check(s)) {
7724 return;
7727 dst_index = extract32(imm5, 1+size, 5);
7728 src_index = extract32(imm4, size, 4);
7730 tmp = tcg_temp_new_i64();
7732 read_vec_element(s, tmp, rn, src_index, size);
7733 write_vec_element(s, tmp, rd, dst_index, size);
7735 /* INS is considered a 128-bit write for SVE. */
7736 clear_vec_high(s, true, rd);
7740 /* INS (General)
7742 * 31 21 20 16 15 10 9 5 4 0
7743 * +-----------------------+--------+-------------+------+------+
7744 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7745 * +-----------------------+--------+-------------+------+------+
7747 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7748 * index: encoded in imm5<4:size+1>
7750 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7752 int size = ctz32(imm5);
7753 int idx;
7755 if (size > 3) {
7756 unallocated_encoding(s);
7757 return;
7760 if (!fp_access_check(s)) {
7761 return;
7764 idx = extract32(imm5, 1 + size, 4 - size);
7765 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7767 /* INS is considered a 128-bit write for SVE. */
7768 clear_vec_high(s, true, rd);
7772 * UMOV (General)
7773 * SMOV (General)
7775 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7776 * +---+---+-------------------+--------+-------------+------+------+
7777 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7778 * +---+---+-------------------+--------+-------------+------+------+
7780 * U: unsigned when set
7781 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7783 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7784 int rn, int rd, int imm5)
7786 int size = ctz32(imm5);
7787 int element;
7788 TCGv_i64 tcg_rd;
7790 /* Check for UnallocatedEncodings */
7791 if (is_signed) {
7792 if (size > 2 || (size == 2 && !is_q)) {
7793 unallocated_encoding(s);
7794 return;
7796 } else {
7797 if (size > 3
7798 || (size < 3 && is_q)
7799 || (size == 3 && !is_q)) {
7800 unallocated_encoding(s);
7801 return;
7805 if (!fp_access_check(s)) {
7806 return;
7809 element = extract32(imm5, 1+size, 4);
7811 tcg_rd = cpu_reg(s, rd);
7812 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7813 if (is_signed && !is_q) {
7814 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7818 /* AdvSIMD copy
7819 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7820 * +---+---+----+-----------------+------+---+------+---+------+------+
7821 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7822 * +---+---+----+-----------------+------+---+------+---+------+------+
7824 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7826 int rd = extract32(insn, 0, 5);
7827 int rn = extract32(insn, 5, 5);
7828 int imm4 = extract32(insn, 11, 4);
7829 int op = extract32(insn, 29, 1);
7830 int is_q = extract32(insn, 30, 1);
7831 int imm5 = extract32(insn, 16, 5);
7833 if (op) {
7834 if (is_q) {
7835 /* INS (element) */
7836 handle_simd_inse(s, rd, rn, imm4, imm5);
7837 } else {
7838 unallocated_encoding(s);
7840 } else {
7841 switch (imm4) {
7842 case 0:
7843 /* DUP (element - vector) */
7844 handle_simd_dupe(s, is_q, rd, rn, imm5);
7845 break;
7846 case 1:
7847 /* DUP (general) */
7848 handle_simd_dupg(s, is_q, rd, rn, imm5);
7849 break;
7850 case 3:
7851 if (is_q) {
7852 /* INS (general) */
7853 handle_simd_insg(s, rd, rn, imm5);
7854 } else {
7855 unallocated_encoding(s);
7857 break;
7858 case 5:
7859 case 7:
7860 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7861 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7862 break;
7863 default:
7864 unallocated_encoding(s);
7865 break;
7870 /* AdvSIMD modified immediate
7871 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7872 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7873 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7874 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7876 * There are a number of operations that can be carried out here:
7877 * MOVI - move (shifted) imm into register
7878 * MVNI - move inverted (shifted) imm into register
7879 * ORR - bitwise OR of (shifted) imm with register
7880 * BIC - bitwise clear of (shifted) imm with register
7881 * With ARMv8.2 we also have:
7882 * FMOV half-precision
7884 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7886 int rd = extract32(insn, 0, 5);
7887 int cmode = extract32(insn, 12, 4);
7888 int o2 = extract32(insn, 11, 1);
7889 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7890 bool is_neg = extract32(insn, 29, 1);
7891 bool is_q = extract32(insn, 30, 1);
7892 uint64_t imm = 0;
7894 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7895 /* Check for FMOV (vector, immediate) - half-precision */
7896 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7897 unallocated_encoding(s);
7898 return;
7902 if (!fp_access_check(s)) {
7903 return;
7906 if (cmode == 15 && o2 && !is_neg) {
7907 /* FMOV (vector, immediate) - half-precision */
7908 imm = vfp_expand_imm(MO_16, abcdefgh);
7909 /* now duplicate across the lanes */
7910 imm = dup_const(MO_16, imm);
7911 } else {
7912 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7915 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7916 /* MOVI or MVNI, with MVNI negation handled above. */
7917 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7918 vec_full_reg_size(s), imm);
7919 } else {
7920 /* ORR or BIC, with BIC negation to AND handled above. */
7921 if (is_neg) {
7922 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7923 } else {
7924 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7929 /* AdvSIMD scalar copy
7930 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7931 * +-----+----+-----------------+------+---+------+---+------+------+
7932 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7933 * +-----+----+-----------------+------+---+------+---+------+------+
7935 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7937 int rd = extract32(insn, 0, 5);
7938 int rn = extract32(insn, 5, 5);
7939 int imm4 = extract32(insn, 11, 4);
7940 int imm5 = extract32(insn, 16, 5);
7941 int op = extract32(insn, 29, 1);
7943 if (op != 0 || imm4 != 0) {
7944 unallocated_encoding(s);
7945 return;
7948 /* DUP (element, scalar) */
7949 handle_simd_dupes(s, rd, rn, imm5);
7952 /* AdvSIMD scalar pairwise
7953 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7954 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7955 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7956 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7958 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7960 int u = extract32(insn, 29, 1);
7961 int size = extract32(insn, 22, 2);
7962 int opcode = extract32(insn, 12, 5);
7963 int rn = extract32(insn, 5, 5);
7964 int rd = extract32(insn, 0, 5);
7965 TCGv_ptr fpst;
7967 /* For some ops (the FP ones), size[1] is part of the encoding.
7968 * For ADDP strictly it is not but size[1] is always 1 for valid
7969 * encodings.
7971 opcode |= (extract32(size, 1, 1) << 5);
7973 switch (opcode) {
7974 case 0x3b: /* ADDP */
7975 if (u || size != 3) {
7976 unallocated_encoding(s);
7977 return;
7979 if (!fp_access_check(s)) {
7980 return;
7983 fpst = NULL;
7984 break;
7985 case 0xc: /* FMAXNMP */
7986 case 0xd: /* FADDP */
7987 case 0xf: /* FMAXP */
7988 case 0x2c: /* FMINNMP */
7989 case 0x2f: /* FMINP */
7990 /* FP op, size[0] is 32 or 64 bit*/
7991 if (!u) {
7992 if (!dc_isar_feature(aa64_fp16, s)) {
7993 unallocated_encoding(s);
7994 return;
7995 } else {
7996 size = MO_16;
7998 } else {
7999 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8002 if (!fp_access_check(s)) {
8003 return;
8006 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8007 break;
8008 default:
8009 unallocated_encoding(s);
8010 return;
8013 if (size == MO_64) {
8014 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8015 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8016 TCGv_i64 tcg_res = tcg_temp_new_i64();
8018 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8019 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8021 switch (opcode) {
8022 case 0x3b: /* ADDP */
8023 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8024 break;
8025 case 0xc: /* FMAXNMP */
8026 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8027 break;
8028 case 0xd: /* FADDP */
8029 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8030 break;
8031 case 0xf: /* FMAXP */
8032 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8033 break;
8034 case 0x2c: /* FMINNMP */
8035 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8036 break;
8037 case 0x2f: /* FMINP */
8038 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8039 break;
8040 default:
8041 g_assert_not_reached();
8044 write_fp_dreg(s, rd, tcg_res);
8045 } else {
8046 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8047 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8048 TCGv_i32 tcg_res = tcg_temp_new_i32();
8050 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8051 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8053 if (size == MO_16) {
8054 switch (opcode) {
8055 case 0xc: /* FMAXNMP */
8056 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8057 break;
8058 case 0xd: /* FADDP */
8059 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8060 break;
8061 case 0xf: /* FMAXP */
8062 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8063 break;
8064 case 0x2c: /* FMINNMP */
8065 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8066 break;
8067 case 0x2f: /* FMINP */
8068 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8069 break;
8070 default:
8071 g_assert_not_reached();
8073 } else {
8074 switch (opcode) {
8075 case 0xc: /* FMAXNMP */
8076 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8077 break;
8078 case 0xd: /* FADDP */
8079 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8080 break;
8081 case 0xf: /* FMAXP */
8082 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8083 break;
8084 case 0x2c: /* FMINNMP */
8085 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8086 break;
8087 case 0x2f: /* FMINP */
8088 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8089 break;
8090 default:
8091 g_assert_not_reached();
8095 write_fp_sreg(s, rd, tcg_res);
8100 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8102 * This code is handles the common shifting code and is used by both
8103 * the vector and scalar code.
8105 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8106 TCGv_i64 tcg_rnd, bool accumulate,
8107 bool is_u, int size, int shift)
8109 bool extended_result = false;
8110 bool round = tcg_rnd != NULL;
8111 int ext_lshift = 0;
8112 TCGv_i64 tcg_src_hi;
8114 if (round && size == 3) {
8115 extended_result = true;
8116 ext_lshift = 64 - shift;
8117 tcg_src_hi = tcg_temp_new_i64();
8118 } else if (shift == 64) {
8119 if (!accumulate && is_u) {
8120 /* result is zero */
8121 tcg_gen_movi_i64(tcg_res, 0);
8122 return;
8126 /* Deal with the rounding step */
8127 if (round) {
8128 if (extended_result) {
8129 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8130 if (!is_u) {
8131 /* take care of sign extending tcg_res */
8132 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8133 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8134 tcg_src, tcg_src_hi,
8135 tcg_rnd, tcg_zero);
8136 } else {
8137 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8138 tcg_src, tcg_zero,
8139 tcg_rnd, tcg_zero);
8141 } else {
8142 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8146 /* Now do the shift right */
8147 if (round && extended_result) {
8148 /* extended case, >64 bit precision required */
8149 if (ext_lshift == 0) {
8150 /* special case, only high bits matter */
8151 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8152 } else {
8153 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8154 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8155 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8157 } else {
8158 if (is_u) {
8159 if (shift == 64) {
8160 /* essentially shifting in 64 zeros */
8161 tcg_gen_movi_i64(tcg_src, 0);
8162 } else {
8163 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8165 } else {
8166 if (shift == 64) {
8167 /* effectively extending the sign-bit */
8168 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8169 } else {
8170 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8175 if (accumulate) {
8176 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8177 } else {
8178 tcg_gen_mov_i64(tcg_res, tcg_src);
8182 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8183 static void handle_scalar_simd_shri(DisasContext *s,
8184 bool is_u, int immh, int immb,
8185 int opcode, int rn, int rd)
8187 const int size = 3;
8188 int immhb = immh << 3 | immb;
8189 int shift = 2 * (8 << size) - immhb;
8190 bool accumulate = false;
8191 bool round = false;
8192 bool insert = false;
8193 TCGv_i64 tcg_rn;
8194 TCGv_i64 tcg_rd;
8195 TCGv_i64 tcg_round;
8197 if (!extract32(immh, 3, 1)) {
8198 unallocated_encoding(s);
8199 return;
8202 if (!fp_access_check(s)) {
8203 return;
8206 switch (opcode) {
8207 case 0x02: /* SSRA / USRA (accumulate) */
8208 accumulate = true;
8209 break;
8210 case 0x04: /* SRSHR / URSHR (rounding) */
8211 round = true;
8212 break;
8213 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8214 accumulate = round = true;
8215 break;
8216 case 0x08: /* SRI */
8217 insert = true;
8218 break;
8221 if (round) {
8222 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8223 } else {
8224 tcg_round = NULL;
8227 tcg_rn = read_fp_dreg(s, rn);
8228 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8230 if (insert) {
8231 /* shift count same as element size is valid but does nothing;
8232 * special case to avoid potential shift by 64.
8234 int esize = 8 << size;
8235 if (shift != esize) {
8236 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8237 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8239 } else {
8240 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8241 accumulate, is_u, size, shift);
8244 write_fp_dreg(s, rd, tcg_rd);
8247 /* SHL/SLI - Scalar shift left */
8248 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8249 int immh, int immb, int opcode,
8250 int rn, int rd)
8252 int size = 32 - clz32(immh) - 1;
8253 int immhb = immh << 3 | immb;
8254 int shift = immhb - (8 << size);
8255 TCGv_i64 tcg_rn;
8256 TCGv_i64 tcg_rd;
8258 if (!extract32(immh, 3, 1)) {
8259 unallocated_encoding(s);
8260 return;
8263 if (!fp_access_check(s)) {
8264 return;
8267 tcg_rn = read_fp_dreg(s, rn);
8268 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8270 if (insert) {
8271 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8272 } else {
8273 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8276 write_fp_dreg(s, rd, tcg_rd);
8279 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8280 * (signed/unsigned) narrowing */
8281 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8282 bool is_u_shift, bool is_u_narrow,
8283 int immh, int immb, int opcode,
8284 int rn, int rd)
8286 int immhb = immh << 3 | immb;
8287 int size = 32 - clz32(immh) - 1;
8288 int esize = 8 << size;
8289 int shift = (2 * esize) - immhb;
8290 int elements = is_scalar ? 1 : (64 / esize);
8291 bool round = extract32(opcode, 0, 1);
8292 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8293 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8294 TCGv_i32 tcg_rd_narrowed;
8295 TCGv_i64 tcg_final;
8297 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8298 { gen_helper_neon_narrow_sat_s8,
8299 gen_helper_neon_unarrow_sat8 },
8300 { gen_helper_neon_narrow_sat_s16,
8301 gen_helper_neon_unarrow_sat16 },
8302 { gen_helper_neon_narrow_sat_s32,
8303 gen_helper_neon_unarrow_sat32 },
8304 { NULL, NULL },
8306 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8307 gen_helper_neon_narrow_sat_u8,
8308 gen_helper_neon_narrow_sat_u16,
8309 gen_helper_neon_narrow_sat_u32,
8310 NULL
8312 NeonGenNarrowEnvFn *narrowfn;
8314 int i;
8316 assert(size < 4);
8318 if (extract32(immh, 3, 1)) {
8319 unallocated_encoding(s);
8320 return;
8323 if (!fp_access_check(s)) {
8324 return;
8327 if (is_u_shift) {
8328 narrowfn = unsigned_narrow_fns[size];
8329 } else {
8330 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8333 tcg_rn = tcg_temp_new_i64();
8334 tcg_rd = tcg_temp_new_i64();
8335 tcg_rd_narrowed = tcg_temp_new_i32();
8336 tcg_final = tcg_temp_new_i64();
8338 if (round) {
8339 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8340 } else {
8341 tcg_round = NULL;
8344 for (i = 0; i < elements; i++) {
8345 read_vec_element(s, tcg_rn, rn, i, ldop);
8346 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8347 false, is_u_shift, size+1, shift);
8348 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8349 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8350 if (i == 0) {
8351 tcg_gen_mov_i64(tcg_final, tcg_rd);
8352 } else {
8353 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8357 if (!is_q) {
8358 write_vec_element(s, tcg_final, rd, 0, MO_64);
8359 } else {
8360 write_vec_element(s, tcg_final, rd, 1, MO_64);
8362 clear_vec_high(s, is_q, rd);
8365 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8366 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8367 bool src_unsigned, bool dst_unsigned,
8368 int immh, int immb, int rn, int rd)
8370 int immhb = immh << 3 | immb;
8371 int size = 32 - clz32(immh) - 1;
8372 int shift = immhb - (8 << size);
8373 int pass;
8375 assert(immh != 0);
8376 assert(!(scalar && is_q));
8378 if (!scalar) {
8379 if (!is_q && extract32(immh, 3, 1)) {
8380 unallocated_encoding(s);
8381 return;
8384 /* Since we use the variable-shift helpers we must
8385 * replicate the shift count into each element of
8386 * the tcg_shift value.
