spapr/drc: Drop spapr_drc_attach() fdt argument
[qemu/ar7.git] / hw / ppc / spapr.c
blob9364d07364ac2947a740b7b2c60848cd4bb4a4c1
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "hw/mem/memory-device.h"
77 #include <libfdt.h>
79 /* SLOF memory layout:
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
87 * We load our kernel at 4M, leaving space for SLOF initial image
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97 #define MIN_RMA_SLOF 128UL
99 #define PHANDLE_INTC 0x00001111
101 /* These two functions implement the VCPU id numbering: one to compute them
102 * all and one to identify thread 0 of a VCORE. Any change to the first one
103 * is likely to have an impact on the second one, so let's keep them close.
105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
107 assert(spapr->vsmt);
108 return
109 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
112 PowerPCCPU *cpu)
114 assert(spapr->vsmt);
115 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
121 * and newer QEMUs don't even have them. In both cases, we don't want
122 * to send anything on the wire.
124 return false;
127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
128 .name = "icp/server",
129 .version_id = 1,
130 .minimum_version_id = 1,
131 .needed = pre_2_10_vmstate_dummy_icp_needed,
132 .fields = (VMStateField[]) {
133 VMSTATE_UNUSED(4), /* uint32_t xirr */
134 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
135 VMSTATE_UNUSED(1), /* uint8_t mfrr */
136 VMSTATE_END_OF_LIST()
140 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
143 (void *)(uintptr_t) i);
146 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
149 (void *)(uintptr_t) i);
152 int spapr_max_server_number(sPAPRMachineState *spapr)
154 assert(spapr->vsmt);
155 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159 int smt_threads)
161 int i, ret = 0;
162 uint32_t servers_prop[smt_threads];
163 uint32_t gservers_prop[smt_threads * 2];
164 int index = spapr_get_vcpu_id(cpu);
166 if (cpu->compat_pvr) {
167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
168 if (ret < 0) {
169 return ret;
173 /* Build interrupt servers and gservers properties */
174 for (i = 0; i < smt_threads; i++) {
175 servers_prop[i] = cpu_to_be32(index + i);
176 /* Hack, direct the group queues back to cpu 0 */
177 gservers_prop[i*2] = cpu_to_be32(index + i);
178 gservers_prop[i*2 + 1] = 0;
180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181 servers_prop, sizeof(servers_prop));
182 if (ret < 0) {
183 return ret;
185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186 gservers_prop, sizeof(gservers_prop));
188 return ret;
191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 int index = spapr_get_vcpu_id(cpu);
194 uint32_t associativity[] = {cpu_to_be32(0x5),
195 cpu_to_be32(0x0),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(cpu->node_id),
199 cpu_to_be32(index)};
201 /* Advertise NUMA via ibm,associativity */
202 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
203 sizeof(associativity));
206 /* Populate the "ibm,pa-features" property */
207 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
208 PowerPCCPU *cpu,
209 void *fdt, int offset,
210 bool legacy_guest)
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
259 if (!pa_features) {
260 return;
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
271 pa_features[3] |= 0x20;
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
276 if (legacy_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
288 int ret = 0, offset, cpus_offset;
289 CPUState *cs;
290 char cpu_model[32];
291 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293 CPU_FOREACH(cs) {
294 PowerPCCPU *cpu = POWERPC_CPU(cs);
295 DeviceClass *dc = DEVICE_GET_CLASS(cs);
296 int index = spapr_get_vcpu_id(cpu);
297 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
300 continue;
303 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305 cpus_offset = fdt_path_offset(fdt, "/cpus");
306 if (cpus_offset < 0) {
307 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
308 if (cpus_offset < 0) {
309 return cpus_offset;
312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315 if (offset < 0) {
316 return offset;
320 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321 pft_size_prop, sizeof(pft_size_prop));
322 if (ret < 0) {
323 return ret;
326 if (nb_numa_nodes > 1) {
327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328 if (ret < 0) {
329 return ret;
333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334 if (ret < 0) {
335 return ret;
338 spapr_populate_pa_features(spapr, cpu, fdt, offset,
339 spapr->cas_legacy_guest_workaround);
341 return ret;
344 static hwaddr spapr_node0_size(MachineState *machine)
346 if (nb_numa_nodes) {
347 int i;
348 for (i = 0; i < nb_numa_nodes; ++i) {
349 if (numa_info[i].node_mem) {
350 return MIN(pow2floor(numa_info[i].node_mem),
351 machine->ram_size);
355 return machine->ram_size;
358 static void add_str(GString *s, const gchar *s1)
360 g_string_append_len(s, s1, strlen(s1) + 1);
363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
364 hwaddr size)
366 uint32_t associativity[] = {
367 cpu_to_be32(0x4), /* length */
368 cpu_to_be32(0x0), cpu_to_be32(0x0),
369 cpu_to_be32(0x0), cpu_to_be32(nodeid)
371 char mem_name[32];
372 uint64_t mem_reg_property[2];
373 int off;
375 mem_reg_property[0] = cpu_to_be64(start);
376 mem_reg_property[1] = cpu_to_be64(size);
378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379 off = fdt_add_subnode(fdt, 0, mem_name);
380 _FDT(off);
381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383 sizeof(mem_reg_property))));
384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385 sizeof(associativity))));
386 return off;
389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
391 MachineState *machine = MACHINE(spapr);
392 hwaddr mem_start, node_size;
393 int i, nb_nodes = nb_numa_nodes;
394 NodeInfo *nodes = numa_info;
395 NodeInfo ramnode;
397 /* No NUMA nodes, assume there is just one node with whole RAM */
398 if (!nb_numa_nodes) {
399 nb_nodes = 1;
400 ramnode.node_mem = machine->ram_size;
401 nodes = &ramnode;
404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405 if (!nodes[i].node_mem) {
406 continue;
408 if (mem_start >= machine->ram_size) {
409 node_size = 0;
410 } else {
411 node_size = nodes[i].node_mem;
412 if (node_size > machine->ram_size - mem_start) {
413 node_size = machine->ram_size - mem_start;
416 if (!mem_start) {
417 /* spapr_machine_init() checks for rma_size <= node0_size
418 * already */
419 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
420 mem_start += spapr->rma_size;
421 node_size -= spapr->rma_size;
423 for ( ; node_size; ) {
424 hwaddr sizetmp = pow2floor(node_size);
426 /* mem_start != 0 here */
427 if (ctzl(mem_start) < ctzl(sizetmp)) {
428 sizetmp = 1ULL << ctzl(mem_start);
431 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
432 node_size -= sizetmp;
433 mem_start += sizetmp;
437 return 0;
440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
441 sPAPRMachineState *spapr)
443 PowerPCCPU *cpu = POWERPC_CPU(cs);
444 CPUPPCState *env = &cpu->env;
445 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
446 int index = spapr_get_vcpu_id(cpu);
447 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
448 0xffffffff, 0xffffffff};
449 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
450 : SPAPR_TIMEBASE_FREQ;
451 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
452 uint32_t page_sizes_prop[64];
453 size_t page_sizes_prop_size;
454 uint32_t vcpus_per_socket = smp_threads * smp_cores;
455 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
456 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
457 sPAPRDRConnector *drc;
458 int drc_index;
459 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
460 int i;
462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
463 if (drc) {
464 drc_index = spapr_drc_index(drc);
465 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
468 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
469 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
473 env->dcache_line_size)));
474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
475 env->dcache_line_size)));
476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
477 env->icache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
479 env->icache_line_size)));
481 if (pcc->l1_dcache_size) {
482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
483 pcc->l1_dcache_size)));
484 } else {
485 warn_report("Unknown L1 dcache size for cpu");
487 if (pcc->l1_icache_size) {
488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
489 pcc->l1_icache_size)));
490 } else {
491 warn_report("Unknown L1 icache size for cpu");
494 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
495 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
499 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501 if (env->spr_cb[SPR_PURR].oea_read) {
502 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
505 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
507 segs, sizeof(segs))));
510 /* Advertise VSX (vector extensions) if available
511 * 1 == VMX / Altivec available
512 * 2 == VSX available
514 * Only CPUs for which we create core types in spapr_cpu_core.c
515 * are possible, and all of those have VMX */
516 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
518 } else {
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
522 /* Advertise DFP (Decimal Floating Point) if available
523 * 0 / no property == no DFP
524 * 1 == DFP available */
525 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
529 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
530 sizeof(page_sizes_prop));
531 if (page_sizes_prop_size) {
532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533 page_sizes_prop, page_sizes_prop_size)));
536 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539 cs->cpu_index / vcpus_per_socket)));
541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542 pft_size_prop, sizeof(pft_size_prop))));
544 if (nb_numa_nodes > 1) {
545 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550 if (pcc->radix_page_info) {
551 for (i = 0; i < pcc->radix_page_info->count; i++) {
552 radix_AP_encodings[i] =
553 cpu_to_be32(pcc->radix_page_info->entries[i]);
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556 radix_AP_encodings,
557 pcc->radix_page_info->count *
558 sizeof(radix_AP_encodings[0]))));
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
564 CPUState **rev;
565 CPUState *cs;
566 int n_cpus;
567 int cpus_offset;
568 char *nodename;
569 int i;
571 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
572 _FDT(cpus_offset);
573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
577 * We walk the CPUs in reverse order to ensure that CPU DT nodes
578 * created by fdt_add_subnode() end up in the right order in FDT
579 * for the guest kernel the enumerate the CPUs correctly.
581 * The CPU list cannot be traversed in reverse order, so we need
582 * to do extra work.
584 n_cpus = 0;
585 rev = NULL;
586 CPU_FOREACH(cs) {
587 rev = g_renew(CPUState *, rev, n_cpus + 1);
588 rev[n_cpus++] = cs;
591 for (i = n_cpus - 1; i >= 0; i--) {
592 CPUState *cs = rev[i];
593 PowerPCCPU *cpu = POWERPC_CPU(cs);
594 int index = spapr_get_vcpu_id(cpu);
595 DeviceClass *dc = DEVICE_GET_CLASS(cs);
596 int offset;
598 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
599 continue;
602 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
603 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
604 g_free(nodename);
605 _FDT(offset);
606 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
609 g_free(rev);
612 static int spapr_rng_populate_dt(void *fdt)
614 int node;
615 int ret;
617 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
618 if (node <= 0) {
619 return -1;
621 ret = fdt_setprop_string(fdt, node, "device_type",
622 "ibm,platform-facilities");
623 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
624 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
626 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
627 if (node <= 0) {
628 return -1;
630 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
632 return ret ? -1 : 0;
635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
637 MemoryDeviceInfoList *info;
639 for (info = list; info; info = info->next) {
640 MemoryDeviceInfo *value = info->value;
642 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
643 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
645 if (addr >= pcdimm_info->addr &&
646 addr < (pcdimm_info->addr + pcdimm_info->size)) {
647 return pcdimm_info->node;
652 return -1;
655 struct sPAPRDrconfCellV2 {
656 uint32_t seq_lmbs;
657 uint64_t base_addr;
658 uint32_t drc_index;
659 uint32_t aa_index;
660 uint32_t flags;
661 } QEMU_PACKED;
663 typedef struct DrconfCellQueue {
664 struct sPAPRDrconfCellV2 cell;
665 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
666 } DrconfCellQueue;
668 static DrconfCellQueue *
669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
670 uint32_t drc_index, uint32_t aa_index,
671 uint32_t flags)
673 DrconfCellQueue *elem;
675 elem = g_malloc0(sizeof(*elem));
676 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
677 elem->cell.base_addr = cpu_to_be64(base_addr);
678 elem->cell.drc_index = cpu_to_be32(drc_index);
679 elem->cell.aa_index = cpu_to_be32(aa_index);
680 elem->cell.flags = cpu_to_be32(flags);
682 return elem;
685 /* ibm,dynamic-memory-v2 */
686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
687 int offset, MemoryDeviceInfoList *dimms)
689 MachineState *machine = MACHINE(spapr);
690 uint8_t *int_buf, *cur_index;
691 int ret;
692 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
693 uint64_t addr, cur_addr, size;
694 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
695 uint64_t mem_end = machine->device_memory->base +
696 memory_region_size(&machine->device_memory->mr);
697 uint32_t node, buf_len, nr_entries = 0;
698 sPAPRDRConnector *drc;
699 DrconfCellQueue *elem, *next;
700 MemoryDeviceInfoList *info;
701 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
702 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
704 /* Entry to cover RAM and the gap area */
705 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
706 SPAPR_LMB_FLAGS_RESERVED |
707 SPAPR_LMB_FLAGS_DRC_INVALID);
708 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
709 nr_entries++;
711 cur_addr = machine->device_memory->base;
712 for (info = dimms; info; info = info->next) {
713 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
715 addr = di->addr;
716 size = di->size;
717 node = di->node;
719 /* Entry for hot-pluggable area */
720 if (cur_addr < addr) {
721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
722 g_assert(drc);
723 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
724 cur_addr, spapr_drc_index(drc), -1, 0);
725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726 nr_entries++;
729 /* Entry for DIMM */
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell(size / lmb_size, addr,
733 spapr_drc_index(drc), node,
734 SPAPR_LMB_FLAGS_ASSIGNED);
735 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736 nr_entries++;
737 cur_addr = addr + size;
740 /* Entry for remaining hotpluggable area */
741 if (cur_addr < mem_end) {
742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743 g_assert(drc);
744 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
745 cur_addr, spapr_drc_index(drc), -1, 0);
746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747 nr_entries++;
750 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
751 int_buf = cur_index = g_malloc0(buf_len);
752 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
753 cur_index += sizeof(nr_entries);
755 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
756 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
757 cur_index += sizeof(elem->cell);
758 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
759 g_free(elem);
762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
763 g_free(int_buf);
764 if (ret < 0) {
765 return -1;
767 return 0;
770 /* ibm,dynamic-memory */
771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
772 int offset, MemoryDeviceInfoList *dimms)
774 MachineState *machine = MACHINE(spapr);
775 int i, ret;
776 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
777 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
778 uint32_t nr_lmbs = (machine->device_memory->base +
779 memory_region_size(&machine->device_memory->mr)) /
780 lmb_size;
781 uint32_t *int_buf, *cur_index, buf_len;
784 * Allocate enough buffer size to fit in ibm,dynamic-memory
786 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
787 cur_index = int_buf = g_malloc0(buf_len);
788 int_buf[0] = cpu_to_be32(nr_lmbs);
789 cur_index++;
790 for (i = 0; i < nr_lmbs; i++) {
791 uint64_t addr = i * lmb_size;
792 uint32_t *dynamic_memory = cur_index;
794 if (i >= device_lmb_start) {
795 sPAPRDRConnector *drc;
797 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
798 g_assert(drc);
800 dynamic_memory[0] = cpu_to_be32(addr >> 32);
801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
805 if (memory_region_present(get_system_memory(), addr)) {
806 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
807 } else {
808 dynamic_memory[5] = cpu_to_be32(0);
810 } else {
812 * LMB information for RMA, boot time RAM and gap b/n RAM and
813 * device memory region -- all these are marked as reserved
814 * and as having no valid DRC.
