s390x: upgrade status of KVM cores to "supported"
[qemu/ar7.git] / gdbstub.c
blobbc774ae992588b9659db7e5b5e963bbae82a1d0c
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "qemu/cutils.h"
23 #include "trace-root.h"
24 #ifdef CONFIG_USER_ONLY
25 #include "qemu.h"
26 #else
27 #include "monitor/monitor.h"
28 #include "chardev/char.h"
29 #include "chardev/char-fe.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/gdbstub.h"
32 #include "hw/cpu/cluster.h"
33 #endif
35 #define MAX_PACKET_LENGTH 4096
37 #include "qemu/sockets.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "exec/semihost.h"
41 #include "exec/exec-all.h"
43 #ifdef CONFIG_USER_ONLY
44 #define GDB_ATTACHED "0"
45 #else
46 #define GDB_ATTACHED "1"
47 #endif
49 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
50 uint8_t *buf, int len, bool is_write)
52 CPUClass *cc = CPU_GET_CLASS(cpu);
54 if (cc->memory_rw_debug) {
55 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
57 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
60 /* Return the GDB index for a given vCPU state.
62 * For user mode this is simply the thread id. In system mode GDB
63 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
65 static inline int cpu_gdb_index(CPUState *cpu)
67 #if defined(CONFIG_USER_ONLY)
68 TaskState *ts = (TaskState *) cpu->opaque;
69 return ts->ts_tid;
70 #else
71 return cpu->cpu_index + 1;
72 #endif
75 enum {
76 GDB_SIGNAL_0 = 0,
77 GDB_SIGNAL_INT = 2,
78 GDB_SIGNAL_QUIT = 3,
79 GDB_SIGNAL_TRAP = 5,
80 GDB_SIGNAL_ABRT = 6,
81 GDB_SIGNAL_ALRM = 14,
82 GDB_SIGNAL_IO = 23,
83 GDB_SIGNAL_XCPU = 24,
84 GDB_SIGNAL_UNKNOWN = 143
87 #ifdef CONFIG_USER_ONLY
89 /* Map target signal numbers to GDB protocol signal numbers and vice
90 * versa. For user emulation's currently supported systems, we can
91 * assume most signals are defined.
94 static int gdb_signal_table[] = {
96 TARGET_SIGHUP,
97 TARGET_SIGINT,
98 TARGET_SIGQUIT,
99 TARGET_SIGILL,
100 TARGET_SIGTRAP,
101 TARGET_SIGABRT,
102 -1, /* SIGEMT */
103 TARGET_SIGFPE,
104 TARGET_SIGKILL,
105 TARGET_SIGBUS,
106 TARGET_SIGSEGV,
107 TARGET_SIGSYS,
108 TARGET_SIGPIPE,
109 TARGET_SIGALRM,
110 TARGET_SIGTERM,
111 TARGET_SIGURG,
112 TARGET_SIGSTOP,
113 TARGET_SIGTSTP,
114 TARGET_SIGCONT,
115 TARGET_SIGCHLD,
116 TARGET_SIGTTIN,
117 TARGET_SIGTTOU,
118 TARGET_SIGIO,
119 TARGET_SIGXCPU,
120 TARGET_SIGXFSZ,
121 TARGET_SIGVTALRM,
122 TARGET_SIGPROF,
123 TARGET_SIGWINCH,
124 -1, /* SIGLOST */
125 TARGET_SIGUSR1,
126 TARGET_SIGUSR2,
127 #ifdef TARGET_SIGPWR
128 TARGET_SIGPWR,
129 #else
131 #endif
132 -1, /* SIGPOLL */
144 #ifdef __SIGRTMIN
145 __SIGRTMIN + 1,
146 __SIGRTMIN + 2,
147 __SIGRTMIN + 3,
148 __SIGRTMIN + 4,
149 __SIGRTMIN + 5,
150 __SIGRTMIN + 6,
151 __SIGRTMIN + 7,
152 __SIGRTMIN + 8,
153 __SIGRTMIN + 9,
154 __SIGRTMIN + 10,
155 __SIGRTMIN + 11,
156 __SIGRTMIN + 12,
157 __SIGRTMIN + 13,
158 __SIGRTMIN + 14,
159 __SIGRTMIN + 15,
160 __SIGRTMIN + 16,
161 __SIGRTMIN + 17,
162 __SIGRTMIN + 18,
163 __SIGRTMIN + 19,
164 __SIGRTMIN + 20,
165 __SIGRTMIN + 21,
166 __SIGRTMIN + 22,
167 __SIGRTMIN + 23,
168 __SIGRTMIN + 24,
169 __SIGRTMIN + 25,
170 __SIGRTMIN + 26,
171 __SIGRTMIN + 27,
172 __SIGRTMIN + 28,
173 __SIGRTMIN + 29,
174 __SIGRTMIN + 30,
175 __SIGRTMIN + 31,
176 -1, /* SIGCANCEL */
177 __SIGRTMIN,
178 __SIGRTMIN + 32,
179 __SIGRTMIN + 33,
180 __SIGRTMIN + 34,
181 __SIGRTMIN + 35,