8388 switch (size) {
8389 case 0:
8390 shift |= shift << 8;
8391 /* fall through */
8392 case 1:
8393 shift |= shift << 16;
8394 break;
8395 case 2:
8396 case 3:
8397 break;
8398 default:
8399 g_assert_not_reached();
8403 if (!fp_access_check(s)) {
8404 return;
8407 if (size == 3) {
8408 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8409 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8410 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8411 { NULL, gen_helper_neon_qshl_u64 },
8413 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8414 int maxpass = is_q ? 2 : 1;
8416 for (pass = 0; pass < maxpass; pass++) {
8417 TCGv_i64 tcg_op = tcg_temp_new_i64();
8419 read_vec_element(s, tcg_op, rn, pass, MO_64);
8420 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8421 write_vec_element(s, tcg_op, rd, pass, MO_64);
8423 clear_vec_high(s, is_q, rd);
8424 } else {
8425 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8426 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8428 { gen_helper_neon_qshl_s8,
8429 gen_helper_neon_qshl_s16,
8430 gen_helper_neon_qshl_s32 },
8431 { gen_helper_neon_qshlu_s8,
8432 gen_helper_neon_qshlu_s16,
8433 gen_helper_neon_qshlu_s32 }
8434 }, {
8435 { NULL, NULL, NULL },
8436 { gen_helper_neon_qshl_u8,
8437 gen_helper_neon_qshl_u16,
8438 gen_helper_neon_qshl_u32 }
8441 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8442 MemOp memop = scalar ? size : MO_32;
8443 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8445 for (pass = 0; pass < maxpass; pass++) {
8446 TCGv_i32 tcg_op = tcg_temp_new_i32();
8448 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8449 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8450 if (scalar) {
8451 switch (size) {
8452 case 0:
8453 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8454 break;
8455 case 1:
8456 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8457 break;
8458 case 2:
8459 break;
8460 default:
8461 g_assert_not_reached();
8463 write_fp_sreg(s, rd, tcg_op);
8464 } else {
8465 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8469 if (!scalar) {
8470 clear_vec_high(s, is_q, rd);
8475 /* Common vector code for handling integer to FP conversion */
8476 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8477 int elements, int is_signed,
8478 int fracbits, int size)
8480 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8481 TCGv_i32 tcg_shift = NULL;
8483 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8484 int pass;
8486 if (fracbits || size == MO_64) {
8487 tcg_shift = tcg_constant_i32(fracbits);
8490 if (size == MO_64) {
8491 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8492 TCGv_i64 tcg_double = tcg_temp_new_i64();
8494 for (pass = 0; pass < elements; pass++) {
8495 read_vec_element(s, tcg_int64, rn, pass, mop);
8497 if (is_signed) {
8498 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8499 tcg_shift, tcg_fpst);
8500 } else {
8501 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8502 tcg_shift, tcg_fpst);
8504 if (elements == 1) {
8505 write_fp_dreg(s, rd, tcg_double);
8506 } else {
8507 write_vec_element(s, tcg_double, rd, pass, MO_64);
8510 } else {
8511 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8512 TCGv_i32 tcg_float = tcg_temp_new_i32();
8514 for (pass = 0; pass < elements; pass++) {
8515 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8517 switch (size) {
8518 case MO_32:
8519 if (fracbits) {
8520 if (is_signed) {
8521 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8522 tcg_shift, tcg_fpst);
8523 } else {
8524 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8525 tcg_shift, tcg_fpst);
8527 } else {
8528 if (is_signed) {
8529 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8530 } else {
8531 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8534 break;
8535 case MO_16:
8536 if (fracbits) {
8537 if (is_signed) {
8538 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8539 tcg_shift, tcg_fpst);
8540 } else {
8541 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8542 tcg_shift, tcg_fpst);
8544 } else {
8545 if (is_signed) {
8546 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8547 } else {
8548 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8551 break;
8552 default:
8553 g_assert_not_reached();
8556 if (elements == 1) {
8557 write_fp_sreg(s, rd, tcg_float);
8558 } else {
8559 write_vec_element_i32(s, tcg_float, rd, pass, size);
8564 clear_vec_high(s, elements << size == 16, rd);
8567 /* UCVTF/SCVTF - Integer to FP conversion */
8568 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8569 bool is_q, bool is_u,
8570 int immh, int immb, int opcode,
8571 int rn, int rd)
8573 int size, elements, fracbits;
8574 int immhb = immh << 3 | immb;
8576 if (immh & 8) {
8577 size = MO_64;
8578 if (!is_scalar && !is_q) {
8579 unallocated_encoding(s);
8580 return;
8582 } else if (immh & 4) {
8583 size = MO_32;
8584 } else if (immh & 2) {
8585 size = MO_16;
8586 if (!dc_isar_feature(aa64_fp16, s)) {
8587 unallocated_encoding(s);
8588 return;
8590 } else {
8591 /* immh == 0 would be a failure of the decode logic */
8592 g_assert(immh == 1);
8593 unallocated_encoding(s);
8594 return;
8597 if (is_scalar) {
8598 elements = 1;
8599 } else {
8600 elements = (8 << is_q) >> size;
8602 fracbits = (16 << size) - immhb;
8604 if (!fp_access_check(s)) {
8605 return;
8608 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8611 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8612 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8613 bool is_q, bool is_u,
8614 int immh, int immb, int rn, int rd)
8616 int immhb = immh << 3 | immb;
8617 int pass, size, fracbits;
8618 TCGv_ptr tcg_fpstatus;
8619 TCGv_i32 tcg_rmode, tcg_shift;
8621 if (immh & 0x8) {
8622 size = MO_64;
8623 if (!is_scalar && !is_q) {
8624 unallocated_encoding(s);
8625 return;
8627 } else if (immh & 0x4) {
8628 size = MO_32;
8629 } else if (immh & 0x2) {
8630 size = MO_16;
8631 if (!dc_isar_feature(aa64_fp16, s)) {
8632 unallocated_encoding(s);
8633 return;
8635 } else {
8636 /* Should have split out AdvSIMD modified immediate earlier. */
8637 assert(immh == 1);
8638 unallocated_encoding(s);
8639 return;
8642 if (!fp_access_check(s)) {
8643 return;
8646 assert(!(is_scalar && is_q));
8648 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8649 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8650 fracbits = (16 << size) - immhb;
8651 tcg_shift = tcg_constant_i32(fracbits);
8653 if (size == MO_64) {
8654 int maxpass = is_scalar ? 1 : 2;
8656 for (pass = 0; pass < maxpass; pass++) {
8657 TCGv_i64 tcg_op = tcg_temp_new_i64();
8659 read_vec_element(s, tcg_op, rn, pass, MO_64);
8660 if (is_u) {
8661 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8662 } else {
8663 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8665 write_vec_element(s, tcg_op, rd, pass, MO_64);
8667 clear_vec_high(s, is_q, rd);
8668 } else {
8669 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8670 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8672 switch (size) {
8673 case MO_16:
8674 if (is_u) {
8675 fn = gen_helper_vfp_touhh;
8676 } else {
8677 fn = gen_helper_vfp_toshh;
8679 break;
8680 case MO_32:
8681 if (is_u) {
8682 fn = gen_helper_vfp_touls;
8683 } else {
8684 fn = gen_helper_vfp_tosls;
8686 break;
8687 default:
8688 g_assert_not_reached();
8691 for (pass = 0; pass < maxpass; pass++) {
8692 TCGv_i32 tcg_op = tcg_temp_new_i32();
8694 read_vec_element_i32(s, tcg_op, rn, pass, size);
8695 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8696 if (is_scalar) {
8697 write_fp_sreg(s, rd, tcg_op);
8698 } else {
8699 write_vec_element_i32(s, tcg_op, rd, pass, size);
8702 if (!is_scalar) {
8703 clear_vec_high(s, is_q, rd);
8707 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8710 /* AdvSIMD scalar shift by immediate
8711 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8712 * +-----+---+-------------+------+------+--------+---+------+------+
8713 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8714 * +-----+---+-------------+------+------+--------+---+------+------+
8716 * This is the scalar version so it works on a fixed sized registers
8718 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8720 int rd = extract32(insn, 0, 5);
8721 int rn = extract32(insn, 5, 5);
8722 int opcode = extract32(insn, 11, 5);
8723 int immb = extract32(insn, 16, 3);
8724 int immh = extract32(insn, 19, 4);
8725 bool is_u = extract32(insn, 29, 1);
8727 if (immh == 0) {
8728 unallocated_encoding(s);
8729 return;
8732 switch (opcode) {
8733 case 0x08: /* SRI */
8734 if (!is_u) {
8735 unallocated_encoding(s);
8736 return;
8738 /* fall through */
8739 case 0x00: /* SSHR / USHR */
8740 case 0x02: /* SSRA / USRA */
8741 case 0x04: /* SRSHR / URSHR */
8742 case 0x06: /* SRSRA / URSRA */
8743 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8744 break;
8745 case 0x0a: /* SHL / SLI */
8746 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8747 break;
8748 case 0x1c: /* SCVTF, UCVTF */
8749 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8750 opcode, rn, rd);
8751 break;
8752 case 0x10: /* SQSHRUN, SQSHRUN2 */
8753 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8754 if (!is_u) {
8755 unallocated_encoding(s);
8756 return;
8758 handle_vec_simd_sqshrn(s, true, false, false, true,
8759 immh, immb, opcode, rn, rd);
8760 break;
8761 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8762 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8763 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8764 immh, immb, opcode, rn, rd);
8765 break;
8766 case 0xc: /* SQSHLU */
8767 if (!is_u) {
8768 unallocated_encoding(s);
8769 return;
8771 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8772 break;
8773 case 0xe: /* SQSHL, UQSHL */
8774 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8775 break;
8776 case 0x1f: /* FCVTZS, FCVTZU */
8777 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8778 break;
8779 default:
8780 unallocated_encoding(s);
8781 break;
8785 /* AdvSIMD scalar three different
8786 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8787 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8788 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8789 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8791 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8793 bool is_u = extract32(insn, 29, 1);
8794 int size = extract32(insn, 22, 2);
8795 int opcode = extract32(insn, 12, 4);
8796 int rm = extract32(insn, 16, 5);
8797 int rn = extract32(insn, 5, 5);
8798 int rd = extract32(insn, 0, 5);
8800 if (is_u) {
8801 unallocated_encoding(s);
8802 return;
8805 switch (opcode) {
8806 case 0x9: /* SQDMLAL, SQDMLAL2 */
8807 case 0xb: /* SQDMLSL, SQDMLSL2 */
8808 case 0xd: /* SQDMULL, SQDMULL2 */
8809 if (size == 0 || size == 3) {
8810 unallocated_encoding(s);
8811 return;
8813 break;
8814 default:
8815 unallocated_encoding(s);
8816 return;
8819 if (!fp_access_check(s)) {
8820 return;
8823 if (size == 2) {
8824 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8825 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8826 TCGv_i64 tcg_res = tcg_temp_new_i64();
8828 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8829 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8831 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8832 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8834 switch (opcode) {
8835 case 0xd: /* SQDMULL, SQDMULL2 */
8836 break;
8837 case 0xb: /* SQDMLSL, SQDMLSL2 */
8838 tcg_gen_neg_i64(tcg_res, tcg_res);
8839 /* fall through */
8840 case 0x9: /* SQDMLAL, SQDMLAL2 */
8841 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8842 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8843 tcg_res, tcg_op1);
8844 break;
8845 default:
8846 g_assert_not_reached();
8849 write_fp_dreg(s, rd, tcg_res);
8850 } else {
8851 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8852 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8853 TCGv_i64 tcg_res = tcg_temp_new_i64();
8855 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8856 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8858 switch (opcode) {
8859 case 0xd: /* SQDMULL, SQDMULL2 */
8860 break;
8861 case 0xb: /* SQDMLSL, SQDMLSL2 */
8862 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8863 /* fall through */
8864 case 0x9: /* SQDMLAL, SQDMLAL2 */
8866 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8867 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8868 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8869 tcg_res, tcg_op3);
8870 break;
8872 default:
8873 g_assert_not_reached();
8876 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8877 write_fp_dreg(s, rd, tcg_res);
8881 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8882 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8884 /* Handle 64x64->64 opcodes which are shared between the scalar
8885 * and vector 3-same groups. We cover every opcode where size == 3
8886 * is valid in either the three-reg-same (integer, not pairwise)
8887 * or scalar-three-reg-same groups.
8889 TCGCond cond;
8891 switch (opcode) {
8892 case 0x1: /* SQADD */
8893 if (u) {
8894 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8895 } else {
8896 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8898 break;
8899 case 0x5: /* SQSUB */
8900 if (u) {
8901 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8902 } else {
8903 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8905 break;
8906 case 0x6: /* CMGT, CMHI */
8907 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8908 * We implement this using setcond (test) and then negating.
8910 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8911 do_cmop:
8912 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8913 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8914 break;
8915 case 0x7: /* CMGE, CMHS */
8916 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8917 goto do_cmop;
8918 case 0x11: /* CMTST, CMEQ */
8919 if (u) {
8920 cond = TCG_COND_EQ;
8921 goto do_cmop;
8923 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8924 break;
8925 case 0x8: /* SSHL, USHL */
8926 if (u) {
8927 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8928 } else {
8929 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8931 break;
8932 case 0x9: /* SQSHL, UQSHL */
8933 if (u) {
8934 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8935 } else {
8936 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8938 break;
8939 case 0xa: /* SRSHL, URSHL */
8940 if (u) {
8941 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8942 } else {
8943 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8945 break;
8946 case 0xb: /* SQRSHL, UQRSHL */
8947 if (u) {
8948 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8949 } else {
8950 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8952 break;
8953 case 0x10: /* ADD, SUB */
8954 if (u) {
8955 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8956 } else {
8957 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8959 break;
8960 default:
8961 g_assert_not_reached();
8965 /* Handle the 3-same-operands float operations; shared by the scalar
8966 * and vector encodings. The caller must filter out any encodings
8967 * not allocated for the encoding it is dealing with.
8969 static void handle_3same_float(DisasContext *s, int size, int elements,
8970 int fpopcode, int rd, int rn, int rm)
8972 int pass;
8973 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8975 for (pass = 0; pass < elements; pass++) {
8976 if (size) {
8977 /* Double */
8978 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8979 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8980 TCGv_i64 tcg_res = tcg_temp_new_i64();
8982 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8983 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8985 switch (fpopcode) {
8986 case 0x39: /* FMLS */
8987 /* As usual for ARM, separate negation for fused multiply-add */
8988 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8989 /* fall through */
8990 case 0x19: /* FMLA */
8991 read_vec_element(s, tcg_res, rd, pass, MO_64);
8992 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8993 tcg_res, fpst);
8994 break;
8995 case 0x18: /* FMAXNM */
8996 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8997 break;
8998 case 0x1a: /* FADD */
8999 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9000 break;
9001 case 0x1b: /* FMULX */
9002 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9003 break;
9004 case 0x1c: /* FCMEQ */
9005 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9006 break;
9007 case 0x1e: /* FMAX */
9008 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9009 break;
9010 case 0x1f: /* FRECPS */
9011 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9012 break;
9013 case 0x38: /* FMINNM */
9014 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9015 break;
9016 case 0x3a: /* FSUB */
9017 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9018 break;
9019 case 0x3e: /* FMIN */
9020 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9021 break;
9022 case 0x3f: /* FRSQRTS */
9023 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9024 break;
9025 case 0x5b: /* FMUL */
9026 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9027 break;
9028 case 0x5c: /* FCMGE */
9029 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9030 break;
9031 case 0x5d: /* FACGE */
9032 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9033 break;
9034 case 0x5f: /* FDIV */
9035 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9036 break;
9037 case 0x7a: /* FABD */
9038 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9039 gen_helper_vfp_absd(tcg_res, tcg_res);
9040 break;
9041 case 0x7c: /* FCMGT */
9042 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9043 break;
9044 case 0x7d: /* FACGT */
9045 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9046 break;
9047 default:
9048 g_assert_not_reached();
9051 write_vec_element(s, tcg_res, rd, pass, MO_64);
9052 } else {
9053 /* Single */
9054 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9055 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9056 TCGv_i32 tcg_res = tcg_temp_new_i32();
9058 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9059 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9061 switch (fpopcode) {
9062 case 0x39: /* FMLS */
9063 /* As usual for ARM, separate negation for fused multiply-add */
9064 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9065 /* fall through */
9066 case 0x19: /* FMLA */
9067 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9068 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9069 tcg_res, fpst);
9070 break;
9071 case 0x1a: /* FADD */
9072 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9073 break;
9074 case 0x1b: /* FMULX */
9075 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9076 break;
9077 case 0x1c: /* FCMEQ */
9078 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9079 break;
9080 case 0x1e: /* FMAX */
9081 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9082 break;
9083 case 0x1f: /* FRECPS */
9084 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9085 break;
9086 case 0x18: /* FMAXNM */
9087 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9088 break;
9089 case 0x38: /* FMINNM */
9090 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9091 break;
9092 case 0x3a: /* FSUB */
9093 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9094 break;
9095 case 0x3e: /* FMIN */
9096 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9097 break;
9098 case 0x3f: /* FRSQRTS */
9099 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9100 break;
9101 case 0x5b: /* FMUL */
9102 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9103 break;
9104 case 0x5c: /* FCMGE */
9105 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9106 break;
9107 case 0x5d: /* FACGE */
9108 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9109 break;
9110 case 0x5f: /* FDIV */
9111 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9112 break;
9113 case 0x7a: /* FABD */
9114 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9115 gen_helper_vfp_abss(tcg_res, tcg_res);
9116 break;
9117 case 0x7c: /* FCMGT */
9118 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9119 break;
9120 case 0x7d: /* FACGT */
9121 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9122 break;
9123 default:
9124 g_assert_not_reached();
9127 if (elements == 1) {
9128 /* scalar single so clear high part */
9129 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9131 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9132 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9133 } else {
9134 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9139 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9142 /* AdvSIMD scalar three same
9143 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9144 * +-----+---+-----------+------+---+------+--------+---+------+------+
9145 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9146 * +-----+---+-----------+------+---+------+--------+---+------+------+
9148 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9150 int rd = extract32(insn, 0, 5);
9151 int rn = extract32(insn, 5, 5);
9152 int opcode = extract32(insn, 11, 5);
9153 int rm = extract32(insn, 16, 5);
9154 int size = extract32(insn, 22, 2);
9155 bool u = extract32(insn, 29, 1);
9156 TCGv_i64 tcg_rd;
9158 if (opcode >= 0x18) {
9159 /* Floating point: U, size[1] and opcode indicate operation */
9160 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9161 switch (fpopcode) {
9162 case 0x1b: /* FMULX */
9163 case 0x1f: /* FRECPS */
9164 case 0x3f: /* FRSQRTS */
9165 case 0x5d: /* FACGE */
9166 case 0x7d: /* FACGT */
9167 case 0x1c: /* FCMEQ */
9168 case 0x5c: /* FCMGE */
9169 case 0x7c: /* FCMGT */
9170 case 0x7a: /* FABD */
9171 break;
9172 default:
9173 unallocated_encoding(s);
9174 return;
9177 if (!fp_access_check(s)) {
9178 return;
9181 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9182 return;
9185 switch (opcode) {
9186 case 0x1: /* SQADD, UQADD */
9187 case 0x5: /* SQSUB, UQSUB */
9188 case 0x9: /* SQSHL, UQSHL */
9189 case 0xb: /* SQRSHL, UQRSHL */
9190 break;
9191 case 0x8: /* SSHL, USHL */
9192 case 0xa: /* SRSHL, URSHL */
9193 case 0x6: /* CMGT, CMHI */
9194 case 0x7: /* CMGE, CMHS */
9195 case 0x11: /* CMTST, CMEQ */
9196 case 0x10: /* ADD, SUB (vector) */
9197 if (size != 3) {
9198 unallocated_encoding(s);
9199 return;
9201 break;
9202 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9203 if (size != 1 && size != 2) {
9204 unallocated_encoding(s);
9205 return;
9207 break;
9208 default:
9209 unallocated_encoding(s);
9210 return;
9213 if (!fp_access_check(s)) {
9214 return;
9217 tcg_rd = tcg_temp_new_i64();
9219 if (size == 3) {
9220 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9221 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9223 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9224 } else {
9225 /* Do a single operation on the lowest element in the vector.
9226 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9227 * no side effects for all these operations.
9228 * OPTME: special-purpose helpers would avoid doing some
9229 * unnecessary work in the helper for the 8 and 16 bit cases.
9231 NeonGenTwoOpEnvFn *genenvfn;
9232 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9233 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9234 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9236 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9237 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9239 switch (opcode) {
9240 case 0x1: /* SQADD, UQADD */
9242 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9243 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9244 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9245 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9247 genenvfn = fns[size][u];
9248 break;
9250 case 0x5: /* SQSUB, UQSUB */
9252 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9253 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9254 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9255 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9257 genenvfn = fns[size][u];
9258 break;
9260 case 0x9: /* SQSHL, UQSHL */
9262 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9263 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9264 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9265 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9267 genenvfn = fns[size][u];
9268 break;
9270 case 0xb: /* SQRSHL, UQRSHL */
9272 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9273 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9274 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9275 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9277 genenvfn = fns[size][u];
9278 break;
9280 case 0x16: /* SQDMULH, SQRDMULH */
9282 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9283 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9284 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9286 assert(size == 1 || size == 2);
9287 genenvfn = fns[size - 1][u];
9288 break;
9290 default:
9291 g_assert_not_reached();
9294 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9295 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9298 write_fp_dreg(s, rd, tcg_rd);
9301 /* AdvSIMD scalar three same FP16
9302 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9303 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9304 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9305 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9306 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9307 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9309 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9310 uint32_t insn)
9312 int rd = extract32(insn, 0, 5);
9313 int rn = extract32(insn, 5, 5);
9314 int opcode = extract32(insn, 11, 3);
9315 int rm = extract32(insn, 16, 5);
9316 bool u = extract32(insn, 29, 1);
9317 bool a = extract32(insn, 23, 1);
9318 int fpopcode = opcode | (a << 3) | (u << 4);
9319 TCGv_ptr fpst;
9320 TCGv_i32 tcg_op1;
9321 TCGv_i32 tcg_op2;
9322 TCGv_i32 tcg_res;
9324 switch (fpopcode) {
9325 case 0x03: /* FMULX */
9326 case 0x04: /* FCMEQ (reg) */
9327 case 0x07: /* FRECPS */
9328 case 0x0f: /* FRSQRTS */
9329 case 0x14: /* FCMGE (reg) */
9330 case 0x15: /* FACGE */
9331 case 0x1a: /* FABD */
9332 case 0x1c: /* FCMGT (reg) */
9333 case 0x1d: /* FACGT */
9334 break;
9335 default:
9336 unallocated_encoding(s);
9337 return;
9340 if (!dc_isar_feature(aa64_fp16, s)) {
9341 unallocated_encoding(s);
9344 if (!fp_access_check(s)) {
9345 return;
9348 fpst = fpstatus_ptr(FPST_FPCR_F16);
9350 tcg_op1 = read_fp_hreg(s, rn);
9351 tcg_op2 = read_fp_hreg(s, rm);
9352 tcg_res = tcg_temp_new_i32();
9354 switch (fpopcode) {
9355 case 0x03: /* FMULX */
9356 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9357 break;
9358 case 0x04: /* FCMEQ (reg) */
9359 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9360 break;
9361 case 0x07: /* FRECPS */
9362 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9363 break;
9364 case 0x0f: /* FRSQRTS */
9365 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9366 break;
9367 case 0x14: /* FCMGE (reg) */
9368 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9369 break;
9370 case 0x15: /* FACGE */
9371 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9372 break;
9373 case 0x1a: /* FABD */
9374 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9375 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9376 break;
9377 case 0x1c: /* FCMGT (reg) */
9378 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9379 break;
9380 case 0x1d: /* FACGT */
9381 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9382 break;
9383 default:
9384 g_assert_not_reached();
9387 write_fp_sreg(s, rd, tcg_res);
9390 /* AdvSIMD scalar three same extra
9391 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9392 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9393 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9394 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9396 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9397 uint32_t insn)
9399 int rd = extract32(insn, 0, 5);
9400 int rn = extract32(insn, 5, 5);
9401 int opcode = extract32(insn, 11, 4);
9402 int rm = extract32(insn, 16, 5);
9403 int size = extract32(insn, 22, 2);
9404 bool u = extract32(insn, 29, 1);
9405 TCGv_i32 ele1, ele2, ele3;
9406 TCGv_i64 res;
9407 bool feature;
9409 switch (u * 16 + opcode) {
9410 case 0x10: /* SQRDMLAH (vector) */
9411 case 0x11: /* SQRDMLSH (vector) */
9412 if (size != 1 && size != 2) {
9413 unallocated_encoding(s);
9414 return;
9416 feature = dc_isar_feature(aa64_rdm, s);
9417 break;
9418 default:
9419 unallocated_encoding(s);
9420 return;
9422 if (!feature) {
9423 unallocated_encoding(s);
9424 return;
9426 if (!fp_access_check(s)) {
9427 return;
9430 /* Do a single operation on the lowest element in the vector.
9431 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9432 * with no side effects for all these operations.
9433 * OPTME: special-purpose helpers would avoid doing some
9434 * unnecessary work in the helper for the 16 bit cases.
9436 ele1 = tcg_temp_new_i32();
9437 ele2 = tcg_temp_new_i32();
9438 ele3 = tcg_temp_new_i32();
9440 read_vec_element_i32(s, ele1, rn, 0, size);
9441 read_vec_element_i32(s, ele2, rm, 0, size);
9442 read_vec_element_i32(s, ele3, rd, 0, size);
9444 switch (opcode) {
9445 case 0x0: /* SQRDMLAH */
9446 if (size == 1) {
9447 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9448 } else {
9449 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9451 break;
9452 case 0x1: /* SQRDMLSH */
9453 if (size == 1) {
9454 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9455 } else {
9456 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9458 break;
9459 default:
9460 g_assert_not_reached();
9463 res = tcg_temp_new_i64();
9464 tcg_gen_extu_i32_i64(res, ele3);
9465 write_fp_dreg(s, rd, res);
9468 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9469 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9470 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9472 /* Handle 64->64 opcodes which are shared between the scalar and
9473 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9474 * is valid in either group and also the double-precision fp ops.