816 dynamic_memory[0] = cpu_to_be32(addr >> 32);
817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818 dynamic_memory[2] = cpu_to_be32(0);
819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory[4] = cpu_to_be32(-1);
821 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
822 SPAPR_LMB_FLAGS_DRC_INVALID);
825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828 g_free(int_buf);
829 if (ret < 0) {
830 return -1;
832 return 0;
836 * Adds ibm,dynamic-reconfiguration-memory node.
837 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
838 * of this device tree node.
840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
842 MachineState *machine = MACHINE(spapr);
843 int ret, i, offset;
844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
845 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
846 uint32_t *int_buf, *cur_index, buf_len;
847 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
848 MemoryDeviceInfoList *dimms = NULL;
851 * Don't create the node if there is no device memory
853 if (machine->ram_size == machine->maxram_size) {
854 return 0;
857 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
859 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
860 sizeof(prop_lmb_size));
861 if (ret < 0) {
862 return ret;
865 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
866 if (ret < 0) {
867 return ret;
870 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
871 if (ret < 0) {
872 return ret;
875 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
876 dimms = qmp_memory_device_list();
877 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
878 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
879 } else {
880 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
882 qapi_free_MemoryDeviceInfoList(dimms);
884 if (ret < 0) {
885 return ret;
888 /* ibm,associativity-lookup-arrays */
889 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
890 cur_index = int_buf = g_malloc0(buf_len);
891 int_buf[0] = cpu_to_be32(nr_nodes);
892 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
893 cur_index += 2;
894 for (i = 0; i < nr_nodes; i++) {
895 uint32_t associativity[] = {
896 cpu_to_be32(0x0),
897 cpu_to_be32(0x0),
898 cpu_to_be32(0x0),
899 cpu_to_be32(i)
901 memcpy(cur_index, associativity, sizeof(associativity));
902 cur_index += 4;
904 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
905 (cur_index - int_buf) * sizeof(uint32_t));
906 g_free(int_buf);
908 return ret;
911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
912 sPAPROptionVector *ov5_updates)
914 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
915 int ret = 0, offset;
917 /* Generate ibm,dynamic-reconfiguration-memory node if required */
918 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
919 g_assert(smc->dr_lmb_enabled);
920 ret = spapr_populate_drconf_memory(spapr, fdt);
921 if (ret) {
922 goto out;
926 offset = fdt_path_offset(fdt, "/chosen");
927 if (offset < 0) {
928 offset = fdt_add_subnode(fdt, 0, "chosen");
929 if (offset < 0) {
930 return offset;
933 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
934 "ibm,architecture-vec-5");
936 out:
937 return ret;
940 static bool spapr_hotplugged_dev_before_cas(void)
942 Object *drc_container, *obj;
943 ObjectProperty *prop;
944 ObjectPropertyIterator iter;
946 drc_container = container_get(object_get_root(), "/dr-connector");
947 object_property_iter_init(&iter, drc_container);
948 while ((prop = object_property_iter_next(&iter))) {
949 if (!strstart(prop->type, "link<", NULL)) {
950 continue;
952 obj = object_property_get_link(drc_container, prop->name, NULL);
953 if (spapr_drc_needed(obj)) {
954 return true;
957 return false;
960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
961 target_ulong addr, target_ulong size,
962 sPAPROptionVector *ov5_updates)
964 void *fdt, *fdt_skel;
965 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
967 if (spapr_hotplugged_dev_before_cas()) {
968 return 1;
971 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
972 error_report("SLOF provided an unexpected CAS buffer size "
973 TARGET_FMT_lu " (min: %zu, max: %u)",
974 size, sizeof(hdr), FW_MAX_SIZE);
975 exit(EXIT_FAILURE);
978 size -= sizeof(hdr);
980 /* Create skeleton */
981 fdt_skel = g_malloc0(size);
982 _FDT((fdt_create(fdt_skel, size)));
983 _FDT((fdt_finish_reservemap(fdt_skel)));
984 _FDT((fdt_begin_node(fdt_skel, "")));
985 _FDT((fdt_end_node(fdt_skel)));
986 _FDT((fdt_finish(fdt_skel)));
987 fdt = g_malloc0(size);
988 _FDT((fdt_open_into(fdt_skel, fdt, size)));
989 g_free(fdt_skel);
991 /* Fixup cpu nodes */
992 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
994 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
995 return -1;
998 /* Pack resulting tree */
999 _FDT((fdt_pack(fdt)));
1001 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1002 trace_spapr_cas_failed(size);
1003 return -1;
1006 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1007 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1008 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1009 g_free(fdt);
1011 return 0;
1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1016 int rtas;
1017 GString *hypertas = g_string_sized_new(256);
1018 GString *qemu_hypertas = g_string_sized_new(256);
1019 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1020 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1021 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1022 uint32_t lrdr_capacity[] = {
1023 cpu_to_be32(max_device_addr >> 32),
1024 cpu_to_be32(max_device_addr & 0xffffffff),
1025 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1026 cpu_to_be32(max_cpus / smp_threads),
1028 uint32_t maxdomains[] = {
1029 cpu_to_be32(4),
1030 cpu_to_be32(0),
1031 cpu_to_be32(0),
1032 cpu_to_be32(0),
1033 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1036 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1038 /* hypertas */
1039 add_str(hypertas, "hcall-pft");
1040 add_str(hypertas, "hcall-term");
1041 add_str(hypertas, "hcall-dabr");
1042 add_str(hypertas, "hcall-interrupt");
1043 add_str(hypertas, "hcall-tce");
1044 add_str(hypertas, "hcall-vio");
1045 add_str(hypertas, "hcall-splpar");
1046 add_str(hypertas, "hcall-bulk");
1047 add_str(hypertas, "hcall-set-mode");
1048 add_str(hypertas, "hcall-sprg0");
1049 add_str(hypertas, "hcall-copy");
1050 add_str(hypertas, "hcall-debug");
1051 add_str(hypertas, "hcall-vphn");
1052 add_str(qemu_hypertas, "hcall-memop1");
1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055 add_str(hypertas, "hcall-multi-tce");
1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059 add_str(hypertas, "hcall-hpt-resize");
1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063 hypertas->str, hypertas->len));
1064 g_string_free(hypertas, TRUE);
1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066 qemu_hypertas->str, qemu_hypertas->len));
1067 g_string_free(qemu_hypertas, TRUE);
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070 refpoints, sizeof(refpoints)));
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073 maxdomains, sizeof(maxdomains)));
1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076 RTAS_ERROR_LOG_MAX));
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078 RTAS_EVENT_SCAN_RATE));
1080 g_assert(msi_nonbroken);
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1084 * According to PAPR, rtas ibm,os-term does not guarantee a return
1085 * back to the guest cpu.
1087 * While an additional ibm,extended-os-term property indicates
1088 * that rtas call return will always occur. Set this property.
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093 lrdr_capacity, sizeof(lrdr_capacity)));
1095 spapr_dt_rtas_tokens(fdt, rtas);
1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100 * and the XIVE features that the guest may request and thus the valid
1101 * values for bytes 23..26 of option vector 5:
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104 int chosen)
1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1108 char val[2 * 4] = {
1109 23, spapr->irq->ov5, /* Xive mode. */
1110 24, 0x00, /* Hash/Radix, filled in below. */
1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112 26, 0x40, /* Radix options: GTSE == yes. */
1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116 first_ppc_cpu->compat_pvr)) {
1118 * If we're in a pre POWER9 compat mode then the guest should
1119 * do hash and use the legacy interrupt mode
1121 val[1] = 0x00; /* XICS */
1122 val[3] = 0x00; /* Hash */
1123 } else if (kvm_enabled()) {
1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125 val[3] = 0x80; /* OV5_MMU_BOTH */
1126 } else if (kvmppc_has_cap_mmu_radix()) {
1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128 } else {
1129 val[3] = 0x00; /* Hash */
1131 } else {
1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133 val[3] = 0xC0;
1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136 val, sizeof(val)));
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1141 MachineState *machine = MACHINE(spapr);
1142 int chosen;
1143 const char *boot_device = machine->boot_order;
1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145 size_t cb = 0;
1146 char *bootlist = get_boot_devices_list(&cb);
1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152 spapr->initrd_base));
1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154 spapr->initrd_base + spapr->initrd_size));
1156 if (spapr->kernel_size) {
1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158 cpu_to_be64(spapr->kernel_size) };
1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161 &kprop, sizeof(kprop)));
1162 if (spapr->kernel_le) {
1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1166 if (boot_menu) {
1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1173 if (cb && bootlist) {
1174 int i;
1176 for (i = 0; i < cb; i++) {
1177 if (bootlist[i] == '\n') {
1178 bootlist[i] = ' ';
1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1184 if (boot_device && strlen(boot_device)) {
1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1188 if (!spapr->has_graphics && stdout_path) {
1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191 * kernel. New platforms should only use the "stdout-path" property. Set
1192 * the new property and continue using older property to remain
1193 * compatible with the existing firmware.
1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1201 g_free(stdout_path);
1202 g_free(bootlist);
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208 * KVM to work under pHyp with some guest co-operation */
1209 int hypervisor;
1210 uint8_t hypercall[16];
1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213 /* indicate KVM hypercall interface */
1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215 if (kvmppc_has_cap_fixup_hcalls()) {
1217 * Older KVM versions with older guest kernels were broken
1218 * with the magic page, don't allow the guest to map it.
