s390x: upgrade status of KVM cores to "supported"
[qemu/ar7.git] / hw / char / escc.c
blob628f5f81f749e40aaa844d8667ff52a6190f3c98
1 /*
2 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/char/escc.h"
29 #include "ui/console.h"
30 #include "trace.h"
33 * Chipset docs:
34 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
35 * http://www.zilog.com/docs/serial/scc_escc_um.pdf
37 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
38 * (Slave I/O), also produced as NCR89C105. See
39 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
42 * mouse and keyboard ports don't implement all functions and they are
43 * only asynchronous. There is no DMA.
45 * Z85C30 is also used on PowerMacs. There are some small differences
46 * between Sparc version (sunzilog) and PowerMac (pmac):
47 * Offset between control and data registers
48 * There is some kind of lockup bug, but we can ignore it
49 * CTS is inverted
50 * DMA on pmac using DBDMA chip
51 * pmac can do IRDA and faster rates, sunzilog can only do 38400
52 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
56 * Modifications:
57 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
58 * serial mouse queue.
59 * Implemented serial mouse protocol.
61 * 2010-May-23 Artyom Tarasenko: Reworked IUS logic
64 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
66 #define SERIAL_CTRL 0
67 #define SERIAL_DATA 1
69 #define W_CMD 0
70 #define CMD_PTR_MASK 0x07
71 #define CMD_CMD_MASK 0x38
72 #define CMD_HI 0x08
73 #define CMD_CLR_TXINT 0x28
74 #define CMD_CLR_IUS 0x38
75 #define W_INTR 1
76 #define INTR_INTALL 0x01
77 #define INTR_TXINT 0x02
78 #define INTR_RXMODEMSK 0x18
79 #define INTR_RXINT1ST 0x08
80 #define INTR_RXINTALL 0x10
81 #define W_IVEC 2
82 #define W_RXCTRL 3
83 #define RXCTRL_RXEN 0x01
84 #define W_TXCTRL1 4
85 #define TXCTRL1_PAREN 0x01
86 #define TXCTRL1_PAREV 0x02
87 #define TXCTRL1_1STOP 0x04
88 #define TXCTRL1_1HSTOP 0x08
89 #define TXCTRL1_2STOP 0x0c
90 #define TXCTRL1_STPMSK 0x0c
91 #define TXCTRL1_CLK1X 0x00
92 #define TXCTRL1_CLK16X 0x40
93 #define TXCTRL1_CLK32X 0x80
94 #define TXCTRL1_CLK64X 0xc0
95 #define TXCTRL1_CLKMSK 0xc0
96 #define W_TXCTRL2 5
97 #define TXCTRL2_TXEN 0x08
98 #define TXCTRL2_BITMSK 0x60
99 #define TXCTRL2_5BITS 0x00
100 #define TXCTRL2_7BITS 0x20
101 #define TXCTRL2_6BITS 0x40
102 #define TXCTRL2_8BITS 0x60
103 #define W_SYNC1 6
104 #define W_SYNC2 7
105 #define W_TXBUF 8
106 #define W_MINTR 9
107 #define MINTR_STATUSHI 0x10
108 #define MINTR_RST_MASK 0xc0
109 #define MINTR_RST_B 0x40
110 #define MINTR_RST_A 0x80
111 #define MINTR_RST_ALL 0xc0
112 #define W_MISC1 10
113 #define W_CLOCK 11
114 #define CLOCK_TRXC 0x08
115 #define W_BRGLO 12
116 #define W_BRGHI 13
117 #define W_MISC2 14
118 #define MISC2_PLLDIS 0x30
119 #define W_EXTINT 15
120 #define EXTINT_DCD 0x08
121 #define EXTINT_SYNCINT 0x10
122 #define EXTINT_CTSINT 0x20
123 #define EXTINT_TXUNDRN 0x40
124 #define EXTINT_BRKINT 0x80
126 #define R_STATUS 0
127 #define STATUS_RXAV 0x01
128 #define STATUS_ZERO 0x02
129 #define STATUS_TXEMPTY 0x04
130 #define STATUS_DCD 0x08
131 #define STATUS_SYNC 0x10
132 #define STATUS_CTS 0x20
133 #define STATUS_TXUNDRN 0x40
134 #define STATUS_BRK 0x80
135 #define R_SPEC 1
136 #define SPEC_ALLSENT 0x01
137 #define SPEC_BITS8 0x06
138 #define R_IVEC 2
139 #define IVEC_TXINTB 0x00
140 #define IVEC_LONOINT 0x06
141 #define IVEC_LORXINTA 0x0c
142 #define IVEC_LORXINTB 0x04
143 #define IVEC_LOTXINTA 0x08
144 #define IVEC_HINOINT 0x60