9475 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9476 * requires them.
9478 TCGCond cond;
9480 switch (opcode) {
9481 case 0x4: /* CLS, CLZ */
9482 if (u) {
9483 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9484 } else {
9485 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9487 break;
9488 case 0x5: /* NOT */
9489 /* This opcode is shared with CNT and RBIT but we have earlier
9490 * enforced that size == 3 if and only if this is the NOT insn.
9492 tcg_gen_not_i64(tcg_rd, tcg_rn);
9493 break;
9494 case 0x7: /* SQABS, SQNEG */
9495 if (u) {
9496 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9497 } else {
9498 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9500 break;
9501 case 0xa: /* CMLT */
9502 /* 64 bit integer comparison against zero, result is
9503 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9504 * subtracting 1.
9506 cond = TCG_COND_LT;
9507 do_cmop:
9508 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9509 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9510 break;
9511 case 0x8: /* CMGT, CMGE */
9512 cond = u ? TCG_COND_GE : TCG_COND_GT;
9513 goto do_cmop;
9514 case 0x9: /* CMEQ, CMLE */
9515 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9516 goto do_cmop;
9517 case 0xb: /* ABS, NEG */
9518 if (u) {
9519 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9520 } else {
9521 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9523 break;
9524 case 0x2f: /* FABS */
9525 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9526 break;
9527 case 0x6f: /* FNEG */
9528 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9529 break;
9530 case 0x7f: /* FSQRT */
9531 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9532 break;
9533 case 0x1a: /* FCVTNS */
9534 case 0x1b: /* FCVTMS */
9535 case 0x1c: /* FCVTAS */
9536 case 0x3a: /* FCVTPS */
9537 case 0x3b: /* FCVTZS */
9538 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9539 break;
9540 case 0x5a: /* FCVTNU */
9541 case 0x5b: /* FCVTMU */
9542 case 0x5c: /* FCVTAU */
9543 case 0x7a: /* FCVTPU */
9544 case 0x7b: /* FCVTZU */
9545 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9546 break;
9547 case 0x18: /* FRINTN */
9548 case 0x19: /* FRINTM */
9549 case 0x38: /* FRINTP */
9550 case 0x39: /* FRINTZ */
9551 case 0x58: /* FRINTA */
9552 case 0x79: /* FRINTI */
9553 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9554 break;
9555 case 0x59: /* FRINTX */
9556 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9557 break;
9558 case 0x1e: /* FRINT32Z */
9559 case 0x5e: /* FRINT32X */
9560 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9561 break;
9562 case 0x1f: /* FRINT64Z */
9563 case 0x5f: /* FRINT64X */
9564 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9565 break;
9566 default:
9567 g_assert_not_reached();
9571 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9572 bool is_scalar, bool is_u, bool is_q,
9573 int size, int rn, int rd)
9575 bool is_double = (size == MO_64);
9576 TCGv_ptr fpst;
9578 if (!fp_access_check(s)) {
9579 return;
9582 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9584 if (is_double) {
9585 TCGv_i64 tcg_op = tcg_temp_new_i64();
9586 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9587 TCGv_i64 tcg_res = tcg_temp_new_i64();
9588 NeonGenTwoDoubleOpFn *genfn;
9589 bool swap = false;
9590 int pass;
9592 switch (opcode) {
9593 case 0x2e: /* FCMLT (zero) */
9594 swap = true;
9595 /* fallthrough */
9596 case 0x2c: /* FCMGT (zero) */
9597 genfn = gen_helper_neon_cgt_f64;
9598 break;
9599 case 0x2d: /* FCMEQ (zero) */
9600 genfn = gen_helper_neon_ceq_f64;
9601 break;
9602 case 0x6d: /* FCMLE (zero) */
9603 swap = true;
9604 /* fall through */
9605 case 0x6c: /* FCMGE (zero) */
9606 genfn = gen_helper_neon_cge_f64;
9607 break;
9608 default:
9609 g_assert_not_reached();
9612 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9613 read_vec_element(s, tcg_op, rn, pass, MO_64);
9614 if (swap) {
9615 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9616 } else {
9617 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9619 write_vec_element(s, tcg_res, rd, pass, MO_64);
9622 clear_vec_high(s, !is_scalar, rd);
9623 } else {
9624 TCGv_i32 tcg_op = tcg_temp_new_i32();
9625 TCGv_i32 tcg_zero = tcg_constant_i32(0);
9626 TCGv_i32 tcg_res = tcg_temp_new_i32();
9627 NeonGenTwoSingleOpFn *genfn;
9628 bool swap = false;
9629 int pass, maxpasses;
9631 if (size == MO_16) {
9632 switch (opcode) {
9633 case 0x2e: /* FCMLT (zero) */
9634 swap = true;
9635 /* fall through */
9636 case 0x2c: /* FCMGT (zero) */
9637 genfn = gen_helper_advsimd_cgt_f16;
9638 break;
9639 case 0x2d: /* FCMEQ (zero) */
9640 genfn = gen_helper_advsimd_ceq_f16;
9641 break;
9642 case 0x6d: /* FCMLE (zero) */
9643 swap = true;
9644 /* fall through */
9645 case 0x6c: /* FCMGE (zero) */
9646 genfn = gen_helper_advsimd_cge_f16;
9647 break;
9648 default:
9649 g_assert_not_reached();
9651 } else {
9652 switch (opcode) {
9653 case 0x2e: /* FCMLT (zero) */
9654 swap = true;
9655 /* fall through */
9656 case 0x2c: /* FCMGT (zero) */
9657 genfn = gen_helper_neon_cgt_f32;
9658 break;
9659 case 0x2d: /* FCMEQ (zero) */
9660 genfn = gen_helper_neon_ceq_f32;
9661 break;
9662 case 0x6d: /* FCMLE (zero) */
9663 swap = true;
9664 /* fall through */
9665 case 0x6c: /* FCMGE (zero) */
9666 genfn = gen_helper_neon_cge_f32;
9667 break;
9668 default:
9669 g_assert_not_reached();
9673 if (is_scalar) {
9674 maxpasses = 1;
9675 } else {
9676 int vector_size = 8 << is_q;
9677 maxpasses = vector_size >> size;
9680 for (pass = 0; pass < maxpasses; pass++) {
9681 read_vec_element_i32(s, tcg_op, rn, pass, size);
9682 if (swap) {
9683 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9684 } else {
9685 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9687 if (is_scalar) {
9688 write_fp_sreg(s, rd, tcg_res);
9689 } else {
9690 write_vec_element_i32(s, tcg_res, rd, pass, size);
9694 if (!is_scalar) {
9695 clear_vec_high(s, is_q, rd);
9700 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9701 bool is_scalar, bool is_u, bool is_q,
9702 int size, int rn, int rd)
9704 bool is_double = (size == 3);
9705 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9707 if (is_double) {
9708 TCGv_i64 tcg_op = tcg_temp_new_i64();
9709 TCGv_i64 tcg_res = tcg_temp_new_i64();
9710 int pass;
9712 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9713 read_vec_element(s, tcg_op, rn, pass, MO_64);
9714 switch (opcode) {
9715 case 0x3d: /* FRECPE */
9716 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9717 break;
9718 case 0x3f: /* FRECPX */
9719 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9720 break;
9721 case 0x7d: /* FRSQRTE */
9722 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9723 break;
9724 default:
9725 g_assert_not_reached();
9727 write_vec_element(s, tcg_res, rd, pass, MO_64);
9729 clear_vec_high(s, !is_scalar, rd);
9730 } else {
9731 TCGv_i32 tcg_op = tcg_temp_new_i32();
9732 TCGv_i32 tcg_res = tcg_temp_new_i32();
9733 int pass, maxpasses;
9735 if (is_scalar) {
9736 maxpasses = 1;
9737 } else {
9738 maxpasses = is_q ? 4 : 2;
9741 for (pass = 0; pass < maxpasses; pass++) {
9742 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9744 switch (opcode) {
9745 case 0x3c: /* URECPE */
9746 gen_helper_recpe_u32(tcg_res, tcg_op);
9747 break;
9748 case 0x3d: /* FRECPE */
9749 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9750 break;
9751 case 0x3f: /* FRECPX */
9752 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9753 break;
9754 case 0x7d: /* FRSQRTE */
9755 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9756 break;
9757 default:
9758 g_assert_not_reached();
9761 if (is_scalar) {
9762 write_fp_sreg(s, rd, tcg_res);
9763 } else {
9764 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9767 if (!is_scalar) {
9768 clear_vec_high(s, is_q, rd);
9773 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9774 int opcode, bool u, bool is_q,
9775 int size, int rn, int rd)
9777 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9778 * in the source becomes a size element in the destination).
9780 int pass;
9781 TCGv_i32 tcg_res[2];
9782 int destelt = is_q ? 2 : 0;
9783 int passes = scalar ? 1 : 2;
9785 if (scalar) {
9786 tcg_res[1] = tcg_constant_i32(0);
9789 for (pass = 0; pass < passes; pass++) {
9790 TCGv_i64 tcg_op = tcg_temp_new_i64();
9791 NeonGenNarrowFn *genfn = NULL;
9792 NeonGenNarrowEnvFn *genenvfn = NULL;
9794 if (scalar) {
9795 read_vec_element(s, tcg_op, rn, pass, size + 1);
9796 } else {
9797 read_vec_element(s, tcg_op, rn, pass, MO_64);
9799 tcg_res[pass] = tcg_temp_new_i32();
9801 switch (opcode) {
9802 case 0x12: /* XTN, SQXTUN */
9804 static NeonGenNarrowFn * const xtnfns[3] = {
9805 gen_helper_neon_narrow_u8,
9806 gen_helper_neon_narrow_u16,
9807 tcg_gen_extrl_i64_i32,
9809 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9810 gen_helper_neon_unarrow_sat8,
9811 gen_helper_neon_unarrow_sat16,
9812 gen_helper_neon_unarrow_sat32,
9814 if (u) {
9815 genenvfn = sqxtunfns[size];
9816 } else {
9817 genfn = xtnfns[size];
9819 break;
9821 case 0x14: /* SQXTN, UQXTN */
9823 static NeonGenNarrowEnvFn * const fns[3][2] = {
9824 { gen_helper_neon_narrow_sat_s8,
9825 gen_helper_neon_narrow_sat_u8 },
9826 { gen_helper_neon_narrow_sat_s16,
9827 gen_helper_neon_narrow_sat_u16 },
9828 { gen_helper_neon_narrow_sat_s32,
9829 gen_helper_neon_narrow_sat_u32 },
9831 genenvfn = fns[size][u];
9832 break;
9834 case 0x16: /* FCVTN, FCVTN2 */
9835 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9836 if (size == 2) {
9837 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9838 } else {
9839 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9840 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9841 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9842 TCGv_i32 ahp = get_ahp_flag();
9844 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9845 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9846 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9847 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9849 break;
9850 case 0x36: /* BFCVTN, BFCVTN2 */
9852 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9853 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9855 break;
9856 case 0x56: /* FCVTXN, FCVTXN2 */
9857 /* 64 bit to 32 bit float conversion
9858 * with von Neumann rounding (round to odd)
9860 assert(size == 2);
9861 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9862 break;
9863 default:
9864 g_assert_not_reached();
9867 if (genfn) {
9868 genfn(tcg_res[pass], tcg_op);
9869 } else if (genenvfn) {
9870 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9874 for (pass = 0; pass < 2; pass++) {
9875 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9877 clear_vec_high(s, is_q, rd);
9880 /* Remaining saturating accumulating ops */
9881 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9882 bool is_q, int size, int rn, int rd)
9884 bool is_double = (size == 3);
9886 if (is_double) {
9887 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9888 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9889 int pass;
9891 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9892 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9893 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9895 if (is_u) { /* USQADD */
9896 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9897 } else { /* SUQADD */
9898 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9900 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9902 clear_vec_high(s, !is_scalar, rd);
9903 } else {
9904 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9905 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9906 int pass, maxpasses;
9908 if (is_scalar) {
9909 maxpasses = 1;
9910 } else {
9911 maxpasses = is_q ? 4 : 2;
9914 for (pass = 0; pass < maxpasses; pass++) {
9915 if (is_scalar) {
9916 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9917 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9918 } else {
9919 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9920 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9923 if (is_u) { /* USQADD */
9924 switch (size) {
9925 case 0:
9926 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9927 break;
9928 case 1:
9929 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9930 break;
9931 case 2:
9932 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9933 break;
9934 default:
9935 g_assert_not_reached();
9937 } else { /* SUQADD */
9938 switch (size) {
9939 case 0:
9940 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9941 break;
9942 case 1:
9943 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9944 break;
9945 case 2:
9946 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9947 break;
9948 default:
9949 g_assert_not_reached();
9953 if (is_scalar) {
9954 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9956 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9958 clear_vec_high(s, is_q, rd);
9962 /* AdvSIMD scalar two reg misc
9963 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9964 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9965 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9966 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9968 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9970 int rd = extract32(insn, 0, 5);
9971 int rn = extract32(insn, 5, 5);
9972 int opcode = extract32(insn, 12, 5);
9973 int size = extract32(insn, 22, 2);
9974 bool u = extract32(insn, 29, 1);
9975 bool is_fcvt = false;
9976 int rmode;
9977 TCGv_i32 tcg_rmode;
9978 TCGv_ptr tcg_fpstatus;
9980 switch (opcode) {
9981 case 0x3: /* USQADD / SUQADD*/
9982 if (!fp_access_check(s)) {
9983 return;
9985 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9986 return;
9987 case 0x7: /* SQABS / SQNEG */
9988 break;
9989 case 0xa: /* CMLT */
9990 if (u) {
9991 unallocated_encoding(s);
9992 return;
9994 /* fall through */
9995 case 0x8: /* CMGT, CMGE */
9996 case 0x9: /* CMEQ, CMLE */
9997 case 0xb: /* ABS, NEG */
9998 if (size != 3) {
9999 unallocated_encoding(s);
10000 return;
10002 break;
10003 case 0x12: /* SQXTUN */
10004 if (!u) {
10005 unallocated_encoding(s);
10006 return;
10008 /* fall through */
10009 case 0x14: /* SQXTN, UQXTN */
10010 if (size == 3) {
10011 unallocated_encoding(s);
10012 return;
10014 if (!fp_access_check(s)) {
10015 return;
10017 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10018 return;
10019 case 0xc ... 0xf:
10020 case 0x16 ... 0x1d:
10021 case 0x1f:
10022 /* Floating point: U, size[1] and opcode indicate operation;
10023 * size[0] indicates single or double precision.
10025 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10026 size = extract32(size, 0, 1) ? 3 : 2;
10027 switch (opcode) {
10028 case 0x2c: /* FCMGT (zero) */
10029 case 0x2d: /* FCMEQ (zero) */
10030 case 0x2e: /* FCMLT (zero) */
10031 case 0x6c: /* FCMGE (zero) */
10032 case 0x6d: /* FCMLE (zero) */
10033 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10034 return;
10035 case 0x1d: /* SCVTF */
10036 case 0x5d: /* UCVTF */
10038 bool is_signed = (opcode == 0x1d);
10039 if (!fp_access_check(s)) {
10040 return;
10042 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10043 return;
10045 case 0x3d: /* FRECPE */
10046 case 0x3f: /* FRECPX */
10047 case 0x7d: /* FRSQRTE */
10048 if (!fp_access_check(s)) {
10049 return;
10051 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10052 return;
10053 case 0x1a: /* FCVTNS */
10054 case 0x1b: /* FCVTMS */
10055 case 0x3a: /* FCVTPS */
10056 case 0x3b: /* FCVTZS */
10057 case 0x5a: /* FCVTNU */
10058 case 0x5b: /* FCVTMU */
10059 case 0x7a: /* FCVTPU */
10060 case 0x7b: /* FCVTZU */
10061 is_fcvt = true;
10062 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10063 break;
10064 case 0x1c: /* FCVTAS */
10065 case 0x5c: /* FCVTAU */
10066 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10067 is_fcvt = true;
10068 rmode = FPROUNDING_TIEAWAY;
10069 break;
10070 case 0x56: /* FCVTXN, FCVTXN2 */
10071 if (size == 2) {
10072 unallocated_encoding(s);
10073 return;
10075 if (!fp_access_check(s)) {
10076 return;
10078 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10079 return;
10080 default:
10081 unallocated_encoding(s);
10082 return;
10084 break;
10085 default:
10086 unallocated_encoding(s);
10087 return;
10090 if (!fp_access_check(s)) {
10091 return;
10094 if (is_fcvt) {
10095 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10096 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10097 } else {
10098 tcg_fpstatus = NULL;
10099 tcg_rmode = NULL;
10102 if (size == 3) {
10103 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10104 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10106 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10107 write_fp_dreg(s, rd, tcg_rd);
10108 } else {
10109 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10110 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10112 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10114 switch (opcode) {
10115 case 0x7: /* SQABS, SQNEG */
10117 NeonGenOneOpEnvFn *genfn;
10118 static NeonGenOneOpEnvFn * const fns[3][2] = {
10119 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10120 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10121 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10123 genfn = fns[size][u];
10124 genfn(tcg_rd, cpu_env, tcg_rn);
10125 break;
10127 case 0x1a: /* FCVTNS */
10128 case 0x1b: /* FCVTMS */
10129 case 0x1c: /* FCVTAS */
10130 case 0x3a: /* FCVTPS */
10131 case 0x3b: /* FCVTZS */
10132 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10133 tcg_fpstatus);
10134 break;
10135 case 0x5a: /* FCVTNU */
10136 case 0x5b: /* FCVTMU */
10137 case 0x5c: /* FCVTAU */
10138 case 0x7a: /* FCVTPU */
10139 case 0x7b: /* FCVTZU */
10140 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10141 tcg_fpstatus);
10142 break;
10143 default:
10144 g_assert_not_reached();
10147 write_fp_sreg(s, rd, tcg_rd);
10150 if (is_fcvt) {
10151 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10155 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10156 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10157 int immh, int immb, int opcode, int rn, int rd)
10159 int size = 32 - clz32(immh) - 1;
10160 int immhb = immh << 3 | immb;
10161 int shift = 2 * (8 << size) - immhb;
10162 GVecGen2iFn *gvec_fn;
10164 if (extract32(immh, 3, 1) && !is_q) {
10165 unallocated_encoding(s);
10166 return;
10168 tcg_debug_assert(size <= 3);
10170 if (!fp_access_check(s)) {
10171 return;
10174 switch (opcode) {
10175 case 0x02: /* SSRA / USRA (accumulate) */
10176 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10177 break;
10179 case 0x08: /* SRI */
10180 gvec_fn = gen_gvec_sri;
10181 break;
10183 case 0x00: /* SSHR / USHR */
10184 if (is_u) {
10185 if (shift == 8 << size) {
10186 /* Shift count the same size as element size produces zero. */
10187 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10188 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10189 return;
10191 gvec_fn = tcg_gen_gvec_shri;
10192 } else {
10193 /* Shift count the same size as element size produces all sign. */
10194 if (shift == 8 << size) {
10195 shift -= 1;
10197 gvec_fn = tcg_gen_gvec_sari;
10199 break;
10201 case 0x04: /* SRSHR / URSHR (rounding) */
10202 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10203 break;
10205 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10206 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10207 break;
10209 default:
10210 g_assert_not_reached();
10213 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10216 /* SHL/SLI - Vector shift left */
10217 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10218 int immh, int immb, int opcode, int rn, int rd)
10220 int size = 32 - clz32(immh) - 1;
10221 int immhb = immh << 3 | immb;
10222 int shift = immhb - (8 << size);
10224 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10225 assert(size >= 0 && size <= 3);
10227 if (extract32(immh, 3, 1) && !is_q) {
10228 unallocated_encoding(s);
10229 return;
10232 if (!fp_access_check(s)) {
10233 return;
10236 if (insert) {
10237 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10238 } else {
10239 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10243 /* USHLL/SHLL - Vector shift left with widening */
10244 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10245 int immh, int immb, int opcode, int rn, int rd)
10247 int size = 32 - clz32(immh) - 1;
10248 int immhb = immh << 3 | immb;
10249 int shift = immhb - (8 << size);
10250 int dsize = 64;
10251 int esize = 8 << size;
10252 int elements = dsize/esize;
10253 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10254 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10255 int i;
10257 if (size >= 3) {
10258 unallocated_encoding(s);
10259 return;
10262 if (!fp_access_check(s)) {
10263 return;
10266 /* For the LL variants the store is larger than the load,
10267 * so if rd == rn we would overwrite parts of our input.
10268 * So load everything right now and use shifts in the main loop.