1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221 sizeof(hypercall))) {
1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223 hypercall, sizeof(hypercall)));
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr)
1230 MachineState *machine = MACHINE(spapr);
1231 MachineClass *mc = MACHINE_GET_CLASS(machine);
1232 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1233 int ret;
1234 void *fdt;
1235 sPAPRPHBState *phb;
1236 char *buf;
1238 fdt = g_malloc0(FDT_MAX_SIZE);
1239 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1241 /* Root node */
1242 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1243 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1244 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1247 * Add info to guest to indentify which host is it being run on
1248 * and what is the uuid of the guest
1250 if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) {
1251 if (g_str_equal(spapr->host_model, "passthrough")) {
1252 /* -M host-model=passthrough */
1253 if (kvmppc_get_host_model(&buf)) {
1254 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1255 g_free(buf);
1257 } else {
1258 /* -M host-model=<user-string> */
1259 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1263 if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) {
1264 if (g_str_equal(spapr->host_serial, "passthrough")) {
1265 /* -M host-serial=passthrough */
1266 if (kvmppc_get_host_serial(&buf)) {
1267 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1268 g_free(buf);
1270 } else {
1271 /* -M host-serial=<user-string> */
1272 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1276 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1278 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1279 if (qemu_uuid_set) {
1280 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1282 g_free(buf);
1284 if (qemu_get_vm_name()) {
1285 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1286 qemu_get_vm_name()));
1289 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1290 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1292 /* /interrupt controller */
1293 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1294 PHANDLE_INTC);
1296 ret = spapr_populate_memory(spapr, fdt);
1297 if (ret < 0) {
1298 error_report("couldn't setup memory nodes in fdt");
1299 exit(1);
1302 /* /vdevice */
1303 spapr_dt_vdevice(spapr->vio_bus, fdt);
1305 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1306 ret = spapr_rng_populate_dt(fdt);
1307 if (ret < 0) {
1308 error_report("could not set up rng device in the fdt");
1309 exit(1);
1313 QLIST_FOREACH(phb, &spapr->phbs, list) {
1314 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1315 spapr->irq->nr_msis);
1316 if (ret < 0) {
1317 error_report("couldn't setup PCI devices in fdt");
1318 exit(1);
1322 /* cpus */
1323 spapr_populate_cpus_dt_node(fdt, spapr);
1325 if (smc->dr_lmb_enabled) {
1326 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1329 if (mc->has_hotpluggable_cpus) {
1330 int offset = fdt_path_offset(fdt, "/cpus");
1331 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1332 SPAPR_DR_CONNECTOR_TYPE_CPU);
1333 if (ret < 0) {
1334 error_report("Couldn't set up CPU DR device tree properties");
1335 exit(1);
1339 /* /event-sources */
1340 spapr_dt_events(spapr, fdt);
1342 /* /rtas */
1343 spapr_dt_rtas(spapr, fdt);
1345 /* /chosen */
1346 spapr_dt_chosen(spapr, fdt);
1348 /* /hypervisor */
1349 if (kvm_enabled()) {
1350 spapr_dt_hypervisor(spapr, fdt);
1353 /* Build memory reserve map */
1354 if (spapr->kernel_size) {
1355 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1357 if (spapr->initrd_size) {
1358 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1361 /* ibm,client-architecture-support updates */
1362 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1363 if (ret < 0) {
1364 error_report("couldn't setup CAS properties fdt");
1365 exit(1);
1368 return fdt;
1371 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1373 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1377 PowerPCCPU *cpu)
1379 CPUPPCState *env = &cpu->env;
1381 /* The TCG path should also be holding the BQL at this point */
1382 g_assert(qemu_mutex_iothread_locked());
1384 if (msr_pr) {
1385 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1386 env->gpr[3] = H_PRIVILEGE;
1387 } else {
1388 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1392 struct LPCRSyncState {
1393 target_ulong value;
1394 target_ulong mask;
1397 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1399 struct LPCRSyncState *s = arg.host_ptr;
1400 PowerPCCPU *cpu = POWERPC_CPU(cs);
1401 CPUPPCState *env = &cpu->env;
1402 target_ulong lpcr;
1404 cpu_synchronize_state(cs);
1405 lpcr = env->spr[SPR_LPCR];
1406 lpcr &= ~s->mask;
1407 lpcr |= s->value;
1408 ppc_store_lpcr(cpu, lpcr);
1411 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1413 CPUState *cs;
1414 struct LPCRSyncState s = {
1415 .value = value,
1416 .mask = mask
1418 CPU_FOREACH(cs) {
1419 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1423 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1425 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1427 /* Copy PATE1:GR into PATE0:HR */
1428 entry->dw0 = spapr->patb_entry & PATE0_HR;
1429 entry->dw1 = spapr->patb_entry;
1432 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1433 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1434 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1435 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1436 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1439 * Get the fd to access the kernel htab, re-opening it if necessary
1441 static int get_htab_fd(sPAPRMachineState *spapr)
1443 Error *local_err = NULL;
1445 if (spapr->htab_fd >= 0) {
1446 return spapr->htab_fd;
1449 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1450 if (spapr->htab_fd < 0) {
1451 error_report_err(local_err);
1454 return spapr->htab_fd;
1457 void close_htab_fd(sPAPRMachineState *spapr)
1459 if (spapr->htab_fd >= 0) {
1460 close(spapr->htab_fd);
1462 spapr->htab_fd = -1;
1465 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1467 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1469 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1472 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1474 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1476 assert(kvm_enabled());
1478 if (!spapr->htab) {
1479 return 0;
1482 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1485 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1486 hwaddr ptex, int n)
1488 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1489 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1491 if (!spapr->htab) {
1493 * HTAB is controlled by KVM. Fetch into temporary buffer
1495 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1496 kvmppc_read_hptes(hptes, ptex, n);
1497 return hptes;
1501 * HTAB is controlled by QEMU. Just point to the internally
1502 * accessible PTEG.
1504 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1507 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1508 const ppc_hash_pte64_t *hptes,
1509 hwaddr ptex, int n)
1511 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1513 if (!spapr->htab) {
1514 g_free((void *)hptes);
1517 /* Nothing to do for qemu managed HPT */
1520 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1521 uint64_t pte0, uint64_t pte1)
1523 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1524 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1526 if (!spapr->htab) {
1527 kvmppc_write_hpte(ptex, pte0, pte1);
1528 } else {
1529 if (pte0 & HPTE64_V_VALID) {
1530 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1532 * When setting valid, we write PTE1 first. This ensures
1533 * proper synchronization with the reading code in
1534 * ppc_hash64_pteg_search()
1536 smp_wmb();
1537 stq_p(spapr->htab + offset, pte0);
1538 } else {
1539 stq_p(spapr->htab + offset, pte0);
1541 * When clearing it we set PTE0 first. This ensures proper
1542 * synchronization with the reading code in
1543 * ppc_hash64_pteg_search()
1545 smp_wmb();
1546 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1551 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1553 int shift;
1555 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1556 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1557 * that's much more than is needed for Linux guests */
1558 shift = ctz64(pow2ceil(ramsize)) - 7;
1559 shift = MAX(shift, 18); /* Minimum architected size */
1560 shift = MIN(shift, 46); /* Maximum architected size */
1561 return shift;
1564 void spapr_free_hpt(sPAPRMachineState *spapr)
1566 g_free(spapr->htab);
1567 spapr->htab = NULL;
1568 spapr->htab_shift = 0;
1569 close_htab_fd(spapr);
1572 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1573 Error **errp)
1575 long rc;
1577 /* Clean up any HPT info from a previous boot */
1578 spapr_free_hpt(spapr);
1580 rc = kvmppc_reset_htab(shift);
1581 if (rc < 0) {
1582 /* kernel-side HPT needed, but couldn't allocate one */
1583 error_setg_errno(errp, errno,
1584 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1585 shift);
1586 /* This is almost certainly fatal, but if the caller really
1587 * wants to carry on with shift == 0, it's welcome to try */
1588 } else if (rc > 0) {
1589 /* kernel-side HPT allocated */
1590 if (rc != shift) {
1591 error_setg(errp,
1592 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1593 shift, rc);
1596 spapr->htab_shift = shift;
1597 spapr->htab = NULL;
1598 } else {
1599 /* kernel-side HPT not needed, allocate in userspace instead */
1600 size_t size = 1ULL << shift;
1601 int i;
1603 spapr->htab = qemu_memalign(size, size);
1604 if (!spapr->htab) {
1605 error_setg_errno(errp, errno,
1606 "Could not allocate HPT of order %d", shift);
1607 return;
1610 memset(spapr->htab, 0, size);
1611 spapr->htab_shift = shift;
1613 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1614 DIRTY_HPTE(HPTE(spapr->htab, i));
1617 /* We're setting up a hash table, so that means we're not radix */
1618 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1621 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1623 int hpt_shift;
1625 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1626 || (spapr->cas_reboot
1627 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1628 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1629 } else {
1630 uint64_t current_ram_size;
1632 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1633 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1635 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1637 if (spapr->vrma_adjust) {
1638 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1639 spapr->htab_shift);
1643 static int spapr_reset_drcs(Object *child, void *opaque)
1645 sPAPRDRConnector *drc =
1646 (sPAPRDRConnector *) object_dynamic_cast(child,
1647 TYPE_SPAPR_DR_CONNECTOR);
1649 if (drc) {
1650 spapr_drc_reset(drc);
1653 return 0;
1656 static void spapr_machine_reset(void)
1658 MachineState *machine = MACHINE(qdev_get_machine());
1659 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1660 PowerPCCPU *first_ppc_cpu;
1661 uint32_t rtas_limit;
1662 hwaddr rtas_addr, fdt_addr;
1663 void *fdt;
1664 int rc;
1666 spapr_caps_apply(spapr);
1668 first_ppc_cpu = POWERPC_CPU(first_cpu);
1669 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1670 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1671 spapr->max_compat_pvr)) {
1673 * If using KVM with radix mode available, VCPUs can be started
1674 * without a HPT because KVM will start them in radix mode.
1675 * Set the GR bit in PATE so that we know there is no HPT.
1677 spapr->patb_entry = PATE1_GR;
1678 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1679 } else {
1680 spapr_setup_hpt_and_vrma(spapr);
1684 * If this reset wasn't generated by CAS, we should reset our
1685 * negotiated options and start from scratch
1687 if (!spapr->cas_reboot) {
1688 spapr_ovec_cleanup(spapr->ov5_cas);
1689 spapr->ov5_cas = spapr_ovec_new();
1691 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1694 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1695 spapr_irq_msi_reset(spapr);
1698 qemu_devices_reset();
1701 * This is fixing some of the default configuration of the XIVE
1702 * devices. To be called after the reset of the machine devices.
1704 spapr_irq_reset(spapr, &error_fatal);
1706 /* DRC reset may cause a device to be unplugged. This will cause troubles
1707 * if this device is used by another device (eg, a running vhost backend
1708 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1709 * situations, we reset DRCs after all devices have been reset.
1711 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1713 spapr_clear_pending_events(spapr);
1716 * We place the device tree and RTAS just below either the top of the RMA,
1717 * or just below 2GB, whichever is lower, so that it can be
1718 * processed with 32-bit real mode code if necessary
1720 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1721 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1722 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1724 fdt = spapr_build_fdt(spapr);
1726 spapr_load_rtas(spapr, fdt, rtas_addr);
1728 rc = fdt_pack(fdt);
1730 /* Should only fail if we've built a corrupted tree */
1731 assert(rc == 0);
1733 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1734 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1735 fdt_totalsize(fdt), FDT_MAX_SIZE);
1736 exit(1);
1739 /* Load the fdt */
1740 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1741 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1742 g_free(spapr->fdt_blob);
1743 spapr->fdt_size = fdt_totalsize(fdt);
1744 spapr->fdt_initial_size = spapr->fdt_size;
1745 spapr->fdt_blob = fdt;
1747 /* Set up the entry state */
1748 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1749 first_ppc_cpu->env.gpr[5] = 0;
1751 spapr->cas_reboot = false;
1754 static void spapr_create_nvram(sPAPRMachineState *spapr)
1756 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1757 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1759 if (dinfo) {
1760 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1761 &error_fatal);
1764 qdev_init_nofail(dev);
1766 spapr->nvram = (struct sPAPRNVRAM *)dev;
1769 static void spapr_rtc_create(sPAPRMachineState *spapr)
1771 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1772 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1773 &error_fatal);
1774 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1775 &error_fatal);
1776 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1777 "date", &error_fatal);
1780 /* Returns whether we want to use VGA or not */
1781 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1783 switch (vga_interface_type) {
1784 case VGA_NONE:
1785 return false;
1786 case VGA_DEVICE:
1787 return true;
1788 case VGA_STD:
1789 case VGA_VIRTIO:
1790 case VGA_CIRRUS:
1791 return pci_vga_init(pci_bus) != NULL;
1792 default:
1793 error_setg(errp,
1794 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1795 return false;
1799 static int spapr_pre_load(void *opaque)
1801 int rc;
1803 rc = spapr_caps_pre_load(opaque);
1804 if (rc) {
1805 return rc;
1808 return 0;
1811 static int spapr_post_load(void *opaque, int version_id)
1813 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1814 int err = 0;
1816 err = spapr_caps_post_migration(spapr);
1817 if (err) {
1818 return err;
1822 * In earlier versions, there was no separate qdev for the PAPR
1823 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1824 * So when migrating from those versions, poke the incoming offset
1825 * value into the RTC device
1827 if (version_id < 3) {
1828 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1829 if (err) {
1830 return err;
1834 if (kvm_enabled() && spapr->patb_entry) {
1835 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1836 bool radix = !!(spapr->patb_entry & PATE1_GR);
1837 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1840 * Update LPCR:HR and UPRT as they may not be set properly in
1841 * the stream
1843 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1844 LPCR_HR | LPCR_UPRT);
1846 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1847 if (err) {
1848 error_report("Process table config unsupported by the host");
1849 return -EINVAL;
1853 err = spapr_irq_post_load(spapr, version_id);
1854 if (err) {
1855 return err;
1858 return err;
1861 static int spapr_pre_save(void *opaque)
1863 int rc;
1865 rc = spapr_caps_pre_save(opaque);
1866 if (rc) {
1867 return rc;
1870 return 0;
1873 static bool version_before_3(void *opaque, int version_id)
1875 return version_id < 3;
1878 static bool spapr_pending_events_needed(void *opaque)
1880 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1881 return !QTAILQ_EMPTY(&spapr->pending_events);
1884 static const VMStateDescription vmstate_spapr_event_entry = {
1885 .name = "spapr_event_log_entry",
1886 .version_id = 1,
1887 .minimum_version_id = 1,
1888 .fields = (VMStateField[]) {
1889 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1890 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1891 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1892 NULL, extended_length),
1893 VMSTATE_END_OF_LIST()
1897 static const VMStateDescription vmstate_spapr_pending_events = {
1898 .name = "spapr_pending_events",
1899 .version_id = 1,
1900 .minimum_version_id = 1,
1901 .needed = spapr_pending_events_needed,
1902 .fields = (VMStateField[]) {
1903 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1904 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1905 VMSTATE_END_OF_LIST()
1909 static bool spapr_ov5_cas_needed(void *opaque)
1911 sPAPRMachineState *spapr = opaque;
1912 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1913 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1914 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1915 bool cas_needed;
1917 /* Prior to the introduction of sPAPROptionVector, we had two option
1918 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1919 * Both of these options encode machine topology into the device-tree
1920 * in such a way that the now-booted OS should still be able to interact
1921 * appropriately with QEMU regardless of what options were actually
1922 * negotiatied on the source side.