182 __SIGRTMIN + 36,
183 __SIGRTMIN + 37,
184 __SIGRTMIN + 38,
185 __SIGRTMIN + 39,
186 __SIGRTMIN + 40,
187 __SIGRTMIN + 41,
188 __SIGRTMIN + 42,
189 __SIGRTMIN + 43,
190 __SIGRTMIN + 44,
191 __SIGRTMIN + 45,
192 __SIGRTMIN + 46,
193 __SIGRTMIN + 47,
194 __SIGRTMIN + 48,
195 __SIGRTMIN + 49,
196 __SIGRTMIN + 50,
197 __SIGRTMIN + 51,
198 __SIGRTMIN + 52,
199 __SIGRTMIN + 53,
200 __SIGRTMIN + 54,
201 __SIGRTMIN + 55,
202 __SIGRTMIN + 56,
203 __SIGRTMIN + 57,
204 __SIGRTMIN + 58,
205 __SIGRTMIN + 59,
206 __SIGRTMIN + 60,
207 __SIGRTMIN + 61,
208 __SIGRTMIN + 62,
209 __SIGRTMIN + 63,
210 __SIGRTMIN + 64,
211 __SIGRTMIN + 65,
212 __SIGRTMIN + 66,
213 __SIGRTMIN + 67,
214 __SIGRTMIN + 68,
215 __SIGRTMIN + 69,
216 __SIGRTMIN + 70,
217 __SIGRTMIN + 71,
218 __SIGRTMIN + 72,
219 __SIGRTMIN + 73,
220 __SIGRTMIN + 74,
221 __SIGRTMIN + 75,
222 __SIGRTMIN + 76,
223 __SIGRTMIN + 77,
224 __SIGRTMIN + 78,
225 __SIGRTMIN + 79,
226 __SIGRTMIN + 80,
227 __SIGRTMIN + 81,
228 __SIGRTMIN + 82,
229 __SIGRTMIN + 83,
230 __SIGRTMIN + 84,
231 __SIGRTMIN + 85,
232 __SIGRTMIN + 86,
233 __SIGRTMIN + 87,
234 __SIGRTMIN + 88,
235 __SIGRTMIN + 89,
236 __SIGRTMIN + 90,
237 __SIGRTMIN + 91,
238 __SIGRTMIN + 92,
239 __SIGRTMIN + 93,
240 __SIGRTMIN + 94,
241 __SIGRTMIN + 95,
242 -1, /* SIGINFO */
243 -1, /* UNKNOWN */
244 -1, /* DEFAULT */
251 #endif
253 #else
254 /* In system mode we only need SIGINT and SIGTRAP; other signals
255 are not yet supported. */
257 enum {
258 TARGET_SIGINT = 2,
259 TARGET_SIGTRAP = 5
262 static int gdb_signal_table[] = {
265 TARGET_SIGINT,
268 TARGET_SIGTRAP
270 #endif
272 #ifdef CONFIG_USER_ONLY
273 static int target_signal_to_gdb (int sig)
275 int i;
276 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
277 if (gdb_signal_table[i] == sig)
278 return i;
279 return GDB_SIGNAL_UNKNOWN;
281 #endif
283 static int gdb_signal_to_target (int sig)
285 if (sig < ARRAY_SIZE (gdb_signal_table))
286 return gdb_signal_table[sig];
287 else
288 return -1;
291 typedef struct GDBRegisterState {
292 int base_reg;
293 int num_regs;
294 gdb_reg_cb get_reg;
295 gdb_reg_cb set_reg;
296 const char *xml;
297 struct GDBRegisterState *next;
298 } GDBRegisterState;
300 typedef struct GDBProcess {
301 uint32_t pid;
302 bool attached;
304 char target_xml[1024];
305 } GDBProcess;
307 enum RSState {
308 RS_INACTIVE,
309 RS_IDLE,
310 RS_GETLINE,
311 RS_GETLINE_ESC,
312 RS_GETLINE_RLE,
313 RS_CHKSUM1,
314 RS_CHKSUM2,
316 typedef struct GDBState {
317 CPUState *c_cpu; /* current CPU for step/continue ops */
318 CPUState *g_cpu; /* current CPU for other ops */
319 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
320 enum RSState state; /* parsing state */
321 char line_buf[MAX_PACKET_LENGTH];
322 int line_buf_index;
323 int line_sum; /* running checksum */
324 int line_csum; /* checksum at the end of the packet */
325 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
326 int last_packet_len;
327 int signal;
328 #ifdef CONFIG_USER_ONLY
329 int fd;
330 int running_state;
331 #else
332 CharBackend chr;
333 Chardev *mon_chr;
334 #endif
335 bool multiprocess;
336 GDBProcess *processes;
337 int process_num;
338 char syscall_buf[256];
339 gdb_syscall_complete_cb current_syscall_cb;
340 } GDBState;
342 /* By default use no IRQs and no timers while single stepping so as to
343 * make single stepping like an ICE HW step.
