2 * Postcopy migration for RAM
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
7 * Dave Gilbert <dgilbert@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "postcopy-ram.h"
26 #include "qapi/error.h"
27 #include "qemu/notify.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/balloon.h"
30 #include "qemu/error-report.h"
33 /* Arbitrary limit on size of each discard command,
34 * keeps them around ~200 bytes
36 #define MAX_DISCARDS_PER_COMMAND 12
38 struct PostcopyDiscardState
{
39 const char *ramblock_name
;
42 * Start and length of a discard range (bytes)
44 uint64_t start_list
[MAX_DISCARDS_PER_COMMAND
];
45 uint64_t length_list
[MAX_DISCARDS_PER_COMMAND
];
46 unsigned int nsentwords
;
47 unsigned int nsentcmds
;
50 static NotifierWithReturnList postcopy_notifier_list
;
52 void postcopy_infrastructure_init(void)
54 notifier_with_return_list_init(&postcopy_notifier_list
);
57 void postcopy_add_notifier(NotifierWithReturn
*nn
)
59 notifier_with_return_list_add(&postcopy_notifier_list
, nn
);
62 void postcopy_remove_notifier(NotifierWithReturn
*n
)
64 notifier_with_return_remove(n
);
67 int postcopy_notify(enum PostcopyNotifyReason reason
, Error
**errp
)
69 struct PostcopyNotifyData pnd
;
73 return notifier_with_return_list_notify(&postcopy_notifier_list
,
77 /* Postcopy needs to detect accesses to pages that haven't yet been copied
78 * across, and efficiently map new pages in, the techniques for doing this
79 * are target OS specific.
81 #if defined(__linux__)
84 #include <sys/ioctl.h>
85 #include <sys/syscall.h>
86 #include <asm/types.h> /* for __u64 */
89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
90 #include <sys/eventfd.h>
91 #include <linux/userfaultfd.h>
93 typedef struct PostcopyBlocktimeContext
{
94 /* time when page fault initiated per vCPU */
95 uint32_t *page_fault_vcpu_time
;
96 /* page address per vCPU */
98 uint32_t total_blocktime
;
99 /* blocktime per vCPU */
100 uint32_t *vcpu_blocktime
;
101 /* point in time when last page fault was initiated */
103 /* number of vCPU are suspended */
108 * Handler for exit event, necessary for
109 * releasing whole blocktime_ctx
111 Notifier exit_notifier
;
112 } PostcopyBlocktimeContext
;
114 static void destroy_blocktime_context(struct PostcopyBlocktimeContext
*ctx
)
116 g_free(ctx
->page_fault_vcpu_time
);
117 g_free(ctx
->vcpu_addr
);
118 g_free(ctx
->vcpu_blocktime
);
122 static void migration_exit_cb(Notifier
*n
, void *data
)
124 PostcopyBlocktimeContext
*ctx
= container_of(n
, PostcopyBlocktimeContext
,
126 destroy_blocktime_context(ctx
);
129 static struct PostcopyBlocktimeContext
*blocktime_context_new(void)
131 PostcopyBlocktimeContext
*ctx
= g_new0(PostcopyBlocktimeContext
, 1);
132 ctx
->page_fault_vcpu_time
= g_new0(uint32_t, smp_cpus
);
133 ctx
->vcpu_addr
= g_new0(uintptr_t, smp_cpus
);
134 ctx
->vcpu_blocktime
= g_new0(uint32_t, smp_cpus
);
136 ctx
->exit_notifier
.notify
= migration_exit_cb
;
137 ctx
->start_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
138 qemu_add_exit_notifier(&ctx
->exit_notifier
);
142 static uint32List
*get_vcpu_blocktime_list(PostcopyBlocktimeContext
*ctx
)
144 uint32List
*list
= NULL
, *entry
= NULL
;
147 for (i
= smp_cpus
- 1; i
>= 0; i
--) {
148 entry
= g_new0(uint32List
, 1);
149 entry
->value
= ctx
->vcpu_blocktime
[i
];
158 * This function just populates MigrationInfo from postcopy's
159 * blocktime context. It will not populate MigrationInfo,
160 * unless postcopy-blocktime capability was set.
162 * @info: pointer to MigrationInfo to populate
164 void fill_destination_postcopy_migration_info(MigrationInfo
*info
)
166 MigrationIncomingState
*mis
= migration_incoming_get_current();
167 PostcopyBlocktimeContext
*bc
= mis
->blocktime_ctx
;
173 info
->has_postcopy_blocktime
= true;
174 info
->postcopy_blocktime
= bc
->total_blocktime
;
175 info
->has_postcopy_vcpu_blocktime
= true;
176 info
->postcopy_vcpu_blocktime
= get_vcpu_blocktime_list(bc
);
179 static uint32_t get_postcopy_total_blocktime(void)
181 MigrationIncomingState
*mis
= migration_incoming_get_current();
182 PostcopyBlocktimeContext
*bc
= mis
->blocktime_ctx
;
188 return bc
->total_blocktime
;
192 * receive_ufd_features: check userfault fd features, to request only supported
193 * features in the future.
195 * Returns: true on success
197 * __NR_userfaultfd - should be checked before
198 * @features: out parameter will contain uffdio_api.features provided by kernel
201 static bool receive_ufd_features(uint64_t *features
)
203 struct uffdio_api api_struct
= {0};
207 /* if we are here __NR_userfaultfd should exists */
208 ufd
= syscall(__NR_userfaultfd
, O_CLOEXEC
);
210 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__
,
216 api_struct
.api
= UFFD_API
;
217 api_struct
.features
= 0;
218 if (ioctl(ufd
, UFFDIO_API
, &api_struct
)) {
219 error_report("%s: UFFDIO_API failed: %s", __func__
,
225 *features
= api_struct
.features
;
233 * request_ufd_features: this function should be called only once on a newly
234 * opened ufd, subsequent calls will lead to error.