1924 * As such, we can avoid migrating the CAS-negotiated options if these
1925 * are the only options available on the current machine/platform.
1926 * Since these are the only options available for pseries-2.7 and
1927 * earlier, this allows us to maintain old->new/new->old migration
1928 * compatibility.
1930 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1931 * via default pseries-2.8 machines and explicit command-line parameters.
1932 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1933 * of the actual CAS-negotiated values to continue working properly. For
1934 * example, availability of memory unplug depends on knowing whether
1935 * OV5_HP_EVT was negotiated via CAS.
1937 * Thus, for any cases where the set of available CAS-negotiatable
1938 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1939 * include the CAS-negotiated options in the migration stream, unless
1940 * if they affect boot time behaviour only.
1942 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1943 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1944 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1946 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1947 * the mask itself since in the future it's possible "legacy" bits may be
1948 * removed via machine options, which could generate a false positive
1949 * that breaks migration.
1951 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1952 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1954 spapr_ovec_cleanup(ov5_mask);
1955 spapr_ovec_cleanup(ov5_legacy);
1956 spapr_ovec_cleanup(ov5_removed);
1958 return cas_needed;
1961 static const VMStateDescription vmstate_spapr_ov5_cas = {
1962 .name = "spapr_option_vector_ov5_cas",
1963 .version_id = 1,
1964 .minimum_version_id = 1,
1965 .needed = spapr_ov5_cas_needed,
1966 .fields = (VMStateField[]) {
1967 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1968 vmstate_spapr_ovec, sPAPROptionVector),
1969 VMSTATE_END_OF_LIST()
1973 static bool spapr_patb_entry_needed(void *opaque)
1975 sPAPRMachineState *spapr = opaque;
1977 return !!spapr->patb_entry;
1980 static const VMStateDescription vmstate_spapr_patb_entry = {
1981 .name = "spapr_patb_entry",
1982 .version_id = 1,
1983 .minimum_version_id = 1,
1984 .needed = spapr_patb_entry_needed,
1985 .fields = (VMStateField[]) {
1986 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1987 VMSTATE_END_OF_LIST()
1991 static bool spapr_irq_map_needed(void *opaque)
1993 sPAPRMachineState *spapr = opaque;
1995 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1998 static const VMStateDescription vmstate_spapr_irq_map = {
1999 .name = "spapr_irq_map",
2000 .version_id = 1,
2001 .minimum_version_id = 1,
2002 .needed = spapr_irq_map_needed,
2003 .fields = (VMStateField[]) {
2004 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
2005 VMSTATE_END_OF_LIST()
2009 static bool spapr_dtb_needed(void *opaque)
2011 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2013 return smc->update_dt_enabled;
2016 static int spapr_dtb_pre_load(void *opaque)
2018 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
2020 g_free(spapr->fdt_blob);
2021 spapr->fdt_blob = NULL;
2022 spapr->fdt_size = 0;
2024 return 0;
2027 static const VMStateDescription vmstate_spapr_dtb = {
2028 .name = "spapr_dtb",
2029 .version_id = 1,
2030 .minimum_version_id = 1,
2031 .needed = spapr_dtb_needed,
2032 .pre_load = spapr_dtb_pre_load,
2033 .fields = (VMStateField[]) {
2034 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
2035 VMSTATE_UINT32(fdt_size, sPAPRMachineState),
2036 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
2037 fdt_size),
2038 VMSTATE_END_OF_LIST()
2042 static const VMStateDescription vmstate_spapr = {
2043 .name = "spapr",
2044 .version_id = 3,
2045 .minimum_version_id = 1,
2046 .pre_load = spapr_pre_load,
2047 .post_load = spapr_post_load,
2048 .pre_save = spapr_pre_save,
2049 .fields = (VMStateField[]) {
2050 /* used to be @next_irq */
2051 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2053 /* RTC offset */
2054 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
2056 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
2057 VMSTATE_END_OF_LIST()
2059 .subsections = (const VMStateDescription*[]) {
2060 &vmstate_spapr_ov5_cas,
2061 &vmstate_spapr_patb_entry,
2062 &vmstate_spapr_pending_events,
2063 &vmstate_spapr_cap_htm,
2064 &vmstate_spapr_cap_vsx,
2065 &vmstate_spapr_cap_dfp,
2066 &vmstate_spapr_cap_cfpc,
2067 &vmstate_spapr_cap_sbbc,
2068 &vmstate_spapr_cap_ibs,
2069 &vmstate_spapr_irq_map,
2070 &vmstate_spapr_cap_nested_kvm_hv,
2071 &vmstate_spapr_dtb,
2072 NULL
2076 static int htab_save_setup(QEMUFile *f, void *opaque)
2078 sPAPRMachineState *spapr = opaque;
2080 /* "Iteration" header */
2081 if (!spapr->htab_shift) {
2082 qemu_put_be32(f, -1);
2083 } else {
2084 qemu_put_be32(f, spapr->htab_shift);
2087 if (spapr->htab) {
2088 spapr->htab_save_index = 0;
2089 spapr->htab_first_pass = true;
2090 } else {
2091 if (spapr->htab_shift) {
2092 assert(kvm_enabled());
2097 return 0;
2100 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2101 int chunkstart, int n_valid, int n_invalid)
2103 qemu_put_be32(f, chunkstart);
2104 qemu_put_be16(f, n_valid);
2105 qemu_put_be16(f, n_invalid);
2106 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2107 HASH_PTE_SIZE_64 * n_valid);
2110 static void htab_save_end_marker(QEMUFile *f)
2112 qemu_put_be32(f, 0);
2113 qemu_put_be16(f, 0);
2114 qemu_put_be16(f, 0);
2117 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2118 int64_t max_ns)
2120 bool has_timeout = max_ns != -1;
2121 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2122 int index = spapr->htab_save_index;
2123 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2125 assert(spapr->htab_first_pass);
2127 do {
2128 int chunkstart;
2130 /* Consume invalid HPTEs */
2131 while ((index < htabslots)
2132 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2133 CLEAN_HPTE(HPTE(spapr->htab, index));
2134 index++;
2137 /* Consume valid HPTEs */
2138 chunkstart = index;
2139 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2140 && HPTE_VALID(HPTE(spapr->htab, index))) {
2141 CLEAN_HPTE(HPTE(spapr->htab, index));
2142 index++;
2145 if (index > chunkstart) {
2146 int n_valid = index - chunkstart;
2148 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2150 if (has_timeout &&
2151 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2152 break;
2155 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2157 if (index >= htabslots) {
2158 assert(index == htabslots);
2159 index = 0;
2160 spapr->htab_first_pass = false;
2162 spapr->htab_save_index = index;
2165 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2166 int64_t max_ns)
2168 bool final = max_ns < 0;
2169 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2170 int examined = 0, sent = 0;
2171 int index = spapr->htab_save_index;
2172 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2174 assert(!spapr->htab_first_pass);
2176 do {
2177 int chunkstart, invalidstart;
2179 /* Consume non-dirty HPTEs */
2180 while ((index < htabslots)
2181 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2182 index++;
2183 examined++;
2186 chunkstart = index;
2187 /* Consume valid dirty HPTEs */
2188 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2189 && HPTE_DIRTY(HPTE(spapr->htab, index))
2190 && HPTE_VALID(HPTE(spapr->htab, index))) {
2191 CLEAN_HPTE(HPTE(spapr->htab, index));
2192 index++;
2193 examined++;
2196 invalidstart = index;
2197 /* Consume invalid dirty HPTEs */
2198 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2199 && HPTE_DIRTY(HPTE(spapr->htab, index))
2200 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2201 CLEAN_HPTE(HPTE(spapr->htab, index));
2202 index++;
2203 examined++;
2206 if (index > chunkstart) {
2207 int n_valid = invalidstart - chunkstart;
2208 int n_invalid = index - invalidstart;
2210 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2211 sent += index - chunkstart;
2213 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2214 break;
2218 if (examined >= htabslots) {
2219 break;
2222 if (index >= htabslots) {
2223 assert(index == htabslots);
2224 index = 0;
2226 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2228 if (index >= htabslots) {
2229 assert(index == htabslots);
2230 index = 0;
2233 spapr->htab_save_index = index;
2235 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2238 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2239 #define MAX_KVM_BUF_SIZE 2048
2241 static int htab_save_iterate(QEMUFile *f, void *opaque)
2243 sPAPRMachineState *spapr = opaque;
2244 int fd;
2245 int rc = 0;
2247 /* Iteration header */
2248 if (!spapr->htab_shift) {
2249 qemu_put_be32(f, -1);
2250 return 1;
2251 } else {
2252 qemu_put_be32(f, 0);
2255 if (!spapr->htab) {
2256 assert(kvm_enabled());
2258 fd = get_htab_fd(spapr);
2259 if (fd < 0) {
2260 return fd;
2263 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2264 if (rc < 0) {
2265 return rc;
2267 } else if (spapr->htab_first_pass) {
2268 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2269 } else {
2270 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2273 htab_save_end_marker(f);
2275 return rc;
2278 static int htab_save_complete(QEMUFile *f, void *opaque)
2280 sPAPRMachineState *spapr = opaque;
2281 int fd;
2283 /* Iteration header */
2284 if (!spapr->htab_shift) {
2285 qemu_put_be32(f, -1);
2286 return 0;
2287 } else {
2288 qemu_put_be32(f, 0);
2291 if (!spapr->htab) {
2292 int rc;
2294 assert(kvm_enabled());
2296 fd = get_htab_fd(spapr);
2297 if (fd < 0) {
2298 return fd;
2301 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2302 if (rc < 0) {
2303 return rc;
2305 } else {
2306 if (spapr->htab_first_pass) {
2307 htab_save_first_pass(f, spapr, -1);
2309 htab_save_later_pass(f, spapr, -1);
2312 /* End marker */
2313 htab_save_end_marker(f);
2315 return 0;
2318 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2320 sPAPRMachineState *spapr = opaque;
2321 uint32_t section_hdr;
2322 int fd = -1;
2323 Error *local_err = NULL;
2325 if (version_id < 1 || version_id > 1) {
2326 error_report("htab_load() bad version");
2327 return -EINVAL;
2330 section_hdr = qemu_get_be32(f);
2332 if (section_hdr == -1) {
2333 spapr_free_hpt(spapr);
2334 return 0;
2337 if (section_hdr) {
2338 /* First section gives the htab size */
2339 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2340 if (local_err) {
2341 error_report_err(local_err);
2342 return -EINVAL;
2344 return 0;
2347 if (!spapr->htab) {
2348 assert(kvm_enabled());
2350 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2351 if (fd < 0) {
2352 error_report_err(local_err);
2353 return fd;
2357 while (true) {
2358 uint32_t index;
2359 uint16_t n_valid, n_invalid;
2361 index = qemu_get_be32(f);
2362 n_valid = qemu_get_be16(f);
2363 n_invalid = qemu_get_be16(f);
2365 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2366 /* End of Stream */
2367 break;
2370 if ((index + n_valid + n_invalid) >
2371 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2372 /* Bad index in stream */
2373 error_report(
2374 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2375 index, n_valid, n_invalid, spapr->htab_shift);
2376 return -EINVAL;
2379 if (spapr->htab) {
2380 if (n_valid) {
2381 qemu_get_buffer(f, HPTE(spapr->htab, index),
2382 HASH_PTE_SIZE_64 * n_valid);
2384 if (n_invalid) {
2385 memset(HPTE(spapr->htab, index + n_valid), 0,
2386 HASH_PTE_SIZE_64 * n_invalid);
2388 } else {
2389 int rc;
2391 assert(fd >= 0);
2393 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2394 if (rc < 0) {
2395 return rc;
2400 if (!spapr->htab) {
2401 assert(fd >= 0);
2402 close(fd);
2405 return 0;
2408 static void htab_save_cleanup(void *opaque)
2410 sPAPRMachineState *spapr = opaque;
2412 close_htab_fd(spapr);
2415 static SaveVMHandlers savevm_htab_handlers = {
2416 .save_setup = htab_save_setup,
2417 .save_live_iterate = htab_save_iterate,
2418 .save_live_complete_precopy = htab_save_complete,