345 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
347 static GDBState *gdbserver_state;
349 bool gdb_has_xml;
351 #ifdef CONFIG_USER_ONLY
352 /* XXX: This is not thread safe. Do we care? */
353 static int gdbserver_fd = -1;
355 static int get_char(GDBState *s)
357 uint8_t ch;
358 int ret;
360 for(;;) {
361 ret = qemu_recv(s->fd, &ch, 1, 0);
362 if (ret < 0) {
363 if (errno == ECONNRESET)
364 s->fd = -1;
365 if (errno != EINTR)
366 return -1;
367 } else if (ret == 0) {
368 close(s->fd);
369 s->fd = -1;
370 return -1;
371 } else {
372 break;
375 return ch;
377 #endif
379 static enum {
380 GDB_SYS_UNKNOWN,
381 GDB_SYS_ENABLED,
382 GDB_SYS_DISABLED,
383 } gdb_syscall_mode;
385 /* Decide if either remote gdb syscalls or native file IO should be used. */
386 int use_gdb_syscalls(void)
388 SemihostingTarget target = semihosting_get_target();
389 if (target == SEMIHOSTING_TARGET_NATIVE) {
390 /* -semihosting-config target=native */
391 return false;
392 } else if (target == SEMIHOSTING_TARGET_GDB) {
393 /* -semihosting-config target=gdb */
394 return true;
397 /* -semihosting-config target=auto */
398 /* On the first call check if gdb is connected and remember. */
399 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
400 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
401 : GDB_SYS_DISABLED);
403 return gdb_syscall_mode == GDB_SYS_ENABLED;
406 /* Resume execution. */
407 static inline void gdb_continue(GDBState *s)
410 #ifdef CONFIG_USER_ONLY
411 s->running_state = 1;
412 trace_gdbstub_op_continue();
413 #else
414 if (!runstate_needs_reset()) {
415 trace_gdbstub_op_continue();
416 vm_start();
418 #endif
422 * Resume execution, per CPU actions. For user-mode emulation it's
423 * equivalent to gdb_continue.
425 static int gdb_continue_partial(GDBState *s, char *newstates)
427 CPUState *cpu;
428 int res = 0;
429 #ifdef CONFIG_USER_ONLY
431 * This is not exactly accurate, but it's an improvement compared to the
432 * previous situation, where only one CPU would be single-stepped.
434 CPU_FOREACH(cpu) {
435 if (newstates[cpu->cpu_index] == 's') {
436 trace_gdbstub_op_stepping(cpu->cpu_index);
437 cpu_single_step(cpu, sstep_flags);
440 s->running_state = 1;
441 #else
442 int flag = 0;
444 if (!runstate_needs_reset()) {
445 if (vm_prepare_start()) {
446 return 0;
449 CPU_FOREACH(cpu) {
450 switch (newstates[cpu->cpu_index]) {
451 case 0:
452 case 1:
453 break; /* nothing to do here */
454 case 's':
455 trace_gdbstub_op_stepping(cpu->cpu_index);
456 cpu_single_step(cpu, sstep_flags);
457 cpu_resume(cpu);
458 flag = 1;
459 break;
460 case 'c':
461 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
462 cpu_resume(cpu);
463 flag = 1;
464 break;
465 default:
466 res = -1;
467 break;
471 if (flag) {
472 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
474 #endif
475 return res;
478 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
480 #ifdef CONFIG_USER_ONLY
481 int ret;
483 while (len > 0) {
484 ret = send(s->fd, buf, len, 0);
485 if (ret < 0) {
486 if (errno != EINTR)
487 return;
488 } else {
489 buf += ret;
490 len -= ret;
493 #else
494 /* XXX this blocks entire thread. Rewrite to use
495 * qemu_chr_fe_write and background I/O callbacks */
496 qemu_chr_fe_write_all(&s->chr, buf, len);
497 #endif
500 static inline int fromhex(int v)
502 if (v >= '0' && v <= '9')
503 return v - '0';
504 else if (v >= 'A' && v <= 'F')
505 return v - 'A' + 10;
506 else if (v >= 'a' && v <= 'f')
507 return v - 'a' + 10;
508 else
509 return 0;
512 static inline int tohex(int v)
514 if (v < 10)
515 return v + '0';
516 else
517 return v - 10 + 'a';
520 /* writes 2*len+1 bytes in buf */
521 static void memtohex(char *buf, const uint8_t *mem, int len)
523 int i, c;
524 char *q;
525 q = buf;
526 for(i = 0; i < len; i++) {
527 c = mem[i];
528 *q++ = tohex(c >> 4);
529 *q++ = tohex(c & 0xf);
531 *q = '\0';
534 static void hextomem(uint8_t *mem, const char *buf, int len)
536 int i;
538 for(i = 0; i < len; i++) {
539 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
540 buf += 2;
544 static void hexdump(const char *buf, int len,
545 void (*trace_fn)(size_t ofs, char const *text))