10270 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10272 for (i = 0; i < elements; i++) {
10273 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10274 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10275 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10276 write_vec_element(s, tcg_rd, rd, i, size + 1);
10280 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10281 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10282 int immh, int immb, int opcode, int rn, int rd)
10284 int immhb = immh << 3 | immb;
10285 int size = 32 - clz32(immh) - 1;
10286 int dsize = 64;
10287 int esize = 8 << size;
10288 int elements = dsize/esize;
10289 int shift = (2 * esize) - immhb;
10290 bool round = extract32(opcode, 0, 1);
10291 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10292 TCGv_i64 tcg_round;
10293 int i;
10295 if (extract32(immh, 3, 1)) {
10296 unallocated_encoding(s);
10297 return;
10300 if (!fp_access_check(s)) {
10301 return;
10304 tcg_rn = tcg_temp_new_i64();
10305 tcg_rd = tcg_temp_new_i64();
10306 tcg_final = tcg_temp_new_i64();
10307 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10309 if (round) {
10310 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10311 } else {
10312 tcg_round = NULL;
10315 for (i = 0; i < elements; i++) {
10316 read_vec_element(s, tcg_rn, rn, i, size+1);
10317 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10318 false, true, size+1, shift);
10320 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10323 if (!is_q) {
10324 write_vec_element(s, tcg_final, rd, 0, MO_64);
10325 } else {
10326 write_vec_element(s, tcg_final, rd, 1, MO_64);
10329 clear_vec_high(s, is_q, rd);
10333 /* AdvSIMD shift by immediate
10334 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10335 * +---+---+---+-------------+------+------+--------+---+------+------+
10336 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10337 * +---+---+---+-------------+------+------+--------+---+------+------+
10339 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10341 int rd = extract32(insn, 0, 5);
10342 int rn = extract32(insn, 5, 5);
10343 int opcode = extract32(insn, 11, 5);
10344 int immb = extract32(insn, 16, 3);
10345 int immh = extract32(insn, 19, 4);
10346 bool is_u = extract32(insn, 29, 1);
10347 bool is_q = extract32(insn, 30, 1);
10349 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10350 assert(immh != 0);
10352 switch (opcode) {
10353 case 0x08: /* SRI */
10354 if (!is_u) {
10355 unallocated_encoding(s);
10356 return;
10358 /* fall through */
10359 case 0x00: /* SSHR / USHR */
10360 case 0x02: /* SSRA / USRA (accumulate) */
10361 case 0x04: /* SRSHR / URSHR (rounding) */
10362 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10363 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10364 break;
10365 case 0x0a: /* SHL / SLI */
10366 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10367 break;
10368 case 0x10: /* SHRN */
10369 case 0x11: /* RSHRN / SQRSHRUN */
10370 if (is_u) {
10371 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10372 opcode, rn, rd);
10373 } else {
10374 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10376 break;
10377 case 0x12: /* SQSHRN / UQSHRN */
10378 case 0x13: /* SQRSHRN / UQRSHRN */
10379 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10380 opcode, rn, rd);
10381 break;
10382 case 0x14: /* SSHLL / USHLL */
10383 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10384 break;
10385 case 0x1c: /* SCVTF / UCVTF */
10386 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10387 opcode, rn, rd);
10388 break;
10389 case 0xc: /* SQSHLU */
10390 if (!is_u) {
10391 unallocated_encoding(s);
10392 return;
10394 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10395 break;
10396 case 0xe: /* SQSHL, UQSHL */
10397 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10398 break;
10399 case 0x1f: /* FCVTZS/ FCVTZU */
10400 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10401 return;
10402 default:
10403 unallocated_encoding(s);
10404 return;
10408 /* Generate code to do a "long" addition or subtraction, ie one done in
10409 * TCGv_i64 on vector lanes twice the width specified by size.
10411 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10412 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10414 static NeonGenTwo64OpFn * const fns[3][2] = {
10415 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10416 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10417 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10419 NeonGenTwo64OpFn *genfn;
10420 assert(size < 3);
10422 genfn = fns[size][is_sub];
10423 genfn(tcg_res, tcg_op1, tcg_op2);
10426 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10427 int opcode, int rd, int rn, int rm)
10429 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10430 TCGv_i64 tcg_res[2];
10431 int pass, accop;
10433 tcg_res[0] = tcg_temp_new_i64();
10434 tcg_res[1] = tcg_temp_new_i64();
10436 /* Does this op do an adding accumulate, a subtracting accumulate,
10437 * or no accumulate at all?
10439 switch (opcode) {
10440 case 5:
10441 case 8:
10442 case 9:
10443 accop = 1;
10444 break;
10445 case 10:
10446 case 11:
10447 accop = -1;
10448 break;
10449 default:
10450 accop = 0;
10451 break;
10454 if (accop != 0) {
10455 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10456 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10459 /* size == 2 means two 32x32->64 operations; this is worth special
10460 * casing because we can generally handle it inline.
10462 if (size == 2) {
10463 for (pass = 0; pass < 2; pass++) {
10464 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10465 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10466 TCGv_i64 tcg_passres;
10467 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10469 int elt = pass + is_q * 2;
10471 read_vec_element(s, tcg_op1, rn, elt, memop);
10472 read_vec_element(s, tcg_op2, rm, elt, memop);
10474 if (accop == 0) {
10475 tcg_passres = tcg_res[pass];
10476 } else {
10477 tcg_passres = tcg_temp_new_i64();
10480 switch (opcode) {
10481 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10482 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10483 break;
10484 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10485 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10486 break;
10487 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10488 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10490 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10491 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10493 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10494 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10495 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10496 tcg_passres,
10497 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10498 break;
10500 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10501 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10502 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10503 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10504 break;
10505 case 9: /* SQDMLAL, SQDMLAL2 */
10506 case 11: /* SQDMLSL, SQDMLSL2 */
10507 case 13: /* SQDMULL, SQDMULL2 */
10508 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10509 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10510 tcg_passres, tcg_passres);
10511 break;
10512 default:
10513 g_assert_not_reached();
10516 if (opcode == 9 || opcode == 11) {
10517 /* saturating accumulate ops */
10518 if (accop < 0) {
10519 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10521 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10522 tcg_res[pass], tcg_passres);
10523 } else if (accop > 0) {
10524 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10525 } else if (accop < 0) {
10526 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10529 } else {
10530 /* size 0 or 1, generally helper functions */
10531 for (pass = 0; pass < 2; pass++) {
10532 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10533 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10534 TCGv_i64 tcg_passres;
10535 int elt = pass + is_q * 2;
10537 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10538 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10540 if (accop == 0) {
10541 tcg_passres = tcg_res[pass];
10542 } else {
10543 tcg_passres = tcg_temp_new_i64();
10546 switch (opcode) {
10547 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10548 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10550 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10551 static NeonGenWidenFn * const widenfns[2][2] = {
10552 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10553 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10555 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10557 widenfn(tcg_op2_64, tcg_op2);
10558 widenfn(tcg_passres, tcg_op1);
10559 gen_neon_addl(size, (opcode == 2), tcg_passres,
10560 tcg_passres, tcg_op2_64);
10561 break;
10563 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10564 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10565 if (size == 0) {
10566 if (is_u) {
10567 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10568 } else {
10569 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10571 } else {
10572 if (is_u) {
10573 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10574 } else {
10575 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10578 break;
10579 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10580 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10581 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10582 if (size == 0) {
10583 if (is_u) {
10584 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10585 } else {
10586 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10588 } else {
10589 if (is_u) {
10590 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10591 } else {
10592 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10595 break;
10596 case 9: /* SQDMLAL, SQDMLAL2 */
10597 case 11: /* SQDMLSL, SQDMLSL2 */
10598 case 13: /* SQDMULL, SQDMULL2 */
10599 assert(size == 1);
10600 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10601 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10602 tcg_passres, tcg_passres);
10603 break;
10604 default:
10605 g_assert_not_reached();
10608 if (accop != 0) {
10609 if (opcode == 9 || opcode == 11) {
10610 /* saturating accumulate ops */
10611 if (accop < 0) {
10612 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10614 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10615 tcg_res[pass],
10616 tcg_passres);
10617 } else {
10618 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10619 tcg_res[pass], tcg_passres);
10625 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10626 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10629 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10630 int opcode, int rd, int rn, int rm)
10632 TCGv_i64 tcg_res[2];
10633 int part = is_q ? 2 : 0;
10634 int pass;
10636 for (pass = 0; pass < 2; pass++) {
10637 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10638 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10639 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10640 static NeonGenWidenFn * const widenfns[3][2] = {
10641 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10642 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10643 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10645 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10647 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10648 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10649 widenfn(tcg_op2_wide, tcg_op2);
10650 tcg_res[pass] = tcg_temp_new_i64();
10651 gen_neon_addl(size, (opcode == 3),
10652 tcg_res[pass], tcg_op1, tcg_op2_wide);
10655 for (pass = 0; pass < 2; pass++) {
10656 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10660 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10662 tcg_gen_addi_i64(in, in, 1U << 31);
10663 tcg_gen_extrh_i64_i32(res, in);
10666 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10667 int opcode, int rd, int rn, int rm)
10669 TCGv_i32 tcg_res[2];
10670 int part = is_q ? 2 : 0;
10671 int pass;
10673 for (pass = 0; pass < 2; pass++) {
10674 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10675 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10676 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10677 static NeonGenNarrowFn * const narrowfns[3][2] = {
10678 { gen_helper_neon_narrow_high_u8,
10679 gen_helper_neon_narrow_round_high_u8 },
10680 { gen_helper_neon_narrow_high_u16,
10681 gen_helper_neon_narrow_round_high_u16 },
10682 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10684 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10686 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10687 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10689 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10691 tcg_res[pass] = tcg_temp_new_i32();
10692 gennarrow(tcg_res[pass], tcg_wideres);
10695 for (pass = 0; pass < 2; pass++) {
10696 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10698 clear_vec_high(s, is_q, rd);
10701 /* AdvSIMD three different
10702 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10703 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10704 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10705 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10707 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10709 /* Instructions in this group fall into three basic classes
10710 * (in each case with the operation working on each element in
10711 * the input vectors):
10712 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10713 * 128 bit input)
10714 * (2) wide 64 x 128 -> 128
10715 * (3) narrowing 128 x 128 -> 64
10716 * Here we do initial decode, catch unallocated cases and
10717 * dispatch to separate functions for each class.
10719 int is_q = extract32(insn, 30, 1);
10720 int is_u = extract32(insn, 29, 1);
10721 int size = extract32(insn, 22, 2);
10722 int opcode = extract32(insn, 12, 4);
10723 int rm = extract32(insn, 16, 5);
10724 int rn = extract32(insn, 5, 5);
10725 int rd = extract32(insn, 0, 5);
10727 switch (opcode) {
10728 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10729 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10730 /* 64 x 128 -> 128 */
10731 if (size == 3) {
10732 unallocated_encoding(s);
10733 return;
10735 if (!fp_access_check(s)) {
10736 return;
10738 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10739 break;
10740 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10741 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10742 /* 128 x 128 -> 64 */
10743 if (size == 3) {
10744 unallocated_encoding(s);
10745 return;
10747 if (!fp_access_check(s)) {
10748 return;
10750 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10751 break;
10752 case 14: /* PMULL, PMULL2 */
10753 if (is_u) {
10754 unallocated_encoding(s);
10755 return;
10757 switch (size) {
10758 case 0: /* PMULL.P8 */
10759 if (!fp_access_check(s)) {
10760 return;
10762 /* The Q field specifies lo/hi half input for this insn. */
10763 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10764 gen_helper_neon_pmull_h);
10765 break;
10767 case 3: /* PMULL.P64 */
10768 if (!dc_isar_feature(aa64_pmull, s)) {
10769 unallocated_encoding(s);
10770 return;
10772 if (!fp_access_check(s)) {
10773 return;
10775 /* The Q field specifies lo/hi half input for this insn. */
10776 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10777 gen_helper_gvec_pmull_q);
10778 break;
10780 default:
10781 unallocated_encoding(s);
10782 break;
10784 return;
10785 case 9: /* SQDMLAL, SQDMLAL2 */
10786 case 11: /* SQDMLSL, SQDMLSL2 */
10787 case 13: /* SQDMULL, SQDMULL2 */
10788 if (is_u || size == 0) {
10789 unallocated_encoding(s);
10790 return;
10792 /* fall through */
10793 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10794 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10795 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10796 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10797 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10798 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10799 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10800 /* 64 x 64 -> 128 */
10801 if (size == 3) {
10802 unallocated_encoding(s);
10803 return;
10805 if (!fp_access_check(s)) {
10806 return;
10809 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10810 break;
10811 default:
10812 /* opcode 15 not allocated */
10813 unallocated_encoding(s);
10814 break;
10818 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10819 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10821 int rd = extract32(insn, 0, 5);
10822 int rn = extract32(insn, 5, 5);
10823 int rm = extract32(insn, 16, 5);
10824 int size = extract32(insn, 22, 2);
10825 bool is_u = extract32(insn, 29, 1);
10826 bool is_q = extract32(insn, 30, 1);
10828 if (!fp_access_check(s)) {
10829 return;
10832 switch (size + 4 * is_u) {
10833 case 0: /* AND */
10834 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10835 return;
10836 case 1: /* BIC */
10837 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10838 return;
10839 case 2: /* ORR */
10840 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10841 return;
10842 case 3: /* ORN */
10843 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10844 return;
10845 case 4: /* EOR */
10846 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10847 return;
10849 case 5: /* BSL bitwise select */
10850 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10851 return;
10852 case 6: /* BIT, bitwise insert if true */
10853 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10854 return;
10855 case 7: /* BIF, bitwise insert if false */
10856 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10857 return;
10859 default:
10860 g_assert_not_reached();
10864 /* Pairwise op subgroup of C3.6.16.
10866 * This is called directly or via the handle_3same_float for float pairwise
10867 * operations where the opcode and size are calculated differently.
10869 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10870 int size, int rn, int rm, int rd)
10872 TCGv_ptr fpst;
10873 int pass;
10875 /* Floating point operations need fpst */
10876 if (opcode >= 0x58) {
10877 fpst = fpstatus_ptr(FPST_FPCR);
10878 } else {
10879 fpst = NULL;
10882 if (!fp_access_check(s)) {
10883 return;
10886 /* These operations work on the concatenated rm:rn, with each pair of
10887 * adjacent elements being operated on to produce an element in the result.
10889 if (size == 3) {
10890 TCGv_i64 tcg_res[2];
10892 for (pass = 0; pass < 2; pass++) {
10893 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10894 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10895 int passreg = (pass == 0) ? rn : rm;
10897 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10898 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10899 tcg_res[pass] = tcg_temp_new_i64();
10901 switch (opcode) {
10902 case 0x17: /* ADDP */
10903 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10904 break;
10905 case 0x58: /* FMAXNMP */
10906 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10907 break;
10908 case 0x5a: /* FADDP */
10909 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10910 break;
10911 case 0x5e: /* FMAXP */
10912 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10913 break;
10914 case 0x78: /* FMINNMP */
10915 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10916 break;
10917 case 0x7e: /* FMINP */
10918 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10919 break;
10920 default:
10921 g_assert_not_reached();
10925 for (pass = 0; pass < 2; pass++) {
10926 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10928 } else {
10929 int maxpass = is_q ? 4 : 2;
10930 TCGv_i32 tcg_res[4];
10932 for (pass = 0; pass < maxpass; pass++) {
10933 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10934 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10935 NeonGenTwoOpFn *genfn = NULL;
10936 int passreg = pass < (maxpass / 2) ? rn : rm;
10937 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10939 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10940 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10941 tcg_res[pass] = tcg_temp_new_i32();
10943 switch (opcode) {
10944 case 0x17: /* ADDP */
10946 static NeonGenTwoOpFn * const fns[3] = {
10947 gen_helper_neon_padd_u8,
10948 gen_helper_neon_padd_u16,
10949 tcg_gen_add_i32,
10951 genfn = fns[size];
10952 break;
10954 case 0x14: /* SMAXP, UMAXP */
10956 static NeonGenTwoOpFn * const fns[3][2] = {
10957 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10958 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10959 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10961 genfn = fns[size][u];
10962 break;
10964 case 0x15: /* SMINP, UMINP */
10966 static NeonGenTwoOpFn * const fns[3][2] = {
10967 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10968 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10969 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10971 genfn = fns[size][u];
10972 break;
10974 /* The FP operations are all on single floats (32 bit) */
10975 case 0x58: /* FMAXNMP */
10976 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10977 break;
10978 case 0x5a: /* FADDP */
10979 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10980 break;
10981 case 0x5e: /* FMAXP */
10982 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10983 break;
10984 case 0x78: /* FMINNMP */
10985 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10986 break;
10987 case 0x7e: /* FMINP */
10988 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10989 break;
10990 default:
10991 g_assert_not_reached();
10994 /* FP ops called directly, otherwise call now */
10995 if (genfn) {
10996 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11000 for (pass = 0; pass < maxpass; pass++) {
11001 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11003 clear_vec_high(s, is_q, rd);
11007 /* Floating point op subgroup of C3.6.16. */
11008 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11010 /* For floating point ops, the U, size[1] and opcode bits
11011 * together indicate the operation. size[0] indicates single
11012 * or double.