236 * Returns: true on succes
238 * @ufd: fd obtained from userfaultfd syscall
239 * @features: bit mask see UFFD_API_FEATURES
241 static bool request_ufd_features(int ufd
, uint64_t features
)
243 struct uffdio_api api_struct
= {0};
246 api_struct
.api
= UFFD_API
;
247 api_struct
.features
= features
;
248 if (ioctl(ufd
, UFFDIO_API
, &api_struct
)) {
249 error_report("%s failed: UFFDIO_API failed: %s", __func__
,
254 ioctl_mask
= (__u64
)1 << _UFFDIO_REGISTER
|
255 (__u64
)1 << _UFFDIO_UNREGISTER
;
256 if ((api_struct
.ioctls
& ioctl_mask
) != ioctl_mask
) {
257 error_report("Missing userfault features: %" PRIx64
,
258 (uint64_t)(~api_struct
.ioctls
& ioctl_mask
));
265 static bool ufd_check_and_apply(int ufd
, MigrationIncomingState
*mis
)
267 uint64_t asked_features
= 0;
268 static uint64_t supported_features
;
271 * it's not possible to
272 * request UFFD_API twice per one fd
273 * userfault fd features is persistent
275 if (!supported_features
) {
276 if (!receive_ufd_features(&supported_features
)) {
277 error_report("%s failed", __func__
);
282 #ifdef UFFD_FEATURE_THREAD_ID
283 if (migrate_postcopy_blocktime() && mis
&&
284 UFFD_FEATURE_THREAD_ID
& supported_features
) {
285 /* kernel supports that feature */
286 /* don't create blocktime_context if it exists */
287 if (!mis
->blocktime_ctx
) {
288 mis
->blocktime_ctx
= blocktime_context_new();
291 asked_features
|= UFFD_FEATURE_THREAD_ID
;
296 * request features, even if asked_features is 0, due to
297 * kernel expects UFFD_API before UFFDIO_REGISTER, per
298 * userfault file descriptor
300 if (!request_ufd_features(ufd
, asked_features
)) {
301 error_report("%s failed: features %" PRIu64
, __func__
,
306 if (getpagesize() != ram_pagesize_summary()) {
307 bool have_hp
= false;
308 /* We've got a huge page */
309 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
310 have_hp
= supported_features
& UFFD_FEATURE_MISSING_HUGETLBFS
;
313 error_report("Userfault on this host does not support huge pages");
320 /* Callback from postcopy_ram_supported_by_host block iterator.
322 static int test_ramblock_postcopiable(const char *block_name
, void *host_addr
,
323 ram_addr_t offset
, ram_addr_t length
, void *opaque
)
325 RAMBlock
*rb
= qemu_ram_block_by_name(block_name
);
326 size_t pagesize
= qemu_ram_pagesize(rb
);
328 if (length
% pagesize
) {
329 error_report("Postcopy requires RAM blocks to be a page size multiple,"
330 " block %s is 0x" RAM_ADDR_FMT
" bytes with a "
331 "page size of 0x%zx", block_name
, length
, pagesize
);
338 * Note: This has the side effect of munlock'ing all of RAM, that's
339 * normally fine since if the postcopy succeeds it gets turned back on at the
342 bool postcopy_ram_supported_by_host(MigrationIncomingState
*mis
)
344 long pagesize
= getpagesize();
346 bool ret
= false; /* Error unless we change it */
347 void *testarea
= NULL
;
348 struct uffdio_register reg_struct
;
349 struct uffdio_range range_struct
;
350 uint64_t feature_mask
;
351 Error
*local_err
= NULL
;
353 if (qemu_target_page_size() > pagesize
) {
354 error_report("Target page size bigger than host page size");
358 ufd
= syscall(__NR_userfaultfd
, O_CLOEXEC
);
360 error_report("%s: userfaultfd not available: %s", __func__
,
365 /* Give devices a chance to object */
366 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE
, &local_err
)) {
367 error_report_err(local_err
);
371 /* Version and features check */
372 if (!ufd_check_and_apply(ufd
, mis
)) {
376 /* We don't support postcopy with shared RAM yet */
377 if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable
, NULL
)) {
382 * userfault and mlock don't go together; we'll put it back later if
386 error_report("%s: munlockall: %s", __func__
, strerror(errno
));
391 * We need to check that the ops we need are supported on anon memory
392 * To do that we need to register a chunk and see the flags that
395 testarea
= mmap(NULL
, pagesize
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
|
396 MAP_ANONYMOUS
, -1, 0);
397 if (testarea
== MAP_FAILED
) {
398 error_report("%s: Failed to map test area: %s", __func__
,
402 g_assert(((size_t)testarea
& (pagesize
-1)) == 0);
404 reg_struct
.range
.start
= (uintptr_t)testarea
;
405 reg_struct
.range
.len
= pagesize
;
406 reg_struct
.mode
= UFFDIO_REGISTER_MODE_MISSING
;
408 if (ioctl(ufd
, UFFDIO_REGISTER
, ®_struct
)) {
409 error_report("%s userfault register: %s", __func__
, strerror(errno
));
413 range_struct
.start
= (uintptr_t)testarea
;
414 range_struct
.len
= pagesize
;
415 if (ioctl(ufd
, UFFDIO_UNREGISTER
, &range_struct
)) {
416 error_report("%s userfault unregister: %s", __func__
, strerror(errno
));
420 feature_mask
= (__u64
)1 << _UFFDIO_WAKE
|
421 (__u64
)1 << _UFFDIO_COPY
|
422 (__u64
)1 << _UFFDIO_ZEROPAGE
;
423 if ((reg_struct
.ioctls
& feature_mask
) != feature_mask
) {
424 error_report("Missing userfault map features: %" PRIx64
,
425 (uint64_t)(~reg_struct
.ioctls
& feature_mask
));
433 munmap(testarea
, pagesize
);
442 * Setup an area of RAM so that it *can* be used for postcopy later; this
443 * must be done right at the start prior to pre-copy.