2419 .save_cleanup = htab_save_cleanup,
2420 .load_state = htab_load,
2423 static void spapr_boot_set(void *opaque, const char *boot_device,
2424 Error **errp)
2426 MachineState *machine = MACHINE(opaque);
2427 machine->boot_order = g_strdup(boot_device);
2430 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2432 MachineState *machine = MACHINE(spapr);
2433 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2434 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2435 int i;
2437 for (i = 0; i < nr_lmbs; i++) {
2438 uint64_t addr;
2440 addr = i * lmb_size + machine->device_memory->base;
2441 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2442 addr / lmb_size);
2447 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2448 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2449 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2451 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2453 int i;
2455 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2456 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2457 " is not aligned to %" PRIu64 " MiB",
2458 machine->ram_size,
2459 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2460 return;
2463 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2464 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2465 " is not aligned to %" PRIu64 " MiB",
2466 machine->ram_size,
2467 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2468 return;
2471 for (i = 0; i < nb_numa_nodes; i++) {
2472 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2473 error_setg(errp,
2474 "Node %d memory size 0x%" PRIx64
2475 " is not aligned to %" PRIu64 " MiB",
2476 i, numa_info[i].node_mem,
2477 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2478 return;
2483 /* find cpu slot in machine->possible_cpus by core_id */
2484 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2486 int index = id / smp_threads;
2488 if (index >= ms->possible_cpus->len) {
2489 return NULL;
2491 if (idx) {
2492 *idx = index;
2494 return &ms->possible_cpus->cpus[index];
2497 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2499 Error *local_err = NULL;
2500 bool vsmt_user = !!spapr->vsmt;
2501 int kvm_smt = kvmppc_smt_threads();
2502 int ret;
2504 if (!kvm_enabled() && (smp_threads > 1)) {
2505 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2506 "on a pseries machine");
2507 goto out;
2509 if (!is_power_of_2(smp_threads)) {
2510 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2511 "machine because it must be a power of 2", smp_threads);
2512 goto out;
2515 /* Detemine the VSMT mode to use: */
2516 if (vsmt_user) {
2517 if (spapr->vsmt < smp_threads) {
2518 error_setg(&local_err, "Cannot support VSMT mode %d"
2519 " because it must be >= threads/core (%d)",
2520 spapr->vsmt, smp_threads);
2521 goto out;
2523 /* In this case, spapr->vsmt has been set by the command line */
2524 } else {
2526 * Default VSMT value is tricky, because we need it to be as
2527 * consistent as possible (for migration), but this requires
2528 * changing it for at least some existing cases. We pick 8 as
2529 * the value that we'd get with KVM on POWER8, the
2530 * overwhelmingly common case in production systems.
2532 spapr->vsmt = MAX(8, smp_threads);
2535 /* KVM: If necessary, set the SMT mode: */
2536 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2537 ret = kvmppc_set_smt_threads(spapr->vsmt);
2538 if (ret) {
2539 /* Looks like KVM isn't able to change VSMT mode */
2540 error_setg(&local_err,
2541 "Failed to set KVM's VSMT mode to %d (errno %d)",
2542 spapr->vsmt, ret);
2543 /* We can live with that if the default one is big enough
2544 * for the number of threads, and a submultiple of the one
2545 * we want. In this case we'll waste some vcpu ids, but
2546 * behaviour will be correct */
2547 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2548 warn_report_err(local_err);
2549 local_err = NULL;
2550 goto out;
2551 } else {
2552 if (!vsmt_user) {
2553 error_append_hint(&local_err,
2554 "On PPC, a VM with %d threads/core"
2555 " on a host with %d threads/core"
2556 " requires the use of VSMT mode %d.\n",
2557 smp_threads, kvm_smt, spapr->vsmt);
2559 kvmppc_hint_smt_possible(&local_err);
2560 goto out;
2564 /* else TCG: nothing to do currently */
2565 out:
2566 error_propagate(errp, local_err);
2569 static void spapr_init_cpus(sPAPRMachineState *spapr)
2571 MachineState *machine = MACHINE(spapr);
2572 MachineClass *mc = MACHINE_GET_CLASS(machine);
2573 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2574 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2575 const CPUArchIdList *possible_cpus;
2576 int boot_cores_nr = smp_cpus / smp_threads;
2577 int i;
2579 possible_cpus = mc->possible_cpu_arch_ids(machine);
2580 if (mc->has_hotpluggable_cpus) {
2581 if (smp_cpus % smp_threads) {
2582 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2583 smp_cpus, smp_threads);
2584 exit(1);
2586 if (max_cpus % smp_threads) {
2587 error_report("max_cpus (%u) must be multiple of threads (%u)",
2588 max_cpus, smp_threads);
2589 exit(1);
2591 } else {
2592 if (max_cpus != smp_cpus) {
2593 error_report("This machine version does not support CPU hotplug");
2594 exit(1);
2596 boot_cores_nr = possible_cpus->len;
2599 if (smc->pre_2_10_has_unused_icps) {
2600 int i;
2602 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2603 /* Dummy entries get deregistered when real ICPState objects
2604 * are registered during CPU core hotplug.
2606 pre_2_10_vmstate_register_dummy_icp(i);
2610 for (i = 0; i < possible_cpus->len; i++) {
2611 int core_id = i * smp_threads;
2613 if (mc->has_hotpluggable_cpus) {
2614 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2615 spapr_vcpu_id(spapr, core_id));
2618 if (i < boot_cores_nr) {
2619 Object *core = object_new(type);
2620 int nr_threads = smp_threads;
2622 /* Handle the partially filled core for older machine types */
2623 if ((i + 1) * smp_threads >= smp_cpus) {
2624 nr_threads = smp_cpus - i * smp_threads;
2627 object_property_set_int(core, nr_threads, "nr-threads",
2628 &error_fatal);
2629 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2630 &error_fatal);
2631 object_property_set_bool(core, true, "realized", &error_fatal);
2633 object_unref(core);
2638 static PCIHostState *spapr_create_default_phb(void)
2640 DeviceState *dev;
2642 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2643 qdev_prop_set_uint32(dev, "index", 0);
2644 qdev_init_nofail(dev);
2646 return PCI_HOST_BRIDGE(dev);
2649 /* pSeries LPAR / sPAPR hardware init */
2650 static void spapr_machine_init(MachineState *machine)
2652 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2653 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2654 const char *kernel_filename = machine->kernel_filename;
2655 const char *initrd_filename = machine->initrd_filename;
2656 PCIHostState *phb;
2657 int i;
2658 MemoryRegion *sysmem = get_system_memory();
2659 MemoryRegion *ram = g_new(MemoryRegion, 1);
2660 hwaddr node0_size = spapr_node0_size(machine);
2661 long load_limit, fw_size;
2662 char *filename;
2663 Error *resize_hpt_err = NULL;
2665 msi_nonbroken = true;
2667 QLIST_INIT(&spapr->phbs);
2668 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2670 /* Determine capabilities to run with */
2671 spapr_caps_init(spapr);
2673 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2674 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2676 * If the user explicitly requested a mode we should either
2677 * supply it, or fail completely (which we do below). But if
2678 * it's not set explicitly, we reset our mode to something
2679 * that works
2681 if (resize_hpt_err) {
2682 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2683 error_free(resize_hpt_err);
2684 resize_hpt_err = NULL;
2685 } else {
2686 spapr->resize_hpt = smc->resize_hpt_default;
2690 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2692 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2694 * User requested HPT resize, but this host can't supply it. Bail out
2696 error_report_err(resize_hpt_err);
2697 exit(1);
2700 spapr->rma_size = node0_size;
2702 /* With KVM, we don't actually know whether KVM supports an
2703 * unbounded RMA (PR KVM) or is limited by the hash table size
2704 * (HV KVM using VRMA), so we always assume the latter
2706 * In that case, we also limit the initial allocations for RTAS
2707 * etc... to 256M since we have no way to know what the VRMA size
2708 * is going to be as it depends on the size of the hash table
2709 * which isn't determined yet.
2711 if (kvm_enabled()) {
2712 spapr->vrma_adjust = 1;
2713 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2716 /* Actually we don't support unbounded RMA anymore since we added
2717 * proper emulation of HV mode. The max we can get is 16G which
2718 * also happens to be what we configure for PAPR mode so make sure
2719 * we don't do anything bigger than that
2721 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2723 if (spapr->rma_size > node0_size) {
2724 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2725 spapr->rma_size);
2726 exit(1);
2729 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2730 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2733 * VSMT must be set in order to be able to compute VCPU ids, ie to
2734 * call spapr_max_server_number() or spapr_vcpu_id().
2736 spapr_set_vsmt_mode(spapr, &error_fatal);
2738 /* Set up Interrupt Controller before we create the VCPUs */
2739 spapr_irq_init(spapr, &error_fatal);
2741 /* Set up containers for ibm,client-architecture-support negotiated options
2743 spapr->ov5 = spapr_ovec_new();
2744 spapr->ov5_cas = spapr_ovec_new();
2746 if (smc->dr_lmb_enabled) {
2747 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2748 spapr_validate_node_memory(machine, &error_fatal);
2751 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2753 /* advertise support for dedicated HP event source to guests */
2754 if (spapr->use_hotplug_event_source) {
2755 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2758 /* advertise support for HPT resizing */
2759 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2760 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2763 /* advertise support for ibm,dyamic-memory-v2 */
2764 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2766 /* advertise XIVE on POWER9 machines */
2767 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2768 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2769 0, spapr->max_compat_pvr)) {
2770 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2771 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2772 error_report("XIVE-only machines require a POWER9 CPU");
2773 exit(1);
2777 /* init CPUs */
2778 spapr_init_cpus(spapr);
2780 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2781 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2782 spapr->max_compat_pvr)) {
2783 /* KVM and TCG always allow GTSE with radix... */
2784 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2786 /* ... but not with hash (currently). */
2788 if (kvm_enabled()) {
2789 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2790 kvmppc_enable_logical_ci_hcalls();
2791 kvmppc_enable_set_mode_hcall();
2793 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2794 kvmppc_enable_clear_ref_mod_hcalls();
2797 /* allocate RAM */
2798 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2799 machine->ram_size);
2800 memory_region_add_subregion(sysmem, 0, ram);
2802 /* always allocate the device memory information */
2803 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2805 /* initialize hotplug memory address space */
2806 if (machine->ram_size < machine->maxram_size) {
2807 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2809 * Limit the number of hotpluggable memory slots to half the number
2810 * slots that KVM supports, leaving the other half for PCI and other
2811 * devices. However ensure that number of slots doesn't drop below 32.
