s390x: upgrade status of KVM cores to "supported"
[qemu/ar7.git] / hw / block / onenand.c
blobf11118a6876e2e855ec70a5832161fcff72e8829
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "hw/hw.h"
25 #include "hw/block/flash.h"
26 #include "hw/irq.h"
27 #include "sysemu/block-backend.h"
28 #include "exec/memory.h"
29 #include "hw/sysbus.h"
30 #include "qemu/error-report.h"
31 #include "qemu/log.h"
33 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
34 #define PAGE_SHIFT 11
36 /* Fixed */
37 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
39 #define TYPE_ONE_NAND "onenand"
40 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
42 typedef struct OneNANDState {
43 SysBusDevice parent_obj;
45 struct {
46 uint16_t man;
47 uint16_t dev;
48 uint16_t ver;
49 } id;
50 int shift;
51 hwaddr base;
52 qemu_irq intr;
53 qemu_irq rdy;
54 BlockBackend *blk;
55 BlockBackend *blk_cur;
56 uint8_t *image;
57 uint8_t *otp;
58 uint8_t *current;
59 MemoryRegion ram;
60 MemoryRegion mapped_ram;
61 uint8_t current_direction;
62 uint8_t *boot[2];
63 uint8_t *data[2][2];
64 MemoryRegion iomem;
65 MemoryRegion container;
66 int cycle;
67 int otpmode;
69 uint16_t addr[8];
70 uint16_t unladdr[8];
71 int bufaddr;
72 int count;
73 uint16_t command;
74 uint16_t config[2];
75 uint16_t status;
76 uint16_t intstatus;
77 uint16_t wpstatus;
79 ECCState ecc;
81 int density_mask;
82 int secs;
83 int secs_cur;
84 int blocks;
85 uint8_t *blockwp;
86 } OneNANDState;
88 enum {
89 ONEN_BUF_BLOCK = 0,
90 ONEN_BUF_BLOCK2 = 1,
91 ONEN_BUF_DEST_BLOCK = 2,
92 ONEN_BUF_DEST_PAGE = 3,
93 ONEN_BUF_PAGE = 7,
96 enum {
97 ONEN_ERR_CMD = 1 << 10,
98 ONEN_ERR_ERASE = 1 << 11,
99 ONEN_ERR_PROG = 1 << 12,
100 ONEN_ERR_LOAD = 1 << 13,
103 enum {
104 ONEN_INT_RESET = 1 << 4,
105 ONEN_INT_ERASE = 1 << 5,
106 ONEN_INT_PROG = 1 << 6,
107 ONEN_INT_LOAD = 1 << 7,
108 ONEN_INT = 1 << 15,
111 enum {
112 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
113 ONEN_LOCK_LOCKED = 1 << 1,
114 ONEN_LOCK_UNLOCKED = 1 << 2,
117 static void onenand_mem_setup(OneNANDState *s)
119 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
120 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
121 * write boot commands. Also take note of the BWPS bit. */
122 memory_region_init(&s->container, OBJECT(s), "onenand",
123 0x10000 << s->shift);
124 memory_region_add_subregion(&s->container, 0, &s->iomem);
125 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
126 &s->ram, 0x0200 << s->shift,
127 0xbe00 << s->shift);
128 memory_region_add_subregion_overlap(&s->container,
129 0x0200 << s->shift,
130 &s->mapped_ram,
134 static void onenand_intr_update(OneNANDState *s)
136 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
139 static int onenand_pre_save(void *opaque)
141 OneNANDState *s = opaque;
142 if (s->current == s->otp) {
143 s->current_direction = 1;
144 } else if (s->current == s->image) {
145 s->current_direction = 2;
146 } else {
147 s->current_direction = 0;
150 return 0;
153 static int onenand_post_load(void *opaque, int version_id)
155 OneNANDState *s = opaque;
156 switch (s->current_direction) {
157 case 0:
158 break;
159 case 1:
160 s->current = s->otp;
161 break;
162 case 2:
163 s->current = s->image;
164 break;
165 default:
166 return -1;
168 onenand_intr_update(s);
169 return 0;
172 static const VMStateDescription vmstate_onenand = {
173 .name = "onenand",
174 .version_id = 1,
175 .minimum_version_id = 1,
176 .pre_save = onenand_pre_save,
177 .post_load = onenand_post_load,
178 .fields = (VMStateField[]) {
179 VMSTATE_UINT8(current_direction, OneNANDState),
180 VMSTATE_INT32(cycle, OneNANDState),
181 VMSTATE_INT32(otpmode, OneNANDState),
182 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
183 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
184 VMSTATE_INT32(bufaddr, OneNANDState),
185 VMSTATE_INT32(count, OneNANDState),
186 VMSTATE_UINT16(command, OneNANDState),
187 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
188 VMSTATE_UINT16(status, OneNANDState),
189 VMSTATE_UINT16(intstatus, OneNANDState),
190 VMSTATE_UINT16(wpstatus, OneNANDState),
191 VMSTATE_INT32(secs_cur, OneNANDState),
192 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
193 VMSTATE_UINT8(ecc.cp, OneNANDState),
194 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
195 VMSTATE_UINT16(ecc.count, OneNANDState),
196 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
197 ((64 + 2) << PAGE_SHIFT)),
198 VMSTATE_END_OF_LIST()
202 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