444 * opaque should be the MIS.
446 static int init_range(const char *block_name
, void *host_addr
,
447 ram_addr_t offset
, ram_addr_t length
, void *opaque
)
449 trace_postcopy_init_range(block_name
, host_addr
, offset
, length
);
452 * We need the whole of RAM to be truly empty for postcopy, so things
453 * like ROMs and any data tables built during init must be zero'd
454 * - we're going to get the copy from the source anyway.
455 * (Precopy will just overwrite this data, so doesn't need the discard)
457 if (ram_discard_range(block_name
, 0, length
)) {
465 * At the end of migration, undo the effects of init_range
466 * opaque should be the MIS.
468 static int cleanup_range(const char *block_name
, void *host_addr
,
469 ram_addr_t offset
, ram_addr_t length
, void *opaque
)
471 MigrationIncomingState
*mis
= opaque
;
472 struct uffdio_range range_struct
;
473 trace_postcopy_cleanup_range(block_name
, host_addr
, offset
, length
);
476 * We turned off hugepage for the precopy stage with postcopy enabled
477 * we can turn it back on now.
479 qemu_madvise(host_addr
, length
, QEMU_MADV_HUGEPAGE
);
482 * We can also turn off userfault now since we should have all the
483 * pages. It can be useful to leave it on to debug postcopy
484 * if you're not sure it's always getting every page.
486 range_struct
.start
= (uintptr_t)host_addr
;
487 range_struct
.len
= length
;
489 if (ioctl(mis
->userfault_fd
, UFFDIO_UNREGISTER
, &range_struct
)) {
490 error_report("%s: userfault unregister %s", __func__
, strerror(errno
));
499 * Initialise postcopy-ram, setting the RAM to a state where we can go into
500 * postcopy later; must be called prior to any precopy.
501 * called from arch_init's similarly named ram_postcopy_incoming_init
503 int postcopy_ram_incoming_init(MigrationIncomingState
*mis
)
505 if (qemu_ram_foreach_migratable_block(init_range
, NULL
)) {
513 * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
516 static void postcopy_balloon_inhibit(bool state
)
518 static bool cur_state
= false;
520 if (state
!= cur_state
) {
521 qemu_balloon_inhibit(state
);
527 * At the end of a migration where postcopy_ram_incoming_init was called.
529 int postcopy_ram_incoming_cleanup(MigrationIncomingState
*mis
)
531 trace_postcopy_ram_incoming_cleanup_entry();
533 if (mis
->have_fault_thread
) {
534 Error
*local_err
= NULL
;
536 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END
, &local_err
)) {
537 error_report_err(local_err
);
541 if (qemu_ram_foreach_migratable_block(cleanup_range
, mis
)) {
544 /* Let the fault thread quit */
545 atomic_set(&mis
->fault_thread_quit
, 1);
546 postcopy_fault_thread_notify(mis
);
547 trace_postcopy_ram_incoming_cleanup_join();
548 qemu_thread_join(&mis
->fault_thread
);
550 trace_postcopy_ram_incoming_cleanup_closeuf();
551 close(mis
->userfault_fd
);
552 close(mis
->userfault_event_fd
);
553 mis
->have_fault_thread
= false;
556 postcopy_balloon_inhibit(false);
559 if (os_mlock() < 0) {
560 error_report("mlock: %s", strerror(errno
));
562 * It doesn't feel right to fail at this point, we have a valid
568 postcopy_state_set(POSTCOPY_INCOMING_END
);
570 if (mis
->postcopy_tmp_page
) {
571 munmap(mis
->postcopy_tmp_page
, mis
->largest_page_size
);
572 mis
->postcopy_tmp_page
= NULL
;
574 if (mis
->postcopy_tmp_zero_page
) {
575 munmap(mis
->postcopy_tmp_zero_page
, mis
->largest_page_size
);
576 mis
->postcopy_tmp_zero_page
= NULL
;
578 trace_postcopy_ram_incoming_cleanup_blocktime(
579 get_postcopy_total_blocktime());
581 trace_postcopy_ram_incoming_cleanup_exit();
586 * Disable huge pages on an area
588 static int nhp_range(const char *block_name
, void *host_addr
,
589 ram_addr_t offset
, ram_addr_t length
, void *opaque
)
591 trace_postcopy_nhp_range(block_name
, host_addr
, offset
, length
);
594 * Before we do discards we need to ensure those discards really
595 * do delete areas of the page, even if THP thinks a hugepage would
596 * be a good idea, so force hugepages off.
598 qemu_madvise(host_addr
, length
, QEMU_MADV_NOHUGEPAGE
);
604 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
605 * however leaving it until after precopy means that most of the precopy
608 int postcopy_ram_prepare_discard(MigrationIncomingState
*mis
)
610 if (qemu_ram_foreach_migratable_block(nhp_range
, mis
)) {
614 postcopy_state_set(POSTCOPY_INCOMING_DISCARD
);
620 * Mark the given area of RAM as requiring notification to unwritten areas
621 * Used as a callback on qemu_ram_foreach_migratable_block.