547 char line_buffer[3 * 16 + 4 + 16 + 1];
549 size_t i;
550 for (i = 0; i < len || (i & 0xF); ++i) {
551 size_t byte_ofs = i & 15;
553 if (byte_ofs == 0) {
554 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
555 line_buffer[3 * 16 + 4 + 16] = 0;
558 size_t col_group = (i >> 2) & 3;
559 size_t hex_col = byte_ofs * 3 + col_group;
560 size_t txt_col = 3 * 16 + 4 + byte_ofs;
562 if (i < len) {
563 char value = buf[i];
565 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
566 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
567 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
568 ? value
569 : '.';
572 if (byte_ofs == 0xF)
573 trace_fn(i & -16, line_buffer);
577 /* return -1 if error, 0 if OK */
578 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
580 int csum, i;
581 uint8_t *p;
583 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
584 hexdump(buf, len, trace_gdbstub_io_binaryreply);
587 for(;;) {
588 p = s->last_packet;
589 *(p++) = '$';
590 memcpy(p, buf, len);
591 p += len;
592 csum = 0;
593 for(i = 0; i < len; i++) {
594 csum += buf[i];
596 *(p++) = '#';
597 *(p++) = tohex((csum >> 4) & 0xf);
598 *(p++) = tohex((csum) & 0xf);
600 s->last_packet_len = p - s->last_packet;
601 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
603 #ifdef CONFIG_USER_ONLY
604 i = get_char(s);
605 if (i < 0)
606 return -1;
607 if (i == '+')
608 break;
609 #else
610 break;
611 #endif
613 return 0;
616 /* return -1 if error, 0 if OK */
617 static int put_packet(GDBState *s, const char *buf)
619 trace_gdbstub_io_reply(buf);
621 return put_packet_binary(s, buf, strlen(buf), false);
624 /* Encode data using the encoding for 'x' packets. */
625 static int memtox(char *buf, const char *mem, int len)
627 char *p = buf;
628 char c;
630 while (len--) {
631 c = *(mem++);
632 switch (c) {
633 case '#': case '$': case '*': case '}':
634 *(p++) = '}';
635 *(p++) = c ^ 0x20;
636 break;
637 default:
638 *(p++) = c;
639 break;
642 return p - buf;
645 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
647 /* TODO: In user mode, we should use the task state PID */
648 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
649 /* Return the default process' PID */
650 return s->processes[s->process_num - 1].pid;
652 return cpu->cluster_index + 1;
655 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
657 int i;
659 if (!pid) {
660 /* 0 means any process, we take the first one */
661 return &s->processes[0];
664 for (i = 0; i < s->process_num; i++) {
665 if (s->processes[i].pid == pid) {
666 return &s->processes[i];
670 return NULL;
673 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
675 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
678 static CPUState *find_cpu(uint32_t thread_id)
680 CPUState *cpu;
682 CPU_FOREACH(cpu) {
683 if (cpu_gdb_index(cpu) == thread_id) {
684 return cpu;
688 return NULL;
691 static CPUState *get_first_cpu_in_process(const GDBState *s,
692 GDBProcess *process)
694 CPUState *cpu;
696 CPU_FOREACH(cpu) {
697 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
698 return cpu;
702 return NULL;
705 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
707 uint32_t pid = gdb_get_cpu_pid(s, cpu);
708 cpu = CPU_NEXT(cpu);
710 while (cpu) {
711 if (gdb_get_cpu_pid(s, cpu) == pid) {
712 break;
715 cpu = CPU_NEXT(cpu);
718 return cpu;
721 /* Return the cpu following @cpu, while ignoring unattached processes. */
722 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
724 cpu = CPU_NEXT(cpu);
726 while (cpu) {
727 if (gdb_get_cpu_process(s, cpu)->attached) {
728 break;
731 cpu = CPU_NEXT(cpu);
734 return cpu;
737 /* Return the first attached cpu */
738 static CPUState *gdb_first_attached_cpu(const GDBState *s)
740 CPUState *cpu = first_cpu;
741 GDBProcess *process = gdb_get_cpu_process(s, cpu);
743 if (!process->attached) {
744 return gdb_next_attached_cpu(s, cpu);
747 return cpu;
750 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
752 GDBProcess *process;
753 CPUState *cpu;
755 if (!pid && !tid) {
756 /* 0 means any process/thread, we take the first attached one */
757 return gdb_first_attached_cpu(s);