11014 int fpopcode = extract32(insn, 11, 5)
11015 | (extract32(insn, 23, 1) << 5)
11016 | (extract32(insn, 29, 1) << 6);
11017 int is_q = extract32(insn, 30, 1);
11018 int size = extract32(insn, 22, 1);
11019 int rm = extract32(insn, 16, 5);
11020 int rn = extract32(insn, 5, 5);
11021 int rd = extract32(insn, 0, 5);
11023 int datasize = is_q ? 128 : 64;
11024 int esize = 32 << size;
11025 int elements = datasize / esize;
11027 if (size == 1 && !is_q) {
11028 unallocated_encoding(s);
11029 return;
11032 switch (fpopcode) {
11033 case 0x58: /* FMAXNMP */
11034 case 0x5a: /* FADDP */
11035 case 0x5e: /* FMAXP */
11036 case 0x78: /* FMINNMP */
11037 case 0x7e: /* FMINP */
11038 if (size && !is_q) {
11039 unallocated_encoding(s);
11040 return;
11042 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11043 rn, rm, rd);
11044 return;
11045 case 0x1b: /* FMULX */
11046 case 0x1f: /* FRECPS */
11047 case 0x3f: /* FRSQRTS */
11048 case 0x5d: /* FACGE */
11049 case 0x7d: /* FACGT */
11050 case 0x19: /* FMLA */
11051 case 0x39: /* FMLS */
11052 case 0x18: /* FMAXNM */
11053 case 0x1a: /* FADD */
11054 case 0x1c: /* FCMEQ */
11055 case 0x1e: /* FMAX */
11056 case 0x38: /* FMINNM */
11057 case 0x3a: /* FSUB */
11058 case 0x3e: /* FMIN */
11059 case 0x5b: /* FMUL */
11060 case 0x5c: /* FCMGE */
11061 case 0x5f: /* FDIV */
11062 case 0x7a: /* FABD */
11063 case 0x7c: /* FCMGT */
11064 if (!fp_access_check(s)) {
11065 return;
11067 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11068 return;
11070 case 0x1d: /* FMLAL */
11071 case 0x3d: /* FMLSL */
11072 case 0x59: /* FMLAL2 */
11073 case 0x79: /* FMLSL2 */
11074 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11075 unallocated_encoding(s);
11076 return;
11078 if (fp_access_check(s)) {
11079 int is_s = extract32(insn, 23, 1);
11080 int is_2 = extract32(insn, 29, 1);
11081 int data = (is_2 << 1) | is_s;
11082 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11083 vec_full_reg_offset(s, rn),
11084 vec_full_reg_offset(s, rm), cpu_env,
11085 is_q ? 16 : 8, vec_full_reg_size(s),
11086 data, gen_helper_gvec_fmlal_a64);
11088 return;
11090 default:
11091 unallocated_encoding(s);
11092 return;
11096 /* Integer op subgroup of C3.6.16. */
11097 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11099 int is_q = extract32(insn, 30, 1);
11100 int u = extract32(insn, 29, 1);
11101 int size = extract32(insn, 22, 2);
11102 int opcode = extract32(insn, 11, 5);
11103 int rm = extract32(insn, 16, 5);
11104 int rn = extract32(insn, 5, 5);
11105 int rd = extract32(insn, 0, 5);
11106 int pass;
11107 TCGCond cond;
11109 switch (opcode) {
11110 case 0x13: /* MUL, PMUL */
11111 if (u && size != 0) {
11112 unallocated_encoding(s);
11113 return;
11115 /* fall through */
11116 case 0x0: /* SHADD, UHADD */
11117 case 0x2: /* SRHADD, URHADD */
11118 case 0x4: /* SHSUB, UHSUB */
11119 case 0xc: /* SMAX, UMAX */
11120 case 0xd: /* SMIN, UMIN */
11121 case 0xe: /* SABD, UABD */
11122 case 0xf: /* SABA, UABA */
11123 case 0x12: /* MLA, MLS */
11124 if (size == 3) {
11125 unallocated_encoding(s);
11126 return;
11128 break;
11129 case 0x16: /* SQDMULH, SQRDMULH */
11130 if (size == 0 || size == 3) {
11131 unallocated_encoding(s);
11132 return;
11134 break;
11135 default:
11136 if (size == 3 && !is_q) {
11137 unallocated_encoding(s);
11138 return;
11140 break;
11143 if (!fp_access_check(s)) {
11144 return;
11147 switch (opcode) {
11148 case 0x01: /* SQADD, UQADD */
11149 if (u) {
11150 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11151 } else {
11152 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11154 return;
11155 case 0x05: /* SQSUB, UQSUB */
11156 if (u) {
11157 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11158 } else {
11159 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11161 return;
11162 case 0x08: /* SSHL, USHL */
11163 if (u) {
11164 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11165 } else {
11166 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11168 return;
11169 case 0x0c: /* SMAX, UMAX */
11170 if (u) {
11171 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11172 } else {
11173 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11175 return;
11176 case 0x0d: /* SMIN, UMIN */
11177 if (u) {
11178 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11179 } else {
11180 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11182 return;
11183 case 0xe: /* SABD, UABD */
11184 if (u) {
11185 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11186 } else {
11187 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11189 return;
11190 case 0xf: /* SABA, UABA */
11191 if (u) {
11192 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11193 } else {
11194 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11196 return;
11197 case 0x10: /* ADD, SUB */
11198 if (u) {
11199 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11200 } else {
11201 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11203 return;
11204 case 0x13: /* MUL, PMUL */
11205 if (!u) { /* MUL */
11206 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11207 } else { /* PMUL */
11208 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11210 return;
11211 case 0x12: /* MLA, MLS */
11212 if (u) {
11213 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11214 } else {
11215 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11217 return;
11218 case 0x16: /* SQDMULH, SQRDMULH */
11220 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11221 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11222 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11224 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11226 return;
11227 case 0x11:
11228 if (!u) { /* CMTST */
11229 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11230 return;
11232 /* else CMEQ */
11233 cond = TCG_COND_EQ;
11234 goto do_gvec_cmp;
11235 case 0x06: /* CMGT, CMHI */
11236 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11237 goto do_gvec_cmp;
11238 case 0x07: /* CMGE, CMHS */
11239 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11240 do_gvec_cmp:
11241 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11242 vec_full_reg_offset(s, rn),
11243 vec_full_reg_offset(s, rm),
11244 is_q ? 16 : 8, vec_full_reg_size(s));
11245 return;
11248 if (size == 3) {
11249 assert(is_q);
11250 for (pass = 0; pass < 2; pass++) {
11251 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11252 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11253 TCGv_i64 tcg_res = tcg_temp_new_i64();
11255 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11256 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11258 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11260 write_vec_element(s, tcg_res, rd, pass, MO_64);
11262 } else {
11263 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11264 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11265 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11266 TCGv_i32 tcg_res = tcg_temp_new_i32();
11267 NeonGenTwoOpFn *genfn = NULL;
11268 NeonGenTwoOpEnvFn *genenvfn = NULL;
11270 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11271 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11273 switch (opcode) {
11274 case 0x0: /* SHADD, UHADD */
11276 static NeonGenTwoOpFn * const fns[3][2] = {
11277 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11278 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11279 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11281 genfn = fns[size][u];
11282 break;
11284 case 0x2: /* SRHADD, URHADD */
11286 static NeonGenTwoOpFn * const fns[3][2] = {
11287 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11288 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11289 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11291 genfn = fns[size][u];
11292 break;
11294 case 0x4: /* SHSUB, UHSUB */
11296 static NeonGenTwoOpFn * const fns[3][2] = {
11297 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11298 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11299 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11301 genfn = fns[size][u];
11302 break;
11304 case 0x9: /* SQSHL, UQSHL */
11306 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11307 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11308 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11309 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11311 genenvfn = fns[size][u];
11312 break;
11314 case 0xa: /* SRSHL, URSHL */
11316 static NeonGenTwoOpFn * const fns[3][2] = {
11317 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11318 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11319 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11321 genfn = fns[size][u];
11322 break;
11324 case 0xb: /* SQRSHL, UQRSHL */
11326 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11327 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11328 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11329 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11331 genenvfn = fns[size][u];
11332 break;
11334 default:
11335 g_assert_not_reached();
11338 if (genenvfn) {
11339 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11340 } else {
11341 genfn(tcg_res, tcg_op1, tcg_op2);
11344 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11347 clear_vec_high(s, is_q, rd);
11350 /* AdvSIMD three same
11351 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11352 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11353 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11354 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11356 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11358 int opcode = extract32(insn, 11, 5);
11360 switch (opcode) {
11361 case 0x3: /* logic ops */
11362 disas_simd_3same_logic(s, insn);
11363 break;
11364 case 0x17: /* ADDP */
11365 case 0x14: /* SMAXP, UMAXP */
11366 case 0x15: /* SMINP, UMINP */
11368 /* Pairwise operations */
11369 int is_q = extract32(insn, 30, 1);
11370 int u = extract32(insn, 29, 1);
11371 int size = extract32(insn, 22, 2);
11372 int rm = extract32(insn, 16, 5);
11373 int rn = extract32(insn, 5, 5);
11374 int rd = extract32(insn, 0, 5);
11375 if (opcode == 0x17) {
11376 if (u || (size == 3 && !is_q)) {
11377 unallocated_encoding(s);
11378 return;
11380 } else {
11381 if (size == 3) {
11382 unallocated_encoding(s);
11383 return;
11386 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11387 break;
11389 case 0x18 ... 0x31:
11390 /* floating point ops, sz[1] and U are part of opcode */
11391 disas_simd_3same_float(s, insn);
11392 break;
11393 default:
11394 disas_simd_3same_int(s, insn);
11395 break;
11400 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11402 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11403 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11404 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11405 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11407 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11408 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11411 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11413 int opcode = extract32(insn, 11, 3);
11414 int u = extract32(insn, 29, 1);
11415 int a = extract32(insn, 23, 1);
11416 int is_q = extract32(insn, 30, 1);
11417 int rm = extract32(insn, 16, 5);
11418 int rn = extract32(insn, 5, 5);
11419 int rd = extract32(insn, 0, 5);
11421 * For these floating point ops, the U, a and opcode bits
11422 * together indicate the operation.
11424 int fpopcode = opcode | (a << 3) | (u << 4);
11425 int datasize = is_q ? 128 : 64;
11426 int elements = datasize / 16;
11427 bool pairwise;
11428 TCGv_ptr fpst;
11429 int pass;
11431 switch (fpopcode) {
11432 case 0x0: /* FMAXNM */
11433 case 0x1: /* FMLA */
11434 case 0x2: /* FADD */
11435 case 0x3: /* FMULX */
11436 case 0x4: /* FCMEQ */
11437 case 0x6: /* FMAX */
11438 case 0x7: /* FRECPS */
11439 case 0x8: /* FMINNM */
11440 case 0x9: /* FMLS */
11441 case 0xa: /* FSUB */
11442 case 0xe: /* FMIN */
11443 case 0xf: /* FRSQRTS */
11444 case 0x13: /* FMUL */
11445 case 0x14: /* FCMGE */
11446 case 0x15: /* FACGE */
11447 case 0x17: /* FDIV */
11448 case 0x1a: /* FABD */
11449 case 0x1c: /* FCMGT */
11450 case 0x1d: /* FACGT */
11451 pairwise = false;
11452 break;
11453 case 0x10: /* FMAXNMP */
11454 case 0x12: /* FADDP */
11455 case 0x16: /* FMAXP */
11456 case 0x18: /* FMINNMP */
11457 case 0x1e: /* FMINP */
11458 pairwise = true;
11459 break;
11460 default:
11461 unallocated_encoding(s);
11462 return;
11465 if (!dc_isar_feature(aa64_fp16, s)) {
11466 unallocated_encoding(s);
11467 return;
11470 if (!fp_access_check(s)) {
11471 return;
11474 fpst = fpstatus_ptr(FPST_FPCR_F16);
11476 if (pairwise) {
11477 int maxpass = is_q ? 8 : 4;
11478 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11479 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11480 TCGv_i32 tcg_res[8];
11482 for (pass = 0; pass < maxpass; pass++) {
11483 int passreg = pass < (maxpass / 2) ? rn : rm;
11484 int passelt = (pass << 1) & (maxpass - 1);
11486 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11487 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11488 tcg_res[pass] = tcg_temp_new_i32();
11490 switch (fpopcode) {
11491 case 0x10: /* FMAXNMP */
11492 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11493 fpst);
11494 break;
11495 case 0x12: /* FADDP */
11496 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11497 break;
11498 case 0x16: /* FMAXP */
11499 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11500 break;
11501 case 0x18: /* FMINNMP */
11502 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11503 fpst);
11504 break;
11505 case 0x1e: /* FMINP */
11506 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11507 break;
11508 default:
11509 g_assert_not_reached();
11513 for (pass = 0; pass < maxpass; pass++) {
11514 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11516 } else {
11517 for (pass = 0; pass < elements; pass++) {
11518 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11519 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11520 TCGv_i32 tcg_res = tcg_temp_new_i32();
11522 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11523 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11525 switch (fpopcode) {
11526 case 0x0: /* FMAXNM */
11527 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11528 break;
11529 case 0x1: /* FMLA */
11530 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11531 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11532 fpst);
11533 break;
11534 case 0x2: /* FADD */
11535 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11536 break;
11537 case 0x3: /* FMULX */
11538 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11539 break;
11540 case 0x4: /* FCMEQ */
11541 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11542 break;
11543 case 0x6: /* FMAX */
11544 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11545 break;
11546 case 0x7: /* FRECPS */
11547 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11548 break;
11549 case 0x8: /* FMINNM */
11550 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11551 break;
11552 case 0x9: /* FMLS */
11553 /* As usual for ARM, separate negation for fused multiply-add */
11554 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11555 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11556 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11557 fpst);
11558 break;
11559 case 0xa: /* FSUB */
11560 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11561 break;
11562 case 0xe: /* FMIN */
11563 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11564 break;
11565 case 0xf: /* FRSQRTS */
11566 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11567 break;
11568 case 0x13: /* FMUL */
11569 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11570 break;
11571 case 0x14: /* FCMGE */
11572 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11573 break;
11574 case 0x15: /* FACGE */
11575 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11576 break;
11577 case 0x17: /* FDIV */
11578 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11579 break;
11580 case 0x1a: /* FABD */
11581 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11582 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11583 break;
11584 case 0x1c: /* FCMGT */
11585 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11586 break;
11587 case 0x1d: /* FACGT */
11588 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11589 break;
11590 default:
11591 g_assert_not_reached();
11594 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11598 clear_vec_high(s, is_q, rd);
11601 /* AdvSIMD three same extra
11602 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11603 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11604 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11605 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11607 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11609 int rd = extract32(insn, 0, 5);
11610 int rn = extract32(insn, 5, 5);
11611 int opcode = extract32(insn, 11, 4);
11612 int rm = extract32(insn, 16, 5);
11613 int size = extract32(insn, 22, 2);
11614 bool u = extract32(insn, 29, 1);
11615 bool is_q = extract32(insn, 30, 1);
11616 bool feature;
11617 int rot;
11619 switch (u * 16 + opcode) {
11620 case 0x10: /* SQRDMLAH (vector) */
11621 case 0x11: /* SQRDMLSH (vector) */
11622 if (size != 1 && size != 2) {
11623 unallocated_encoding(s);
11624 return;
11626 feature = dc_isar_feature(aa64_rdm, s);
11627 break;
11628 case 0x02: /* SDOT (vector) */
11629 case 0x12: /* UDOT (vector) */
11630 if (size != MO_32) {
11631 unallocated_encoding(s);
11632 return;
11634 feature = dc_isar_feature(aa64_dp, s);
11635 break;
11636 case 0x03: /* USDOT */
11637 if (size != MO_32) {
11638 unallocated_encoding(s);
11639 return;
11641 feature = dc_isar_feature(aa64_i8mm, s);
11642 break;
11643 case 0x04: /* SMMLA */
11644 case 0x14: /* UMMLA */
11645 case 0x05: /* USMMLA */
11646 if (!is_q || size != MO_32) {
11647 unallocated_encoding(s);
11648 return;
11650 feature = dc_isar_feature(aa64_i8mm, s);
11651 break;
11652 case 0x18: /* FCMLA, #0 */
11653 case 0x19: /* FCMLA, #90 */
11654 case 0x1a: /* FCMLA, #180 */
11655 case 0x1b: /* FCMLA, #270 */
11656 case 0x1c: /* FCADD, #90 */
11657 case 0x1e: /* FCADD, #270 */
11658 if (size == 0
11659 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11660 || (size == 3 && !is_q)) {
11661 unallocated_encoding(s);
11662 return;
11664 feature = dc_isar_feature(aa64_fcma, s);
11665 break;
11666 case 0x1d: /* BFMMLA */
11667 if (size != MO_16 || !is_q) {
11668 unallocated_encoding(s);
11669 return;
11671 feature = dc_isar_feature(aa64_bf16, s);
11672 break;
11673 case 0x1f:
11674 switch (size) {
11675 case 1: /* BFDOT */
11676 case 3: /* BFMLAL{B,T} */
11677 feature = dc_isar_feature(aa64_bf16, s);
11678 break;
11679 default:
11680 unallocated_encoding(s);
11681 return;
11683 break;
11684 default:
11685 unallocated_encoding(s);
11686 return;
11688 if (!feature) {
11689 unallocated_encoding(s);
11690 return;
11692 if (!fp_access_check(s)) {
11693 return;
11696 switch (opcode) {
11697 case 0x0: /* SQRDMLAH (vector) */
11698 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11699 return;
11701 case 0x1: /* SQRDMLSH (vector) */
11702 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11703 return;
11705 case 0x2: /* SDOT / UDOT */
11706 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11707 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11708 return;
11710 case 0x3: /* USDOT */
11711 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11712 return;
11714 case 0x04: /* SMMLA, UMMLA */
11715 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11716 u ? gen_helper_gvec_ummla_b
11717 : gen_helper_gvec_smmla_b);
11718 return;
11719 case 0x05: /* USMMLA */
11720 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11721 return;
11723 case 0x8: /* FCMLA, #0 */
11724 case 0x9: /* FCMLA, #90 */
11725 case 0xa: /* FCMLA, #180 */
11726 case 0xb: /* FCMLA, #270 */
11727 rot = extract32(opcode, 0, 2);
11728 switch (size) {
11729 case 1:
11730 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11731 gen_helper_gvec_fcmlah);
11732 break;
11733 case 2:
11734 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11735 gen_helper_gvec_fcmlas);
11736 break;
11737 case 3:
11738 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11739 gen_helper_gvec_fcmlad);
11740 break;
11741 default:
11742 g_assert_not_reached();
11744 return;
11746 case 0xc: /* FCADD, #90 */
11747 case 0xe: /* FCADD, #270 */
11748 rot = extract32(opcode, 1, 1);
11749 switch (size) {
11750 case 1:
11751 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11752 gen_helper_gvec_fcaddh);
11753 break;
11754 case 2:
11755 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11756 gen_helper_gvec_fcadds);
11757 break;
11758 case 3:
11759 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11760 gen_helper_gvec_fcaddd);
11761 break;
11762 default:
11763 g_assert_not_reached();
11765 return;
11767 case 0xd: /* BFMMLA */
11768 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11769 return;
11770 case 0xf:
11771 switch (size) {
11772 case 1: /* BFDOT */
11773 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11774 break;
11775 case 3: /* BFMLAL{B,T} */
11776 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11777 gen_helper_gvec_bfmlal);
11778 break;
11779 default:
11780 g_assert_not_reached();
11782 return;
11784 default:
11785 g_assert_not_reached();
11789 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11790 int size, int rn, int rd)
11792 /* Handle 2-reg-misc ops which are widening (so each size element
11793 * in the source becomes a 2*size element in the destination.
11794 * The only instruction like this is FCVTL.
11796 int pass;
11798 if (size == 3) {
11799 /* 32 -> 64 bit fp conversion */
11800 TCGv_i64 tcg_res[2];
11801 int srcelt = is_q ? 2 : 0;
11803 for (pass = 0; pass < 2; pass++) {
11804 TCGv_i32 tcg_op = tcg_temp_new_i32();
11805 tcg_res[pass] = tcg_temp_new_i64();
11807 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11808 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11810 for (pass = 0; pass < 2; pass++) {
11811 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11813 } else {
11814 /* 16 -> 32 bit fp conversion */
11815 int srcelt = is_q ? 4 : 0;
11816 TCGv_i32 tcg_res[4];
11817 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11818 TCGv_i32 ahp = get_ahp_flag();
11820 for (pass = 0; pass < 4; pass++) {
11821 tcg_res[pass] = tcg_temp_new_i32();
11823 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11824 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11825 fpst, ahp);
11827 for (pass = 0; pass < 4; pass++) {
11828 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11833 static void handle_rev(DisasContext *s, int opcode, bool u,
11834 bool is_q, int size, int rn, int rd)
11836 int op = (opcode << 1) | u;
11837 int opsz = op + size;
11838 int grp_size = 3 - opsz;
11839 int dsize = is_q ? 128 : 64;
11840 int i;
11842 if (opsz >= 3) {
11843 unallocated_encoding(s);
11844 return;
11847 if (!fp_access_check(s)) {
11848 return;
11851 if (size == 0) {
11852 /* Special case bytes, use bswap op on each group of elements */
11853 int groups = dsize / (8 << grp_size);
11855 for (i = 0; i < groups; i++) {
11856 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11858 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11859 switch (grp_size) {
11860 case MO_16:
11861 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11862 break;
11863 case MO_32:
11864 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11865 break;
11866 case MO_64:
11867 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11868 break;
11869 default:
11870 g_assert_not_reached();
11872 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11874 clear_vec_high(s, is_q, rd);
11875 } else {
11876 int revmask = (1 << grp_size) - 1;
11877 int esize = 8 << size;
11878 int elements = dsize / esize;
11879 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11880 TCGv_i64 tcg_rd[2];
11882 for (i = 0; i < 2; i++) {
11883 tcg_rd[i] = tcg_temp_new_i64();
11884 tcg_gen_movi_i64(tcg_rd[i], 0);
11887 for (i = 0; i < elements; i++) {
11888 int e_rev = (i & 0xf) ^ revmask;
11889 int w = (e_rev * esize) / 64;
11890 int o = (e_rev * esize) % 64;
11892 read_vec_element(s, tcg_rn, rn, i, size);
11893 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11896 for (i = 0; i < 2; i++) {
11897 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11899 clear_vec_high(s, true, rd);
11903 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11904 bool is_q, int size, int rn, int rd)
11906 /* Implement the pairwise operations from 2-misc:
11907 * SADDLP, UADDLP, SADALP, UADALP.
11908 * These all add pairs of elements in the input to produce a
11909 * double-width result element in the output (possibly accumulating).
11911 bool accum = (opcode == 0x6);
11912 int maxpass = is_q ? 2 : 1;
11913 int pass;
11914 TCGv_i64 tcg_res[2];
11916 if (size == 2) {
11917 /* 32 + 32 -> 64 op */
11918 MemOp memop = size + (u ? 0 : MO_SIGN);
11920 for (pass = 0; pass < maxpass; pass++) {
11921 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11922 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11924 tcg_res[pass] = tcg_temp_new_i64();
11926 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11927 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11928 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11929 if (accum) {
11930 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11931 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11934 } else {
11935 for (pass = 0; pass < maxpass; pass++) {
11936 TCGv_i64 tcg_op = tcg_temp_new_i64();
11937 NeonGenOne64OpFn *genfn;
11938 static NeonGenOne64OpFn * const fns[2][2] = {
11939 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11940 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11943 genfn = fns[size][u];
11945 tcg_res[pass] = tcg_temp_new_i64();
11947 read_vec_element(s, tcg_op, rn, pass, MO_64);
11948 genfn(tcg_res[pass], tcg_op);
11950 if (accum) {
11951 read_vec_element(s, tcg_op, rd, pass, MO_64);
11952 if (size == 0) {
11953 gen_helper_neon_addl_u16(tcg_res[pass],
11954 tcg_res[pass], tcg_op);
11955 } else {
11956 gen_helper_neon_addl_u32(tcg_res[pass],
11957 tcg_res[pass], tcg_op);
11962 if (!is_q) {
11963 tcg_res[1] = tcg_constant_i64(0);
11965 for (pass = 0; pass < 2; pass++) {
11966 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11970 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11972 /* Implement SHLL and SHLL2 */
11973 int pass;
11974 int part = is_q ? 2 : 0;
11975 TCGv_i64 tcg_res[2];
11977 for (pass = 0; pass < 2; pass++) {
11978 static NeonGenWidenFn * const widenfns[3] = {
11979 gen_helper_neon_widen_u8,
11980 gen_helper_neon_widen_u16,
11981 tcg_gen_extu_i32_i64,
11983 NeonGenWidenFn *widenfn = widenfns[size];
11984 TCGv_i32 tcg_op = tcg_temp_new_i32();
11986 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11987 tcg_res[pass] = tcg_temp_new_i64();
11988 widenfn(tcg_res[pass], tcg_op);
11989 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11992 for (pass = 0; pass < 2; pass++) {
11993 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11997 /* AdvSIMD two reg misc
11998 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11999 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12000 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12001 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12003 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12005 int size = extract32(insn, 22, 2);
12006 int opcode = extract32(insn, 12, 5);
12007 bool u = extract32(insn, 29, 1);
12008 bool is_q = extract32(insn, 30, 1);
12009 int rn = extract32(insn, 5, 5);
12010 int rd = extract32(insn, 0, 5);
12011 bool need_fpstatus = false;
12012 int rmode = -1;
12013 TCGv_i32 tcg_rmode;
12014 TCGv_ptr tcg_fpstatus;
12016 switch (opcode) {
12017 case 0x0: /* REV64, REV32 */
12018 case 0x1: /* REV16 */
12019 handle_rev(s, opcode, u, is_q, size, rn, rd);
12020 return;
12021 case 0x5: /* CNT, NOT, RBIT */
12022 if (u && size == 0) {
12023 /* NOT */
12024 break;
12025 } else if (u && size == 1) {
12026 /* RBIT */
12027 break;
12028 } else if (!u && size == 0) {
12029 /* CNT */
12030 break;
12032 unallocated_encoding(s);
12033 return;
12034 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12035 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12036 if (size == 3) {
12037 unallocated_encoding(s);
12038 return;
12040 if (!fp_access_check(s)) {
12041 return;
12044 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12045 return;
12046 case 0x4: /* CLS, CLZ */
12047 if (size == 3) {
12048 unallocated_encoding(s);
12049 return;
12051 break;
12052 case 0x2: /* SADDLP, UADDLP */
12053 case 0x6: /* SADALP, UADALP */
12054 if (size == 3) {
12055 unallocated_encoding(s);
12056 return;
12058 if (!fp_access_check(s)) {
12059 return;
12061 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12062 return;
12063 case 0x13: /* SHLL, SHLL2 */
12064 if (u == 0 || size == 3) {
12065 unallocated_encoding(s);
12066 return;
12068 if (!fp_access_check(s)) {
12069 return;
12071 handle_shll(s, is_q, size, rn, rd);
12072 return;
12073 case 0xa: /* CMLT */
12074 if (u == 1) {
12075 unallocated_encoding(s);
12076 return;
12078 /* fall through */
12079 case 0x8: /* CMGT, CMGE */
12080 case 0x9: /* CMEQ, CMLE */
12081 case 0xb: /* ABS, NEG */
12082 if (size == 3 && !is_q) {
12083 unallocated_encoding(s);
12084 return;
12086 break;
12087 case 0x3: /* SUQADD, USQADD */
12088 if (size == 3 && !is_q) {
12089 unallocated_encoding(s);
12090 return;
12092 if (!fp_access_check(s)) {
12093 return;
12095 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12096 return;
12097 case 0x7: /* SQABS, SQNEG */
12098 if (size == 3 && !is_q) {
12099 unallocated_encoding(s);
12100 return;
12102 break;
12103 case 0xc ... 0xf:
12104 case 0x16 ... 0x1f:
12106 /* Floating point: U, size[1] and opcode indicate operation;
12107 * size[0] indicates single or double precision.