622 * host_addr: Base of area to mark
623 * offset: Offset in the whole ram arena
624 * length: Length of the section
625 * opaque: MigrationIncomingState pointer
626 * Returns 0 on success
628 static int ram_block_enable_notify(const char *block_name
, void *host_addr
,
629 ram_addr_t offset
, ram_addr_t length
,
632 MigrationIncomingState
*mis
= opaque
;
633 struct uffdio_register reg_struct
;
635 reg_struct
.range
.start
= (uintptr_t)host_addr
;
636 reg_struct
.range
.len
= length
;
637 reg_struct
.mode
= UFFDIO_REGISTER_MODE_MISSING
;
639 /* Now tell our userfault_fd that it's responsible for this area */
640 if (ioctl(mis
->userfault_fd
, UFFDIO_REGISTER
, ®_struct
)) {
641 error_report("%s userfault register: %s", __func__
, strerror(errno
));
644 if (!(reg_struct
.ioctls
& ((__u64
)1 << _UFFDIO_COPY
))) {
645 error_report("%s userfault: Region doesn't support COPY", __func__
);
648 if (reg_struct
.ioctls
& ((__u64
)1 << _UFFDIO_ZEROPAGE
)) {
649 RAMBlock
*rb
= qemu_ram_block_by_name(block_name
);
650 qemu_ram_set_uf_zeroable(rb
);
656 int postcopy_wake_shared(struct PostCopyFD
*pcfd
,
657 uint64_t client_addr
,
660 size_t pagesize
= qemu_ram_pagesize(rb
);
661 struct uffdio_range range
;
663 trace_postcopy_wake_shared(client_addr
, qemu_ram_get_idstr(rb
));
664 range
.start
= client_addr
& ~(pagesize
- 1);
665 range
.len
= pagesize
;
666 ret
= ioctl(pcfd
->fd
, UFFDIO_WAKE
, &range
);
668 error_report("%s: Failed to wake: %zx in %s (%s)",
669 __func__
, (size_t)client_addr
, qemu_ram_get_idstr(rb
),
676 * Callback from shared fault handlers to ask for a page,
677 * the page must be specified by a RAMBlock and an offset in that rb
678 * Note: Only for use by shared fault handlers (in fault thread)
680 int postcopy_request_shared_page(struct PostCopyFD
*pcfd
, RAMBlock
*rb
,
681 uint64_t client_addr
, uint64_t rb_offset
)
683 size_t pagesize
= qemu_ram_pagesize(rb
);
684 uint64_t aligned_rbo
= rb_offset
& ~(pagesize
- 1);
685 MigrationIncomingState
*mis
= migration_incoming_get_current();
687 trace_postcopy_request_shared_page(pcfd
->idstr
, qemu_ram_get_idstr(rb
),
689 if (ramblock_recv_bitmap_test_byte_offset(rb
, aligned_rbo
)) {
690 trace_postcopy_request_shared_page_present(pcfd
->idstr
,
691 qemu_ram_get_idstr(rb
), rb_offset
);
692 return postcopy_wake_shared(pcfd
, client_addr
, rb
);
694 if (rb
!= mis
->last_rb
) {
696 migrate_send_rp_req_pages(mis
, qemu_ram_get_idstr(rb
),
697 aligned_rbo
, pagesize
);
699 /* Save some space */
700 migrate_send_rp_req_pages(mis
, NULL
, aligned_rbo
, pagesize
);
705 static int get_mem_fault_cpu_index(uint32_t pid
)
709 CPU_FOREACH(cpu_iter
) {
710 if (cpu_iter
->thread_id
== pid
) {
711 trace_get_mem_fault_cpu_index(cpu_iter
->cpu_index
, pid
);
712 return cpu_iter
->cpu_index
;
715 trace_get_mem_fault_cpu_index(-1, pid
);
719 static uint32_t get_low_time_offset(PostcopyBlocktimeContext
*dc
)
721 int64_t start_time_offset
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
) -
723 return start_time_offset
< 1 ? 1 : start_time_offset
& UINT32_MAX
;
727 * This function is being called when pagefault occurs. It
728 * tracks down vCPU blocking time.
730 * @addr: faulted host virtual address
731 * @ptid: faulted process thread id
732 * @rb: ramblock appropriate to addr
734 static void mark_postcopy_blocktime_begin(uintptr_t addr
, uint32_t ptid
,
737 int cpu
, already_received
;
738 MigrationIncomingState
*mis
= migration_incoming_get_current();
739 PostcopyBlocktimeContext
*dc
= mis
->blocktime_ctx
;
740 uint32_t low_time_offset
;
742 if (!dc
|| ptid
== 0) {
745 cpu
= get_mem_fault_cpu_index(ptid
);
750 low_time_offset
= get_low_time_offset(dc
);
751 if (dc
->vcpu_addr
[cpu
] == 0) {
752 atomic_inc(&dc
->smp_cpus_down
);
755 atomic_xchg(&dc
->last_begin
, low_time_offset
);
756 atomic_xchg(&dc
->page_fault_vcpu_time
[cpu
], low_time_offset
);
757 atomic_xchg(&dc
->vcpu_addr
[cpu
], addr
);
759 /* check it here, not at the begining of the function,
760 * due to, check could accur early than bitmap_set in
761 * qemu_ufd_copy_ioctl */
762 already_received
= ramblock_recv_bitmap_test(rb
, (void *)addr
);
763 if (already_received
) {
764 atomic_xchg(&dc
->vcpu_addr
[cpu
], 0);
765 atomic_xchg(&dc
->page_fault_vcpu_time
[cpu
], 0);
766 atomic_dec(&dc
->smp_cpus_down
);
768 trace_mark_postcopy_blocktime_begin(addr
, dc
, dc
->page_fault_vcpu_time
[cpu
],
769 cpu
, already_received
);
773 * This function just provide calculated blocktime per cpu and trace it.