203 static void onenand_reset(OneNANDState *s, int cold)
205 memset(&s->addr, 0, sizeof(s->addr));
206 s->command = 0;
207 s->count = 1;
208 s->bufaddr = 0;
209 s->config[0] = 0x40c0;
210 s->config[1] = 0x0000;
211 onenand_intr_update(s);
212 qemu_irq_raise(s->rdy);
213 s->status = 0x0000;
214 s->intstatus = cold ? 0x8080 : 0x8010;
215 s->unladdr[0] = 0;
216 s->unladdr[1] = 0;
217 s->wpstatus = 0x0002;
218 s->cycle = 0;
219 s->otpmode = 0;
220 s->blk_cur = s->blk;
221 s->current = s->image;
222 s->secs_cur = s->secs;
224 if (cold) {
225 /* Lock the whole flash */
226 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
228 if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
229 8 << BDRV_SECTOR_BITS) < 0) {
230 hw_error("%s: Loading the BootRAM failed.\n", __func__);
235 static void onenand_system_reset(DeviceState *dev)
237 OneNANDState *s = ONE_NAND(dev);
239 onenand_reset(s, 1);
242 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
243 void *dest)
245 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
246 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
247 if (s->blk_cur) {
248 return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
249 secn << BDRV_SECTOR_BITS) < 0;
250 } else if (sec + secn > s->secs_cur) {
251 return 1;
254 memcpy(dest, s->current + (sec << 9), secn << 9);
256 return 0;
259 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
260 void *src)
262 int result = 0;
264 if (secn > 0) {
265 uint32_t size = secn << BDRV_SECTOR_BITS;
266 uint32_t offset = sec << BDRV_SECTOR_BITS;
267 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
268 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
269 const uint8_t *sp = (const uint8_t *)src;
270 uint8_t *dp = 0;
271 if (s->blk_cur) {
272 dp = g_malloc(size);
273 if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
274 result = 1;
276 } else {
277 if (sec + secn > s->secs_cur) {
278 result = 1;
279 } else {
280 dp = (uint8_t *)s->current + offset;
283 if (!result) {
284 uint32_t i;
285 for (i = 0; i < size; i++) {
286 dp[i] &= sp[i];
288 if (s->blk_cur) {
289 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
292 if (dp && s->blk_cur) {
293 g_free(dp);
297 return result;
300 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
301 void *dest)
303 uint8_t buf[512];
305 if (s->blk_cur) {
306 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
307 if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
308 return 1;
310 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
311 } else if (sec + secn > s->secs_cur) {
312 return 1;
313 } else {
314 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
317 return 0;
320 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
321 void *src)
323 int result = 0;
324 if (secn > 0) {
325 const uint8_t *sp = (const uint8_t *)src;
326 uint8_t *dp = 0, *dpp = 0;
327 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
328 assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
329 if (s->blk_cur) {
330 dp = g_malloc(512);
331 if (!dp
332 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
333 result = 1;
334 } else {
335 dpp = dp + ((sec & 31) << 4);
337 } else {
338 if (sec + secn > s->secs_cur) {
339 result = 1;
340 } else {
341 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
344 if (!result) {
345 uint32_t i;
346 for (i = 0; i < (secn << 4); i++) {
347 dpp[i] &= sp[i];
349 if (s->blk_cur) {
350 result = blk_pwrite(s->blk_cur, offset, dp,
351 BDRV_SECTOR_SIZE, 0) < 0;
354 g_free(dp);
356 return result;
359 static inline int onenand_erase(OneNANDState *s, int sec, int num)
361 uint8_t *blankbuf, *tmpbuf;
363 blankbuf = g_malloc(512);
364 tmpbuf = g_malloc(512);
365 memset(blankbuf, 0xff, 512);
366 for (; num > 0; num--, sec++) {
367 if (s->blk_cur) {
368 int erasesec = s->secs_cur + (sec >> 5);
369 if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
370 BDRV_SECTOR_SIZE, 0) < 0) {
371 goto fail;
373 if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
374 BDRV_SECTOR_SIZE) < 0) {
375 goto fail;
377 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
378 if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
379 BDRV_SECTOR_SIZE, 0) < 0) {
380 goto fail;
382 } else {
383 if (sec + 1 > s->secs_cur) {
384 goto fail;
386 memcpy(s->current + (sec << 9), blankbuf, 512);
387 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
388 blankbuf, 1 << 4);
392 g_free(tmpbuf);
393 g_free(blankbuf);
394 return 0;
396 fail:
397 g_free(tmpbuf);
398 g_free(blankbuf);
399 return 1;
