s390x: upgrade status of KVM cores to "supported"
[qemu/ar7.git] / hw / intc / arm_gicv3_cpuif.c
blobcbad6037f1963962f16fe77b739e1aa827b98e1d
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
18 #include "trace.h"
19 #include "gicv3_internal.h"
20 #include "cpu.h"
22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
24 ARMCPU *arm_cpu = ARM_CPU(cpu);
25 CPUARMState *env = &arm_cpu->env;
27 env->gicv3state = (void *)s;
30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
32 return env->gicv3state;
35 static bool gicv3_use_ns_bank(CPUARMState *env)
37 /* Return true if we should use the NonSecure bank for a banked GIC
38 * CPU interface register. Note that this differs from the
39 * access_secure_reg() function because GICv3 banked registers are
40 * banked even for AArch64, unlike the other CPU system registers.
42 return !arm_is_secure_below_el3(env);
45 /* The minimum BPR for the virtual interface is a configurable property */
46 static inline int icv_min_vbpr(GICv3CPUState *cs)
48 return 7 - cs->vprebits;
51 /* Simple accessor functions for LR fields */
52 static uint32_t ich_lr_vintid(uint64_t lr)
54 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
57 static uint32_t ich_lr_pintid(uint64_t lr)
59 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
62 static uint32_t ich_lr_prio(uint64_t lr)
64 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
67 static int ich_lr_state(uint64_t lr)
69 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
72 static bool icv_access(CPUARMState *env, int hcr_flags)
74 /* Return true if this ICC_ register access should really be
75 * directed to an ICV_ access. hcr_flags is a mask of
76 * HCR_EL2 bits to check: we treat this as an ICV_ access
77 * if we are in NS EL1 and at least one of the specified
78 * HCR_EL2 bits is set.
80 * ICV registers fall into four categories:
81 * * access if NS EL1 and HCR_EL2.FMO == 1:
82 * all ICV regs with '0' in their name
83 * * access if NS EL1 and HCR_EL2.IMO == 1:
84 * all ICV regs with '1' in their name
85 * * access if NS EL1 and either IMO or FMO == 1:
86 * CTLR, DIR, PMR, RPR
88 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
89 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
91 return flagmatch && arm_current_el(env) == 1
92 && !arm_is_secure_below_el3(env);
95 static int read_vbpr(GICv3CPUState *cs, int grp)
97 /* Read VBPR value out of the VMCR field (caller must handle
98 * VCBPR effects if required)
100 if (grp == GICV3_G0) {
101 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
102 ICH_VMCR_EL2_VBPR0_LENGTH);
103 } else {
104 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
105 ICH_VMCR_EL2_VBPR1_LENGTH);
109 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
111 /* Write new VBPR1 value, handling the "writing a value less than
112 * the minimum sets it to the minimum" semantics.
114 int min = icv_min_vbpr(cs);
116 if (grp != GICV3_G0) {
117 min++;
120 value = MAX(value, min);
122 if (grp == GICV3_G0) {
123 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
124 ICH_VMCR_EL2_VBPR0_LENGTH, value);
125 } else {
126 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
127 ICH_VMCR_EL2_VBPR1_LENGTH, value);
131 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
133 /* Return a mask word which clears the unimplemented priority bits
134 * from a priority value for a virtual interrupt. (Not to be confused
135 * with the group priority, whose mask depends on the value of VBPR
136 * for the interrupt group.)
138 return ~0U << (8 - cs->vpribits);
141 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
143 /* Calculate the current running priority based on the set bits
144 * in the ICH Active Priority Registers.
146 int i;
147 int aprmax = 1 << (cs->vprebits - 5);
149 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
151 for (i = 0; i < aprmax; i++) {
152 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
153 cs->ich_apr[GICV3_G1NS][i];
155 if (!apr) {
156 continue;
158 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
160 /* No current active interrupts: return idle priority */
161 return 0xff;
164 static int hppvi_index(GICv3CPUState *cs)
166 /* Return the list register index of the highest priority pending
167 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
168 * pseudocode. If no pending virtual interrupts, return -1.
170 int idx = -1;
171 int i;
172 /* Note that a list register entry with a priority of 0xff will
173 * never be reported by this function; this is the architecturally
174 * correct behaviour.
176 int prio = 0xff;
178 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
179 /* Both groups disabled, definitely nothing to do */
180 return idx;
183 for (i = 0; i < cs->num_list_regs; i++) {
184 uint64_t lr = cs->ich_lr_el2[i];
185 int thisprio;
187 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
188 /* Not Pending */
189 continue;
192 /* Ignore interrupts if relevant group enable not set */
193 if (lr & ICH_LR_EL2_GROUP) {
194 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
195 continue;
197 } else {
198 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
199 continue;
203 thisprio = ich_lr_prio(lr);
205 if (thisprio < prio) {
206 prio = thisprio;
207 idx = i;
211 return idx;
214 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
216 /* Return a mask word which clears the subpriority bits from
217 * a priority value for a virtual interrupt in the specified group.
218 * This depends on the VBPR value.
219 * If using VBPR0 then:
220 * a BPR of 0 means the group priority bits are [7:1];
221 * a BPR of 1 means they are [7:2], and so on down to
222 * a BPR of 7 meaning no group priority bits at all.
223 * If using VBPR1 then:
224 * a BPR of 0 is impossible (the minimum value is 1)
225 * a BPR of 1 means the group priority bits are [7:1];
226 * a BPR of 2 means they are [7:2], and so on down to
227 * a BPR of 7 meaning the group priority is [7].
229 * Which BPR to use depends on the group of the interrupt and
230 * the current ICH_VMCR_EL2.VCBPR settings.
232 * This corresponds to the VGroupBits() pseudocode.
234 int bpr;
236 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
237 group = GICV3_G0;
240 bpr = read_vbpr(cs, group);
241 if (group == GICV3_G1NS) {
242 assert(bpr > 0);
243 bpr--;
246 return ~0U << (bpr + 1);
249 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
251 /* Return true if we can signal this virtual interrupt defined by
252 * the given list register value; see the pseudocode functions
253 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
254 * Compare also icc_hppi_can_preempt() which is the non-virtual
255 * equivalent of these checks.
257 int grp;
258 uint32_t mask, prio, rprio, vpmr;
260 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
261 /* Virtual interface disabled */
262 return false;
265 /* We don't need to check that this LR is in Pending state because
266 * that has already been done in hppvi_index().
269 prio = ich_lr_prio(lr);
270 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
271 ICH_VMCR_EL2_VPMR_LENGTH);
273 if (prio >= vpmr) {
274 /* Priority mask masks this interrupt */
275 return false;
278 rprio = ich_highest_active_virt_prio(cs);
279 if (rprio == 0xff) {
280 /* No running interrupt so we can preempt */
281 return true;
284 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
286 mask = icv_gprio_mask(cs, grp);
288 /* We only preempt a running interrupt if the pending interrupt's
289 * group priority is sufficient (the subpriorities are not considered).
291 if ((prio & mask) < (rprio & mask)) {
292 return true;
295 return false;
298 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
299 uint32_t *misr)
301 /* Return a set of bits indicating the EOI maintenance interrupt status
302 * for each list register. The EOI maintenance interrupt status is
303 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
304 * (see the GICv3 spec for the ICH_EISR_EL2 register).
305 * If misr is not NULL then we should also collect the information
306 * about the MISR.EOI, MISR.NP and MISR.U bits.