774 * Total blocktime is calculated in mark_postcopy_blocktime_end.
777 * Assume we have 3 CPU
780 * -----***********------------xxx***************------------------------> CPU1
783 * ------------****************xxx---------------------------------------> CPU2
786 * ------------------------****xxx********-------------------------------> CPU3
788 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
789 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
790 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
791 * it's a part of total blocktime.
792 * S1 - here is last_begin
793 * Legend of the picture is following:
794 * * - means blocktime per vCPU
795 * x - means overlapped blocktime (total blocktime)
797 * @addr: host virtual address
799 static void mark_postcopy_blocktime_end(uintptr_t addr
)
801 MigrationIncomingState
*mis
= migration_incoming_get_current();
802 PostcopyBlocktimeContext
*dc
= mis
->blocktime_ctx
;
803 int i
, affected_cpu
= 0;
804 bool vcpu_total_blocktime
= false;
805 uint32_t read_vcpu_time
, low_time_offset
;
811 low_time_offset
= get_low_time_offset(dc
);
812 /* lookup cpu, to clear it,
813 * that algorithm looks straighforward, but it's not
814 * optimal, more optimal algorithm is keeping tree or hash
815 * where key is address value is a list of */
816 for (i
= 0; i
< smp_cpus
; i
++) {
817 uint32_t vcpu_blocktime
= 0;
819 read_vcpu_time
= atomic_fetch_add(&dc
->page_fault_vcpu_time
[i
], 0);
820 if (atomic_fetch_add(&dc
->vcpu_addr
[i
], 0) != addr
||
821 read_vcpu_time
== 0) {
824 atomic_xchg(&dc
->vcpu_addr
[i
], 0);
825 vcpu_blocktime
= low_time_offset
- read_vcpu_time
;
827 /* we need to know is that mark_postcopy_end was due to
828 * faulted page, another possible case it's prefetched
829 * page and in that case we shouldn't be here */
830 if (!vcpu_total_blocktime
&&
831 atomic_fetch_add(&dc
->smp_cpus_down
, 0) == smp_cpus
) {
832 vcpu_total_blocktime
= true;
834 /* continue cycle, due to one page could affect several vCPUs */
835 dc
->vcpu_blocktime
[i
] += vcpu_blocktime
;
838 atomic_sub(&dc
->smp_cpus_down
, affected_cpu
);
839 if (vcpu_total_blocktime
) {
840 dc
->total_blocktime
+= low_time_offset
- atomic_fetch_add(
843 trace_mark_postcopy_blocktime_end(addr
, dc
, dc
->total_blocktime
,
847 static bool postcopy_pause_fault_thread(MigrationIncomingState
*mis
)
849 trace_postcopy_pause_fault_thread();
851 qemu_sem_wait(&mis
->postcopy_pause_sem_fault
);
853 trace_postcopy_pause_fault_thread_continued();
859 * Handle faults detected by the USERFAULT markings
861 static void *postcopy_ram_fault_thread(void *opaque
)
863 MigrationIncomingState
*mis
= opaque
;
869 trace_postcopy_ram_fault_thread_entry();
870 rcu_register_thread();
871 mis
->last_rb
= NULL
; /* last RAMBlock we sent part of */
872 qemu_sem_post(&mis
->fault_thread_sem
);
875 size_t pfd_len
= 2 + mis
->postcopy_remote_fds
->len
;
877 pfd
= g_new0(struct pollfd
, pfd_len
);
879 pfd
[0].fd
= mis
->userfault_fd
;
880 pfd
[0].events
= POLLIN
;
881 pfd
[1].fd
= mis
->userfault_event_fd
;
882 pfd
[1].events
= POLLIN
; /* Waiting for eventfd to go positive */
883 trace_postcopy_ram_fault_thread_fds_core(pfd
[0].fd
, pfd
[1].fd
);
884 for (index
= 0; index
< mis
->postcopy_remote_fds
->len
; index
++) {
885 struct PostCopyFD
*pcfd
= &g_array_index(mis
->postcopy_remote_fds
,
886 struct PostCopyFD
, index
);
887 pfd
[2 + index
].fd
= pcfd
->fd
;
888 pfd
[2 + index
].events
= POLLIN
;
889 trace_postcopy_ram_fault_thread_fds_extra(2 + index
, pcfd
->idstr
,
894 ram_addr_t rb_offset
;
898 * We're mainly waiting for the kernel to give us a faulting HVA,
899 * however we can be told to quit via userfault_quit_fd which is
903 poll_result
= poll(pfd
, pfd_len
, -1 /* Wait forever */);
904 if (poll_result
== -1) {
905 error_report("%s: userfault poll: %s", __func__
, strerror(errno
));
909 if (!mis
->to_src_file
) {
911 * Possibly someone tells us that the return path is
912 * broken already using the event. We should hold until
913 * the channel is rebuilt.
915 if (postcopy_pause_fault_thread(mis
)) {
917 /* Continue to read the userfaultfd */
919 error_report("%s: paused but don't allow to continue",
925 if (pfd
[1].revents
) {
928 /* Consume the signal */
929 if (read(mis
->userfault_event_fd
, &tmp64
, 8) != 8) {
930 /* Nothing obviously nicer than posting this error. */
931 error_report("%s: read() failed", __func__
);
934 if (atomic_read(&mis
->fault_thread_quit
)) {
935 trace_postcopy_ram_fault_thread_quit();
940 if (pfd
[0].revents
) {
942 ret
= read(mis
->userfault_fd
, &msg
, sizeof(msg
));
943 if (ret
!= sizeof(msg
)) {
944 if (errno
== EAGAIN
) {
946 * if a wake up happens on the other thread just after
947 * the poll, there is nothing to read.