12109 int is_double = extract32(size, 0, 1);
12110 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12111 size = is_double ? 3 : 2;
12112 switch (opcode) {
12113 case 0x2f: /* FABS */
12114 case 0x6f: /* FNEG */
12115 if (size == 3 && !is_q) {
12116 unallocated_encoding(s);
12117 return;
12119 break;
12120 case 0x1d: /* SCVTF */
12121 case 0x5d: /* UCVTF */
12123 bool is_signed = (opcode == 0x1d) ? true : false;
12124 int elements = is_double ? 2 : is_q ? 4 : 2;
12125 if (is_double && !is_q) {
12126 unallocated_encoding(s);
12127 return;
12129 if (!fp_access_check(s)) {
12130 return;
12132 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12133 return;
12135 case 0x2c: /* FCMGT (zero) */
12136 case 0x2d: /* FCMEQ (zero) */
12137 case 0x2e: /* FCMLT (zero) */
12138 case 0x6c: /* FCMGE (zero) */
12139 case 0x6d: /* FCMLE (zero) */
12140 if (size == 3 && !is_q) {
12141 unallocated_encoding(s);
12142 return;
12144 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12145 return;
12146 case 0x7f: /* FSQRT */
12147 if (size == 3 && !is_q) {
12148 unallocated_encoding(s);
12149 return;
12151 break;
12152 case 0x1a: /* FCVTNS */
12153 case 0x1b: /* FCVTMS */
12154 case 0x3a: /* FCVTPS */
12155 case 0x3b: /* FCVTZS */
12156 case 0x5a: /* FCVTNU */
12157 case 0x5b: /* FCVTMU */
12158 case 0x7a: /* FCVTPU */
12159 case 0x7b: /* FCVTZU */
12160 need_fpstatus = true;
12161 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12162 if (size == 3 && !is_q) {
12163 unallocated_encoding(s);
12164 return;
12166 break;
12167 case 0x5c: /* FCVTAU */
12168 case 0x1c: /* FCVTAS */
12169 need_fpstatus = true;
12170 rmode = FPROUNDING_TIEAWAY;
12171 if (size == 3 && !is_q) {
12172 unallocated_encoding(s);
12173 return;
12175 break;
12176 case 0x3c: /* URECPE */
12177 if (size == 3) {
12178 unallocated_encoding(s);
12179 return;
12181 /* fall through */
12182 case 0x3d: /* FRECPE */
12183 case 0x7d: /* FRSQRTE */
12184 if (size == 3 && !is_q) {
12185 unallocated_encoding(s);
12186 return;
12188 if (!fp_access_check(s)) {
12189 return;
12191 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12192 return;
12193 case 0x56: /* FCVTXN, FCVTXN2 */
12194 if (size == 2) {
12195 unallocated_encoding(s);
12196 return;
12198 /* fall through */
12199 case 0x16: /* FCVTN, FCVTN2 */
12200 /* handle_2misc_narrow does a 2*size -> size operation, but these
12201 * instructions encode the source size rather than dest size.
12203 if (!fp_access_check(s)) {
12204 return;
12206 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12207 return;
12208 case 0x36: /* BFCVTN, BFCVTN2 */
12209 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12210 unallocated_encoding(s);
12211 return;
12213 if (!fp_access_check(s)) {
12214 return;
12216 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12217 return;
12218 case 0x17: /* FCVTL, FCVTL2 */
12219 if (!fp_access_check(s)) {
12220 return;
12222 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12223 return;
12224 case 0x18: /* FRINTN */
12225 case 0x19: /* FRINTM */
12226 case 0x38: /* FRINTP */
12227 case 0x39: /* FRINTZ */
12228 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12229 /* fall through */
12230 case 0x59: /* FRINTX */
12231 case 0x79: /* FRINTI */
12232 need_fpstatus = true;
12233 if (size == 3 && !is_q) {
12234 unallocated_encoding(s);
12235 return;
12237 break;
12238 case 0x58: /* FRINTA */
12239 rmode = FPROUNDING_TIEAWAY;
12240 need_fpstatus = true;
12241 if (size == 3 && !is_q) {
12242 unallocated_encoding(s);
12243 return;
12245 break;
12246 case 0x7c: /* URSQRTE */
12247 if (size == 3) {
12248 unallocated_encoding(s);
12249 return;
12251 break;
12252 case 0x1e: /* FRINT32Z */
12253 case 0x1f: /* FRINT64Z */
12254 rmode = FPROUNDING_ZERO;
12255 /* fall through */
12256 case 0x5e: /* FRINT32X */
12257 case 0x5f: /* FRINT64X */
12258 need_fpstatus = true;
12259 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12260 unallocated_encoding(s);
12261 return;
12263 break;
12264 default:
12265 unallocated_encoding(s);
12266 return;
12268 break;
12270 default:
12271 unallocated_encoding(s);
12272 return;
12275 if (!fp_access_check(s)) {
12276 return;
12279 if (need_fpstatus || rmode >= 0) {
12280 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12281 } else {
12282 tcg_fpstatus = NULL;
12284 if (rmode >= 0) {
12285 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12286 } else {
12287 tcg_rmode = NULL;
12290 switch (opcode) {
12291 case 0x5:
12292 if (u && size == 0) { /* NOT */
12293 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12294 return;
12296 break;
12297 case 0x8: /* CMGT, CMGE */
12298 if (u) {
12299 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12300 } else {
12301 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12303 return;
12304 case 0x9: /* CMEQ, CMLE */
12305 if (u) {
12306 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12307 } else {
12308 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12310 return;
12311 case 0xa: /* CMLT */
12312 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12313 return;
12314 case 0xb:
12315 if (u) { /* ABS, NEG */
12316 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12317 } else {
12318 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12320 return;
12323 if (size == 3) {
12324 /* All 64-bit element operations can be shared with scalar 2misc */
12325 int pass;
12327 /* Coverity claims (size == 3 && !is_q) has been eliminated
12328 * from all paths leading to here.
12330 tcg_debug_assert(is_q);
12331 for (pass = 0; pass < 2; pass++) {
12332 TCGv_i64 tcg_op = tcg_temp_new_i64();
12333 TCGv_i64 tcg_res = tcg_temp_new_i64();
12335 read_vec_element(s, tcg_op, rn, pass, MO_64);
12337 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12338 tcg_rmode, tcg_fpstatus);
12340 write_vec_element(s, tcg_res, rd, pass, MO_64);
12342 } else {
12343 int pass;
12345 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12346 TCGv_i32 tcg_op = tcg_temp_new_i32();
12347 TCGv_i32 tcg_res = tcg_temp_new_i32();
12349 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12351 if (size == 2) {
12352 /* Special cases for 32 bit elements */
12353 switch (opcode) {
12354 case 0x4: /* CLS */
12355 if (u) {
12356 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12357 } else {
12358 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12360 break;
12361 case 0x7: /* SQABS, SQNEG */
12362 if (u) {
12363 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12364 } else {
12365 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12367 break;
12368 case 0x2f: /* FABS */
12369 gen_helper_vfp_abss(tcg_res, tcg_op);
12370 break;
12371 case 0x6f: /* FNEG */
12372 gen_helper_vfp_negs(tcg_res, tcg_op);
12373 break;
12374 case 0x7f: /* FSQRT */
12375 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12376 break;
12377 case 0x1a: /* FCVTNS */
12378 case 0x1b: /* FCVTMS */
12379 case 0x1c: /* FCVTAS */
12380 case 0x3a: /* FCVTPS */
12381 case 0x3b: /* FCVTZS */
12382 gen_helper_vfp_tosls(tcg_res, tcg_op,
12383 tcg_constant_i32(0), tcg_fpstatus);
12384 break;
12385 case 0x5a: /* FCVTNU */
12386 case 0x5b: /* FCVTMU */
12387 case 0x5c: /* FCVTAU */
12388 case 0x7a: /* FCVTPU */
12389 case 0x7b: /* FCVTZU */
12390 gen_helper_vfp_touls(tcg_res, tcg_op,
12391 tcg_constant_i32(0), tcg_fpstatus);
12392 break;
12393 case 0x18: /* FRINTN */
12394 case 0x19: /* FRINTM */
12395 case 0x38: /* FRINTP */
12396 case 0x39: /* FRINTZ */
12397 case 0x58: /* FRINTA */
12398 case 0x79: /* FRINTI */
12399 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12400 break;
12401 case 0x59: /* FRINTX */
12402 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12403 break;
12404 case 0x7c: /* URSQRTE */
12405 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12406 break;
12407 case 0x1e: /* FRINT32Z */
12408 case 0x5e: /* FRINT32X */
12409 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12410 break;
12411 case 0x1f: /* FRINT64Z */
12412 case 0x5f: /* FRINT64X */
12413 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12414 break;
12415 default:
12416 g_assert_not_reached();
12418 } else {
12419 /* Use helpers for 8 and 16 bit elements */
12420 switch (opcode) {
12421 case 0x5: /* CNT, RBIT */
12422 /* For these two insns size is part of the opcode specifier
12423 * (handled earlier); they always operate on byte elements.
12425 if (u) {
12426 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12427 } else {
12428 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12430 break;
12431 case 0x7: /* SQABS, SQNEG */
12433 NeonGenOneOpEnvFn *genfn;
12434 static NeonGenOneOpEnvFn * const fns[2][2] = {
12435 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12436 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12438 genfn = fns[size][u];
12439 genfn(tcg_res, cpu_env, tcg_op);
12440 break;
12442 case 0x4: /* CLS, CLZ */
12443 if (u) {
12444 if (size == 0) {
12445 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12446 } else {
12447 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12449 } else {
12450 if (size == 0) {
12451 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12452 } else {
12453 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12456 break;
12457 default:
12458 g_assert_not_reached();
12462 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12465 clear_vec_high(s, is_q, rd);
12467 if (tcg_rmode) {
12468 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12472 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12474 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12475 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12476 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12477 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12478 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12479 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12481 * This actually covers two groups where scalar access is governed by
12482 * bit 28. A bunch of the instructions (float to integral) only exist
12483 * in the vector form and are un-allocated for the scalar decode. Also
12484 * in the scalar decode Q is always 1.
12486 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12488 int fpop, opcode, a, u;
12489 int rn, rd;
12490 bool is_q;
12491 bool is_scalar;
12492 bool only_in_vector = false;
12494 int pass;
12495 TCGv_i32 tcg_rmode = NULL;
12496 TCGv_ptr tcg_fpstatus = NULL;
12497 bool need_fpst = true;
12498 int rmode = -1;
12500 if (!dc_isar_feature(aa64_fp16, s)) {
12501 unallocated_encoding(s);
12502 return;
12505 rd = extract32(insn, 0, 5);
12506 rn = extract32(insn, 5, 5);
12508 a = extract32(insn, 23, 1);
12509 u = extract32(insn, 29, 1);
12510 is_scalar = extract32(insn, 28, 1);
12511 is_q = extract32(insn, 30, 1);
12513 opcode = extract32(insn, 12, 5);
12514 fpop = deposit32(opcode, 5, 1, a);
12515 fpop = deposit32(fpop, 6, 1, u);
12517 switch (fpop) {
12518 case 0x1d: /* SCVTF */
12519 case 0x5d: /* UCVTF */
12521 int elements;
12523 if (is_scalar) {
12524 elements = 1;
12525 } else {
12526 elements = (is_q ? 8 : 4);
12529 if (!fp_access_check(s)) {
12530 return;
12532 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12533 return;
12535 break;
12536 case 0x2c: /* FCMGT (zero) */
12537 case 0x2d: /* FCMEQ (zero) */
12538 case 0x2e: /* FCMLT (zero) */
12539 case 0x6c: /* FCMGE (zero) */
12540 case 0x6d: /* FCMLE (zero) */
12541 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12542 return;
12543 case 0x3d: /* FRECPE */
12544 case 0x3f: /* FRECPX */
12545 break;
12546 case 0x18: /* FRINTN */
12547 only_in_vector = true;
12548 rmode = FPROUNDING_TIEEVEN;
12549 break;
12550 case 0x19: /* FRINTM */
12551 only_in_vector = true;
12552 rmode = FPROUNDING_NEGINF;
12553 break;
12554 case 0x38: /* FRINTP */
12555 only_in_vector = true;
12556 rmode = FPROUNDING_POSINF;
12557 break;
12558 case 0x39: /* FRINTZ */
12559 only_in_vector = true;
12560 rmode = FPROUNDING_ZERO;
12561 break;
12562 case 0x58: /* FRINTA */
12563 only_in_vector = true;
12564 rmode = FPROUNDING_TIEAWAY;
12565 break;
12566 case 0x59: /* FRINTX */
12567 case 0x79: /* FRINTI */
12568 only_in_vector = true;
12569 /* current rounding mode */
12570 break;
12571 case 0x1a: /* FCVTNS */
12572 rmode = FPROUNDING_TIEEVEN;
12573 break;
12574 case 0x1b: /* FCVTMS */
12575 rmode = FPROUNDING_NEGINF;
12576 break;
12577 case 0x1c: /* FCVTAS */
12578 rmode = FPROUNDING_TIEAWAY;
12579 break;
12580 case 0x3a: /* FCVTPS */
12581 rmode = FPROUNDING_POSINF;
12582 break;
12583 case 0x3b: /* FCVTZS */
12584 rmode = FPROUNDING_ZERO;
12585 break;
12586 case 0x5a: /* FCVTNU */
12587 rmode = FPROUNDING_TIEEVEN;
12588 break;
12589 case 0x5b: /* FCVTMU */
12590 rmode = FPROUNDING_NEGINF;
12591 break;
12592 case 0x5c: /* FCVTAU */
12593 rmode = FPROUNDING_TIEAWAY;
12594 break;
12595 case 0x7a: /* FCVTPU */
12596 rmode = FPROUNDING_POSINF;
12597 break;
12598 case 0x7b: /* FCVTZU */
12599 rmode = FPROUNDING_ZERO;
12600 break;
12601 case 0x2f: /* FABS */
12602 case 0x6f: /* FNEG */
12603 need_fpst = false;
12604 break;
12605 case 0x7d: /* FRSQRTE */
12606 case 0x7f: /* FSQRT (vector) */
12607 break;
12608 default:
12609 unallocated_encoding(s);
12610 return;
12614 /* Check additional constraints for the scalar encoding */
12615 if (is_scalar) {
12616 if (!is_q) {
12617 unallocated_encoding(s);
12618 return;
12620 /* FRINTxx is only in the vector form */
12621 if (only_in_vector) {
12622 unallocated_encoding(s);
12623 return;
12627 if (!fp_access_check(s)) {
12628 return;
12631 if (rmode >= 0 || need_fpst) {
12632 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12635 if (rmode >= 0) {
12636 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12639 if (is_scalar) {
12640 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12641 TCGv_i32 tcg_res = tcg_temp_new_i32();
12643 switch (fpop) {
12644 case 0x1a: /* FCVTNS */
12645 case 0x1b: /* FCVTMS */
12646 case 0x1c: /* FCVTAS */
12647 case 0x3a: /* FCVTPS */
12648 case 0x3b: /* FCVTZS */
12649 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12650 break;
12651 case 0x3d: /* FRECPE */
12652 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12653 break;
12654 case 0x3f: /* FRECPX */
12655 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12656 break;
12657 case 0x5a: /* FCVTNU */
12658 case 0x5b: /* FCVTMU */
12659 case 0x5c: /* FCVTAU */
12660 case 0x7a: /* FCVTPU */
12661 case 0x7b: /* FCVTZU */
12662 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12663 break;
12664 case 0x6f: /* FNEG */
12665 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12666 break;
12667 case 0x7d: /* FRSQRTE */
12668 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12669 break;
12670 default:
12671 g_assert_not_reached();
12674 /* limit any sign extension going on */
12675 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12676 write_fp_sreg(s, rd, tcg_res);
12677 } else {
12678 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12679 TCGv_i32 tcg_op = tcg_temp_new_i32();
12680 TCGv_i32 tcg_res = tcg_temp_new_i32();
12682 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12684 switch (fpop) {
12685 case 0x1a: /* FCVTNS */
12686 case 0x1b: /* FCVTMS */
12687 case 0x1c: /* FCVTAS */
12688 case 0x3a: /* FCVTPS */
12689 case 0x3b: /* FCVTZS */
12690 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12691 break;
12692 case 0x3d: /* FRECPE */
12693 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12694 break;
12695 case 0x5a: /* FCVTNU */
12696 case 0x5b: /* FCVTMU */
12697 case 0x5c: /* FCVTAU */
12698 case 0x7a: /* FCVTPU */
12699 case 0x7b: /* FCVTZU */
12700 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12701 break;
12702 case 0x18: /* FRINTN */
12703 case 0x19: /* FRINTM */
12704 case 0x38: /* FRINTP */
12705 case 0x39: /* FRINTZ */
12706 case 0x58: /* FRINTA */
12707 case 0x79: /* FRINTI */
12708 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12709 break;
12710 case 0x59: /* FRINTX */
12711 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12712 break;
12713 case 0x2f: /* FABS */
12714 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12715 break;
12716 case 0x6f: /* FNEG */
12717 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12718 break;
12719 case 0x7d: /* FRSQRTE */
12720 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12721 break;
12722 case 0x7f: /* FSQRT */
12723 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12724 break;
12725 default:
12726 g_assert_not_reached();
12729 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12732 clear_vec_high(s, is_q, rd);
12735 if (tcg_rmode) {
12736 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12740 /* AdvSIMD scalar x indexed element