308 uint32_t value = 0;
309 int validcount = 0;
310 bool seenpending = false;
311 int i;
313 for (i = 0; i < cs->num_list_regs; i++) {
314 uint64_t lr = cs->ich_lr_el2[i];
316 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
317 == ICH_LR_EL2_EOI) {
318 value |= (1 << i);
320 if ((lr & ICH_LR_EL2_STATE_MASK)) {
321 validcount++;
323 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
324 seenpending = true;
328 if (misr) {
329 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
330 *misr |= ICH_MISR_EL2_U;
332 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
333 *misr |= ICH_MISR_EL2_NP;
335 if (value) {
336 *misr |= ICH_MISR_EL2_EOI;
339 return value;
342 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
344 /* Return a set of bits indicating the maintenance interrupt status
345 * (as seen in the ICH_MISR_EL2 register).
347 uint32_t value = 0;
349 /* Scan list registers and fill in the U, NP and EOI bits */
350 eoi_maintenance_interrupt_state(cs, &value);
352 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
353 value |= ICH_MISR_EL2_LRENP;
356 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
357 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
358 value |= ICH_MISR_EL2_VGRP0E;
361 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
362 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
363 value |= ICH_MISR_EL2_VGRP0D;
365 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
366 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
367 value |= ICH_MISR_EL2_VGRP1E;
370 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
371 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
372 value |= ICH_MISR_EL2_VGRP1D;
375 return value;
378 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
380 /* Tell the CPU about any pending virtual interrupts or
381 * maintenance interrupts, following a change to the state
382 * of the CPU interface relevant to virtual interrupts.
384 * CAUTION: this function will call qemu_set_irq() on the
385 * CPU maintenance IRQ line, which is typically wired up
386 * to the GIC as a per-CPU interrupt. This means that it
387 * will recursively call back into the GIC code via
388 * gicv3_redist_set_irq() and thus into the CPU interface code's
389 * gicv3_cpuif_update(). It is therefore important that this
390 * function is only called as the final action of a CPU interface
391 * register write implementation, after all the GIC state
392 * fields have been updated. gicv3_cpuif_update() also must
393 * not cause this function to be called, but that happens
394 * naturally as a result of there being no architectural
395 * linkage between the physical and virtual GIC logic.
397 int idx;
398 int irqlevel = 0;
399 int fiqlevel = 0;
400 int maintlevel = 0;
402 idx = hppvi_index(cs);
403 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
404 if (idx >= 0) {
405 uint64_t lr = cs->ich_lr_el2[idx];
407 if (icv_hppi_can_preempt(cs, lr)) {
408 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
409 if (lr & ICH_LR_EL2_GROUP) {
410 irqlevel = 1;
411 } else {
412 fiqlevel = 1;
417 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
418 maintlevel = maintenance_interrupt_state(cs);
421 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
422 irqlevel, maintlevel);
424 qemu_set_irq(cs->parent_vfiq, fiqlevel);
425 qemu_set_irq(cs->parent_virq, irqlevel);
426 qemu_set_irq(cs->maintenance_irq, maintlevel);
429 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
431 GICv3CPUState *cs = icc_cs_from_env(env);
432 int regno = ri->opc2 & 3;
433 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
434 uint64_t value = cs->ich_apr[grp][regno];
436 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
437 return value;
440 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
441 uint64_t value)
443 GICv3CPUState *cs = icc_cs_from_env(env);
444 int regno = ri->opc2 & 3;
445 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
447 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
449 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
451 gicv3_cpuif_virt_update(cs);
452 return;
455 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
457 GICv3CPUState *cs = icc_cs_from_env(env);
458 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
459 uint64_t bpr;
460 bool satinc = false;
462 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
463 /* reads return bpr0 + 1 saturated to 7, writes ignored */
464 grp = GICV3_G0;
465 satinc = true;
468 bpr = read_vbpr(cs, grp);
470 if (satinc) {
471 bpr++;
472 bpr = MIN(bpr, 7);
475 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
477 return bpr;
480 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
481 uint64_t value)
483 GICv3CPUState *cs = icc_cs_from_env(env);
484 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
486 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
487 gicv3_redist_affid(cs), value);
489 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
490 /* reads return bpr0 + 1 saturated to 7, writes ignored */
491 return;
494 write_vbpr(cs, grp, value);
496 gicv3_cpuif_virt_update(cs);
499 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
501 GICv3CPUState *cs = icc_cs_from_env(env);
502 uint64_t value;
504 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
505 ICH_VMCR_EL2_VPMR_LENGTH);
507 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
508 return value;
511 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
512 uint64_t value)
514 GICv3CPUState *cs = icc_cs_from_env(env);
516 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
518 value &= icv_fullprio_mask(cs);
520 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
521 ICH_VMCR_EL2_VPMR_LENGTH, value);
523 gicv3_cpuif_virt_update(cs);
526 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
528 GICv3CPUState *cs = icc_cs_from_env(env);
529 int enbit;
530 uint64_t value;
532 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
533 value = extract64(cs->ich_vmcr_el2, enbit, 1);
535 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
536 gicv3_redist_affid(cs), value);
537 return value;
540 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 uint64_t value)
543 GICv3CPUState *cs = icc_cs_from_env(env);
544 int enbit;
546 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
547 gicv3_redist_affid(cs), value);
549 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
551 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
552 gicv3_cpuif_virt_update(cs);
555 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
557 GICv3CPUState *cs = icc_cs_from_env(env);
558 uint64_t value;
560 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
561 * should match the ones reported in ich_vtr_read().
563 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
564 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
566 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
567 value |= ICC_CTLR_EL1_EOIMODE;
570 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
571 value |= ICC_CTLR_EL1_CBPR;
574 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
575 return value;
578 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 GICv3CPUState *cs = icc_cs_from_env(env);
583 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
585 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
586 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
587 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
588 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
590 gicv3_cpuif_virt_update(cs);
593 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
595 GICv3CPUState *cs = icc_cs_from_env(env);
596 int prio = ich_highest_active_virt_prio(cs);
598 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
599 return prio;
602 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
604 GICv3CPUState *cs = icc_cs_from_env(env);
605 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
606 int idx = hppvi_index(cs);
607 uint64_t value = INTID_SPURIOUS;
609 if (idx >= 0) {
610 uint64_t lr = cs->ich_lr_el2[idx];
611 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
613 if (grp == thisgrp) {
614 value = ich_lr_vintid(lr);
618 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
619 return value;
622 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
624 /* Activate the interrupt in the specified list register
625 * by moving it from Pending to Active state, and update the
626 * Active Priority Registers.
628 uint32_t mask = icv_gprio_mask(cs, grp);
629 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
630 int aprbit = prio >> (8 - cs->vprebits);
631 int regno = aprbit / 32;
632 int regbit = aprbit % 32;
634 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
635 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
636 cs->ich_apr[grp][regno] |= (1 << regbit);
639 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
641 GICv3CPUState *cs = icc_cs_from_env(env);
642 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
643 int idx = hppvi_index(cs);
644 uint64_t intid = INTID_SPURIOUS;
646 if (idx >= 0) {
647 uint64_t lr = cs->ich_lr_el2[idx];
648 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
650 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
651 intid = ich_lr_vintid(lr);
652 if (intid < INTID_SECURE) {
653 icv_activate_irq(cs, idx, grp);
654 } else {
655 /* Interrupt goes from Pending to Invalid */
656 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
657 /* We will now return the (bogus) ID from the list register,
658 * as per the pseudocode.
664 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
665 gicv3_redist_affid(cs), intid);
666 return intid;
669 static int icc_highest_active_prio(GICv3CPUState *cs)
671 /* Calculate the current running priority based on the set bits
672 * in the Active Priority Registers.