952 error_report("%s: Failed to read full userfault "
954 __func__
, strerror(errno
));
957 error_report("%s: Read %d bytes from userfaultfd "
959 __func__
, ret
, sizeof(msg
));
960 break; /* Lost alignment, don't know what we'd read next */
963 if (msg
.event
!= UFFD_EVENT_PAGEFAULT
) {
964 error_report("%s: Read unexpected event %ud from userfaultfd",
965 __func__
, msg
.event
);
966 continue; /* It's not a page fault, shouldn't happen */
969 rb
= qemu_ram_block_from_host(
970 (void *)(uintptr_t)msg
.arg
.pagefault
.address
,
973 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
974 PRIx64
, (uint64_t)msg
.arg
.pagefault
.address
);
978 rb_offset
&= ~(qemu_ram_pagesize(rb
) - 1);
979 trace_postcopy_ram_fault_thread_request(msg
.arg
.pagefault
.address
,
980 qemu_ram_get_idstr(rb
),
982 msg
.arg
.pagefault
.feat
.ptid
);
983 mark_postcopy_blocktime_begin(
984 (uintptr_t)(msg
.arg
.pagefault
.address
),
985 msg
.arg
.pagefault
.feat
.ptid
, rb
);
989 * Send the request to the source - we want to request one
990 * of our host page sizes (which is >= TPS)
992 if (rb
!= mis
->last_rb
) {
994 ret
= migrate_send_rp_req_pages(mis
,
995 qemu_ram_get_idstr(rb
),
997 qemu_ram_pagesize(rb
));
999 /* Save some space */
1000 ret
= migrate_send_rp_req_pages(mis
,
1003 qemu_ram_pagesize(rb
));
1007 /* May be network failure, try to wait for recovery */
1008 if (ret
== -EIO
&& postcopy_pause_fault_thread(mis
)) {
1009 /* We got reconnected somehow, try to continue */
1010 mis
->last_rb
= NULL
;
1013 /* This is a unavoidable fault */
1014 error_report("%s: migrate_send_rp_req_pages() get %d",
1021 /* Now handle any requests from external processes on shared memory */
1022 /* TODO: May need to handle devices deregistering during postcopy */
1023 for (index
= 2; index
< pfd_len
&& poll_result
; index
++) {
1024 if (pfd
[index
].revents
) {
1025 struct PostCopyFD
*pcfd
=
1026 &g_array_index(mis
->postcopy_remote_fds
,
1027 struct PostCopyFD
, index
- 2);
1030 if (pfd
[index
].revents
& POLLERR
) {
1031 error_report("%s: POLLERR on poll %zd fd=%d",
1032 __func__
, index
, pcfd
->fd
);
1033 pfd
[index
].events
= 0;
1037 ret
= read(pcfd
->fd
, &msg
, sizeof(msg
));
1038 if (ret
!= sizeof(msg
)) {
1039 if (errno
== EAGAIN
) {
1041 * if a wake up happens on the other thread just after
1042 * the poll, there is nothing to read.
1047 error_report("%s: Failed to read full userfault "
1048 "message: %s (shared) revents=%d",
1049 __func__
, strerror(errno
),
1050 pfd
[index
].revents
);
1051 /*TODO: Could just disable this sharer */
1054 error_report("%s: Read %d bytes from userfaultfd "
1055 "expected %zd (shared)",
1056 __func__
, ret
, sizeof(msg
));
1057 /*TODO: Could just disable this sharer */
1058 break; /*Lost alignment,don't know what we'd read next*/
1061 if (msg
.event
!= UFFD_EVENT_PAGEFAULT
) {
1062 error_report("%s: Read unexpected event %ud "
1063 "from userfaultfd (shared)",
1064 __func__
, msg
.event
);
1065 continue; /* It's not a page fault, shouldn't happen */
1067 /* Call the device handler registered with us */
1068 ret
= pcfd
->handler(pcfd
, &msg
);
1070 error_report("%s: Failed to resolve shared fault on %zd/%s",
1071 __func__
, index
, pcfd
->idstr
);
1072 /* TODO: Fail? Disable this sharer? */
1077 rcu_unregister_thread();
1078 trace_postcopy_ram_fault_thread_exit();
1083 int postcopy_ram_enable_notify(MigrationIncomingState
*mis
)
1085 /* Open the fd for the kernel to give us userfaults */
1086 mis
->userfault_fd
= syscall(__NR_userfaultfd
, O_CLOEXEC
| O_NONBLOCK
);
1087 if (mis
->userfault_fd
== -1) {
1088 error_report("%s: Failed to open userfault fd: %s", __func__
,
1094 * Although the host check already tested the API, we need to
1095 * do the check again as an ABI handshake on the new fd.