145 #define IVEC_HIRXINTA 0x30
146 #define IVEC_HIRXINTB 0x20
147 #define IVEC_HITXINTA 0x10
148 #define R_INTR 3
149 #define INTR_EXTINTB 0x01
150 #define INTR_TXINTB 0x02
151 #define INTR_RXINTB 0x04
152 #define INTR_EXTINTA 0x08
153 #define INTR_TXINTA 0x10
154 #define INTR_RXINTA 0x20
155 #define R_IPEN 4
156 #define R_TXCTRL1 5
157 #define R_TXCTRL2 6
158 #define R_BC 7
159 #define R_RXBUF 8
160 #define R_RXCTRL 9
161 #define R_MISC 10
162 #define R_MISC1 11
163 #define R_BRGLO 12
164 #define R_BRGHI 13
165 #define R_MISC1I 14
166 #define R_EXTINT 15
168 static void handle_kbd_command(ESCCChannelState *s, int val);
169 static int serial_can_receive(void *opaque);
170 static void serial_receive_byte(ESCCChannelState *s, int ch);
172 static void clear_queue(void *opaque)
174 ESCCChannelState *s = opaque;
175 ESCCSERIOQueue *q = &s->queue;
176 q->rptr = q->wptr = q->count = 0;
179 static void put_queue(void *opaque, int b)
181 ESCCChannelState *s = opaque;
182 ESCCSERIOQueue *q = &s->queue;
184 trace_escc_put_queue(CHN_C(s), b);
185 if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
186 return;
188 q->data[q->wptr] = b;
189 if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
190 q->wptr = 0;
192 q->count++;
193 serial_receive_byte(s, 0);
196 static uint32_t get_queue(void *opaque)
198 ESCCChannelState *s = opaque;
199 ESCCSERIOQueue *q = &s->queue;
200 int val;
202 if (q->count == 0) {
203 return 0;
204 } else {
205 val = q->data[q->rptr];
206 if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
207 q->rptr = 0;
209 q->count--;
211 trace_escc_get_queue(CHN_C(s), val);
212 if (q->count > 0)
213 serial_receive_byte(s, 0);
214 return val;
217 static int escc_update_irq_chn(ESCCChannelState *s)
219 if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
220 // tx ints enabled, pending
221 ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
222 ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
223 s->rxint == 1) || // rx ints enabled, pending
224 ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
225 (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
226 return 1;
228 return 0;
231 static void escc_update_irq(ESCCChannelState *s)
233 int irq;
235 irq = escc_update_irq_chn(s);
236 irq |= escc_update_irq_chn(s->otherchn);
238 trace_escc_update_irq(irq);
239 qemu_set_irq(s->irq, irq);
242 static void escc_reset_chn(ESCCChannelState *s)
244 int i;
246 s->reg = 0;
247 for (i = 0; i < ESCC_SERIAL_REGS; i++) {
248 s->rregs[i] = 0;
249 s->wregs[i] = 0;
251 s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
252 s->wregs[W_MINTR] = MINTR_RST_ALL;
253 s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
254 s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
255 s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
256 EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
257 if (s->disabled)
258 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
259 STATUS_CTS | STATUS_TXUNDRN;
260 else
261 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
262 s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
264 s->rx = s->tx = 0;
265 s->rxint = s->txint = 0;
266 s->rxint_under_svc = s->txint_under_svc = 0;
267 s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
268 clear_queue(s);
271 static void escc_reset(DeviceState *d)
273 ESCCState *s = ESCC(d);
275 escc_reset_chn(&s->chn[0]);
276 escc_reset_chn(&s->chn[1]);
279 static inline void set_rxint(ESCCChannelState *s)
281 s->rxint = 1;