12741 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12742 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12743 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12744 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12745 * AdvSIMD vector x indexed element
12746 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12747 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12748 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12749 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12751 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12753 /* This encoding has two kinds of instruction:
12754 * normal, where we perform elt x idxelt => elt for each
12755 * element in the vector
12756 * long, where we perform elt x idxelt and generate a result of
12757 * double the width of the input element
12758 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12760 bool is_scalar = extract32(insn, 28, 1);
12761 bool is_q = extract32(insn, 30, 1);
12762 bool u = extract32(insn, 29, 1);
12763 int size = extract32(insn, 22, 2);
12764 int l = extract32(insn, 21, 1);
12765 int m = extract32(insn, 20, 1);
12766 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12767 int rm = extract32(insn, 16, 4);
12768 int opcode = extract32(insn, 12, 4);
12769 int h = extract32(insn, 11, 1);
12770 int rn = extract32(insn, 5, 5);
12771 int rd = extract32(insn, 0, 5);
12772 bool is_long = false;
12773 int is_fp = 0;
12774 bool is_fp16 = false;
12775 int index;
12776 TCGv_ptr fpst;
12778 switch (16 * u + opcode) {
12779 case 0x08: /* MUL */
12780 case 0x10: /* MLA */
12781 case 0x14: /* MLS */
12782 if (is_scalar) {
12783 unallocated_encoding(s);
12784 return;
12786 break;
12787 case 0x02: /* SMLAL, SMLAL2 */
12788 case 0x12: /* UMLAL, UMLAL2 */
12789 case 0x06: /* SMLSL, SMLSL2 */
12790 case 0x16: /* UMLSL, UMLSL2 */
12791 case 0x0a: /* SMULL, SMULL2 */
12792 case 0x1a: /* UMULL, UMULL2 */
12793 if (is_scalar) {
12794 unallocated_encoding(s);
12795 return;
12797 is_long = true;
12798 break;
12799 case 0x03: /* SQDMLAL, SQDMLAL2 */
12800 case 0x07: /* SQDMLSL, SQDMLSL2 */
12801 case 0x0b: /* SQDMULL, SQDMULL2 */
12802 is_long = true;
12803 break;
12804 case 0x0c: /* SQDMULH */
12805 case 0x0d: /* SQRDMULH */
12806 break;
12807 case 0x01: /* FMLA */
12808 case 0x05: /* FMLS */
12809 case 0x09: /* FMUL */
12810 case 0x19: /* FMULX */
12811 is_fp = 1;
12812 break;
12813 case 0x1d: /* SQRDMLAH */
12814 case 0x1f: /* SQRDMLSH */
12815 if (!dc_isar_feature(aa64_rdm, s)) {
12816 unallocated_encoding(s);
12817 return;
12819 break;
12820 case 0x0e: /* SDOT */
12821 case 0x1e: /* UDOT */
12822 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12823 unallocated_encoding(s);
12824 return;
12826 break;
12827 case 0x0f:
12828 switch (size) {
12829 case 0: /* SUDOT */
12830 case 2: /* USDOT */
12831 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12832 unallocated_encoding(s);
12833 return;
12835 size = MO_32;
12836 break;
12837 case 1: /* BFDOT */
12838 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12839 unallocated_encoding(s);
12840 return;
12842 size = MO_32;
12843 break;
12844 case 3: /* BFMLAL{B,T} */
12845 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12846 unallocated_encoding(s);
12847 return;
12849 /* can't set is_fp without other incorrect size checks */
12850 size = MO_16;
12851 break;
12852 default:
12853 unallocated_encoding(s);
12854 return;
12856 break;
12857 case 0x11: /* FCMLA #0 */
12858 case 0x13: /* FCMLA #90 */
12859 case 0x15: /* FCMLA #180 */
12860 case 0x17: /* FCMLA #270 */
12861 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12862 unallocated_encoding(s);
12863 return;
12865 is_fp = 2;
12866 break;
12867 case 0x00: /* FMLAL */
12868 case 0x04: /* FMLSL */
12869 case 0x18: /* FMLAL2 */
12870 case 0x1c: /* FMLSL2 */
12871 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12872 unallocated_encoding(s);
12873 return;
12875 size = MO_16;
12876 /* is_fp, but we pass cpu_env not fp_status. */
12877 break;
12878 default:
12879 unallocated_encoding(s);
12880 return;
12883 switch (is_fp) {
12884 case 1: /* normal fp */
12885 /* convert insn encoded size to MemOp size */
12886 switch (size) {
12887 case 0: /* half-precision */
12888 size = MO_16;
12889 is_fp16 = true;
12890 break;
12891 case MO_32: /* single precision */
12892 case MO_64: /* double precision */
12893 break;
12894 default:
12895 unallocated_encoding(s);
12896 return;
12898 break;
12900 case 2: /* complex fp */
12901 /* Each indexable element is a complex pair. */
12902 size += 1;
12903 switch (size) {
12904 case MO_32:
12905 if (h && !is_q) {
12906 unallocated_encoding(s);
12907 return;
12909 is_fp16 = true;
12910 break;
12911 case MO_64:
12912 break;
12913 default:
12914 unallocated_encoding(s);
12915 return;
12917 break;
12919 default: /* integer */
12920 switch (size) {
12921 case MO_8:
12922 case MO_64:
12923 unallocated_encoding(s);
12924 return;
12926 break;
12928 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12929 unallocated_encoding(s);
12930 return;
12933 /* Given MemOp size, adjust register and indexing. */
12934 switch (size) {
12935 case MO_16:
12936 index = h << 2 | l << 1 | m;
12937 break;
12938 case MO_32:
12939 index = h << 1 | l;
12940 rm |= m << 4;
12941 break;
12942 case MO_64:
12943 if (l || !is_q) {
12944 unallocated_encoding(s);
12945 return;
12947 index = h;
12948 rm |= m << 4;
12949 break;
12950 default:
12951 g_assert_not_reached();
12954 if (!fp_access_check(s)) {
12955 return;
12958 if (is_fp) {
12959 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12960 } else {
12961 fpst = NULL;
12964 switch (16 * u + opcode) {
12965 case 0x0e: /* SDOT */
12966 case 0x1e: /* UDOT */
12967 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12968 u ? gen_helper_gvec_udot_idx_b
12969 : gen_helper_gvec_sdot_idx_b);
12970 return;
12971 case 0x0f:
12972 switch (extract32(insn, 22, 2)) {
12973 case 0: /* SUDOT */
12974 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12975 gen_helper_gvec_sudot_idx_b);
12976 return;
12977 case 1: /* BFDOT */
12978 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12979 gen_helper_gvec_bfdot_idx);
12980 return;
12981 case 2: /* USDOT */
12982 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12983 gen_helper_gvec_usdot_idx_b);
12984 return;
12985 case 3: /* BFMLAL{B,T} */
12986 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12987 gen_helper_gvec_bfmlal_idx);
12988 return;
12990 g_assert_not_reached();
12991 case 0x11: /* FCMLA #0 */
12992 case 0x13: /* FCMLA #90 */
12993 case 0x15: /* FCMLA #180 */
12994 case 0x17: /* FCMLA #270 */
12996 int rot = extract32(insn, 13, 2);
12997 int data = (index << 2) | rot;
12998 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12999 vec_full_reg_offset(s, rn),
13000 vec_full_reg_offset(s, rm),
13001 vec_full_reg_offset(s, rd), fpst,
13002 is_q ? 16 : 8, vec_full_reg_size(s), data,
13003 size == MO_64
13004 ? gen_helper_gvec_fcmlas_idx
13005 : gen_helper_gvec_fcmlah_idx);
13007 return;
13009 case 0x00: /* FMLAL */
13010 case 0x04: /* FMLSL */
13011 case 0x18: /* FMLAL2 */
13012 case 0x1c: /* FMLSL2 */
13014 int is_s = extract32(opcode, 2, 1);
13015 int is_2 = u;
13016 int data = (index << 2) | (is_2 << 1) | is_s;
13017 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13018 vec_full_reg_offset(s, rn),
13019 vec_full_reg_offset(s, rm), cpu_env,
13020 is_q ? 16 : 8, vec_full_reg_size(s),
13021 data, gen_helper_gvec_fmlal_idx_a64);
13023 return;
13025 case 0x08: /* MUL */
13026 if (!is_long && !is_scalar) {
13027 static gen_helper_gvec_3 * const fns[3] = {
13028 gen_helper_gvec_mul_idx_h,
13029 gen_helper_gvec_mul_idx_s,
13030 gen_helper_gvec_mul_idx_d,
13032 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13033 vec_full_reg_offset(s, rn),
13034 vec_full_reg_offset(s, rm),
13035 is_q ? 16 : 8, vec_full_reg_size(s),
13036 index, fns[size - 1]);
13037 return;
13039 break;
13041 case 0x10: /* MLA */
13042 if (!is_long && !is_scalar) {
13043 static gen_helper_gvec_4 * const fns[3] = {
13044 gen_helper_gvec_mla_idx_h,
13045 gen_helper_gvec_mla_idx_s,
13046 gen_helper_gvec_mla_idx_d,
13048 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13049 vec_full_reg_offset(s, rn),
13050 vec_full_reg_offset(s, rm),
13051 vec_full_reg_offset(s, rd),
13052 is_q ? 16 : 8, vec_full_reg_size(s),
13053 index, fns[size - 1]);
13054 return;
13056 break;
13058 case 0x14: /* MLS */
13059 if (!is_long && !is_scalar) {
13060 static gen_helper_gvec_4 * const fns[3] = {
13061 gen_helper_gvec_mls_idx_h,
13062 gen_helper_gvec_mls_idx_s,
13063 gen_helper_gvec_mls_idx_d,
13065 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13066 vec_full_reg_offset(s, rn),
13067 vec_full_reg_offset(s, rm),
13068 vec_full_reg_offset(s, rd),
13069 is_q ? 16 : 8, vec_full_reg_size(s),
13070 index, fns[size - 1]);
13071 return;
13073 break;
13076 if (size == 3) {
13077 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13078 int pass;
13080 assert(is_fp && is_q && !is_long);
13082 read_vec_element(s, tcg_idx, rm, index, MO_64);
13084 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13085 TCGv_i64 tcg_op = tcg_temp_new_i64();
13086 TCGv_i64 tcg_res = tcg_temp_new_i64();
13088 read_vec_element(s, tcg_op, rn, pass, MO_64);
13090 switch (16 * u + opcode) {
13091 case 0x05: /* FMLS */
13092 /* As usual for ARM, separate negation for fused multiply-add */
13093 gen_helper_vfp_negd(tcg_op, tcg_op);
13094 /* fall through */
13095 case 0x01: /* FMLA */
13096 read_vec_element(s, tcg_res, rd, pass, MO_64);
13097 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13098 break;
13099 case 0x09: /* FMUL */
13100 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13101 break;
13102 case 0x19: /* FMULX */
13103 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13104 break;
13105 default:
13106 g_assert_not_reached();
13109 write_vec_element(s, tcg_res, rd, pass, MO_64);
13112 clear_vec_high(s, !is_scalar, rd);
13113 } else if (!is_long) {
13114 /* 32 bit floating point, or 16 or 32 bit integer.
13115 * For the 16 bit scalar case we use the usual Neon helpers and
13116 * rely on the fact that 0 op 0 == 0 with no side effects.
13118 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13119 int pass, maxpasses;
13121 if (is_scalar) {
13122 maxpasses = 1;
13123 } else {
13124 maxpasses = is_q ? 4 : 2;
13127 read_vec_element_i32(s, tcg_idx, rm, index, size);
13129 if (size == 1 && !is_scalar) {
13130 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13131 * the index into both halves of the 32 bit tcg_idx and then use
13132 * the usual Neon helpers.
13134 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13137 for (pass = 0; pass < maxpasses; pass++) {
13138 TCGv_i32 tcg_op = tcg_temp_new_i32();
13139 TCGv_i32 tcg_res = tcg_temp_new_i32();
13141 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13143 switch (16 * u + opcode) {
13144 case 0x08: /* MUL */
13145 case 0x10: /* MLA */
13146 case 0x14: /* MLS */
13148 static NeonGenTwoOpFn * const fns[2][2] = {
13149 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13150 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13152 NeonGenTwoOpFn *genfn;
13153 bool is_sub = opcode == 0x4;
13155 if (size == 1) {
13156 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13157 } else {
13158 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13160 if (opcode == 0x8) {
13161 break;
13163 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13164 genfn = fns[size - 1][is_sub];
13165 genfn(tcg_res, tcg_op, tcg_res);
13166 break;
13168 case 0x05: /* FMLS */
13169 case 0x01: /* FMLA */
13170 read_vec_element_i32(s, tcg_res, rd, pass,
13171 is_scalar ? size : MO_32);
13172 switch (size) {
13173 case 1:
13174 if (opcode == 0x5) {
13175 /* As usual for ARM, separate negation for fused
13176 * multiply-add */
13177 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13179 if (is_scalar) {
13180 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13181 tcg_res, fpst);
13182 } else {
13183 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13184 tcg_res, fpst);
13186 break;
13187 case 2:
13188 if (opcode == 0x5) {
13189 /* As usual for ARM, separate negation for
13190 * fused multiply-add */
13191 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13193 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13194 tcg_res, fpst);
13195 break;
13196 default:
13197 g_assert_not_reached();
13199 break;
13200 case 0x09: /* FMUL */
13201 switch (size) {
13202 case 1:
13203 if (is_scalar) {
13204 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13205 tcg_idx, fpst);
13206 } else {
13207 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13208 tcg_idx, fpst);
13210 break;
13211 case 2:
13212 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13213 break;
13214 default:
13215 g_assert_not_reached();
13217 break;
13218 case 0x19: /* FMULX */
13219 switch (size) {
13220 case 1:
13221 if (is_scalar) {
13222 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13223 tcg_idx, fpst);
13224 } else {
13225 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13226 tcg_idx, fpst);
13228 break;
13229 case 2:
13230 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13231 break;
13232 default:
13233 g_assert_not_reached();
13235 break;
13236 case 0x0c: /* SQDMULH */
13237 if (size == 1) {
13238 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13239 tcg_op, tcg_idx);
13240 } else {
13241 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13242 tcg_op, tcg_idx);
13244 break;
13245 case 0x0d: /* SQRDMULH */
13246 if (size == 1) {
13247 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13248 tcg_op, tcg_idx);
13249 } else {
13250 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13251 tcg_op, tcg_idx);
13253 break;
13254 case 0x1d: /* SQRDMLAH */
13255 read_vec_element_i32(s, tcg_res, rd, pass,
13256 is_scalar ? size : MO_32);
13257 if (size == 1) {
13258 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13259 tcg_op, tcg_idx, tcg_res);
13260 } else {
13261 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13262 tcg_op, tcg_idx, tcg_res);
13264 break;
13265 case 0x1f: /* SQRDMLSH */
13266 read_vec_element_i32(s, tcg_res, rd, pass,
13267 is_scalar ? size : MO_32);
13268 if (size == 1) {
13269 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13270 tcg_op, tcg_idx, tcg_res);
13271 } else {
13272 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13273 tcg_op, tcg_idx, tcg_res);
13275 break;
13276 default:
13277 g_assert_not_reached();
13280 if (is_scalar) {
13281 write_fp_sreg(s, rd, tcg_res);
13282 } else {
13283 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13287 clear_vec_high(s, is_q, rd);
13288 } else {
13289 /* long ops: 16x16->32 or 32x32->64 */
13290 TCGv_i64 tcg_res[2];
13291 int pass;
13292 bool satop = extract32(opcode, 0, 1);
13293 MemOp memop = MO_32;
13295 if (satop || !u) {
13296 memop |= MO_SIGN;
13299 if (size == 2) {
13300 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13302 read_vec_element(s, tcg_idx, rm, index, memop);
13304 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13305 TCGv_i64 tcg_op = tcg_temp_new_i64();
13306 TCGv_i64 tcg_passres;
13307 int passelt;
13309 if (is_scalar) {
13310 passelt = 0;
13311 } else {
13312 passelt = pass + (is_q * 2);
13315 read_vec_element(s, tcg_op, rn, passelt, memop);
13317 tcg_res[pass] = tcg_temp_new_i64();
13319 if (opcode == 0xa || opcode == 0xb) {
13320 /* Non-accumulating ops */
13321 tcg_passres = tcg_res[pass];
13322 } else {
13323 tcg_passres = tcg_temp_new_i64();
13326 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13328 if (satop) {
13329 /* saturating, doubling */
13330 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13331 tcg_passres, tcg_passres);
13334 if (opcode == 0xa || opcode == 0xb) {
13335 continue;
13338 /* Accumulating op: handle accumulate step */
13339 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13341 switch (opcode) {
13342 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13343 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13344 break;
13345 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13346 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13347 break;
13348 case 0x7: /* SQDMLSL, SQDMLSL2 */
13349 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13350 /* fall through */
13351 case 0x3: /* SQDMLAL, SQDMLAL2 */
13352 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13353 tcg_res[pass],
13354 tcg_passres);
13355 break;
13356 default:
13357 g_assert_not_reached();
13361 clear_vec_high(s, !is_scalar, rd);
13362 } else {
13363 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13365 assert(size == 1);
13366 read_vec_element_i32(s, tcg_idx, rm, index, size);
13368 if (!is_scalar) {
13369 /* The simplest way to handle the 16x16 indexed ops is to
13370 * duplicate the index into both halves of the 32 bit tcg_idx
13371 * and then use the usual Neon helpers.