1097 if (!ufd_check_and_apply(mis
->userfault_fd
, mis
)) {
1101 /* Now an eventfd we use to tell the fault-thread to quit */
1102 mis
->userfault_event_fd
= eventfd(0, EFD_CLOEXEC
);
1103 if (mis
->userfault_event_fd
== -1) {
1104 error_report("%s: Opening userfault_event_fd: %s", __func__
,
1106 close(mis
->userfault_fd
);
1110 qemu_sem_init(&mis
->fault_thread_sem
, 0);
1111 qemu_thread_create(&mis
->fault_thread
, "postcopy/fault",
1112 postcopy_ram_fault_thread
, mis
, QEMU_THREAD_JOINABLE
);
1113 qemu_sem_wait(&mis
->fault_thread_sem
);
1114 qemu_sem_destroy(&mis
->fault_thread_sem
);
1115 mis
->have_fault_thread
= true;
1117 /* Mark so that we get notified of accesses to unwritten areas */
1118 if (qemu_ram_foreach_migratable_block(ram_block_enable_notify
, mis
)) {
1123 * Ballooning can mark pages as absent while we're postcopying
1124 * that would cause false userfaults.
1126 postcopy_balloon_inhibit(true);
1128 trace_postcopy_ram_enable_notify();
1133 static int qemu_ufd_copy_ioctl(int userfault_fd
, void *host_addr
,
1134 void *from_addr
, uint64_t pagesize
, RAMBlock
*rb
)
1138 struct uffdio_copy copy_struct
;
1139 copy_struct
.dst
= (uint64_t)(uintptr_t)host_addr
;
1140 copy_struct
.src
= (uint64_t)(uintptr_t)from_addr
;
1141 copy_struct
.len
= pagesize
;
1142 copy_struct
.mode
= 0;
1143 ret
= ioctl(userfault_fd
, UFFDIO_COPY
, ©_struct
);
1145 struct uffdio_zeropage zero_struct
;
1146 zero_struct
.range
.start
= (uint64_t)(uintptr_t)host_addr
;
1147 zero_struct
.range
.len
= pagesize
;
1148 zero_struct
.mode
= 0;
1149 ret
= ioctl(userfault_fd
, UFFDIO_ZEROPAGE
, &zero_struct
);
1152 ramblock_recv_bitmap_set_range(rb
, host_addr
,
1153 pagesize
/ qemu_target_page_size());
1154 mark_postcopy_blocktime_end((uintptr_t)host_addr
);
1160 int postcopy_notify_shared_wake(RAMBlock
*rb
, uint64_t offset
)
1163 MigrationIncomingState
*mis
= migration_incoming_get_current();
1164 GArray
*pcrfds
= mis
->postcopy_remote_fds
;
1166 for (i
= 0; i
< pcrfds
->len
; i
++) {
1167 struct PostCopyFD
*cur
= &g_array_index(pcrfds
, struct PostCopyFD
, i
);
1168 int ret
= cur
->waker(cur
, rb
, offset
);
1177 * Place a host page (from) at (host) atomically
1178 * returns 0 on success
1180 int postcopy_place_page(MigrationIncomingState
*mis
, void *host
, void *from
,
1183 size_t pagesize
= qemu_ram_pagesize(rb
);
1185 /* copy also acks to the kernel waking the stalled thread up
1186 * TODO: We can inhibit that ack and only do it if it was requested
1187 * which would be slightly cheaper, but we'd have to be careful
1188 * of the order of updating our page state.
1190 if (qemu_ufd_copy_ioctl(mis
->userfault_fd
, host
, from
, pagesize
, rb
)) {
1192 error_report("%s: %s copy host: %p from: %p (size: %zd)",
1193 __func__
, strerror(e
), host
, from
, pagesize
);
1198 trace_postcopy_place_page(host
);
1199 return postcopy_notify_shared_wake(rb
,
1200 qemu_ram_block_host_offset(rb
, host
));
1204 * Place a zero page at (host) atomically
1205 * returns 0 on success
1207 int postcopy_place_page_zero(MigrationIncomingState
*mis
, void *host
,
1210 size_t pagesize
= qemu_ram_pagesize(rb
);
1211 trace_postcopy_place_page_zero(host
);
1213 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1214 * but it's not available for everything (e.g. hugetlbpages)
1216 if (qemu_ram_is_uf_zeroable(rb
)) {
1217 if (qemu_ufd_copy_ioctl(mis
->userfault_fd
, host
, NULL
, pagesize
, rb
)) {
1219 error_report("%s: %s zero host: %p",
1220 __func__
, strerror(e
), host
);
1224 return postcopy_notify_shared_wake(rb
,
1225 qemu_ram_block_host_offset(rb
,
1228 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1229 if (!mis
->postcopy_tmp_zero_page
) {
1230 mis
->postcopy_tmp_zero_page
= mmap(NULL
, mis
->largest_page_size
,
1231 PROT_READ
| PROT_WRITE
,
1232 MAP_PRIVATE
| MAP_ANONYMOUS
,
1234 if (mis
->postcopy_tmp_zero_page
== MAP_FAILED
) {
1236 mis
->postcopy_tmp_zero_page
= NULL
;
1237 error_report("%s: %s mapping large zero page",
1238 __func__
, strerror(e
));
1241 memset(mis
->postcopy_tmp_zero_page
, '\0', mis
->largest_page_size
);
1243 return postcopy_place_page(mis
, host
, mis
->postcopy_tmp_zero_page
,
1249 * Returns a target page of memory that can be mapped at a later point in time
1250 * using postcopy_place_page
1251 * The same address is used repeatedly, postcopy_place_page just takes the
1252 * backing page away.