402 static void onenand_command(OneNANDState *s)
404 int b;
405 int sec;
406 void *buf;
407 #define SETADDR(block, page) \
408 sec = (s->addr[page] & 3) + \
409 ((((s->addr[page] >> 2) & 0x3f) + \
410 (((s->addr[block] & 0xfff) | \
411 (s->addr[block] >> 15 ? \
412 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
413 #define SETBUF_M() \
414 buf = (s->bufaddr & 8) ? \
415 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
416 buf += (s->bufaddr & 3) << 9;
417 #define SETBUF_S() \
418 buf = (s->bufaddr & 8) ? \
419 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
420 buf += (s->bufaddr & 3) << 4;
422 switch (s->command) {
423 case 0x00: /* Load single/multiple sector data unit into buffer */
424 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
426 SETBUF_M()
427 if (onenand_load_main(s, sec, s->count, buf))
428 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
430 #if 0
431 SETBUF_S()
432 if (onenand_load_spare(s, sec, s->count, buf))
433 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
434 #endif
436 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
437 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
438 * then we need two split the read/write into two chunks.
440 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
441 break;
442 case 0x13: /* Load single/multiple spare sector into buffer */
443 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
445 SETBUF_S()
446 if (onenand_load_spare(s, sec, s->count, buf))
447 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
449 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
450 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
451 * then we need two split the read/write into two chunks.
453 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
454 break;
455 case 0x80: /* Program single/multiple sector data unit from buffer */
456 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
458 SETBUF_M()
459 if (onenand_prog_main(s, sec, s->count, buf))
460 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
462 #if 0
463 SETBUF_S()
464 if (onenand_prog_spare(s, sec, s->count, buf))
465 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
466 #endif
468 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
469 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
470 * then we need two split the read/write into two chunks.
472 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
473 break;
474 case 0x1a: /* Program single/multiple spare area sector from buffer */
475 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
477 SETBUF_S()
478 if (onenand_prog_spare(s, sec, s->count, buf))
479 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
481 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
482 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
483 * then we need two split the read/write into two chunks.
485 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
486 break;
487 case 0x1b: /* Copy-back program */
488 SETBUF_S()
490 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
491 if (onenand_load_main(s, sec, s->count, buf))
492 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
494 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
495 if (onenand_prog_main(s, sec, s->count, buf))
496 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
498 /* TODO: spare areas */
500 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
501 break;
503 case 0x23: /* Unlock NAND array block(s) */
504 s->intstatus |= ONEN_INT;
506 /* XXX the previous (?) area should be locked automatically */
507 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
508 if (b >= s->blocks) {
509 s->status |= ONEN_ERR_CMD;
510 break;
512 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
513 break;
515 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
517 break;
518 case 0x27: /* Unlock All NAND array blocks */
519 s->intstatus |= ONEN_INT;
521 for (b = 0; b < s->blocks; b ++) {
522 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
523 break;
525 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
527 break;
529 case 0x2a: /* Lock NAND array block(s) */
530 s->intstatus |= ONEN_INT;
532 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
533 if (b >= s->blocks) {
534 s->status |= ONEN_ERR_CMD;
535 break;
537 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
538 break;
540 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
542 break;
543 case 0x2c: /* Lock-tight NAND array block(s) */
544 s->intstatus |= ONEN_INT;