674 int i;
676 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
677 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
678 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
680 if (!apr) {
681 continue;
683 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
685 /* No current active interrupts: return idle priority */
686 return 0xff;
689 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
691 /* Return a mask word which clears the subpriority bits from
692 * a priority value for an interrupt in the specified group.
693 * This depends on the BPR value. For CBPR0 (S or NS):
694 * a BPR of 0 means the group priority bits are [7:1];
695 * a BPR of 1 means they are [7:2], and so on down to
696 * a BPR of 7 meaning no group priority bits at all.
697 * For CBPR1 NS:
698 * a BPR of 0 is impossible (the minimum value is 1)
699 * a BPR of 1 means the group priority bits are [7:1];
700 * a BPR of 2 means they are [7:2], and so on down to
701 * a BPR of 7 meaning the group priority is [7].
703 * Which BPR to use depends on the group of the interrupt and
704 * the current ICC_CTLR.CBPR settings.
706 * This corresponds to the GroupBits() pseudocode.
708 int bpr;
710 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
711 (group == GICV3_G1NS &&
712 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
713 group = GICV3_G0;
716 bpr = cs->icc_bpr[group] & 7;
718 if (group == GICV3_G1NS) {
719 assert(bpr > 0);
720 bpr--;
723 return ~0U << (bpr + 1);
726 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
728 /* Return true if there is no pending interrupt, or the
729 * highest priority pending interrupt is in a group which has been
730 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
732 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
735 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
737 /* Return true if we have a pending interrupt of sufficient
738 * priority to preempt.
740 int rprio;
741 uint32_t mask;
743 if (icc_no_enabled_hppi(cs)) {
744 return false;
747 if (cs->hppi.prio >= cs->icc_pmr_el1) {
748 /* Priority mask masks this interrupt */
749 return false;
752 rprio = icc_highest_active_prio(cs);
753 if (rprio == 0xff) {
754 /* No currently running interrupt so we can preempt */
755 return true;
758 mask = icc_gprio_mask(cs, cs->hppi.grp);
760 /* We only preempt a running interrupt if the pending interrupt's
761 * group priority is sufficient (the subpriorities are not considered).
763 if ((cs->hppi.prio & mask) < (rprio & mask)) {
764 return true;
767 return false;
770 void gicv3_cpuif_update(GICv3CPUState *cs)
772 /* Tell the CPU about its highest priority pending interrupt */
773 int irqlevel = 0;
774 int fiqlevel = 0;
775 ARMCPU *cpu = ARM_CPU(cs->cpu);
776 CPUARMState *env = &cpu->env;
778 g_assert(qemu_mutex_iothread_locked());
780 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
781 cs->hppi.grp, cs->hppi.prio);
783 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
784 /* If a Security-enabled GIC sends a G1S interrupt to a
785 * Security-disabled CPU, we must treat it as if it were G0.
787 cs->hppi.grp = GICV3_G0;
790 if (icc_hppi_can_preempt(cs)) {
791 /* We have an interrupt: should we signal it as IRQ or FIQ?
792 * This is described in the GICv3 spec section 4.6.2.
794 bool isfiq;
796 switch (cs->hppi.grp) {
797 case GICV3_G0:
798 isfiq = true;
799 break;
800 case GICV3_G1:
801 isfiq = (!arm_is_secure(env) ||
802 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
803 break;
804 case GICV3_G1NS:
805 isfiq = arm_is_secure(env);
806 break;
807 default:
808 g_assert_not_reached();
811 if (isfiq) {
812 fiqlevel = 1;
813 } else {
814 irqlevel = 1;
818 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
820 qemu_set_irq(cs->parent_fiq, fiqlevel);
821 qemu_set_irq(cs->parent_irq, irqlevel);
824 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
826 GICv3CPUState *cs = icc_cs_from_env(env);
827 uint32_t value = cs->icc_pmr_el1;
829 if (icv_access(env, HCR_FMO | HCR_IMO)) {
830 return icv_pmr_read(env, ri);
833 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
834 (env->cp15.scr_el3 & SCR_FIQ)) {
835 /* NS access and Group 0 is inaccessible to NS: return the
836 * NS view of the current priority
838 if ((value & 0x80) == 0) {
839 /* Secure priorities not visible to NS */
840 value = 0;
841 } else if (value != 0xff) {
842 value = (value << 1) & 0xff;
846 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
848 return value;
851 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
852 uint64_t value)
854 GICv3CPUState *cs = icc_cs_from_env(env);
856 if (icv_access(env, HCR_FMO | HCR_IMO)) {
857 return icv_pmr_write(env, ri, value);
860 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
862 value &= 0xff;
864 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
865 (env->cp15.scr_el3 & SCR_FIQ)) {
866 /* NS access and Group 0 is inaccessible to NS: return the
867 * NS view of the current priority
869 if (!(cs->icc_pmr_el1 & 0x80)) {
870 /* Current PMR in the secure range, don't allow NS to change it */
871 return;
873 value = (value >> 1) | 0x80;
875 cs->icc_pmr_el1 = value;
876 gicv3_cpuif_update(cs);
879 static void icc_activate_irq(GICv3CPUState *cs, int irq)
881 /* Move the interrupt from the Pending state to Active, and update
882 * the Active Priority Registers
884 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
885 int prio = cs->hppi.prio & mask;
886 int aprbit = prio >> 1;
887 int regno = aprbit / 32;
888 int regbit = aprbit % 32;
890 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
892 if (irq < GIC_INTERNAL) {
893 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
894 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
895 gicv3_redist_update(cs);
896 } else {
897 gicv3_gicd_active_set(cs->gic, irq);
898 gicv3_gicd_pending_clear(cs->gic, irq);
899 gicv3_update(cs->gic, irq, 1);
903 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
905 /* Return the highest priority pending interrupt register value
906 * for group 0.
908 bool irq_is_secure;
910 if (cs->hppi.prio == 0xff) {
911 return INTID_SPURIOUS;
914 /* Check whether we can return the interrupt or if we should return
915 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
916 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
917 * is always zero.)
919 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
920 (cs->hppi.grp != GICV3_G1NS));
922 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
923 return INTID_SPURIOUS;
925 if (irq_is_secure && !arm_is_secure(env)) {
926 /* Secure interrupts not visible to Nonsecure */
927 return INTID_SPURIOUS;
930 if (cs->hppi.grp != GICV3_G0) {
931 /* Indicate to EL3 that there's a Group 1 interrupt for the other
932 * state pending.
934 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
937 return cs->hppi.irq;
940 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
942 /* Return the highest priority pending interrupt register value
943 * for group 1.
945 bool irq_is_secure;
947 if (cs->hppi.prio == 0xff) {
948 return INTID_SPURIOUS;
951 /* Check whether we can return the interrupt or if we should return
952 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
953 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
954 * is always zero.)