13373 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13376 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13377 TCGv_i32 tcg_op = tcg_temp_new_i32();
13378 TCGv_i64 tcg_passres;
13380 if (is_scalar) {
13381 read_vec_element_i32(s, tcg_op, rn, pass, size);
13382 } else {
13383 read_vec_element_i32(s, tcg_op, rn,
13384 pass + (is_q * 2), MO_32);
13387 tcg_res[pass] = tcg_temp_new_i64();
13389 if (opcode == 0xa || opcode == 0xb) {
13390 /* Non-accumulating ops */
13391 tcg_passres = tcg_res[pass];
13392 } else {
13393 tcg_passres = tcg_temp_new_i64();
13396 if (memop & MO_SIGN) {
13397 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13398 } else {
13399 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13401 if (satop) {
13402 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13403 tcg_passres, tcg_passres);
13406 if (opcode == 0xa || opcode == 0xb) {
13407 continue;
13410 /* Accumulating op: handle accumulate step */
13411 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13413 switch (opcode) {
13414 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13415 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13416 tcg_passres);
13417 break;
13418 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13419 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13420 tcg_passres);
13421 break;
13422 case 0x7: /* SQDMLSL, SQDMLSL2 */
13423 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13424 /* fall through */
13425 case 0x3: /* SQDMLAL, SQDMLAL2 */
13426 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13427 tcg_res[pass],
13428 tcg_passres);
13429 break;
13430 default:
13431 g_assert_not_reached();
13435 if (is_scalar) {
13436 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13440 if (is_scalar) {
13441 tcg_res[1] = tcg_constant_i64(0);
13444 for (pass = 0; pass < 2; pass++) {
13445 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13450 /* Crypto AES
13451 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13452 * +-----------------+------+-----------+--------+-----+------+------+
13453 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13454 * +-----------------+------+-----------+--------+-----+------+------+
13456 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13458 int size = extract32(insn, 22, 2);
13459 int opcode = extract32(insn, 12, 5);
13460 int rn = extract32(insn, 5, 5);
13461 int rd = extract32(insn, 0, 5);
13462 int decrypt;
13463 gen_helper_gvec_2 *genfn2 = NULL;
13464 gen_helper_gvec_3 *genfn3 = NULL;
13466 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13467 unallocated_encoding(s);
13468 return;
13471 switch (opcode) {
13472 case 0x4: /* AESE */
13473 decrypt = 0;
13474 genfn3 = gen_helper_crypto_aese;
13475 break;
13476 case 0x6: /* AESMC */
13477 decrypt = 0;
13478 genfn2 = gen_helper_crypto_aesmc;
13479 break;
13480 case 0x5: /* AESD */
13481 decrypt = 1;
13482 genfn3 = gen_helper_crypto_aese;
13483 break;
13484 case 0x7: /* AESIMC */
13485 decrypt = 1;
13486 genfn2 = gen_helper_crypto_aesmc;
13487 break;
13488 default:
13489 unallocated_encoding(s);
13490 return;
13493 if (!fp_access_check(s)) {
13494 return;
13496 if (genfn2) {
13497 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13498 } else {
13499 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13503 /* Crypto three-reg SHA
13504 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13505 * +-----------------+------+---+------+---+--------+-----+------+------+
13506 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13507 * +-----------------+------+---+------+---+--------+-----+------+------+
13509 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13511 int size = extract32(insn, 22, 2);
13512 int opcode = extract32(insn, 12, 3);
13513 int rm = extract32(insn, 16, 5);
13514 int rn = extract32(insn, 5, 5);
13515 int rd = extract32(insn, 0, 5);
13516 gen_helper_gvec_3 *genfn;
13517 bool feature;
13519 if (size != 0) {
13520 unallocated_encoding(s);
13521 return;
13524 switch (opcode) {
13525 case 0: /* SHA1C */
13526 genfn = gen_helper_crypto_sha1c;
13527 feature = dc_isar_feature(aa64_sha1, s);
13528 break;
13529 case 1: /* SHA1P */
13530 genfn = gen_helper_crypto_sha1p;
13531 feature = dc_isar_feature(aa64_sha1, s);
13532 break;
13533 case 2: /* SHA1M */
13534 genfn = gen_helper_crypto_sha1m;
13535 feature = dc_isar_feature(aa64_sha1, s);
13536 break;
13537 case 3: /* SHA1SU0 */
13538 genfn = gen_helper_crypto_sha1su0;
13539 feature = dc_isar_feature(aa64_sha1, s);
13540 break;
13541 case 4: /* SHA256H */
13542 genfn = gen_helper_crypto_sha256h;
13543 feature = dc_isar_feature(aa64_sha256, s);
13544 break;
13545 case 5: /* SHA256H2 */
13546 genfn = gen_helper_crypto_sha256h2;
13547 feature = dc_isar_feature(aa64_sha256, s);
13548 break;
13549 case 6: /* SHA256SU1 */
13550 genfn = gen_helper_crypto_sha256su1;
13551 feature = dc_isar_feature(aa64_sha256, s);
13552 break;
13553 default:
13554 unallocated_encoding(s);
13555 return;
13558 if (!feature) {
13559 unallocated_encoding(s);
13560 return;
13563 if (!fp_access_check(s)) {
13564 return;
13566 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13569 /* Crypto two-reg SHA
13570 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13571 * +-----------------+------+-----------+--------+-----+------+------+
13572 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13573 * +-----------------+------+-----------+--------+-----+------+------+
13575 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13577 int size = extract32(insn, 22, 2);
13578 int opcode = extract32(insn, 12, 5);
13579 int rn = extract32(insn, 5, 5);
13580 int rd = extract32(insn, 0, 5);
13581 gen_helper_gvec_2 *genfn;
13582 bool feature;
13584 if (size != 0) {
13585 unallocated_encoding(s);
13586 return;
13589 switch (opcode) {
13590 case 0: /* SHA1H */
13591 feature = dc_isar_feature(aa64_sha1, s);
13592 genfn = gen_helper_crypto_sha1h;
13593 break;
13594 case 1: /* SHA1SU1 */
13595 feature = dc_isar_feature(aa64_sha1, s);
13596 genfn = gen_helper_crypto_sha1su1;
13597 break;
13598 case 2: /* SHA256SU0 */
13599 feature = dc_isar_feature(aa64_sha256, s);
13600 genfn = gen_helper_crypto_sha256su0;
13601 break;
13602 default:
13603 unallocated_encoding(s);
13604 return;
13607 if (!feature) {
13608 unallocated_encoding(s);
13609 return;
13612 if (!fp_access_check(s)) {
13613 return;
13615 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13618 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13620 tcg_gen_rotli_i64(d, m, 1);
13621 tcg_gen_xor_i64(d, d, n);
13624 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13626 tcg_gen_rotli_vec(vece, d, m, 1);
13627 tcg_gen_xor_vec(vece, d, d, n);
13630 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13631 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13633 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13634 static const GVecGen3 op = {
13635 .fni8 = gen_rax1_i64,
13636 .fniv = gen_rax1_vec,
13637 .opt_opc = vecop_list,
13638 .fno = gen_helper_crypto_rax1,
13639 .vece = MO_64,
13641 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13644 /* Crypto three-reg SHA512
13645 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13646 * +-----------------------+------+---+---+-----+--------+------+------+
13647 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13648 * +-----------------------+------+---+---+-----+--------+------+------+
13650 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13652 int opcode = extract32(insn, 10, 2);
13653 int o = extract32(insn, 14, 1);
13654 int rm = extract32(insn, 16, 5);
13655 int rn = extract32(insn, 5, 5);
13656 int rd = extract32(insn, 0, 5);
13657 bool feature;
13658 gen_helper_gvec_3 *oolfn = NULL;
13659 GVecGen3Fn *gvecfn = NULL;
13661 if (o == 0) {
13662 switch (opcode) {
13663 case 0: /* SHA512H */
13664 feature = dc_isar_feature(aa64_sha512, s);
13665 oolfn = gen_helper_crypto_sha512h;
13666 break;
13667 case 1: /* SHA512H2 */
13668 feature = dc_isar_feature(aa64_sha512, s);
13669 oolfn = gen_helper_crypto_sha512h2;
13670 break;
13671 case 2: /* SHA512SU1 */
13672 feature = dc_isar_feature(aa64_sha512, s);
13673 oolfn = gen_helper_crypto_sha512su1;
13674 break;
13675 case 3: /* RAX1 */
13676 feature = dc_isar_feature(aa64_sha3, s);
13677 gvecfn = gen_gvec_rax1;
13678 break;
13679 default:
13680 g_assert_not_reached();
13682 } else {
13683 switch (opcode) {
13684 case 0: /* SM3PARTW1 */
13685 feature = dc_isar_feature(aa64_sm3, s);
13686 oolfn = gen_helper_crypto_sm3partw1;
13687 break;
13688 case 1: /* SM3PARTW2 */
13689 feature = dc_isar_feature(aa64_sm3, s);
13690 oolfn = gen_helper_crypto_sm3partw2;
13691 break;
13692 case 2: /* SM4EKEY */
13693 feature = dc_isar_feature(aa64_sm4, s);
13694 oolfn = gen_helper_crypto_sm4ekey;
13695 break;
13696 default:
13697 unallocated_encoding(s);
13698 return;
13702 if (!feature) {
13703 unallocated_encoding(s);
13704 return;
13707 if (!fp_access_check(s)) {
13708 return;
13711 if (oolfn) {
13712 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13713 } else {
13714 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13718 /* Crypto two-reg SHA512
13719 * 31 12 11 10 9 5 4 0
13720 * +-----------------------------------------+--------+------+------+
13721 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13722 * +-----------------------------------------+--------+------+------+
13724 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13726 int opcode = extract32(insn, 10, 2);
13727 int rn = extract32(insn, 5, 5);
13728 int rd = extract32(insn, 0, 5);
13729 bool feature;
13731 switch (opcode) {
13732 case 0: /* SHA512SU0 */
13733 feature = dc_isar_feature(aa64_sha512, s);
13734 break;
13735 case 1: /* SM4E */
13736 feature = dc_isar_feature(aa64_sm4, s);
13737 break;
13738 default:
13739 unallocated_encoding(s);
13740 return;
13743 if (!feature) {
13744 unallocated_encoding(s);
13745 return;
13748 if (!fp_access_check(s)) {
13749 return;
13752 switch (opcode) {
13753 case 0: /* SHA512SU0 */
13754 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13755 break;
13756 case 1: /* SM4E */
13757 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13758 break;
13759 default:
13760 g_assert_not_reached();
13764 /* Crypto four-register
13765 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13766 * +-------------------+-----+------+---+------+------+------+
13767 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13768 * +-------------------+-----+------+---+------+------+------+
13770 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13772 int op0 = extract32(insn, 21, 2);
13773 int rm = extract32(insn, 16, 5);
13774 int ra = extract32(insn, 10, 5);
13775 int rn = extract32(insn, 5, 5);
13776 int rd = extract32(insn, 0, 5);
13777 bool feature;
13779 switch (op0) {
13780 case 0: /* EOR3 */
13781 case 1: /* BCAX */
13782 feature = dc_isar_feature(aa64_sha3, s);
13783 break;
13784 case 2: /* SM3SS1 */
13785 feature = dc_isar_feature(aa64_sm3, s);
13786 break;
13787 default:
13788 unallocated_encoding(s);
13789 return;
13792 if (!feature) {
13793 unallocated_encoding(s);
13794 return;
13797 if (!fp_access_check(s)) {
13798 return;
13801 if (op0 < 2) {
13802 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13803 int pass;
13805 tcg_op1 = tcg_temp_new_i64();
13806 tcg_op2 = tcg_temp_new_i64();
13807 tcg_op3 = tcg_temp_new_i64();
13808 tcg_res[0] = tcg_temp_new_i64();
13809 tcg_res[1] = tcg_temp_new_i64();
13811 for (pass = 0; pass < 2; pass++) {
13812 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13813 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13814 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13816 if (op0 == 0) {
13817 /* EOR3 */
13818 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13819 } else {
13820 /* BCAX */
13821 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13823 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13825 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13826 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13827 } else {
13828 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13830 tcg_op1 = tcg_temp_new_i32();
13831 tcg_op2 = tcg_temp_new_i32();
13832 tcg_op3 = tcg_temp_new_i32();
13833 tcg_res = tcg_temp_new_i32();
13834 tcg_zero = tcg_constant_i32(0);
13836 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13837 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13838 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13840 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13841 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13842 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13843 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13845 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13846 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13847 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13848 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13852 /* Crypto XAR
13853 * 31 21 20 16 15 10 9 5 4 0
13854 * +-----------------------+------+--------+------+------+
13855 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13856 * +-----------------------+------+--------+------+------+
13858 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13860 int rm = extract32(insn, 16, 5);
13861 int imm6 = extract32(insn, 10, 6);
13862 int rn = extract32(insn, 5, 5);
13863 int rd = extract32(insn, 0, 5);
13865 if (!dc_isar_feature(aa64_sha3, s)) {
13866 unallocated_encoding(s);
13867 return;
13870 if (!fp_access_check(s)) {
13871 return;
13874 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13875 vec_full_reg_offset(s, rn),
13876 vec_full_reg_offset(s, rm), imm6, 16,
13877 vec_full_reg_size(s));
13880 /* Crypto three-reg imm2
13881 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13882 * +-----------------------+------+-----+------+--------+------+------+
13883 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13884 * +-----------------------+------+-----+------+--------+------+------+
13886 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13888 static gen_helper_gvec_3 * const fns[4] = {
13889 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13890 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13892 int opcode = extract32(insn, 10, 2);
13893 int imm2 = extract32(insn, 12, 2);
13894 int rm = extract32(insn, 16, 5);
13895 int rn = extract32(insn, 5, 5);
13896 int rd = extract32(insn, 0, 5);
13898 if (!dc_isar_feature(aa64_sm3, s)) {
13899 unallocated_encoding(s);
13900 return;
13903 if (!fp_access_check(s)) {
13904 return;
13907 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13910 /* C3.6 Data processing - SIMD, inc Crypto
13912 * As the decode gets a little complex we are using a table based
13913 * approach for this part of the decode.
13915 static const AArch64DecodeTable data_proc_simd[] = {
13916 /* pattern , mask , fn */
13917 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13918 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13919 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13920 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13921 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13922 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13923 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13924 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13925 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13926 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13927 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13928 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13929 { 0x2e000000, 0xbf208400, disas_simd_ext },
13930 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13931 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13932 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13933 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13934 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13935 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13936 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13937 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13938 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13939 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13940 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13941 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13942 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13943 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13944 { 0xce800000, 0xffe00000, disas_crypto_xar },
13945 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13946 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13947 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13948 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13949 { 0x00000000, 0x00000000, NULL }
13952 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13954 /* Note that this is called with all non-FP cases from
13955 * table C3-6 so it must UNDEF for entries not specifically
13956 * allocated to instructions in that table.
13958 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13959 if (fn) {
13960 fn(s, insn);
13961 } else {
13962 unallocated_encoding(s);
13966 /* C3.6 Data processing - SIMD and floating point */
13967 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13969 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13970 disas_data_proc_fp(s, insn);
13971 } else {
13972 /* SIMD, including crypto */
13973 disas_data_proc_simd(s, insn);
13977 static bool trans_OK(DisasContext *s, arg_OK *a)
13979 return true;
13982 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13984 s->is_nonstreaming = true;
13985 return true;
13989 * is_guarded_page:
13990 * @env: The cpu environment
13991 * @s: The DisasContext
13993 * Return true if the page is guarded.
13995 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13997 uint64_t addr = s->base.pc_first;
13998 #ifdef CONFIG_USER_ONLY
13999 return page_get_flags(addr) & PAGE_BTI;
14000 #else
14001 CPUTLBEntryFull *full;
14002 void *host;
14003 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14004 int flags;
14007 * We test this immediately after reading an insn, which means
14008 * that the TLB entry must be present and valid, and thus this
14009 * access will never raise an exception.
14011 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
14012 false, &host, &full, 0);
14013 assert(!(flags & TLB_INVALID_MASK));
14015 return full->guarded;
14016 #endif
14020 * btype_destination_ok:
14021 * @insn: The instruction at the branch destination
14022 * @bt: SCTLR_ELx.BT
14023 * @btype: PSTATE.BTYPE, and is non-zero
14025 * On a guarded page, there are a limited number of insns
14026 * that may be present at the branch target:
14027 * - branch target identifiers,
14028 * - paciasp, pacibsp,
14029 * - BRK insn
14030 * - HLT insn
14031 * Anything else causes a Branch Target Exception.
14033 * Return true if the branch is compatible, false to raise BTITRAP.
14035 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14037 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14038 /* HINT space */
14039 switch (extract32(insn, 5, 7)) {
14040 case 0b011001: /* PACIASP */
14041 case 0b011011: /* PACIBSP */
14043 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14044 * with btype == 3. Otherwise all btype are ok.
14046 return !bt || btype != 3;
14047 case 0b100000: /* BTI */
14048 /* Not compatible with any btype. */
14049 return false;
14050 case 0b100010: /* BTI c */
14051 /* Not compatible with btype == 3 */
14052 return btype != 3;
14053 case 0b100100: /* BTI j */
14054 /* Not compatible with btype == 2 */
14055 return btype != 2;
14056 case 0b100110: /* BTI jc */
14057 /* Compatible with any btype. */
14058 return true;
14060 } else {
14061 switch (insn & 0xffe0001fu) {
14062 case 0xd4200000u: /* BRK */
14063 case 0xd4400000u: /* HLT */
14064 /* Give priority to the breakpoint exception. */
14065 return true;
14068 return false;
14071 /* C3.1 A64 instruction index by encoding */
14072 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14074 switch (extract32(insn, 25, 4)) {
14075 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14076 disas_b_exc_sys(s, insn);
14077 break;
14078 case 0x4:
14079 case 0x6:
14080 case 0xc:
14081 case 0xe: /* Loads and stores */
14082 disas_ldst(s, insn);
14083 break;
14084 case 0x5:
14085 case 0xd: /* Data processing - register */
14086 disas_data_proc_reg(s, insn);
14087 break;
14088 case 0x7:
14089 case 0xf: /* Data processing - SIMD and floating point */
14090 disas_data_proc_simd_fp(s, insn);
14091 break;
14092 default:
14093 unallocated_encoding(s);
14094 break;
14098 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14099 CPUState *cpu)
14101 DisasContext *dc = container_of(dcbase, DisasContext, base);
14102 CPUARMState *env = cpu->env_ptr;
14103 ARMCPU *arm_cpu = env_archcpu(env);
14104 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14105 int bound, core_mmu_idx;
14107 dc->isar = &arm_cpu->isar;
14108 dc->condjmp = 0;
14109 dc->pc_save = dc->base.pc_first;
14110 dc->aarch64 = true;
14111 dc->thumb = false;
14112 dc->sctlr_b = 0;
14113 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14114 dc->condexec_mask = 0;
14115 dc->condexec_cond = 0;
14116 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14117 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14118 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14119 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14120 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14121 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14122 #if !defined(CONFIG_USER_ONLY)
14123 dc->user = (dc->current_el == 0);
14124 #endif
14125 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14126 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14127 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14128 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14129 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14130 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14131 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14132 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14133 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14134 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14135 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14136 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14137 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14138 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14139 dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14140 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14141 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14142 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14143 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14144 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14145 dc->vec_len = 0;
14146 dc->vec_stride = 0;
14147 dc->cp_regs = arm_cpu->cp_regs;
14148 dc->features = env->features;
14149 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14151 #ifdef CONFIG_USER_ONLY
14152 /* In sve_probe_page, we assume TBI is enabled. */
14153 tcg_debug_assert(dc->tbid & 1);
14154 #endif
14156 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14158 /* Single step state. The code-generation logic here is:
14159 * SS_ACTIVE == 0:
14160 * generate code with no special handling for single-stepping (except
14161 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14162 * this happens anyway because those changes are all system register or
14163 * PSTATE writes).
14164 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14165 * emit code for one insn
14166 * emit code to clear PSTATE.SS
14167 * emit code to generate software step exception for completed step
14168 * end TB (as usual for having generated an exception)
14169 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14170 * emit code to generate a software step exception
14171 * end the TB
14173 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14174 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14175 dc->is_ldex = false;
14177 /* Bound the number of insns to execute to those left on the page. */
14178 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14180 /* If architectural single step active, limit to 1. */
14181 if (dc->ss_active) {
14182 bound = 1;
14184 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14187 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14191 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14193 DisasContext *dc = container_of(dcbase, DisasContext, base);
14194 target_ulong pc_arg = dc->base.pc_next;
14196 if (tb_cflags(dcbase->tb) & CF_PCREL) {
14197 pc_arg &= ~TARGET_PAGE_MASK;
14199 tcg_gen_insn_start(pc_arg, 0, 0);
14200 dc->insn_start = tcg_last_op();
14203 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14205 DisasContext *s = container_of(dcbase, DisasContext, base);
14206 CPUARMState *env = cpu->env_ptr;
14207 uint64_t pc = s->base.pc_next;
14208 uint32_t insn;
14210 /* Singlestep exceptions have the highest priority. */
14211 if (s->ss_active && !s->pstate_ss) {
14212 /* Singlestep state is Active-pending.
14213 * If we're in this state at the start of a TB then either
14214 * a) we just took an exception to an EL which is being debugged
14215 * and this is the first insn in the exception handler
14216 * b) debug exceptions were masked and we just unmasked them
14217 * without changing EL (eg by clearing PSTATE.D)
14218 * In either case we're going to take a swstep exception in the
14219 * "did not step an insn" case, and so the syndrome ISV and EX
14220 * bits should be zero.
14222 assert(s->base.num_insns == 1);
14223 gen_swstep_exception(s, 0, 0);
14224 s->base.is_jmp = DISAS_NORETURN;
14225 s->base.pc_next = pc + 4;
14226 return;
14229 if (pc & 3) {
14231 * PC alignment fault. This has priority over the instruction abort
14232 * that we would receive from a translation fault via arm_ldl_code.
14233 * This should only be possible after an indirect branch, at the
14234 * start of the TB.
14236 assert(s->base.num_insns == 1);
14237 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14238 s->base.is_jmp = DISAS_NORETURN;
14239 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14240 return;
14243 s->pc_curr = pc;
14244 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14245 s->insn = insn;
14246 s->base.pc_next = pc + 4;
14248 s->fp_access_checked = false;
14249 s->sve_access_checked = false;
14251 if (s->pstate_il) {
14253 * Illegal execution state. This has priority over BTI
14254 * exceptions, but comes after instruction abort exceptions.
14256 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14257 return;
14260 if (dc_isar_feature(aa64_bti, s)) {
14261 if (s->base.num_insns == 1) {
14263 * At the first insn of the TB, compute s->guarded_page.
14264 * We delayed computing this until successfully reading
14265 * the first insn of the TB, above. This (mostly) ensures
14266 * that the softmmu tlb entry has been populated, and the
14267 * page table GP bit is available.
14269 * Note that we need to compute this even if btype == 0,
14270 * because this value is used for BR instructions later
14271 * where ENV is not available.
14273 s->guarded_page = is_guarded_page(env, s);
14275 /* First insn can have btype set to non-zero. */
14276 tcg_debug_assert(s->btype >= 0);
14279 * Note that the Branch Target Exception has fairly high
14280 * priority -- below debugging exceptions but above most
14281 * everything else. This allows us to handle this now
14282 * instead of waiting until the insn is otherwise decoded.
14284 if (s->btype != 0
14285 && s->guarded_page
14286 && !btype_destination_ok(insn, s->bt, s->btype)) {
14287 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14288 return;
14290 } else {
14291 /* Not the first insn: btype must be 0. */
14292 tcg_debug_assert(s->btype == 0);
14296 s->is_nonstreaming = false;
14297 if (s->sme_trap_nonstreaming) {
14298 disas_sme_fa64(s, insn);
14301 if (!disas_a64(s, insn) &&
14302 !disas_sme(s, insn) &&
14303 !disas_sve(s, insn)) {
14304 disas_a64_legacy(s, insn);
14308 * After execution of most insns, btype is reset to 0.
14309 * Note that we set btype == -1 when the insn sets btype.
14311 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14312 reset_btype(s);
14316 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14318 DisasContext *dc = container_of(dcbase, DisasContext, base);
14320 if (unlikely(dc->ss_active)) {
14321 /* Note that this means single stepping WFI doesn't halt the CPU.
14322 * For conditional branch insns this is harmless unreachable code as
14323 * gen_goto_tb() has already handled emitting the debug exception
14324 * (and thus a tb-jump is not possible when singlestepping).
14326 switch (dc->base.is_jmp) {
14327 default:
14328 gen_a64_update_pc(dc, 4);
14329 /* fall through */
14330 case DISAS_EXIT:
14331 case DISAS_JUMP:
14332 gen_step_complete_exception(dc);
14333 break;
14334 case DISAS_NORETURN:
14335 break;
14337 } else {
14338 switch (dc->base.is_jmp) {
14339 case DISAS_NEXT:
14340 case DISAS_TOO_MANY:
14341 gen_goto_tb(dc, 1, 4);
14342 break;
14343 default:
14344 case DISAS_UPDATE_EXIT:
14345 gen_a64_update_pc(dc, 4);
14346 /* fall through */
14347 case DISAS_EXIT:
14348 tcg_gen_exit_tb(NULL, 0);
14349 break;
14350 case DISAS_UPDATE_NOCHAIN:
14351 gen_a64_update_pc(dc, 4);
14352 /* fall through */
14353 case DISAS_JUMP:
14354 tcg_gen_lookup_and_goto_ptr();
14355 break;
14356 case DISAS_NORETURN:
14357 case DISAS_SWI:
14358 break;
14359 case DISAS_WFE:
14360 gen_a64_update_pc(dc, 4);
14361 gen_helper_wfe(cpu_env);
14362 break;
14363 case DISAS_YIELD:
14364 gen_a64_update_pc(dc, 4);
14365 gen_helper_yield(cpu_env);
14366 break;
14367 case DISAS_WFI:
14369 * This is a special case because we don't want to just halt
14370 * the CPU if trying to debug across a WFI.
14372 gen_a64_update_pc(dc, 4);
14373 gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14375 * The helper doesn't necessarily throw an exception, but we
14376 * must go back to the main loop to check for interrupts anyway.
14378 tcg_gen_exit_tb(NULL, 0);
14379 break;
14384 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14385 CPUState *cpu, FILE *logfile)
14387 DisasContext *dc = container_of(dcbase, DisasContext, base);
14389 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14390 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14393 const TranslatorOps aarch64_translator_ops = {
14394 .init_disas_context = aarch64_tr_init_disas_context,
14395 .tb_start = aarch64_tr_tb_start,
14396 .insn_start = aarch64_tr_insn_start,
14397 .translate_insn = aarch64_tr_translate_insn,
14398 .tb_stop = aarch64_tr_tb_stop,
14399 .disas_log = aarch64_tr_disas_log,