2813 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2814 SPAPR_MAX_RAM_SLOTS;
2816 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2817 max_memslots = SPAPR_MAX_RAM_SLOTS;
2819 if (machine->ram_slots > max_memslots) {
2820 error_report("Specified number of memory slots %"
2821 PRIu64" exceeds max supported %d",
2822 machine->ram_slots, max_memslots);
2823 exit(1);
2826 machine->device_memory->base = ROUND_UP(machine->ram_size,
2827 SPAPR_DEVICE_MEM_ALIGN);
2828 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2829 "device-memory", device_mem_size);
2830 memory_region_add_subregion(sysmem, machine->device_memory->base,
2831 &machine->device_memory->mr);
2834 if (smc->dr_lmb_enabled) {
2835 spapr_create_lmb_dr_connectors(spapr);
2838 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2839 if (!filename) {
2840 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2841 exit(1);
2843 spapr->rtas_size = get_image_size(filename);
2844 if (spapr->rtas_size < 0) {
2845 error_report("Could not get size of LPAR rtas '%s'", filename);
2846 exit(1);
2848 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2849 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2850 error_report("Could not load LPAR rtas '%s'", filename);
2851 exit(1);
2853 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2854 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2855 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2856 exit(1);
2858 g_free(filename);
2860 /* Set up RTAS event infrastructure */
2861 spapr_events_init(spapr);
2863 /* Set up the RTC RTAS interfaces */
2864 spapr_rtc_create(spapr);
2866 /* Set up VIO bus */
2867 spapr->vio_bus = spapr_vio_bus_init();
2869 for (i = 0; i < serial_max_hds(); i++) {
2870 if (serial_hd(i)) {
2871 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2875 /* We always have at least the nvram device on VIO */
2876 spapr_create_nvram(spapr);
2878 /* Set up PCI */
2879 spapr_pci_rtas_init();
2881 phb = spapr_create_default_phb();
2883 for (i = 0; i < nb_nics; i++) {
2884 NICInfo *nd = &nd_table[i];
2886 if (!nd->model) {
2887 nd->model = g_strdup("spapr-vlan");
2890 if (g_str_equal(nd->model, "spapr-vlan") ||
2891 g_str_equal(nd->model, "ibmveth")) {
2892 spapr_vlan_create(spapr->vio_bus, nd);
2893 } else {
2894 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2898 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2899 spapr_vscsi_create(spapr->vio_bus);
2902 /* Graphics */
2903 if (spapr_vga_init(phb->bus, &error_fatal)) {
2904 spapr->has_graphics = true;
2905 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2908 if (machine->usb) {
2909 if (smc->use_ohci_by_default) {
2910 pci_create_simple(phb->bus, -1, "pci-ohci");
2911 } else {
2912 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2915 if (spapr->has_graphics) {
2916 USBBus *usb_bus = usb_bus_find(-1);
2918 usb_create_simple(usb_bus, "usb-kbd");
2919 usb_create_simple(usb_bus, "usb-mouse");
2923 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2924 error_report(
2925 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2926 MIN_RMA_SLOF);
2927 exit(1);
2930 if (kernel_filename) {
2931 uint64_t lowaddr = 0;
2933 spapr->kernel_size = load_elf(kernel_filename, NULL,
2934 translate_kernel_address, NULL,
2935 NULL, &lowaddr, NULL, 1,
2936 PPC_ELF_MACHINE, 0, 0);
2937 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2938 spapr->kernel_size = load_elf(kernel_filename, NULL,
2939 translate_kernel_address, NULL, NULL,
2940 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2941 0, 0);
2942 spapr->kernel_le = spapr->kernel_size > 0;
2944 if (spapr->kernel_size < 0) {
2945 error_report("error loading %s: %s", kernel_filename,
2946 load_elf_strerror(spapr->kernel_size));
2947 exit(1);
2950 /* load initrd */
2951 if (initrd_filename) {
2952 /* Try to locate the initrd in the gap between the kernel
2953 * and the firmware. Add a bit of space just in case
2955 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2956 + 0x1ffff) & ~0xffff;
2957 spapr->initrd_size = load_image_targphys(initrd_filename,
2958 spapr->initrd_base,
2959 load_limit
2960 - spapr->initrd_base);
2961 if (spapr->initrd_size < 0) {
2962 error_report("could not load initial ram disk '%s'",
2963 initrd_filename);
2964 exit(1);
2969 if (bios_name == NULL) {
2970 bios_name = FW_FILE_NAME;
2972 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2973 if (!filename) {
2974 error_report("Could not find LPAR firmware '%s'", bios_name);
2975 exit(1);
2977 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2978 if (fw_size <= 0) {
2979 error_report("Could not load LPAR firmware '%s'", filename);
2980 exit(1);
2982 g_free(filename);
2984 /* FIXME: Should register things through the MachineState's qdev
2985 * interface, this is a legacy from the sPAPREnvironment structure
2986 * which predated MachineState but had a similar function */
2987 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2988 register_savevm_live(NULL, "spapr/htab", -1, 1,
2989 &savevm_htab_handlers, spapr);
2991 qemu_register_boot_set(spapr_boot_set, spapr);
2993 if (kvm_enabled()) {
2994 /* to stop and start vmclock */
2995 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2996 &spapr->tb);
2998 kvmppc_spapr_enable_inkernel_multitce();
3002 static int spapr_kvm_type(const char *vm_type)
3004 if (!vm_type) {
3005 return 0;
3008 if (!strcmp(vm_type, "HV")) {
3009 return 1;
3012 if (!strcmp(vm_type, "PR")) {
3013 return 2;
3016 error_report("Unknown kvm-type specified '%s'", vm_type);
3017 exit(1);
3021 * Implementation of an interface to adjust firmware path
3022 * for the bootindex property handling.
3024 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3025 DeviceState *dev)
3027 #define CAST(type, obj, name) \
3028 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3029 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3030 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3031 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3033 if (d) {
3034 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3035 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3036 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3038 if (spapr) {
3040 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3041 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3042 * 0x8000 | (target << 8) | (bus << 5) | lun
3043 * (see the "Logical unit addressing format" table in SAM5)
3045 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3046 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3047 (uint64_t)id << 48);
3048 } else if (virtio) {
3050 * We use SRP luns of the form 01000000 | (target << 8) | lun
3051 * in the top 32 bits of the 64-bit LUN
3052 * Note: the quote above is from SLOF and it is wrong,
3053 * the actual binding is:
3054 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3056 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3057 if (d->lun >= 256) {
3058 /* Use the LUN "flat space addressing method" */
3059 id |= 0x4000;
3061 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3062 (uint64_t)id << 32);
3063 } else if (usb) {
3065 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3066 * in the top 32 bits of the 64-bit LUN
3068 unsigned usb_port = atoi(usb->port->path);
3069 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3070 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3071 (uint64_t)id << 32);
3076 * SLOF probes the USB devices, and if it recognizes that the device is a
3077 * storage device, it changes its name to "storage" instead of "usb-host",
3078 * and additionally adds a child node for the SCSI LUN, so the correct
3079 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3081 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3082 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3083 if (usb_host_dev_is_scsi_storage(usbdev)) {
3084 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3088 if (phb) {
3089 /* Replace "pci" with "pci@800000020000000" */
3090 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3093 if (vsc) {
3094 /* Same logic as virtio above */
3095 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3096 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3099 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3100 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3101 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3102 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3105 return NULL;
3108 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3110 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3112 return g_strdup(spapr->kvm_type);
3115 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3117 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3119 g_free(spapr->kvm_type);
3120 spapr->kvm_type = g_strdup(value);
3123 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3125 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3127 return spapr->use_hotplug_event_source;
3130 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3131 Error **errp)
3133 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3135 spapr->use_hotplug_event_source = value;
3138 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3140 return true;
3143 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3145 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3147 switch (spapr->resize_hpt) {
3148 case SPAPR_RESIZE_HPT_DEFAULT:
3149 return g_strdup("default");
3150 case SPAPR_RESIZE_HPT_DISABLED:
3151 return g_strdup("disabled");
3152 case SPAPR_RESIZE_HPT_ENABLED:
3153 return g_strdup("enabled");
3154 case SPAPR_RESIZE_HPT_REQUIRED:
3155 return g_strdup("required");
3157 g_assert_not_reached();
3160 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3162 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3164 if (strcmp(value, "default") == 0) {
3165 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3166 } else if (strcmp(value, "disabled") == 0) {
3167 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3168 } else if (strcmp(value, "enabled") == 0) {
3169 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3170 } else if (strcmp(value, "required") == 0) {
3171 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3172 } else {
3173 error_setg(errp, "Bad value for \"resize-hpt\" property");
3177 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3178 void *opaque, Error **errp)
3180 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3183 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3184 void *opaque, Error **errp)
3186 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3189 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3191 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3193 if (spapr->irq == &spapr_irq_xics_legacy) {
3194 return g_strdup("legacy");
3195 } else if (spapr->irq == &spapr_irq_xics) {
3196 return g_strdup("xics");
3197 } else if (spapr->irq == &spapr_irq_xive) {
3198 return g_strdup("xive");
3199 } else if (spapr->irq == &spapr_irq_dual) {
3200 return g_strdup("dual");
3202 g_assert_not_reached();
3205 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3207 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3209 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3210 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3211 return;
3214 /* The legacy IRQ backend can not be set */
3215 if (strcmp(value, "xics") == 0) {
3216 spapr->irq = &spapr_irq_xics;
3217 } else if (strcmp(value, "xive") == 0) {
3218 spapr->irq = &spapr_irq_xive;
3219 } else if (strcmp(value, "dual") == 0) {
3220 spapr->irq = &spapr_irq_dual;
3221 } else {
3222 error_setg(errp, "Bad value for \"ic-mode\" property");
3226 static char *spapr_get_host_model(Object *obj, Error **errp)
3228 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3230 return g_strdup(spapr->host_model);
3233 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3235 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3237 g_free(spapr->host_model);
3238 spapr->host_model = g_strdup(value);
3241 static char *spapr_get_host_serial(Object *obj, Error **errp)
3243 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3245 return g_strdup(spapr->host_serial);
3248 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3250 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3252 g_free(spapr->host_serial);
3253 spapr->host_serial = g_strdup(value);
3256 static void spapr_instance_init(Object *obj)
3258 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3259 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3261 spapr->htab_fd = -1;
3262 spapr->use_hotplug_event_source = true;
3263 object_property_add_str(obj, "kvm-type",
3264 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3265 object_property_set_description(obj, "kvm-type",
3266 "Specifies the KVM virtualization mode (HV, PR)",
3267 NULL);
3268 object_property_add_bool(obj, "modern-hotplug-events",
3269 spapr_get_modern_hotplug_events,
3270 spapr_set_modern_hotplug_events,
3271 NULL);
3272 object_property_set_description(obj, "modern-hotplug-events",
3273 "Use dedicated hotplug event mechanism in"
3274 " place of standard EPOW events when possible"
3275 " (required for memory hot-unplug support)",
3276 NULL);
3277 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3278 "Maximum permitted CPU compatibility mode",
3279 &error_fatal);
3281 object_property_add_str(obj, "resize-hpt",
3282 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3283 object_property_set_description(obj, "resize-hpt",
3284 "Resizing of the Hash Page Table (enabled, disabled, required)",
3285 NULL);
3286 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3287 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3288 object_property_set_description(obj, "vsmt",
3289 "Virtual SMT: KVM behaves as if this were"
3290 " the host's SMT mode", &error_abort);
3291 object_property_add_bool(obj, "vfio-no-msix-emulation",
3292 spapr_get_msix_emulation, NULL, NULL);
3294 /* The machine class defines the default interrupt controller mode */
3295 spapr->irq = smc->irq;
3296 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3297 spapr_set_ic_mode, NULL);
3298 object_property_set_description(obj, "ic-mode",
3299 "Specifies the interrupt controller mode (xics, xive, dual)",
3300 NULL);
3302 object_property_add_str(obj, "host-model",
3303 spapr_get_host_model, spapr_set_host_model,
3304 &error_abort);
3305 object_property_set_description(obj, "host-model",
3306 "Set host's model-id to use - none|passthrough|string", &error_abort);
3307 object_property_add_str(obj, "host-serial",
3308 spapr_get_host_serial, spapr_set_host_serial,
3309 &error_abort);
3310 object_property_set_description(obj, "host-serial",
3311 "Set host's system-id to use - none|passthrough|string", &error_abort);
3314 static void spapr_machine_finalizefn(Object *obj)
3316 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3318 g_free(spapr->kvm_type);
3321 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3323 cpu_synchronize_state(cs);
3324 ppc_cpu_do_system_reset(cs);
3327 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3329 CPUState *cs;
3331 CPU_FOREACH(cs) {
3332 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3336 int spapr_lmb_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3337 void *fdt, int *fdt_start_offset, Error **errp)
3339 uint64_t addr;
3340 uint32_t node;
3342 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3343 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3344 &error_abort);
3345 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3346 SPAPR_MEMORY_BLOCK_SIZE);
3347 return 0;
3350 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3351 bool dedicated_hp_event_source, Error **errp)
3353 sPAPRDRConnector *drc;
3354 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3355 int i;
3356 uint64_t addr = addr_start;
3357 bool hotplugged = spapr_drc_hotplugged(dev);
3358 Error *local_err = NULL;
3360 for (i = 0; i < nr_lmbs; i++) {
3361 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3362 addr / SPAPR_MEMORY_BLOCK_SIZE);
3363 g_assert(drc);
3365 spapr_drc_attach(drc, dev, &local_err);
3366 if (local_err) {
3367 while (addr > addr_start) {
3368 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3369 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3370 addr / SPAPR_MEMORY_BLOCK_SIZE);
3371 spapr_drc_detach(drc);
3373 error_propagate(errp, local_err);
3374 return;
3376 if (!hotplugged) {
3377 spapr_drc_reset(drc);
3379 addr += SPAPR_MEMORY_BLOCK_SIZE;
3381 /* send hotplug notification to the
3382 * guest only in case of hotplugged memory
3384 if (hotplugged) {
3385 if (dedicated_hp_event_source) {
3386 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3387 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3388 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3389 nr_lmbs,
3390 spapr_drc_index(drc));
3391 } else {
3392 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3393 nr_lmbs);
3398 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3399 Error **errp)
3401 Error *local_err = NULL;
3402 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3403 PCDIMMDevice *dimm = PC_DIMM(dev);
3404 uint64_t size, addr;
3406 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3408 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3409 if (local_err) {
3410 goto out;
3413 addr = object_property_get_uint(OBJECT(dimm),
3414 PC_DIMM_ADDR_PROP, &local_err);
3415 if (local_err) {
3416 goto out_unplug;
3419 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3420 &local_err);
3421 if (local_err) {
3422 goto out_unplug;
3425 return;
3427 out_unplug:
3428 pc_dimm_unplug(dimm, MACHINE(ms));
3429 out:
3430 error_propagate(errp, local_err);
3433 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3434 Error **errp)
3436 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3437 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3438 PCDIMMDevice *dimm = PC_DIMM(dev);
3439 Error *local_err = NULL;
3440 uint64_t size;
3441 Object *memdev;
3442 hwaddr pagesize;
3444 if (!smc->dr_lmb_enabled) {
3445 error_setg(errp, "Memory hotplug not supported for this machine");
3446 return;
3449 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3450 if (local_err) {
3451 error_propagate(errp, local_err);
3452 return;
3455 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3456 error_setg(errp, "Hotplugged memory size must be a multiple of "
3457 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3458 return;
3461 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3462 &error_abort);
3463 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3464 spapr_check_pagesize(spapr, pagesize, &local_err);
3465 if (local_err) {
3466 error_propagate(errp, local_err);
3467 return;
3470 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3473 struct sPAPRDIMMState {
3474 PCDIMMDevice *dimm;
3475 uint32_t nr_lmbs;
3476 QTAILQ_ENTRY(sPAPRDIMMState) next;
3479 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3480 PCDIMMDevice *dimm)
3482 sPAPRDIMMState *dimm_state = NULL;
3484 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3485 if (dimm_state->dimm == dimm) {
3486 break;
3489 return dimm_state;
3492 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3493 uint32_t nr_lmbs,
3494 PCDIMMDevice *dimm)
3496 sPAPRDIMMState *ds = NULL;
3499 * If this request is for a DIMM whose removal had failed earlier
3500 * (due to guest's refusal to remove the LMBs), we would have this
3501 * dimm already in the pending_dimm_unplugs list. In that
3502 * case don't add again.