282 /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority
283 than chn_a rx/tx/special_condition service*/
284 s->rxint_under_svc = 1;
285 if (s->chn == escc_chn_a) {
286 s->rregs[R_INTR] |= INTR_RXINTA;
287 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
288 s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
289 else
290 s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
291 } else {
292 s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
293 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
294 s->rregs[R_IVEC] = IVEC_HIRXINTB;
295 else
296 s->rregs[R_IVEC] = IVEC_LORXINTB;
298 escc_update_irq(s);
301 static inline void set_txint(ESCCChannelState *s)
303 s->txint = 1;
304 if (!s->rxint_under_svc) {
305 s->txint_under_svc = 1;
306 if (s->chn == escc_chn_a) {
307 if (s->wregs[W_INTR] & INTR_TXINT) {
308 s->rregs[R_INTR] |= INTR_TXINTA;
310 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
311 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
312 else
313 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
314 } else {
315 s->rregs[R_IVEC] = IVEC_TXINTB;
316 if (s->wregs[W_INTR] & INTR_TXINT) {
317 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
320 escc_update_irq(s);
324 static inline void clr_rxint(ESCCChannelState *s)
326 s->rxint = 0;
327 s->rxint_under_svc = 0;
328 if (s->chn == escc_chn_a) {
329 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
330 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
331 else
332 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
333 s->rregs[R_INTR] &= ~INTR_RXINTA;
334 } else {
335 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
336 s->rregs[R_IVEC] = IVEC_HINOINT;
337 else
338 s->rregs[R_IVEC] = IVEC_LONOINT;
339 s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
341 if (s->txint)
342 set_txint(s);
343 escc_update_irq(s);
346 static inline void clr_txint(ESCCChannelState *s)
348 s->txint = 0;
349 s->txint_under_svc = 0;
350 if (s->chn == escc_chn_a) {
351 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
352 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
353 else
354 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
355 s->rregs[R_INTR] &= ~INTR_TXINTA;
356 } else {
357 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
358 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
359 s->rregs[R_IVEC] = IVEC_HINOINT;
360 else
361 s->rregs[R_IVEC] = IVEC_LONOINT;
362 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
364 if (s->rxint)
365 set_rxint(s);
366 escc_update_irq(s);
369 static void escc_update_parameters(ESCCChannelState *s)
371 int speed, parity, data_bits, stop_bits;
372 QEMUSerialSetParams ssp;
374 if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial)
375 return;
377 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
378 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
379 parity = 'E';
380 else
381 parity = 'O';
382 } else {
383 parity = 'N';
385 if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
386 stop_bits = 2;
387 else
388 stop_bits = 1;
389 switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
390 case TXCTRL2_5BITS:
391 data_bits = 5;
392 break;
393 case TXCTRL2_7BITS:
394 data_bits = 7;
395 break;
396 case TXCTRL2_6BITS:
397 data_bits = 6;
398 break;
399 default:
400 case TXCTRL2_8BITS:
401 data_bits = 8;
402 break;
404 speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
405 switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
406 case TXCTRL1_CLK1X:
407 break;
408 case TXCTRL1_CLK16X:
409 speed /= 16;
410 break;
411 case TXCTRL1_CLK32X:
412 speed /= 32;
413 break;
414 default:
415 case TXCTRL1_CLK64X:
416 speed /= 64;
417 break;
419 ssp.speed = speed;
420 ssp.parity = parity;
421 ssp.data_bits = data_bits;
422 ssp.stop_bits = stop_bits;
423 trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
424 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
427 static void escc_mem_write(void *opaque, hwaddr addr,
428 uint64_t val, unsigned size)
430 ESCCState *serial = opaque;
431 ESCCChannelState *s;
432 uint32_t saddr;
433 int newreg, channel;
435 val &= 0xff;
436 saddr = (addr >> serial->it_shift) & 1;
437 channel = (addr >> (serial->it_shift + 1)) & 1;
438 s = &serial->chn[channel];
439 switch (saddr) {
440 case SERIAL_CTRL:
441 trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
442 newreg = 0;
443 switch (s->reg) {
444 case W_CMD:
445 newreg = val & CMD_PTR_MASK;
446 val &= CMD_CMD_MASK;
447 switch (val) {
448 case CMD_HI:
449 newreg |= CMD_HI;
450 break;
451 case CMD_CLR_TXINT:
452 clr_txint(s);
453 break;
454 case CMD_CLR_IUS:
455 if (s->rxint_under_svc) {
456 s->rxint_under_svc = 0;
457 if (s->txint) {
458 set_txint(s);
460 } else if (s->txint_under_svc) {
461 s->txint_under_svc = 0;
463 escc_update_irq(s);
464 break;
465 default:
466 break;
468 break;
469 case W_INTR ... W_RXCTRL:
470 case W_SYNC1 ... W_TXBUF:
471 case W_MISC1 ... W_CLOCK:
472 case W_MISC2 ... W_EXTINT:
473 s->wregs[s->reg] = val;
474 break;
475 case W_TXCTRL1:
476 case W_TXCTRL2:
477 s->wregs[s->reg] = val;
478 escc_update_parameters(s);
479 break;
480 case W_BRGLO:
481 case W_BRGHI:
482 s->wregs[s->reg] = val;
483 s->rregs[s->reg] = val;
484 escc_update_parameters(s);
485 break;
486 case W_MINTR:
487 switch (val & MINTR_RST_MASK) {
488 case 0:
489 default:
490 break;
491 case MINTR_RST_B:
492 escc_reset_chn(&serial->chn[0]);
493 return;
494 case MINTR_RST_A:
495 escc_reset_chn(&serial->chn[1]);
496 return;
497 case MINTR_RST_ALL:
498 escc_reset(DEVICE(serial));
499 return;
501 break;
502 default:
503 break;
505 if (s->reg == 0)
506 s->reg = newreg;
507 else
508 s->reg = 0;
509 break;
510 case SERIAL_DATA:
511 trace_escc_mem_writeb_data(CHN_C(s), val);
512 s->tx = val;
513 if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
514 if (qemu_chr_fe_backend_connected(&s->chr)) {
515 /* XXX this blocks entire thread. Rewrite to use
516 * qemu_chr_fe_write and background I/O callbacks */
517 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
518 } else if (s->type == escc_kbd && !s->disabled) {
519 handle_kbd_command(s, val);
522 s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
523 s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
524 set_txint(s);
525 break;
526 default:
527 break;
531 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
532 unsigned size)
534 ESCCState *serial = opaque;
535 ESCCChannelState *s;
536 uint32_t saddr;
537 uint32_t ret;
538 int channel;
540 saddr = (addr >> serial->it_shift) & 1;
541 channel = (addr >> (serial->it_shift + 1)) & 1;
542 s = &serial->chn[channel];
543 switch (saddr) {
544 case SERIAL_CTRL:
545 trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
546 ret = s->rregs[s->reg];
547 s->reg = 0;
548 return ret;
549 case SERIAL_DATA:
550 s->rregs[R_STATUS] &= ~STATUS_RXAV;
551 clr_rxint(s);
552 if (s->type == escc_kbd || s->type == escc_mouse) {
553 ret = get_queue(s);
554 } else {
555 ret = s->rx;
557 trace_escc_mem_readb_data(CHN_C(s), ret);
558 qemu_chr_fe_accept_input(&s->chr);