758 } else if (pid && !tid) {
759 /* any thread in a specific process */
760 process = gdb_get_process(s, pid);
762 if (process == NULL) {
763 return NULL;
766 if (!process->attached) {
767 return NULL;
770 return get_first_cpu_in_process(s, process);
771 } else {
772 /* a specific thread */
773 cpu = find_cpu(tid);
775 if (cpu == NULL) {
776 return NULL;
779 process = gdb_get_cpu_process(s, cpu);
781 if (pid && process->pid != pid) {
782 return NULL;
785 if (!process->attached) {
786 return NULL;
789 return cpu;
793 static const char *get_feature_xml(const GDBState *s, const char *p,
794 const char **newp, GDBProcess *process)
796 size_t len;
797 int i;
798 const char *name;
799 CPUState *cpu = get_first_cpu_in_process(s, process);
800 CPUClass *cc = CPU_GET_CLASS(cpu);
802 len = 0;
803 while (p[len] && p[len] != ':')
804 len++;
805 *newp = p + len;
807 name = NULL;
808 if (strncmp(p, "target.xml", len) == 0) {
809 char *buf = process->target_xml;
810 const size_t buf_sz = sizeof(process->target_xml);
812 /* Generate the XML description for this CPU. */
813 if (!buf[0]) {
814 GDBRegisterState *r;
816 pstrcat(buf, buf_sz,
817 "<?xml version=\"1.0\"?>"
818 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
819 "<target>");
820 if (cc->gdb_arch_name) {
821 gchar *arch = cc->gdb_arch_name(cpu);
822 pstrcat(buf, buf_sz, "<architecture>");
823 pstrcat(buf, buf_sz, arch);
824 pstrcat(buf, buf_sz, "</architecture>");
825 g_free(arch);
827 pstrcat(buf, buf_sz, "<xi:include href=\"");
828 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
829 pstrcat(buf, buf_sz, "\"/>");
830 for (r = cpu->gdb_regs; r; r = r->next) {
831 pstrcat(buf, buf_sz, "<xi:include href=\"");
832 pstrcat(buf, buf_sz, r->xml);
833 pstrcat(buf, buf_sz, "\"/>");
835 pstrcat(buf, buf_sz, "</target>");
837 return buf;
839 if (cc->gdb_get_dynamic_xml) {
840 char *xmlname = g_strndup(p, len);
841 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
843 g_free(xmlname);
844 if (xml) {
845 return xml;
848 for (i = 0; ; i++) {
849 name = xml_builtin[i][0];
850 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
851 break;
853 return name ? xml_builtin[i][1] : NULL;
856 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
858 CPUClass *cc = CPU_GET_CLASS(cpu);
859 CPUArchState *env = cpu->env_ptr;
860 GDBRegisterState *r;
862 if (reg < cc->gdb_num_core_regs) {
863 return cc->gdb_read_register(cpu, mem_buf, reg);
866 for (r = cpu->gdb_regs; r; r = r->next) {
867 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
868 return r->get_reg(env, mem_buf, reg - r->base_reg);
871 return 0;
874 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
876 CPUClass *cc = CPU_GET_CLASS(cpu);
877 CPUArchState *env = cpu->env_ptr;
878 GDBRegisterState *r;
880 if (reg < cc->gdb_num_core_regs) {
881 return cc->gdb_write_register(cpu, mem_buf, reg);
884 for (r = cpu->gdb_regs; r; r = r->next) {
885 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
886 return r->set_reg(env, mem_buf, reg - r->base_reg);
889 return 0;
892 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
893 specifies the first register number and these registers are included in
894 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
895 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
898 void gdb_register_coprocessor(CPUState *cpu,
899 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
900 int num_regs, const char *xml, int g_pos)
902 GDBRegisterState *s;
903 GDBRegisterState **p;
905 p = &cpu->gdb_regs;
906 while (*p) {
907 /* Check for duplicates. */
908 if (strcmp((*p)->xml, xml) == 0)
909 return;
910 p = &(*p)->next;
913 s = g_new0(GDBRegisterState, 1);
914 s->base_reg = cpu->gdb_num_regs;
915 s->num_regs = num_regs;
916 s->get_reg = get_reg;
917 s->set_reg = set_reg;
918 s->xml = xml;
920 /* Add to end of list. */
921 cpu->gdb_num_regs += num_regs;
922 *p = s;
923 if (g_pos) {
924 if (g_pos != s->base_reg) {
925 error_report("Error: Bad gdb register numbering for '%s', "
926 "expected %d got %d", xml, g_pos, s->base_reg);
927 } else {
928 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