546 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
547 if (b >= s->blocks) {
548 s->status |= ONEN_ERR_CMD;
549 break;
551 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
552 continue;
554 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
556 break;
558 case 0x71: /* Erase-Verify-Read */
559 s->intstatus |= ONEN_INT;
560 break;
561 case 0x95: /* Multi-block erase */
562 qemu_irq_pulse(s->intr);
563 /* Fall through. */
564 case 0x94: /* Block erase */
565 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
566 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
567 << (BLOCK_SHIFT - 9);
568 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
569 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
571 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
572 break;
573 case 0xb0: /* Erase suspend */
574 break;
575 case 0x30: /* Erase resume */
576 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
577 break;
579 case 0xf0: /* Reset NAND Flash core */
580 onenand_reset(s, 0);
581 break;
582 case 0xf3: /* Reset OneNAND */
583 onenand_reset(s, 0);
584 break;
586 case 0x65: /* OTP Access */
587 s->intstatus |= ONEN_INT;
588 s->blk_cur = NULL;
589 s->current = s->otp;
590 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
591 s->addr[ONEN_BUF_BLOCK] = 0;
592 s->otpmode = 1;
593 break;
595 default:
596 s->status |= ONEN_ERR_CMD;
597 s->intstatus |= ONEN_INT;
598 qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
599 s->command);
602 onenand_intr_update(s);
605 static uint64_t onenand_read(void *opaque, hwaddr addr,
606 unsigned size)
608 OneNANDState *s = (OneNANDState *) opaque;
609 int offset = addr >> s->shift;
611 switch (offset) {
612 case 0x0000 ... 0xbffe:
613 return lduw_le_p(s->boot[0] + addr);
615 case 0xf000: /* Manufacturer ID */
616 return s->id.man;
617 case 0xf001: /* Device ID */
618 return s->id.dev;
619 case 0xf002: /* Version ID */
620 return s->id.ver;
621 /* TODO: get the following values from a real chip! */
622 case 0xf003: /* Data Buffer size */
623 return 1 << PAGE_SHIFT;
624 case 0xf004: /* Boot Buffer size */
625 return 0x200;
626 case 0xf005: /* Amount of buffers */
627 return 1 | (2 << 8);
628 case 0xf006: /* Technology */
629 return 0;
631 case 0xf100 ... 0xf107: /* Start addresses */
632 return s->addr[offset - 0xf100];
634 case 0xf200: /* Start buffer */
635 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
637 case 0xf220: /* Command */
638 return s->command;
639 case 0xf221: /* System Configuration 1 */
640 return s->config[0] & 0xffe0;
641 case 0xf222: /* System Configuration 2 */
642 return s->config[1];
644 case 0xf240: /* Controller Status */
645 return s->status;
646 case 0xf241: /* Interrupt */
647 return s->intstatus;
648 case 0xf24c: /* Unlock Start Block Address */
649 return s->unladdr[0];
650 case 0xf24d: /* Unlock End Block Address */
651 return s->unladdr[1];
652 case 0xf24e: /* Write Protection Status */
653 return s->wpstatus;
655 case 0xff00: /* ECC Status */
656 return 0x00;
657 case 0xff01: /* ECC Result of main area data */
658 case 0xff02: /* ECC Result of spare area data */
659 case 0xff03: /* ECC Result of main area data */
660 case 0xff04: /* ECC Result of spare area data */
661 qemu_log_mask(LOG_UNIMP,
662 "onenand: ECC result registers unimplemented\n");
663 return 0x0000;
666 qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
667 offset);
668 return 0;
671 static void onenand_write(void *opaque, hwaddr addr,
672 uint64_t value, unsigned size)
674 OneNANDState *s = (OneNANDState *) opaque;
675 int offset = addr >> s->shift;
676 int sec;
678 switch (offset) {
679 case 0x0000 ... 0x01ff:
680 case 0x8000 ... 0x800f:
681 if (s->cycle) {
682 s->cycle = 0;
684 if (value == 0x0000) {
685 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
686 onenand_load_main(s, sec,
687 1 << (PAGE_SHIFT - 9), s->data[0][0]);
688 s->addr[ONEN_BUF_PAGE] += 4;
689 s->addr[ONEN_BUF_PAGE] &= 0xff;
691 break;
694 switch (value) {
695 case 0x00f0: /* Reset OneNAND */
696 onenand_reset(s, 0);
697 break;
699 case 0x00e0: /* Load Data into Buffer */
700 s->cycle = 1;
701 break;
703 case 0x0090: /* Read Identification Data */
704 memset(s->boot[0], 0, 3 << s->shift);
705 s->boot[0][0 << s->shift] = s->id.man & 0xff;
706 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
707 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
708 break;
710 default:
711 qemu_log_mask(LOG_GUEST_ERROR,
712 "unknown OneNAND boot command %" PRIx64 "\n",