956 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
957 (cs->hppi.grp != GICV3_G1NS));
959 if (cs->hppi.grp == GICV3_G0) {
960 /* Group 0 interrupts not visible via HPPIR1 */
961 return INTID_SPURIOUS;
963 if (irq_is_secure) {
964 if (!arm_is_secure(env)) {
965 /* Secure interrupts not visible in Non-secure */
966 return INTID_SPURIOUS;
968 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
969 /* Group 1 non-secure interrupts not visible in Secure EL1 */
970 return INTID_SPURIOUS;
973 return cs->hppi.irq;
976 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
978 GICv3CPUState *cs = icc_cs_from_env(env);
979 uint64_t intid;
981 if (icv_access(env, HCR_FMO)) {
982 return icv_iar_read(env, ri);
985 if (!icc_hppi_can_preempt(cs)) {
986 intid = INTID_SPURIOUS;
987 } else {
988 intid = icc_hppir0_value(cs, env);
991 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
992 icc_activate_irq(cs, intid);
995 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
996 return intid;
999 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1001 GICv3CPUState *cs = icc_cs_from_env(env);
1002 uint64_t intid;
1004 if (icv_access(env, HCR_IMO)) {
1005 return icv_iar_read(env, ri);
1008 if (!icc_hppi_can_preempt(cs)) {
1009 intid = INTID_SPURIOUS;
1010 } else {
1011 intid = icc_hppir1_value(cs, env);
1014 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1015 icc_activate_irq(cs, intid);
1018 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1019 return intid;
1022 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1024 /* Drop the priority of the currently active interrupt in
1025 * the specified group.
1027 * Note that we can guarantee (because of the requirement to nest
1028 * ICC_IAR reads [which activate an interrupt and raise priority]
1029 * with ICC_EOIR writes [which drop the priority for the interrupt])
1030 * that the interrupt we're being called for is the highest priority
1031 * active interrupt, meaning that it has the lowest set bit in the
1032 * APR registers.
1034 * If the guest does not honour the ordering constraints then the
1035 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1036 * the values of the APR registers might become incorrect and the
1037 * running priority will be wrong, so interrupts that should preempt
1038 * might not do so, and interrupts that should not preempt might do so.
1040 int i;
1042 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1043 uint64_t *papr = &cs->icc_apr[grp][i];
1045 if (!*papr) {
1046 continue;
1048 /* Clear the lowest set bit */
1049 *papr &= *papr - 1;
1050 break;
1053 /* running priority change means we need an update for this cpu i/f */
1054 gicv3_cpuif_update(cs);
1057 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1059 /* Return true if we should split priority drop and interrupt
1060 * deactivation, ie whether the relevant EOIMode bit is set.
1062 if (arm_is_el3_or_mon(env)) {
1063 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1065 if (arm_is_secure_below_el3(env)) {
1066 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1067 } else {
1068 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1072 static int icc_highest_active_group(GICv3CPUState *cs)
1074 /* Return the group with the highest priority active interrupt.
1075 * We can do this by just comparing the APRs to see which one
1076 * has the lowest set bit.
1077 * (If more than one group is active at the same priority then
1078 * we're in UNPREDICTABLE territory.)
1080 int i;
1082 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1083 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1084 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1085 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1087 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1088 return GICV3_G1NS;
1090 if (g1ctz < g0ctz) {
1091 return GICV3_G1;
1093 if (g0ctz < 32) {
1094 return GICV3_G0;
1097 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1098 * ignores the spurious EOI attempt.
1100 return -1;
1103 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1105 if (irq < GIC_INTERNAL) {
1106 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1107 gicv3_redist_update(cs);
1108 } else {
1109 gicv3_gicd_active_clear(cs->gic, irq);
1110 gicv3_update(cs->gic, irq, 1);
1114 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1116 /* Return true if we should split priority drop and interrupt
1117 * deactivation, ie whether the virtual EOIMode bit is set.
1119 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1122 static int icv_find_active(GICv3CPUState *cs, int irq)
1124 /* Given an interrupt number for an active interrupt, return the index
1125 * of the corresponding list register, or -1 if there is no match.
1126 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1128 int i;
1130 for (i = 0; i < cs->num_list_regs; i++) {
1131 uint64_t lr = cs->ich_lr_el2[i];
1133 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1134 return i;
1138 return -1;
1141 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1143 /* Deactivate the interrupt in the specified list register index */
1144 uint64_t lr = cs->ich_lr_el2[idx];
1146 if (lr & ICH_LR_EL2_HW) {
1147 /* Deactivate the associated physical interrupt */
1148 int pirq = ich_lr_pintid(lr);
1150 if (pirq < INTID_SECURE) {
1151 icc_deactivate_irq(cs, pirq);
1155 /* Clear the 'active' part of the state, so ActivePending->Pending
1156 * and Active->Invalid.
1158 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1159 cs->ich_lr_el2[idx] = lr;
1162 static void icv_increment_eoicount(GICv3CPUState *cs)
1164 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1165 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1166 ICH_HCR_EL2_EOICOUNT_LENGTH);
1168 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1169 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1172 static int icv_drop_prio(GICv3CPUState *cs)
1174 /* Drop the priority of the currently active virtual interrupt
1175 * (favouring group 0 if there is a set active bit at
1176 * the same priority for both group 0 and group 1).
1177 * Return the priority value for the bit we just cleared,
1178 * or 0xff if no bits were set in the AP registers at all.
1179 * Note that though the ich_apr[] are uint64_t only the low
1180 * 32 bits are actually relevant.
1182 int i;
1183 int aprmax = 1 << (cs->vprebits - 5);
1185 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1187 for (i = 0; i < aprmax; i++) {
1188 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1189 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1190 int apr0count, apr1count;
1192 if (!*papr0 && !*papr1) {
1193 continue;
1196 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1197 * because we need to return the bit number we cleared so
1198 * it can be compared against the list register's priority field.
1200 apr0count = ctz32(*papr0);
1201 apr1count = ctz32(*papr1);
1203 if (apr0count <= apr1count) {
1204 *papr0 &= *papr0 - 1;
1205 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1206 } else {
1207 *papr1 &= *papr1 - 1;
1208 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1211 return 0xff;
1214 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1215 uint64_t value)
1217 /* Deactivate interrupt */
1218 GICv3CPUState *cs = icc_cs_from_env(env);
1219 int idx;
1220 int irq = value & 0xffffff;
1222 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1224 if (irq >= cs->gic->num_irq) {
1225 /* Also catches special interrupt numbers and LPIs */
1226 return;
1229 if (!icv_eoi_split(env, cs)) {
1230 return;
1233 idx = icv_find_active(cs, irq);
1235 if (idx < 0) {
1236 /* No list register matching this, so increment the EOI count
1237 * (might trigger a maintenance interrupt)
1239 icv_increment_eoicount(cs);
1240 } else {
1241 icv_deactivate_irq(cs, idx);
1244 gicv3_cpuif_virt_update(cs);
1247 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1248 uint64_t value)
1250 /* End of Interrupt */
1251 GICv3CPUState *cs = icc_cs_from_env(env);
1252 int irq = value & 0xffffff;
1253 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1254 int idx, dropprio;
1256 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1257 gicv3_redist_affid(cs), value);
1259 if (irq >= cs->gic->num_irq) {
1260 /* Also catches special interrupt numbers and LPIs */
1261 return;
1264 /* We implement the IMPDEF choice of "drop priority before doing
1265 * error checks" (because that lets us avoid scanning the AP
1266 * registers twice).
1268 dropprio = icv_drop_prio(cs);
1269 if (dropprio == 0xff) {
1270 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1271 * whether the list registers are checked in this
1272 * situation; we choose not to.