3504 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3505 if (!ds) {
3506 ds = g_malloc0(sizeof(sPAPRDIMMState));
3507 ds->nr_lmbs = nr_lmbs;
3508 ds->dimm = dimm;
3509 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3511 return ds;
3514 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3515 sPAPRDIMMState *dimm_state)
3517 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3518 g_free(dimm_state);
3521 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3522 PCDIMMDevice *dimm)
3524 sPAPRDRConnector *drc;
3525 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3526 &error_abort);
3527 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3528 uint32_t avail_lmbs = 0;
3529 uint64_t addr_start, addr;
3530 int i;
3532 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3533 &error_abort);
3535 addr = addr_start;
3536 for (i = 0; i < nr_lmbs; i++) {
3537 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3538 addr / SPAPR_MEMORY_BLOCK_SIZE);
3539 g_assert(drc);
3540 if (drc->dev) {
3541 avail_lmbs++;
3543 addr += SPAPR_MEMORY_BLOCK_SIZE;
3546 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3549 /* Callback to be called during DRC release. */
3550 void spapr_lmb_release(DeviceState *dev)
3552 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3553 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3554 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3556 /* This information will get lost if a migration occurs
3557 * during the unplug process. In this case recover it. */
3558 if (ds == NULL) {
3559 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3560 g_assert(ds);
3561 /* The DRC being examined by the caller at least must be counted */
3562 g_assert(ds->nr_lmbs);
3565 if (--ds->nr_lmbs) {
3566 return;
3570 * Now that all the LMBs have been removed by the guest, call the
3571 * unplug handler chain. This can never fail.
3573 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3576 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3578 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3579 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3581 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3582 object_unparent(OBJECT(dev));
3583 spapr_pending_dimm_unplugs_remove(spapr, ds);
3586 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3587 DeviceState *dev, Error **errp)
3589 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3590 Error *local_err = NULL;
3591 PCDIMMDevice *dimm = PC_DIMM(dev);
3592 uint32_t nr_lmbs;
3593 uint64_t size, addr_start, addr;
3594 int i;
3595 sPAPRDRConnector *drc;
3597 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3598 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3600 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3601 &local_err);
3602 if (local_err) {
3603 goto out;
3607 * An existing pending dimm state for this DIMM means that there is an
3608 * unplug operation in progress, waiting for the spapr_lmb_release
3609 * callback to complete the job (BQL can't cover that far). In this case,
3610 * bail out to avoid detaching DRCs that were already released.
3612 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3613 error_setg(&local_err,
3614 "Memory unplug already in progress for device %s",
3615 dev->id);
3616 goto out;
3619 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3621 addr = addr_start;
3622 for (i = 0; i < nr_lmbs; i++) {
3623 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3624 addr / SPAPR_MEMORY_BLOCK_SIZE);
3625 g_assert(drc);
3627 spapr_drc_detach(drc);
3628 addr += SPAPR_MEMORY_BLOCK_SIZE;
3631 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3632 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3633 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3634 nr_lmbs, spapr_drc_index(drc));
3635 out:
3636 error_propagate(errp, local_err);
3639 /* Callback to be called during DRC release. */
3640 void spapr_core_release(DeviceState *dev)
3642 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3644 /* Call the unplug handler chain. This can never fail. */
3645 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3648 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3650 MachineState *ms = MACHINE(hotplug_dev);
3651 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3652 CPUCore *cc = CPU_CORE(dev);
3653 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3655 if (smc->pre_2_10_has_unused_icps) {
3656 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3657 int i;
3659 for (i = 0; i < cc->nr_threads; i++) {
3660 CPUState *cs = CPU(sc->threads[i]);
3662 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3666 assert(core_slot);
3667 core_slot->cpu = NULL;
3668 object_unparent(OBJECT(dev));
3671 static
3672 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3673 Error **errp)
3675 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3676 int index;
3677 sPAPRDRConnector *drc;
3678 CPUCore *cc = CPU_CORE(dev);
3680 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3681 error_setg(errp, "Unable to find CPU core with core-id: %d",
3682 cc->core_id);
3683 return;
3685 if (index == 0) {
3686 error_setg(errp, "Boot CPU core may not be unplugged");
3687 return;
3690 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3691 spapr_vcpu_id(spapr, cc->core_id));
3692 g_assert(drc);
3694 spapr_drc_detach(drc);
3696 spapr_hotplug_req_remove_by_index(drc);
3699 int spapr_core_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3700 void *fdt, int *fdt_start_offset, Error **errp)
3702 sPAPRCPUCore *core = SPAPR_CPU_CORE(drc->dev);
3703 CPUState *cs = CPU(core->threads[0]);
3704 PowerPCCPU *cpu = POWERPC_CPU(cs);
3705 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3706 int id = spapr_get_vcpu_id(cpu);
3707 char *nodename;
3708 int offset;
3710 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3711 offset = fdt_add_subnode(fdt, 0, nodename);
3712 g_free(nodename);
3714 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3716 *fdt_start_offset = offset;
3717 return 0;
3720 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3721 Error **errp)
3723 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3724 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3725 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3726 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3727 CPUCore *cc = CPU_CORE(dev);
3728 CPUState *cs;
3729 sPAPRDRConnector *drc;
3730 Error *local_err = NULL;
3731 CPUArchId *core_slot;
3732 int index;
3733 bool hotplugged = spapr_drc_hotplugged(dev);
3735 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3736 if (!core_slot) {
3737 error_setg(errp, "Unable to find CPU core with core-id: %d",
3738 cc->core_id);
3739 return;
3741 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3742 spapr_vcpu_id(spapr, cc->core_id));
3744 g_assert(drc || !mc->has_hotpluggable_cpus);
3746 if (drc) {
3747 spapr_drc_attach(drc, dev, &local_err);
3748 if (local_err) {
3749 error_propagate(errp, local_err);
3750 return;
3753 if (hotplugged) {
3755 * Send hotplug notification interrupt to the guest only
3756 * in case of hotplugged CPUs.
3758 spapr_hotplug_req_add_by_index(drc);
3759 } else {
3760 spapr_drc_reset(drc);
3764 core_slot->cpu = OBJECT(dev);
3766 if (smc->pre_2_10_has_unused_icps) {
3767 int i;
3769 for (i = 0; i < cc->nr_threads; i++) {
3770 cs = CPU(core->threads[i]);
3771 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3776 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3777 Error **errp)
3779 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3780 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3781 Error *local_err = NULL;
3782 CPUCore *cc = CPU_CORE(dev);
3783 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3784 const char *type = object_get_typename(OBJECT(dev));
3785 CPUArchId *core_slot;
3786 int index;
3788 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3789 error_setg(&local_err, "CPU hotplug not supported for this machine");
3790 goto out;
3793 if (strcmp(base_core_type, type)) {
3794 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3795 goto out;
3798 if (cc->core_id % smp_threads) {
3799 error_setg(&local_err, "invalid core id %d", cc->core_id);
3800 goto out;
3804 * In general we should have homogeneous threads-per-core, but old
3805 * (pre hotplug support) machine types allow the last core to have
3806 * reduced threads as a compatibility hack for when we allowed
3807 * total vcpus not a multiple of threads-per-core.
3809 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3810 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3811 cc->nr_threads, smp_threads);
3812 goto out;
3815 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3816 if (!core_slot) {
3817 error_setg(&local_err, "core id %d out of range", cc->core_id);
3818 goto out;
3821 if (core_slot->cpu) {
3822 error_setg(&local_err, "core %d already populated", cc->core_id);
3823 goto out;
3826 numa_cpu_pre_plug(core_slot, dev, &local_err);
3828 out:
3829 error_propagate(errp, local_err);
3832 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3833 DeviceState *dev, Error **errp)
3835 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3836 spapr_memory_plug(hotplug_dev, dev, errp);
3837 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3838 spapr_core_plug(hotplug_dev, dev, errp);
3842 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3843 DeviceState *dev, Error **errp)
3845 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3846 spapr_memory_unplug(hotplug_dev, dev);
3847 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3848 spapr_core_unplug(hotplug_dev, dev);
3852 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3853 DeviceState *dev, Error **errp)
3855 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3856 MachineClass *mc = MACHINE_GET_CLASS(sms);
3858 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3859 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3860 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3861 } else {
3862 /* NOTE: this means there is a window after guest reset, prior to
3863 * CAS negotiation, where unplug requests will fail due to the
3864 * capability not being detected yet. This is a bit different than
3865 * the case with PCI unplug, where the events will be queued and
3866 * eventually handled by the guest after boot
3868 error_setg(errp, "Memory hot unplug not supported for this guest");
3870 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3871 if (!mc->has_hotpluggable_cpus) {
3872 error_setg(errp, "CPU hot unplug not supported on this machine");
3873 return;
3875 spapr_core_unplug_request(hotplug_dev, dev, errp);
3879 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3880 DeviceState *dev, Error **errp)
3882 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3883 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3884 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3885 spapr_core_pre_plug(hotplug_dev, dev, errp);
3889 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3890 DeviceState *dev)
3892 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3893 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3894 return HOTPLUG_HANDLER(machine);
3896 return NULL;
3899 static CpuInstanceProperties
3900 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3902 CPUArchId *core_slot;
3903 MachineClass *mc = MACHINE_GET_CLASS(machine);
3905 /* make sure possible_cpu are intialized */
3906 mc->possible_cpu_arch_ids(machine);
3907 /* get CPU core slot containing thread that matches cpu_index */
3908 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3909 assert(core_slot);
3910 return core_slot->props;
3913 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3915 return idx / smp_cores % nb_numa_nodes;
3918 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3920 int i;
3921 const char *core_type;
3922 int spapr_max_cores = max_cpus / smp_threads;
3923 MachineClass *mc = MACHINE_GET_CLASS(machine);
3925 if (!mc->has_hotpluggable_cpus) {
3926 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3928 if (machine->possible_cpus) {
3929 assert(machine->possible_cpus->len == spapr_max_cores);
3930 return machine->possible_cpus;
3933 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3934 if (!core_type) {
3935 error_report("Unable to find sPAPR CPU Core definition");
3936 exit(1);
3939 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3940 sizeof(CPUArchId) * spapr_max_cores);
3941 machine->possible_cpus->len = spapr_max_cores;
3942 for (i = 0; i < machine->possible_cpus->len; i++) {
3943 int core_id = i * smp_threads;
3945 machine->possible_cpus->cpus[i].type = core_type;
3946 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3947 machine->possible_cpus->cpus[i].arch_id = core_id;
3948 machine->possible_cpus->cpus[i].props.has_core_id = true;
3949 machine->possible_cpus->cpus[i].props.core_id = core_id;
3951 return machine->possible_cpus;
3954 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3955 uint64_t *buid, hwaddr *pio,
3956 hwaddr *mmio32, hwaddr *mmio64,
3957 unsigned n_dma, uint32_t *liobns, Error **errp)
3960 * New-style PHB window placement.