713 value);
715 break;
717 case 0xf100 ... 0xf107: /* Start addresses */
718 s->addr[offset - 0xf100] = value;
719 break;
721 case 0xf200: /* Start buffer */
722 s->bufaddr = (value >> 8) & 0xf;
723 if (PAGE_SHIFT == 11)
724 s->count = (value & 3) ?: 4;
725 else if (PAGE_SHIFT == 10)
726 s->count = (value & 1) ?: 2;
727 break;
729 case 0xf220: /* Command */
730 if (s->intstatus & (1 << 15))
731 break;
732 s->command = value;
733 onenand_command(s);
734 break;
735 case 0xf221: /* System Configuration 1 */
736 s->config[0] = value;
737 onenand_intr_update(s);
738 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
739 break;
740 case 0xf222: /* System Configuration 2 */
741 s->config[1] = value;
742 break;
744 case 0xf241: /* Interrupt */
745 s->intstatus &= value;
746 if ((1 << 15) & ~s->intstatus)
747 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
748 ONEN_ERR_PROG | ONEN_ERR_LOAD);
749 onenand_intr_update(s);
750 break;
751 case 0xf24c: /* Unlock Start Block Address */
752 s->unladdr[0] = value & (s->blocks - 1);
753 /* For some reason we have to set the end address to by default
754 * be same as start because the software forgets to write anything
755 * in there. */
756 s->unladdr[1] = value & (s->blocks - 1);
757 break;
758 case 0xf24d: /* Unlock End Block Address */
759 s->unladdr[1] = value & (s->blocks - 1);
760 break;
762 default:
763 qemu_log_mask(LOG_GUEST_ERROR,
764 "write to unknown OneNAND register 0x%x\n",
765 offset);
769 static const MemoryRegionOps onenand_ops = {
770 .read = onenand_read,
771 .write = onenand_write,
772 .endianness = DEVICE_NATIVE_ENDIAN,
775 static void onenand_realize(DeviceState *dev, Error **errp)
777 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
778 OneNANDState *s = ONE_NAND(dev);
779 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
780 void *ram;
781 Error *local_err = NULL;
783 s->base = (hwaddr)-1;
784 s->rdy = NULL;
785 s->blocks = size >> BLOCK_SHIFT;
786 s->secs = size >> 9;
787 s->blockwp = g_malloc(s->blocks);
788 s->density_mask = (s->id.dev & 0x08)
789 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
790 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
791 0x10000 << s->shift);
792 if (!s->blk) {
793 s->image = memset(g_malloc(size + (size >> 5)),
794 0xff, size + (size >> 5));
795 } else {
796 if (blk_is_read_only(s->blk)) {
797 error_setg(errp, "Can't use a read-only drive");
798 return;
800 blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
801 BLK_PERM_ALL, &local_err);
802 if (local_err) {
803 error_propagate(errp, local_err);
804 return;
806 s->blk_cur = s->blk;
808 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
809 0xff, (64 + 2) << PAGE_SHIFT);
810 memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
811 0xc000 << s->shift, &error_fatal);
812 vmstate_register_ram_global(&s->ram);
813 ram = memory_region_get_ram_ptr(&s->ram);
814 s->boot[0] = ram + (0x0000 << s->shift);
815 s->boot[1] = ram + (0x8000 << s->shift);
816 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
817 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
818 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
819 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
820 onenand_mem_setup(s);
821 sysbus_init_irq(sbd, &s->intr);
822 sysbus_init_mmio(sbd, &s->container);
823 vmstate_register(dev,
824 ((s->shift & 0x7f) << 24)
825 | ((s->id.man & 0xff) << 16)
826 | ((s->id.dev & 0xff) << 8)
827 | (s->id.ver & 0xff),
828 &vmstate_onenand, s);
831 static Property onenand_properties[] = {
832 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
833 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
834 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
835 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
836 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
837 DEFINE_PROP_END_OF_LIST(),
840 static void onenand_class_init(ObjectClass *klass, void *data)
842 DeviceClass *dc = DEVICE_CLASS(klass);
844 dc->realize = onenand_realize;
845 dc->reset = onenand_system_reset;
846 dc->props = onenand_properties;
849 static const TypeInfo onenand_info = {
850 .name = TYPE_ONE_NAND,
851 .parent = TYPE_SYS_BUS_DEVICE,
852 .instance_size = sizeof(OneNANDState),
853 .class_init = onenand_class_init,
856 static void onenand_register_types(void)
858 type_register_static(&onenand_info);
861 void *onenand_raw_otp(DeviceState *onenand_device)
863 OneNANDState *s = ONE_NAND(onenand_device);
865 return s->otp;
868 type_init(onenand_register_types)