1274 return;
1277 idx = icv_find_active(cs, irq);
1279 if (idx < 0) {
1280 /* No valid list register corresponding to EOI ID */
1281 icv_increment_eoicount(cs);
1282 } else {
1283 uint64_t lr = cs->ich_lr_el2[idx];
1284 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1285 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1287 if (thisgrp == grp && lr_gprio == dropprio) {
1288 if (!icv_eoi_split(env, cs)) {
1289 /* Priority drop and deactivate not split: deactivate irq now */
1290 icv_deactivate_irq(cs, idx);
1295 gicv3_cpuif_virt_update(cs);
1298 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1299 uint64_t value)
1301 /* End of Interrupt */
1302 GICv3CPUState *cs = icc_cs_from_env(env);
1303 int irq = value & 0xffffff;
1304 int grp;
1306 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1307 icv_eoir_write(env, ri, value);
1308 return;
1311 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1312 gicv3_redist_affid(cs), value);
1314 if (ri->crm == 8) {
1315 /* EOIR0 */
1316 grp = GICV3_G0;
1317 } else {
1318 /* EOIR1 */
1319 if (arm_is_secure(env)) {
1320 grp = GICV3_G1;
1321 } else {
1322 grp = GICV3_G1NS;
1326 if (irq >= cs->gic->num_irq) {
1327 /* This handles two cases:
1328 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1329 * to the GICC_EOIR, the GIC ignores that write.
1330 * 2. If software writes the number of a non-existent interrupt
1331 * this must be a subcase of "value written does not match the last
1332 * valid interrupt value read from the Interrupt Acknowledge
1333 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1335 return;
1338 if (icc_highest_active_group(cs) != grp) {
1339 return;
1342 icc_drop_prio(cs, grp);
1344 if (!icc_eoi_split(env, cs)) {
1345 /* Priority drop and deactivate not split: deactivate irq now */
1346 icc_deactivate_irq(cs, irq);
1350 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1352 GICv3CPUState *cs = icc_cs_from_env(env);
1353 uint64_t value;
1355 if (icv_access(env, HCR_FMO)) {
1356 return icv_hppir_read(env, ri);
1359 value = icc_hppir0_value(cs, env);
1360 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1361 return value;
1364 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1366 GICv3CPUState *cs = icc_cs_from_env(env);
1367 uint64_t value;
1369 if (icv_access(env, HCR_IMO)) {
1370 return icv_hppir_read(env, ri);
1373 value = icc_hppir1_value(cs, env);
1374 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1375 return value;
1378 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1380 GICv3CPUState *cs = icc_cs_from_env(env);
1381 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1382 bool satinc = false;
1383 uint64_t bpr;
1385 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1386 return icv_bpr_read(env, ri);
1389 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1390 grp = GICV3_G1NS;
1393 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1394 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1395 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1396 * modify BPR0
1398 grp = GICV3_G0;
1401 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1402 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1403 /* reads return bpr0 + 1 sat to 7, writes ignored */
1404 grp = GICV3_G0;
1405 satinc = true;
1408 bpr = cs->icc_bpr[grp];
1409 if (satinc) {
1410 bpr++;
1411 bpr = MIN(bpr, 7);
1414 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1416 return bpr;
1419 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1420 uint64_t value)
1422 GICv3CPUState *cs = icc_cs_from_env(env);
1423 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1424 uint64_t minval;
1426 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1427 icv_bpr_write(env, ri, value);
1428 return;
1431 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1432 gicv3_redist_affid(cs), value);
1434 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1435 grp = GICV3_G1NS;
1438 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1439 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1440 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1441 * modify BPR0
1443 grp = GICV3_G0;
1446 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1447 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1448 /* reads return bpr0 + 1 sat to 7, writes ignored */
1449 return;
1452 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1453 if (value < minval) {
1454 value = minval;
1457 cs->icc_bpr[grp] = value & 7;
1458 gicv3_cpuif_update(cs);
1461 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1463 GICv3CPUState *cs = icc_cs_from_env(env);
1464 uint64_t value;
1466 int regno = ri->opc2 & 3;
1467 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1469 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1470 return icv_ap_read(env, ri);
1473 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1474 grp = GICV3_G1NS;
1477 value = cs->icc_apr[grp][regno];
1479 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1480 return value;
1483 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1484 uint64_t value)
1486 GICv3CPUState *cs = icc_cs_from_env(env);
1488 int regno = ri->opc2 & 3;
1489 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1491 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1492 icv_ap_write(env, ri, value);
1493 return;
1496 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1498 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1499 grp = GICV3_G1NS;
1502 /* It's not possible to claim that a Non-secure interrupt is active
1503 * at a priority outside the Non-secure range (128..255), since this
1504 * would otherwise allow malicious NS code to block delivery of S interrupts
1505 * by writing a bad value to these registers.
1507 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1508 return;
1511 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1512 gicv3_cpuif_update(cs);
1515 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1516 uint64_t value)
1518 /* Deactivate interrupt */
1519 GICv3CPUState *cs = icc_cs_from_env(env);
1520 int irq = value & 0xffffff;
1521 bool irq_is_secure, single_sec_state, irq_is_grp0;
1522 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1524 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1525 icv_dir_write(env, ri, value);
1526 return;
1529 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1531 if (irq >= cs->gic->num_irq) {
1532 /* Also catches special interrupt numbers and LPIs */
1533 return;
1536 if (!icc_eoi_split(env, cs)) {
1537 return;
1540 int grp = gicv3_irq_group(cs->gic, cs, irq);
1542 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1543 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1544 irq_is_grp0 = grp == GICV3_G0;
1546 /* Check whether we're allowed to deactivate this interrupt based
1547 * on its group and the current CPU state.
1548 * These checks are laid out to correspond to the spec's pseudocode.
1550 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1551 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1552 /* No need to include !IsSecure in route_*_to_el2 as it's only
1553 * tested in cases where we know !IsSecure is true.
1555 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1556 route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1557 route_irq_to_el2 = hcr_el2 & HCR_IMO;
1559 switch (arm_current_el(env)) {
1560 case 3:
1561 break;
1562 case 2:
1563 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1564 break;
1566 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1567 break;
1569 return;
1570 case 1:
1571 if (!arm_is_secure_below_el3(env)) {
1572 if (single_sec_state && irq_is_grp0 &&
1573 !route_fiq_to_el3 && !route_fiq_to_el2) {
1574 break;
1576 if (!irq_is_secure && !irq_is_grp0 &&
1577 !route_irq_to_el3 && !route_irq_to_el2) {
1578 break;
1580 } else {
1581 if (irq_is_grp0 && !route_fiq_to_el3) {
1582 break;
1584 if (!irq_is_grp0 &&
1585 (!irq_is_secure || !single_sec_state) &&
1586 !route_irq_to_el3) {
1587 break;
1590 return;
1591 default:
1592 g_assert_not_reached();
1595 icc_deactivate_irq(cs, irq);
1598 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1600 GICv3CPUState *cs = icc_cs_from_env(env);
1601 int prio;
1603 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1604 return icv_rpr_read(env, ri);
1607 prio = icc_highest_active_prio(cs);
1609 if (arm_feature(env, ARM_FEATURE_EL3) &&
1610 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1611 /* NS GIC access and Group 0 is inaccessible to NS */
1612 if ((prio & 0x80) == 0) {
1613 /* NS mustn't see priorities in the Secure half of the range */
1614 prio = 0;
1615 } else if (prio != 0xff) {
1616 /* Non-idle priority: show the Non-secure view of it */
1617 prio = (prio << 1) & 0xff;
1621 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1622 return prio;
1625 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1626 uint64_t value, int grp, bool ns)
1628 GICv3State *s = cs->gic;
1630 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1631 uint64_t aff = extract64(value, 48, 8) << 16 |
1632 extract64(value, 32, 8) << 8 |
1633 extract64(value, 16, 8);
1634 uint32_t targetlist = extract64(value, 0, 16);
1635 uint32_t irq = extract64(value, 24, 4);
1636 bool irm = extract64(value, 40, 1);
1637 int i;
1639 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1640 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1641 * interrupts as Group 0 interrupts and must send Secure Group 0
1642 * interrupts to the target CPUs.