559 return ret;
560 default:
561 break;
563 return 0;
566 static const MemoryRegionOps escc_mem_ops = {
567 .read = escc_mem_read,
568 .write = escc_mem_write,
569 .endianness = DEVICE_NATIVE_ENDIAN,
570 .valid = {
571 .min_access_size = 1,
572 .max_access_size = 1,
576 static int serial_can_receive(void *opaque)
578 ESCCChannelState *s = opaque;
579 int ret;
581 if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
582 || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
583 // char already available
584 ret = 0;
585 else
586 ret = 1;
587 return ret;
590 static void serial_receive_byte(ESCCChannelState *s, int ch)
592 trace_escc_serial_receive_byte(CHN_C(s), ch);
593 s->rregs[R_STATUS] |= STATUS_RXAV;
594 s->rx = ch;
595 set_rxint(s);
598 static void serial_receive_break(ESCCChannelState *s)
600 s->rregs[R_STATUS] |= STATUS_BRK;
601 escc_update_irq(s);
604 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
606 ESCCChannelState *s = opaque;
607 serial_receive_byte(s, buf[0]);
610 static void serial_event(void *opaque, int event)
612 ESCCChannelState *s = opaque;
613 if (event == CHR_EVENT_BREAK)
614 serial_receive_break(s);
617 static const VMStateDescription vmstate_escc_chn = {
618 .name ="escc_chn",
619 .version_id = 2,
620 .minimum_version_id = 1,
621 .fields = (VMStateField[]) {
622 VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
623 VMSTATE_UINT32(reg, ESCCChannelState),
624 VMSTATE_UINT32(rxint, ESCCChannelState),
625 VMSTATE_UINT32(txint, ESCCChannelState),
626 VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
627 VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
628 VMSTATE_UINT8(rx, ESCCChannelState),
629 VMSTATE_UINT8(tx, ESCCChannelState),
630 VMSTATE_BUFFER(wregs, ESCCChannelState),
631 VMSTATE_BUFFER(rregs, ESCCChannelState),
632 VMSTATE_END_OF_LIST()
636 static const VMStateDescription vmstate_escc = {
637 .name ="escc",
638 .version_id = 2,
639 .minimum_version_id = 1,
640 .fields = (VMStateField[]) {
641 VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
642 ESCCChannelState),
643 VMSTATE_END_OF_LIST()
647 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
648 InputEvent *evt)
650 ESCCChannelState *s = (ESCCChannelState *)dev;
651 int qcode, keycode;
652 InputKeyEvent *key;
654 assert(evt->type == INPUT_EVENT_KIND_KEY);
655 key = evt->u.key.data;
656 qcode = qemu_input_key_value_to_qcode(key->key);
657 trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
658 key->down);
660 if (qcode == Q_KEY_CODE_CAPS_LOCK) {
661 if (key->down) {
662 s->caps_lock_mode ^= 1;
663 if (s->caps_lock_mode == 2) {
664 return; /* Drop second press */
666 } else {
667 s->caps_lock_mode ^= 2;
668 if (s->caps_lock_mode == 3) {
669 return; /* Drop first release */
674 if (qcode == Q_KEY_CODE_NUM_LOCK) {
675 if (key->down) {
676 s->num_lock_mode ^= 1;
677 if (s->num_lock_mode == 2) {
678 return; /* Drop second press */
680 } else {
681 s->num_lock_mode ^= 2;
682 if (s->num_lock_mode == 3) {
683 return; /* Drop first release */
688 if (qcode > qemu_input_map_qcode_to_sun_len) {
689 return;
692 keycode = qemu_input_map_qcode_to_sun[qcode];
693 if (!key->down) {
694 keycode |= 0x80;
696 trace_escc_sunkbd_event_out(keycode);
697 put_queue(s, keycode);
700 static QemuInputHandler sunkbd_handler = {
701 .name = "sun keyboard",
702 .mask = INPUT_EVENT_MASK_KEY,
703 .event = sunkbd_handle_event,
706 static void handle_kbd_command(ESCCChannelState *s, int val)
708 trace_escc_kbd_command(val);