3962 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3963 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3964 * windows.
3966 * Some guest kernels can't work with MMIO windows above 1<<46
3967 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3969 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3970 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3971 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3972 * 1TiB 64-bit MMIO windows for each PHB.
3974 const uint64_t base_buid = 0x800000020000000ULL;
3975 int i;
3977 /* Sanity check natural alignments */
3978 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3979 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3980 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3981 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3982 /* Sanity check bounds */
3983 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3984 SPAPR_PCI_MEM32_WIN_SIZE);
3985 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3986 SPAPR_PCI_MEM64_WIN_SIZE);
3988 if (index >= SPAPR_MAX_PHBS) {
3989 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3990 SPAPR_MAX_PHBS - 1);
3991 return;
3994 *buid = base_buid + index;
3995 for (i = 0; i < n_dma; ++i) {
3996 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3999 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4000 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4001 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4004 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4006 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
4008 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4011 static void spapr_ics_resend(XICSFabric *dev)
4013 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
4015 ics_resend(spapr->ics);
4018 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4020 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4022 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4025 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4026 Monitor *mon)
4028 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
4030 spapr->irq->print_info(spapr, mon);
4033 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4035 return cpu->vcpu_id;
4038 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4040 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4041 int vcpu_id;
4043 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4045 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4046 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4047 error_append_hint(errp, "Adjust the number of cpus to %d "
4048 "or try to raise the number of threads per core\n",
4049 vcpu_id * smp_threads / spapr->vsmt);
4050 return;
4053 cpu->vcpu_id = vcpu_id;
4056 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4058 CPUState *cs;
4060 CPU_FOREACH(cs) {
4061 PowerPCCPU *cpu = POWERPC_CPU(cs);
4063 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4064 return cpu;
4068 return NULL;
4071 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4073 MachineClass *mc = MACHINE_CLASS(oc);
4074 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4075 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4076 NMIClass *nc = NMI_CLASS(oc);
4077 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4078 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4079 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4080 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4082 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4083 mc->ignore_boot_device_suffixes = true;
4086 * We set up the default / latest behaviour here. The class_init
4087 * functions for the specific versioned machine types can override
4088 * these details for backwards compatibility
4090 mc->init = spapr_machine_init;
4091 mc->reset = spapr_machine_reset;
4092 mc->block_default_type = IF_SCSI;
4093 mc->max_cpus = 1024;
4094 mc->no_parallel = 1;
4095 mc->default_boot_order = "";
4096 mc->default_ram_size = 512 * MiB;
4097 mc->default_display = "std";
4098 mc->kvm_type = spapr_kvm_type;
4099 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4100 mc->pci_allow_0_address = true;
4101 assert(!mc->get_hotplug_handler);
4102 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4103 hc->pre_plug = spapr_machine_device_pre_plug;
4104 hc->plug = spapr_machine_device_plug;
4105 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4106 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4107 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4108 hc->unplug_request = spapr_machine_device_unplug_request;
4109 hc->unplug = spapr_machine_device_unplug;
4111 smc->dr_lmb_enabled = true;
4112 smc->update_dt_enabled = true;
4113 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4114 mc->has_hotpluggable_cpus = true;
4115 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4116 fwc->get_dev_path = spapr_get_fw_dev_path;
4117 nc->nmi_monitor_handler = spapr_nmi;
4118 smc->phb_placement = spapr_phb_placement;
4119 vhc->hypercall = emulate_spapr_hypercall;
4120 vhc->hpt_mask = spapr_hpt_mask;
4121 vhc->map_hptes = spapr_map_hptes;
4122 vhc->unmap_hptes = spapr_unmap_hptes;
4123 vhc->store_hpte = spapr_store_hpte;
4124 vhc->get_pate = spapr_get_pate;
4125 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4126 xic->ics_get = spapr_ics_get;
4127 xic->ics_resend = spapr_ics_resend;
4128 xic->icp_get = spapr_icp_get;
4129 ispc->print_info = spapr_pic_print_info;
4130 /* Force NUMA node memory size to be a multiple of
4131 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4132 * in which LMBs are represented and hot-added
4134 mc->numa_mem_align_shift = 28;
4136 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4137 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4138 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4139 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4140 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4141 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4142 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4143 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4144 spapr_caps_add_properties(smc, &error_abort);
4145 smc->irq = &spapr_irq_xics;
4148 static const TypeInfo spapr_machine_info = {
4149 .name = TYPE_SPAPR_MACHINE,
4150 .parent = TYPE_MACHINE,
4151 .abstract = true,
4152 .instance_size = sizeof(sPAPRMachineState),
4153 .instance_init = spapr_instance_init,
4154 .instance_finalize = spapr_machine_finalizefn,
4155 .class_size = sizeof(sPAPRMachineClass),
4156 .class_init = spapr_machine_class_init,
4157 .interfaces = (InterfaceInfo[]) {
4158 { TYPE_FW_PATH_PROVIDER },
4159 { TYPE_NMI },
4160 { TYPE_HOTPLUG_HANDLER },
4161 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4162 { TYPE_XICS_FABRIC },
4163 { TYPE_INTERRUPT_STATS_PROVIDER },
4168 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4169 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4170 void *data) \
4172 MachineClass *mc = MACHINE_CLASS(oc); \
4173 spapr_machine_##suffix##_class_options(mc); \
4174 if (latest) { \
4175 mc->alias = "pseries"; \
4176 mc->is_default = 1; \
4179 static const TypeInfo spapr_machine_##suffix##_info = { \
4180 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4181 .parent = TYPE_SPAPR_MACHINE, \
4182 .class_init = spapr_machine_##suffix##_class_init, \
4183 }; \
4184 static void spapr_machine_register_##suffix(void) \
4186 type_register(&spapr_machine_##suffix##_info); \
4188 type_init(spapr_machine_register_##suffix)
4191 * pseries-4.0
4193 static void spapr_machine_4_0_class_options(MachineClass *mc)
4195 /* Defaults for the latest behaviour inherited from the base class */
4198 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4201 * pseries-3.1
4203 static void spapr_machine_3_1_class_options(MachineClass *mc)
4205 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4206 static GlobalProperty compat[] = {
4207 { TYPE_SPAPR_MACHINE, "host-model", "passthrough" },
4208 { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" },
4211 spapr_machine_4_0_class_options(mc);
4212 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4213 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4215 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4216 smc->update_dt_enabled = false;
4219 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4222 * pseries-3.0
4225 static void spapr_machine_3_0_class_options(MachineClass *mc)
4227 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4229 spapr_machine_3_1_class_options(mc);
4230 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4232 smc->legacy_irq_allocation = true;
4233 smc->irq = &spapr_irq_xics_legacy;
4236 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4239 * pseries-2.12
4241 static void spapr_machine_2_12_class_options(MachineClass *mc)
4243 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4244 static GlobalProperty compat[] = {
4245 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4246 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4249 spapr_machine_3_0_class_options(mc);
4250 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4251 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4253 /* We depend on kvm_enabled() to choose a default value for the
4254 * hpt-max-page-size capability. Of course we can't do it here
4255 * because this is too early and the HW accelerator isn't initialzed
4256 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4258 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4261 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4263 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4265 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4267 spapr_machine_2_12_class_options(mc);
4268 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4269 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4270 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4273 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4276 * pseries-2.11
4279 static void spapr_machine_2_11_class_options(MachineClass *mc)
4281 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4283 spapr_machine_2_12_class_options(mc);
4284 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4285 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4288 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4291 * pseries-2.10
4294 static void spapr_machine_2_10_class_options(MachineClass *mc)
4296 spapr_machine_2_11_class_options(mc);
4297 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4300 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4303 * pseries-2.9
4306 static void spapr_machine_2_9_class_options(MachineClass *mc)
4308 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4309 static GlobalProperty compat[] = {
4310 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4313 spapr_machine_2_10_class_options(mc);
4314 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4315 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4316 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4317 smc->pre_2_10_has_unused_icps = true;
4318 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4321 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4324 * pseries-2.8
4327 static void spapr_machine_2_8_class_options(MachineClass *mc)
4329 static GlobalProperty compat[] = {
4330 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4333 spapr_machine_2_9_class_options(mc);
4334 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4335 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4336 mc->numa_mem_align_shift = 23;
4339 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4342 * pseries-2.7
4345 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4346 uint64_t *buid, hwaddr *pio,
4347 hwaddr *mmio32, hwaddr *mmio64,
4348 unsigned n_dma, uint32_t *liobns, Error **errp)
4350 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4351 const uint64_t base_buid = 0x800000020000000ULL;
4352 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4353 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4354 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4355 const uint32_t max_index = 255;
4356 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4358 uint64_t ram_top = MACHINE(spapr)->ram_size;
4359 hwaddr phb0_base, phb_base;
4360 int i;
4362 /* Do we have device memory? */
4363 if (MACHINE(spapr)->maxram_size > ram_top) {
4364 /* Can't just use maxram_size, because there may be an
4365 * alignment gap between normal and device memory regions
4367 ram_top = MACHINE(spapr)->device_memory->base +
4368 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4371 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4373 if (index > max_index) {
4374 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4375 max_index);
4376 return;
4379 *buid = base_buid + index;
4380 for (i = 0; i < n_dma; ++i) {
4381 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4384 phb_base = phb0_base + index * phb_spacing;
4385 *pio = phb_base + pio_offset;
4386 *mmio32 = phb_base + mmio_offset;
4388 * We don't set the 64-bit MMIO window, relying on the PHB's
4389 * fallback behaviour of automatically splitting a large "32-bit"
4390 * window into contiguous 32-bit and 64-bit windows
4394 static void spapr_machine_2_7_class_options(MachineClass *mc)
4396 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4397 static GlobalProperty compat[] = {
4398 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4399 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4400 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4401 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4404 spapr_machine_2_8_class_options(mc);
4405 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4406 mc->default_machine_opts = "modern-hotplug-events=off";
4407 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4408 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4409 smc->phb_placement = phb_placement_2_7;
4412 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4415 * pseries-2.6
4418 static void spapr_machine_2_6_class_options(MachineClass *mc)
4420 static GlobalProperty compat[] = {
4421 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4424 spapr_machine_2_7_class_options(mc);
4425 mc->has_hotpluggable_cpus = false;
4426 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4427 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4430 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4433 * pseries-2.5
4436 static void spapr_machine_2_5_class_options(MachineClass *mc)
4438 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4439 static GlobalProperty compat[] = {
4440 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4443 spapr_machine_2_6_class_options(mc);
4444 smc->use_ohci_by_default = true;
4445 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4446 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4449 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4452 * pseries-2.4
4455 static void spapr_machine_2_4_class_options(MachineClass *mc)
4457 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4459 spapr_machine_2_5_class_options(mc);
4460 smc->dr_lmb_enabled = false;
4461 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4464 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4467 * pseries-2.3
4470 static void spapr_machine_2_3_class_options(MachineClass *mc)
4472 static GlobalProperty compat[] = {
4473 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4475 spapr_machine_2_4_class_options(mc);
4476 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4477 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4479 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4482 * pseries-2.2
4485 static void spapr_machine_2_2_class_options(MachineClass *mc)
4487 static GlobalProperty compat[] = {
4488 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4491 spapr_machine_2_3_class_options(mc);
4492 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4493 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4494 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4496 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4499 * pseries-2.1
4502 static void spapr_machine_2_1_class_options(MachineClass *mc)
4504 spapr_machine_2_2_class_options(mc);
4505 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4507 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4509 static void spapr_machine_register_types(void)
4511 type_register_static(&spapr_machine_info);
4514 type_init(spapr_machine_register_types)