1644 grp = GICV3_G0;
1647 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1648 aff, targetlist);
1650 for (i = 0; i < s->num_cpu; i++) {
1651 GICv3CPUState *ocs = &s->cpu[i];
1653 if (irm) {
1654 /* IRM == 1 : route to all CPUs except self */
1655 if (cs == ocs) {
1656 continue;
1658 } else {
1659 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1660 * where the corresponding bit is set in targetlist
1662 int aff0;
1664 if (ocs->gicr_typer >> 40 != aff) {
1665 continue;
1667 aff0 = extract64(ocs->gicr_typer, 32, 8);
1668 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1669 continue;
1673 /* The redistributor will check against its own GICR_NSACR as needed */
1674 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1678 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1679 uint64_t value)
1681 /* Generate Secure Group 0 SGI. */
1682 GICv3CPUState *cs = icc_cs_from_env(env);
1683 bool ns = !arm_is_secure(env);
1685 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1688 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1689 uint64_t value)
1691 /* Generate Group 1 SGI for the current Security state */
1692 GICv3CPUState *cs = icc_cs_from_env(env);
1693 int grp;
1694 bool ns = !arm_is_secure(env);
1696 grp = ns ? GICV3_G1NS : GICV3_G1;
1697 icc_generate_sgi(env, cs, value, grp, ns);
1700 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1701 uint64_t value)
1703 /* Generate Group 1 SGI for the Security state that is not
1704 * the current state
1706 GICv3CPUState *cs = icc_cs_from_env(env);
1707 int grp;
1708 bool ns = !arm_is_secure(env);
1710 grp = ns ? GICV3_G1 : GICV3_G1NS;
1711 icc_generate_sgi(env, cs, value, grp, ns);
1714 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 GICv3CPUState *cs = icc_cs_from_env(env);
1717 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1718 uint64_t value;
1720 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1721 return icv_igrpen_read(env, ri);
1724 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1725 grp = GICV3_G1NS;
1728 value = cs->icc_igrpen[grp];
1729 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1730 gicv3_redist_affid(cs), value);
1731 return value;
1734 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735 uint64_t value)
1737 GICv3CPUState *cs = icc_cs_from_env(env);
1738 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1740 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1741 icv_igrpen_write(env, ri, value);
1742 return;
1745 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1746 gicv3_redist_affid(cs), value);
1748 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1749 grp = GICV3_G1NS;
1752 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1753 gicv3_cpuif_update(cs);
1756 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1758 GICv3CPUState *cs = icc_cs_from_env(env);
1759 uint64_t value;
1761 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1762 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1763 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1764 return value;
1767 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1768 uint64_t value)
1770 GICv3CPUState *cs = icc_cs_from_env(env);
1772 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1774 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1775 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1776 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1777 gicv3_cpuif_update(cs);
1780 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1782 GICv3CPUState *cs = icc_cs_from_env(env);
1783 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1784 uint64_t value;
1786 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1787 return icv_ctlr_read(env, ri);
1790 value = cs->icc_ctlr_el1[bank];
1791 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1792 return value;
1795 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1798 GICv3CPUState *cs = icc_cs_from_env(env);
1799 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1800 uint64_t mask;
1802 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1803 icv_ctlr_write(env, ri, value);
1804 return;
1807 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1809 /* Only CBPR and EOIMODE can be RW;
1810 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1811 * the asseciated priority-based routing of them);
1812 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1814 if (arm_feature(env, ARM_FEATURE_EL3) &&
1815 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1816 mask = ICC_CTLR_EL1_EOIMODE;
1817 } else {
1818 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1821 cs->icc_ctlr_el1[bank] &= ~mask;
1822 cs->icc_ctlr_el1[bank] |= (value & mask);
1823 gicv3_cpuif_update(cs);
1827 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 GICv3CPUState *cs = icc_cs_from_env(env);
1830 uint64_t value;
1832 value = cs->icc_ctlr_el3;
1833 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1834 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1836 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1837 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1839 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1840 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1842 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1843 value |= ICC_CTLR_EL3_CBPR_EL1S;
1846 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1847 return value;
1850 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851 uint64_t value)
1853 GICv3CPUState *cs = icc_cs_from_env(env);
1854 uint64_t mask;
1856 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1858 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1859 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1860 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1861 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1863 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1864 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1867 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1868 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1869 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1871 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1872 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1875 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1876 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1878 cs->icc_ctlr_el3 &= ~mask;
1879 cs->icc_ctlr_el3 |= (value & mask);
1880 gicv3_cpuif_update(cs);
1883 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1884 const ARMCPRegInfo *ri, bool isread)
1886 CPAccessResult r = CP_ACCESS_OK;
1887 GICv3CPUState *cs = icc_cs_from_env(env);
1888 int el = arm_current_el(env);
1890 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1891 el == 1 && !arm_is_secure_below_el3(env)) {
1892 /* Takes priority over a possible EL3 trap */
1893 return CP_ACCESS_TRAP_EL2;
1896 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1897 switch (el) {
1898 case 1:
1899 /* Note that arm_hcr_el2_eff takes secure state into account. */
1900 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1901 r = CP_ACCESS_TRAP_EL3;
1903 break;
1904 case 2:
1905 r = CP_ACCESS_TRAP_EL3;
1906 break;
1907 case 3:
1908 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1909 r = CP_ACCESS_TRAP_EL3;
1911 break;
1912 default:
1913 g_assert_not_reached();
1917 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1918 r = CP_ACCESS_TRAP;
1920 return r;
1923 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1924 const ARMCPRegInfo *ri, bool isread)
1926 GICv3CPUState *cs = icc_cs_from_env(env);
1928 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1929 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1930 /* Takes priority over a possible EL3 trap */
1931 return CP_ACCESS_TRAP_EL2;
1934 return gicv3_irqfiq_access(env, ri, isread);
1937 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1938 const ARMCPRegInfo *ri, bool isread)
1940 if (arm_current_el(env) == 1 &&
1941 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1942 /* Takes priority over a possible EL3 trap */
1943 return CP_ACCESS_TRAP_EL2;
1946 return gicv3_irqfiq_access(env, ri, isread);
1949 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1950 const ARMCPRegInfo *ri, bool isread)
1952 CPAccessResult r = CP_ACCESS_OK;
1953 GICv3CPUState *cs = icc_cs_from_env(env);
1954 int el = arm_current_el(env);
1956 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1957 el == 1 && !arm_is_secure_below_el3(env)) {
1958 /* Takes priority over a possible EL3 trap */
1959 return CP_ACCESS_TRAP_EL2;
1962 if (env->cp15.scr_el3 & SCR_FIQ) {
1963 switch (el) {
1964 case 1:
1965 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
1966 r = CP_ACCESS_TRAP_EL3;
1968 break;
1969 case 2:
1970 r = CP_ACCESS_TRAP_EL3;
1971 break;
1972 case 3:
1973 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1974 r = CP_ACCESS_TRAP_EL3;
1976 break;
1977 default:
1978 g_assert_not_reached();
1982 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1983 r = CP_ACCESS_TRAP;
1985 return r;
1988 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1989 const ARMCPRegInfo *ri, bool isread)
1991 CPAccessResult r = CP_ACCESS_OK;
1992 GICv3CPUState *cs = icc_cs_from_env(env);
1993 int el = arm_current_el(env);
1995 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1996 el == 1 && !arm_is_secure_below_el3(env)) {
1997 /* Takes priority over a possible EL3 trap */
1998 return CP_ACCESS_TRAP_EL2;
2001 if (env->cp15.scr_el3 & SCR_IRQ) {
2002 switch (el) {
2003 case 1:
2004 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2005 r = CP_ACCESS_TRAP_EL3;
2007 break;
2008 case 2:
2009 r = CP_ACCESS_TRAP_EL3;
2010 break;
2011 case 3:
2012 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2013 r = CP_ACCESS_TRAP_EL3;
2015 break;
2016 default:
2017 g_assert_not_reached();
2021 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2022 r = CP_ACCESS_TRAP;
2024 return r;
2027 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2029 GICv3CPUState *cs = icc_cs_from_env(env);
2031 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2032 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2033 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2034 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2035 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2036 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2037 cs->icc_pmr_el1 = 0;
2038 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2039 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2040 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2041 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2042 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2043 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2044 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2045 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2047 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2048 cs->ich_hcr_el2 = 0;
2049 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2050 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2051 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2052 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2055 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2056 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2057 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2058 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2059 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2060 .readfn = icc_pmr_read,