709 if (s->led_mode) { // Ignore led byte
710 s->led_mode = 0;
711 return;
713 switch (val) {
714 case 1: // Reset, return type code
715 clear_queue(s);
716 put_queue(s, 0xff);
717 put_queue(s, 4); // Type 4
718 put_queue(s, 0x7f);
719 break;
720 case 0xe: // Set leds
721 s->led_mode = 1;
722 break;
723 case 7: // Query layout
724 case 0xf:
725 clear_queue(s);
726 put_queue(s, 0xfe);
727 put_queue(s, 0x21); /* en-us layout */
728 break;
729 default:
730 break;
734 static void sunmouse_event(void *opaque,
735 int dx, int dy, int dz, int buttons_state)
737 ESCCChannelState *s = opaque;
738 int ch;
740 trace_escc_sunmouse_event(dx, dy, buttons_state);
741 ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
743 if (buttons_state & MOUSE_EVENT_LBUTTON)
744 ch ^= 0x4;
745 if (buttons_state & MOUSE_EVENT_MBUTTON)
746 ch ^= 0x2;
747 if (buttons_state & MOUSE_EVENT_RBUTTON)
748 ch ^= 0x1;
750 put_queue(s, ch);
752 ch = dx;
754 if (ch > 127)
755 ch = 127;
756 else if (ch < -127)
757 ch = -127;
759 put_queue(s, ch & 0xff);
761 ch = -dy;
763 if (ch > 127)
764 ch = 127;
765 else if (ch < -127)
766 ch = -127;
768 put_queue(s, ch & 0xff);
770 // MSC protocol specify two extra motion bytes
772 put_queue(s, 0);
773 put_queue(s, 0);
776 static void escc_init1(Object *obj)
778 ESCCState *s = ESCC(obj);
779 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
780 unsigned int i;
782 for (i = 0; i < 2; i++) {
783 sysbus_init_irq(dev, &s->chn[i].irq);
784 s->chn[i].chn = 1 - i;
786 s->chn[0].otherchn = &s->chn[1];
787 s->chn[1].otherchn = &s->chn[0];
789 sysbus_init_mmio(dev, &s->mmio);
792 static void escc_realize(DeviceState *dev, Error **errp)
794 ESCCState *s = ESCC(dev);
795 unsigned int i;
797 s->chn[0].disabled = s->disabled;
798 s->chn[1].disabled = s->disabled;
800 memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
801 ESCC_SIZE << s->it_shift);
803 for (i = 0; i < 2; i++) {
804 if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
805 s->chn[i].clock = s->frequency / 2;
806 qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
807 serial_receive1, serial_event, NULL,
808 &s->chn[i], NULL, true);
812 if (s->chn[0].type == escc_mouse) {
813 qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
814 "QEMU Sun Mouse");
816 if (s->chn[1].type == escc_kbd) {
817 s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
818 &sunkbd_handler);
822 static Property escc_properties[] = {
823 DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0),
824 DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0),
825 DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0),
826 DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0),
827 DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0),
828 DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
829 DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
830 DEFINE_PROP_END_OF_LIST(),
833 static void escc_class_init(ObjectClass *klass, void *data)
835 DeviceClass *dc = DEVICE_CLASS(klass);
837 dc->reset = escc_reset;
838 dc->realize = escc_realize;
839 dc->vmsd = &vmstate_escc;
840 dc->props = escc_properties;
841 set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
844 static const TypeInfo escc_info = {
845 .name = TYPE_ESCC,
846 .parent = TYPE_SYS_BUS_DEVICE,
847 .instance_size = sizeof(ESCCState),
848 .instance_init = escc_init1,
849 .class_init = escc_class_init,
852 static void escc_register_types(void)
854 type_register_static(&escc_info);
857 type_init(escc_register_types)