933 #ifndef CONFIG_USER_ONLY
934 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
935 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
937 static const int xlat[] = {
938 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
939 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
940 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
943 CPUClass *cc = CPU_GET_CLASS(cpu);
944 int cputype = xlat[gdbtype];
946 if (cc->gdb_stop_before_watchpoint) {
947 cputype |= BP_STOP_BEFORE_ACCESS;
949 return cputype;
951 #endif
953 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
955 CPUState *cpu;
956 int err = 0;
958 if (kvm_enabled()) {
959 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
962 switch (type) {
963 case GDB_BREAKPOINT_SW:
964 case GDB_BREAKPOINT_HW:
965 CPU_FOREACH(cpu) {
966 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
967 if (err) {
968 break;
971 return err;
972 #ifndef CONFIG_USER_ONLY
973 case GDB_WATCHPOINT_WRITE:
974 case GDB_WATCHPOINT_READ:
975 case GDB_WATCHPOINT_ACCESS:
976 CPU_FOREACH(cpu) {
977 err = cpu_watchpoint_insert(cpu, addr, len,
978 xlat_gdb_type(cpu, type), NULL);
979 if (err) {
980 break;
983 return err;
984 #endif
985 default:
986 return -ENOSYS;
990 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
992 CPUState *cpu;
993 int err = 0;
995 if (kvm_enabled()) {
996 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
999 switch (type) {
1000 case GDB_BREAKPOINT_SW:
1001 case GDB_BREAKPOINT_HW:
1002 CPU_FOREACH(cpu) {
1003 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1004 if (err) {
1005 break;
1008 return err;
1009 #ifndef CONFIG_USER_ONLY
1010 case GDB_WATCHPOINT_WRITE:
1011 case GDB_WATCHPOINT_READ:
1012 case GDB_WATCHPOINT_ACCESS:
1013 CPU_FOREACH(cpu) {
1014 err = cpu_watchpoint_remove(cpu, addr, len,
1015 xlat_gdb_type(cpu, type));
1016 if (err)
1017 break;
1019 return err;
1020 #endif
1021 default:
1022 return -ENOSYS;
1026 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1028 cpu_breakpoint_remove_all(cpu, BP_GDB);
1029 #ifndef CONFIG_USER_ONLY
1030 cpu_watchpoint_remove_all(cpu, BP_GDB);
1031 #endif
1034 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1036 CPUState *cpu = get_first_cpu_in_process(s, p);
1038 while (cpu) {
1039 gdb_cpu_breakpoint_remove_all(cpu);
1040 cpu = gdb_next_cpu_in_process(s, cpu);
1044 static void gdb_breakpoint_remove_all(void)
1046 CPUState *cpu;
1048 if (kvm_enabled()) {
1049 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1050 return;
1053 CPU_FOREACH(cpu) {
1054 gdb_cpu_breakpoint_remove_all(cpu);
1058 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1060 CPUState *cpu = s->c_cpu;
1062 cpu_synchronize_state(cpu);
1063 cpu_set_pc(cpu, pc);
1066 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1067 char *buf, size_t buf_size)
1069 if (s->multiprocess) {
1070 snprintf(buf, buf_size, "p%02x.%02x",
1071 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1072 } else {
1073 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1076 return buf;
1079 typedef enum GDBThreadIdKind {
1080 GDB_ONE_THREAD = 0,
1081 GDB_ALL_THREADS, /* One process, all threads */
1082 GDB_ALL_PROCESSES,
1083 GDB_READ_THREAD_ERR
1084 } GDBThreadIdKind;
1086 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1087 uint32_t *pid, uint32_t *tid)
1089 unsigned long p, t;
1090 int ret;
1092 if (*buf == 'p') {
1093 buf++;
1094 ret = qemu_strtoul(buf, &buf, 16, &p);
1096 if (ret) {
1097 return GDB_READ_THREAD_ERR;
1100 /* Skip '.' */
1101 buf++;
1102 } else {
1103 p = 1;
1106 ret = qemu_strtoul(buf, &buf, 16, &t);
1108 if (ret) {
1109 return GDB_READ_THREAD_ERR;
1112 *end_buf = buf;
1114 if (p == -1) {
1115 return GDB_ALL_PROCESSES;
1118 if (pid) {
1119 *pid = p;
1122 if (t == -1) {
1123 return GDB_ALL_THREADS;
1126 if (tid) {
1127 *tid = t;
1130 return GDB_ONE_THREAD;
1133 static int is_query_packet(const char *p, const char *query, char separator)
1135 unsigned int query_len = strlen(query);
1137 return strncmp(p, query, query_len) == 0 &&
1138 (p[query_len] == '\0' || p[query_len] == separator);
1142 * gdb_handle_vcont - Parses and handles a vCont packet.