2061 .writefn = icc_pmr_write,
2062 /* We hang the whole cpu interface reset routine off here
2063 * rather than parcelling it out into one little function
2064 * per register
2066 .resetfn = icc_reset,
2068 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2069 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2070 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2071 .access = PL1_R, .accessfn = gicv3_fiq_access,
2072 .readfn = icc_iar0_read,
2074 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2075 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2076 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2077 .access = PL1_W, .accessfn = gicv3_fiq_access,
2078 .writefn = icc_eoir_write,
2080 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2081 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2082 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2083 .access = PL1_R, .accessfn = gicv3_fiq_access,
2084 .readfn = icc_hppir0_read,
2086 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2087 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2088 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2089 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2090 .readfn = icc_bpr_read,
2091 .writefn = icc_bpr_write,
2093 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2094 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2095 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2096 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2097 .readfn = icc_ap_read,
2098 .writefn = icc_ap_write,
2100 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2101 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2102 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2103 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2104 .readfn = icc_ap_read,
2105 .writefn = icc_ap_write,
2107 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2108 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2109 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2110 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2111 .readfn = icc_ap_read,
2112 .writefn = icc_ap_write,
2114 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2115 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2116 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2117 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2118 .readfn = icc_ap_read,
2119 .writefn = icc_ap_write,
2121 /* All the ICC_AP1R*_EL1 registers are banked */
2122 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2124 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2125 .access = PL1_RW, .accessfn = gicv3_irq_access,
2126 .readfn = icc_ap_read,
2127 .writefn = icc_ap_write,
2129 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2130 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2131 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2132 .access = PL1_RW, .accessfn = gicv3_irq_access,
2133 .readfn = icc_ap_read,
2134 .writefn = icc_ap_write,
2136 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2137 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2138 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2139 .access = PL1_RW, .accessfn = gicv3_irq_access,
2140 .readfn = icc_ap_read,
2141 .writefn = icc_ap_write,
2143 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2144 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2145 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2146 .access = PL1_RW, .accessfn = gicv3_irq_access,
2147 .readfn = icc_ap_read,
2148 .writefn = icc_ap_write,
2150 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2151 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2152 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2153 .access = PL1_W, .accessfn = gicv3_dir_access,
2154 .writefn = icc_dir_write,
2156 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2157 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2158 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2159 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2160 .readfn = icc_rpr_read,
2162 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2163 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2164 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2165 .access = PL1_W, .accessfn = gicv3_sgi_access,
2166 .writefn = icc_sgi1r_write,
2168 { .name = "ICC_SGI1R",
2169 .cp = 15, .opc1 = 0, .crm = 12,
2170 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2171 .access = PL1_W, .accessfn = gicv3_sgi_access,
2172 .writefn = icc_sgi1r_write,
2174 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2175 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2176 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2177 .access = PL1_W, .accessfn = gicv3_sgi_access,
2178 .writefn = icc_asgi1r_write,
2180 { .name = "ICC_ASGI1R",
2181 .cp = 15, .opc1 = 1, .crm = 12,
2182 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2183 .access = PL1_W, .accessfn = gicv3_sgi_access,
2184 .writefn = icc_asgi1r_write,
2186 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2187 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2188 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2189 .access = PL1_W, .accessfn = gicv3_sgi_access,
2190 .writefn = icc_sgi0r_write,
2192 { .name = "ICC_SGI0R",
2193 .cp = 15, .opc1 = 2, .crm = 12,
2194 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2195 .access = PL1_W, .accessfn = gicv3_sgi_access,
2196 .writefn = icc_sgi0r_write,
2198 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2199 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2200 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2201 .access = PL1_R, .accessfn = gicv3_irq_access,
2202 .readfn = icc_iar1_read,
2204 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2205 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2206 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2207 .access = PL1_W, .accessfn = gicv3_irq_access,
2208 .writefn = icc_eoir_write,
2210 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2211 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2212 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2213 .access = PL1_R, .accessfn = gicv3_irq_access,
2214 .readfn = icc_hppir1_read,
2216 /* This register is banked */
2217 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2218 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2219 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2220 .access = PL1_RW, .accessfn = gicv3_irq_access,
2221 .readfn = icc_bpr_read,
2222 .writefn = icc_bpr_write,
2224 /* This register is banked */
2225 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2226 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2227 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2228 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2229 .readfn = icc_ctlr_el1_read,
2230 .writefn = icc_ctlr_el1_write,
2232 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2233 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2234 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2235 .access = PL1_RW,
2236 /* We don't support IRQ/FIQ bypass and system registers are
2237 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2238 * This register is banked but since it's constant we don't
2239 * need to do anything special.
2241 .resetvalue = 0x7,
2243 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2244 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2245 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2246 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2247 .readfn = icc_igrpen_read,
2248 .writefn = icc_igrpen_write,
2250 /* This register is banked */
2251 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2252 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2253 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2254 .access = PL1_RW, .accessfn = gicv3_irq_access,
2255 .readfn = icc_igrpen_read,
2256 .writefn = icc_igrpen_write,
2258 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2259 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2260 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2261 .access = PL2_RW,
2262 /* We don't support IRQ/FIQ bypass and system registers are
2263 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2265 .resetvalue = 0xf,
2267 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2268 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2269 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2270 .access = PL3_RW,
2271 .readfn = icc_ctlr_el3_read,
2272 .writefn = icc_ctlr_el3_write,
2274 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2275 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2276 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2277 .access = PL3_RW,
2278 /* We don't support IRQ/FIQ bypass and system registers are
2279 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2281 .resetvalue = 0xf,
2283 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2284 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2285 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2286 .access = PL3_RW,
2287 .readfn = icc_igrpen1_el3_read,
2288 .writefn = icc_igrpen1_el3_write,
2290 REGINFO_SENTINEL
2293 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2295 GICv3CPUState *cs = icc_cs_from_env(env);
2296 int regno = ri->opc2 & 3;
2297 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2298 uint64_t value;
2300 value = cs->ich_apr[grp][regno];
2301 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2302 return value;
2305 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2306 uint64_t value)
2308 GICv3CPUState *cs = icc_cs_from_env(env);
2309 int regno = ri->opc2 & 3;
2310 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2312 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2314 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2315 gicv3_cpuif_virt_update(cs);
2318 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2320 GICv3CPUState *cs = icc_cs_from_env(env);
2321 uint64_t value = cs->ich_hcr_el2;
2323 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2324 return value;
2327 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2328 uint64_t value)
2330 GICv3CPUState *cs = icc_cs_from_env(env);
2332 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2334 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2335 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2336 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2337 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2338 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2340 cs->ich_hcr_el2 = value;
2341 gicv3_cpuif_virt_update(cs);
2344 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2346 GICv3CPUState *cs = icc_cs_from_env(env);
2347 uint64_t value = cs->ich_vmcr_el2;
2349 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2350 return value;
2353 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2354 uint64_t value)
2356 GICv3CPUState *cs = icc_cs_from_env(env);
2358 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2360 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2361 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2362 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2363 value |= ICH_VMCR_EL2_VFIQEN;
2365 cs->ich_vmcr_el2 = value;
2366 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2367 * by reading and writing back the fields.