1253 * Returns: Pointer to allocated page
1256 void *postcopy_get_tmp_page(MigrationIncomingState
*mis
)
1258 if (!mis
->postcopy_tmp_page
) {
1259 mis
->postcopy_tmp_page
= mmap(NULL
, mis
->largest_page_size
,
1260 PROT_READ
| PROT_WRITE
, MAP_PRIVATE
|
1261 MAP_ANONYMOUS
, -1, 0);
1262 if (mis
->postcopy_tmp_page
== MAP_FAILED
) {
1263 mis
->postcopy_tmp_page
= NULL
;
1264 error_report("%s: %s", __func__
, strerror(errno
));
1269 return mis
->postcopy_tmp_page
;
1273 /* No target OS support, stubs just fail */
1274 void fill_destination_postcopy_migration_info(MigrationInfo
*info
)
1278 bool postcopy_ram_supported_by_host(MigrationIncomingState
*mis
)
1280 error_report("%s: No OS support", __func__
);
1284 int postcopy_ram_incoming_init(MigrationIncomingState
*mis
)
1286 error_report("postcopy_ram_incoming_init: No OS support");
1290 int postcopy_ram_incoming_cleanup(MigrationIncomingState
*mis
)
1296 int postcopy_ram_prepare_discard(MigrationIncomingState
*mis
)
1302 int postcopy_request_shared_page(struct PostCopyFD
*pcfd
, RAMBlock
*rb
,
1303 uint64_t client_addr
, uint64_t rb_offset
)
1309 int postcopy_ram_enable_notify(MigrationIncomingState
*mis
)
1315 int postcopy_place_page(MigrationIncomingState
*mis
, void *host
, void *from
,
1322 int postcopy_place_page_zero(MigrationIncomingState
*mis
, void *host
,
1329 void *postcopy_get_tmp_page(MigrationIncomingState
*mis
)
1335 int postcopy_wake_shared(struct PostCopyFD
*pcfd
,
1336 uint64_t client_addr
,
1344 /* ------------------------------------------------------------------------- */
1346 void postcopy_fault_thread_notify(MigrationIncomingState
*mis
)
1351 * Wakeup the fault_thread. It's an eventfd that should currently
1352 * be at 0, we're going to increment it to 1
1354 if (write(mis
->userfault_event_fd
, &tmp64
, 8) != 8) {
1355 /* Not much we can do here, but may as well report it */
1356 error_report("%s: incrementing failed: %s", __func__
,
1362 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1363 * asking to discard individual ranges.
1365 * @ms: The current migration state.
1366 * @offset: the bitmap offset of the named RAMBlock in the migration
1368 * @name: RAMBlock that discards will operate on.
1370 * returns: a new PDS.
1372 PostcopyDiscardState
*postcopy_discard_send_init(MigrationState
*ms
,
1375 PostcopyDiscardState
*res
= g_malloc0(sizeof(PostcopyDiscardState
));
1378 res
->ramblock_name
= name
;
1385 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1386 * discard. May send a discard message, may just leave it queued to
1389 * @ms: Current migration state.
1390 * @pds: Structure initialised by postcopy_discard_send_init().
1391 * @start,@length: a range of pages in the migration bitmap in the
1392 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1394 void postcopy_discard_send_range(MigrationState
*ms
, PostcopyDiscardState
*pds
,
1395 unsigned long start
, unsigned long length
)
1397 size_t tp_size
= qemu_target_page_size();
1398 /* Convert to byte offsets within the RAM block */
1399 pds
->start_list
[pds
->cur_entry
] = start
* tp_size
;
1400 pds
->length_list
[pds
->cur_entry
] = length
* tp_size
;
1401 trace_postcopy_discard_send_range(pds
->ramblock_name
, start
, length
);
1405 if (pds
->cur_entry
== MAX_DISCARDS_PER_COMMAND
) {
1406 /* Full set, ship it! */
1407 qemu_savevm_send_postcopy_ram_discard(ms
->to_dst_file
,
1418 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1419 * bitmap code. Sends any outstanding discard messages, frees the PDS
1421 * @ms: Current migration state.
1422 * @pds: Structure initialised by postcopy_discard_send_init().
1424 void postcopy_discard_send_finish(MigrationState
*ms
, PostcopyDiscardState
*pds
)
1426 /* Anything unsent? */
1427 if (pds
->cur_entry
) {
1428 qemu_savevm_send_postcopy_ram_discard(ms
->to_dst_file
,
1436 trace_postcopy_discard_send_finish(pds
->ramblock_name
, pds
->nsentwords
,
1443 * Current state of incoming postcopy; note this is not part of
1444 * MigrationIncomingState since it's state is used during cleanup
1445 * at the end as MIS is being freed.
1447 static PostcopyState incoming_postcopy_state
;
1449 PostcopyState
postcopy_state_get(void)
1451 return atomic_mb_read(&incoming_postcopy_state
);
1454 /* Set the state and return the old state */
1455 PostcopyState
postcopy_state_set(PostcopyState new_state
)
1457 return atomic_xchg(&incoming_postcopy_state
, new_state
);
1460 /* Register a handler for external shared memory postcopy
1461 * called on the destination.
1463 void postcopy_register_shared_ufd(struct PostCopyFD
*pcfd
)
1465 MigrationIncomingState
*mis
= migration_incoming_get_current();
1467 mis
->postcopy_remote_fds
= g_array_append_val(mis
->postcopy_remote_fds
,
1471 /* Unregister a handler for external shared memory postcopy
1473 void postcopy_unregister_shared_ufd(struct PostCopyFD
*pcfd
)
1476 MigrationIncomingState
*mis
= migration_incoming_get_current();
1477 GArray
*pcrfds
= mis
->postcopy_remote_fds
;
1479 for (i
= 0; i
< pcrfds
->len
; i
++) {
1480 struct PostCopyFD
*cur
= &g_array_index(pcrfds
, struct PostCopyFD
, i
);
1481 if (cur
->fd
== pcfd
->fd
) {
1482 mis
->postcopy_remote_fds
= g_array_remove_index(pcrfds
, i
);