1143 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1144 * a format error, 0 on success.
1146 static int gdb_handle_vcont(GDBState *s, const char *p)
1148 int res, signal = 0;
1149 char cur_action;
1150 char *newstates;
1151 unsigned long tmp;
1152 uint32_t pid, tid;
1153 GDBProcess *process;
1154 CPUState *cpu;
1155 #ifdef CONFIG_USER_ONLY
1156 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1158 CPU_FOREACH(cpu) {
1159 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1161 #endif
1162 /* uninitialised CPUs stay 0 */
1163 newstates = g_new0(char, max_cpus);
1165 /* mark valid CPUs with 1 */
1166 CPU_FOREACH(cpu) {
1167 newstates[cpu->cpu_index] = 1;
1171 * res keeps track of what error we are returning, with -ENOTSUP meaning
1172 * that the command is unknown or unsupported, thus returning an empty
1173 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1174 * or incorrect parameters passed.
1176 res = 0;
1177 while (*p) {
1178 if (*p++ != ';') {
1179 res = -ENOTSUP;
1180 goto out;
1183 cur_action = *p++;
1184 if (cur_action == 'C' || cur_action == 'S') {
1185 cur_action = qemu_tolower(cur_action);
1186 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1187 if (res) {
1188 goto out;
1190 signal = gdb_signal_to_target(tmp);
1191 } else if (cur_action != 'c' && cur_action != 's') {
1192 /* unknown/invalid/unsupported command */
1193 res = -ENOTSUP;
1194 goto out;
1197 if (*p++ != ':') {
1198 res = -ENOTSUP;
1199 goto out;
1202 switch (read_thread_id(p, &p, &pid, &tid)) {
1203 case GDB_READ_THREAD_ERR:
1204 res = -EINVAL;
1205 goto out;
1207 case GDB_ALL_PROCESSES:
1208 cpu = gdb_first_attached_cpu(s);
1209 while (cpu) {
1210 if (newstates[cpu->cpu_index] == 1) {
1211 newstates[cpu->cpu_index] = cur_action;
1214 cpu = gdb_next_attached_cpu(s, cpu);
1216 break;
1218 case GDB_ALL_THREADS:
1219 process = gdb_get_process(s, pid);
1221 if (!process->attached) {
1222 res = -EINVAL;
1223 goto out;
1226 cpu = get_first_cpu_in_process(s, process);
1227 while (cpu) {
1228 if (newstates[cpu->cpu_index] == 1) {
1229 newstates[cpu->cpu_index] = cur_action;
1232 cpu = gdb_next_cpu_in_process(s, cpu);
1234 break;
1236 case GDB_ONE_THREAD:
1237 cpu = gdb_get_cpu(s, pid, tid);
1239 /* invalid CPU/thread specified */
1240 if (!cpu) {
1241 res = -EINVAL;
1242 goto out;
1245 /* only use if no previous match occourred */
1246 if (newstates[cpu->cpu_index] == 1) {
1247 newstates[cpu->cpu_index] = cur_action;
1249 break;
1252 s->signal = signal;
1253 gdb_continue_partial(s, newstates);
1255 out:
1256 g_free(newstates);
1258 return res;
1261 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1263 CPUState *cpu;
1264 GDBProcess *process;
1265 CPUClass *cc;
1266 const char *p;
1267 uint32_t pid, tid;
1268 int ch, reg_size, type, res;
1269 uint8_t mem_buf[MAX_PACKET_LENGTH];
1270 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1271 char thread_id[16];
1272 uint8_t *registers;
1273 target_ulong addr, len;
1274 GDBThreadIdKind thread_kind;
1276 trace_gdbstub_io_command(line_buf);
1278 p = line_buf;
1279 ch = *p++;
1280 switch(ch) {
1281 case '!':
1282 put_packet(s, "OK");
1283 break;
1284 case '?':
1285 /* TODO: Make this return the correct value for user-mode. */
1286 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1287 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1288 put_packet(s, buf);
1289 /* Remove all the breakpoints when this query is issued,
1290 * because gdb is doing and initial connect and the state
1291 * should be cleaned up.