2369 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2370 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2372 gicv3_cpuif_virt_update(cs);
2375 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2377 GICv3CPUState *cs = icc_cs_from_env(env);
2378 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2379 uint64_t value;
2381 /* This read function handles all of:
2382 * 64-bit reads of the whole LR
2383 * 32-bit reads of the low half of the LR
2384 * 32-bit reads of the high half of the LR
2386 if (ri->state == ARM_CP_STATE_AA32) {
2387 if (ri->crm >= 14) {
2388 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2389 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2390 } else {
2391 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2392 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2394 } else {
2395 value = cs->ich_lr_el2[regno];
2396 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2399 return value;
2402 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2403 uint64_t value)
2405 GICv3CPUState *cs = icc_cs_from_env(env);
2406 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2408 /* This write function handles all of:
2409 * 64-bit writes to the whole LR
2410 * 32-bit writes to the low half of the LR
2411 * 32-bit writes to the high half of the LR
2413 if (ri->state == ARM_CP_STATE_AA32) {
2414 if (ri->crm >= 14) {
2415 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2416 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2417 } else {
2418 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2419 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2421 } else {
2422 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2425 /* Enforce RES0 bits in priority field */
2426 if (cs->vpribits < 8) {
2427 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2428 8 - cs->vpribits, 0);
2431 cs->ich_lr_el2[regno] = value;
2432 gicv3_cpuif_virt_update(cs);
2435 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2437 GICv3CPUState *cs = icc_cs_from_env(env);
2438 uint64_t value;
2440 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2441 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2442 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2443 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2444 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2446 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2447 return value;
2450 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2452 GICv3CPUState *cs = icc_cs_from_env(env);
2453 uint64_t value = maintenance_interrupt_state(cs);
2455 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2456 return value;
2459 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2461 GICv3CPUState *cs = icc_cs_from_env(env);
2462 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2464 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2465 return value;
2468 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2470 GICv3CPUState *cs = icc_cs_from_env(env);
2471 uint64_t value = 0;
2472 int i;
2474 for (i = 0; i < cs->num_list_regs; i++) {
2475 uint64_t lr = cs->ich_lr_el2[i];
2477 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2478 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2479 value |= (1 << i);
2483 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2484 return value;
2487 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2488 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2489 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2490 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2491 .access = PL2_RW,
2492 .readfn = ich_ap_read,
2493 .writefn = ich_ap_write,
2495 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2496 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2497 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2498 .access = PL2_RW,
2499 .readfn = ich_ap_read,
2500 .writefn = ich_ap_write,
2502 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2503 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2504 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2505 .access = PL2_RW,
2506 .readfn = ich_hcr_read,
2507 .writefn = ich_hcr_write,
2509 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2510 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2511 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2512 .access = PL2_R,
2513 .readfn = ich_vtr_read,
2515 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2516 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2517 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2518 .access = PL2_R,
2519 .readfn = ich_misr_read,
2521 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2522 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2523 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2524 .access = PL2_R,
2525 .readfn = ich_eisr_read,
2527 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2528 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2529 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2530 .access = PL2_R,
2531 .readfn = ich_elrsr_read,
2533 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2534 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2535 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2536 .access = PL2_RW,
2537 .readfn = ich_vmcr_read,
2538 .writefn = ich_vmcr_write,
2540 REGINFO_SENTINEL
2543 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2544 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2545 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2546 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2547 .access = PL2_RW,
2548 .readfn = ich_ap_read,
2549 .writefn = ich_ap_write,
2551 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2552 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2553 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2554 .access = PL2_RW,
2555 .readfn = ich_ap_read,
2556 .writefn = ich_ap_write,
2558 REGINFO_SENTINEL
2561 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2562 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2563 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2564 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2565 .access = PL2_RW,
2566 .readfn = ich_ap_read,
2567 .writefn = ich_ap_write,
2569 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2570 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2571 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2572 .access = PL2_RW,
2573 .readfn = ich_ap_read,
2574 .writefn = ich_ap_write,
2576 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2577 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2578 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2579 .access = PL2_RW,
2580 .readfn = ich_ap_read,
2581 .writefn = ich_ap_write,
2583 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2584 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2585 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2586 .access = PL2_RW,
2587 .readfn = ich_ap_read,
2588 .writefn = ich_ap_write,
2590 REGINFO_SENTINEL
2593 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2595 GICv3CPUState *cs = opaque;
2597 gicv3_cpuif_update(cs);
2600 void gicv3_init_cpuif(GICv3State *s)
2602 /* Called from the GICv3 realize function; register our system
2603 * registers with the CPU
2605 int i;
2607 for (i = 0; i < s->num_cpu; i++) {
2608 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2609 GICv3CPUState *cs = &s->cpu[i];
2611 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2612 * in define_arm_cp_regs_with_opaque(), because when we're called back
2613 * it might be with code translated by CPU 0 but run by CPU 1, in
2614 * which case we'd get the wrong value.
2615 * So instead we define the regs with no ri->opaque info, and
2616 * get back to the GICv3CPUState from the CPUARMState.
2618 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2619 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2620 && cpu->gic_num_lrs) {
2621 int j;
2623 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2625 cs->num_list_regs = cpu->gic_num_lrs;
2626 cs->vpribits = cpu->gic_vpribits;
2627 cs->vprebits = cpu->gic_vprebits;
2629 /* Check against architectural constraints: getting these
2630 * wrong would be a bug in the CPU code defining these,
2631 * and the implementation relies on them holding.
2633 g_assert(cs->vprebits <= cs->vpribits);
2634 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2635 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2637 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2639 for (j = 0; j < cs->num_list_regs; j++) {
2640 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2641 * are split into two cp15 regs, LR (the low part, with the
2642 * same encoding as the AArch64 LR) and LRC (the high part).
2644 ARMCPRegInfo lr_regset[] = {
2645 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2646 .opc0 = 3, .opc1 = 4, .crn = 12,
2647 .crm = 12 + (j >> 3), .opc2 = j & 7,
2648 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2649 .access = PL2_RW,
2650 .readfn = ich_lr_read,
2651 .writefn = ich_lr_write,
2653 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2654 .cp = 15, .opc1 = 4, .crn = 12,
2655 .crm = 14 + (j >> 3), .opc2 = j & 7,
2656 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2657 .access = PL2_RW,
2658 .readfn = ich_lr_read,
2659 .writefn = ich_lr_write,
2661 REGINFO_SENTINEL
2663 define_arm_cp_regs(cpu, lr_regset);
2665 if (cs->vprebits >= 6) {
2666 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2668 if (cs->vprebits == 7) {
2669 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2672 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);