1293 gdb_breakpoint_remove_all();
1294 break;
1295 case 'c':
1296 if (*p != '\0') {
1297 addr = strtoull(p, (char **)&p, 16);
1298 gdb_set_cpu_pc(s, addr);
1300 s->signal = 0;
1301 gdb_continue(s);
1302 return RS_IDLE;
1303 case 'C':
1304 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1305 if (s->signal == -1)
1306 s->signal = 0;
1307 gdb_continue(s);
1308 return RS_IDLE;
1309 case 'v':
1310 if (strncmp(p, "Cont", 4) == 0) {
1311 p += 4;
1312 if (*p == '?') {
1313 put_packet(s, "vCont;c;C;s;S");
1314 break;
1317 res = gdb_handle_vcont(s, p);
1319 if (res) {
1320 if ((res == -EINVAL) || (res == -ERANGE)) {
1321 put_packet(s, "E22");
1322 break;
1324 goto unknown_command;
1326 break;
1327 } else if (strncmp(p, "Attach;", 7) == 0) {
1328 unsigned long pid;
1330 p += 7;
1332 if (qemu_strtoul(p, &p, 16, &pid)) {
1333 put_packet(s, "E22");
1334 break;
1337 process = gdb_get_process(s, pid);
1339 if (process == NULL) {
1340 put_packet(s, "E22");
1341 break;
1344 cpu = get_first_cpu_in_process(s, process);
1346 if (cpu == NULL) {
1347 /* Refuse to attach an empty process */
1348 put_packet(s, "E22");
1349 break;
1352 process->attached = true;
1354 s->g_cpu = cpu;
1355 s->c_cpu = cpu;
1357 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1358 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1360 put_packet(s, buf);
1361 break;
1362 } else if (strncmp(p, "Kill;", 5) == 0) {
1363 /* Kill the target */
1364 put_packet(s, "OK");
1365 error_report("QEMU: Terminated via GDBstub");
1366 exit(0);
1367 } else {
1368 goto unknown_command;
1370 case 'k':
1371 /* Kill the target */
1372 error_report("QEMU: Terminated via GDBstub");
1373 exit(0);
1374 case 'D':
1375 /* Detach packet */
1376 pid = 1;
1378 if (s->multiprocess) {
1379 unsigned long lpid;
1380 if (*p != ';') {
1381 put_packet(s, "E22");
1382 break;
1385 if (qemu_strtoul(p + 1, &p, 16, &lpid)) {
1386 put_packet(s, "E22");
1387 break;
1390 pid = lpid;
1393 process = gdb_get_process(s, pid);
1394 gdb_process_breakpoint_remove_all(s, process);
1395 process->attached = false;
1397 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1398 s->c_cpu = gdb_first_attached_cpu(s);
1401 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1402 s->g_cpu = gdb_first_attached_cpu(s);
1405 if (s->c_cpu == NULL) {
1406 /* No more process attached */
1407 gdb_syscall_mode = GDB_SYS_DISABLED;
1408 gdb_continue(s);
1410 put_packet(s, "OK");
1411 break;
1412 case 's':
1413 if (*p != '\0') {
1414 addr = strtoull(p, (char **)&p, 16);
1415 gdb_set_cpu_pc(s, addr);
1417 cpu_single_step(s->c_cpu, sstep_flags);
1418 gdb_continue(s);
1419 return RS_IDLE;
1420 case 'F':
1422 target_ulong ret;
1423 target_ulong err;
1425 ret = strtoull(p, (char **)&p, 16);
1426 if (*p == ',') {
1427 p++;
1428 err = strtoull(p, (char **)&p, 16);
1429 } else {
1430 err = 0;
1432 if (*p == ',')
1433 p++;
1434 type = *p;
1435 if (s->current_syscall_cb) {
1436 s->current_syscall_cb(s->c_cpu, ret, err);
1437 s->current_syscall_cb = NULL;
1439 if (type == 'C') {
1440 put_packet(s, "T02");
1441 } else {
1442 gdb_continue(s);
1445 break;
1446 case 'g':
1447 cpu_synchronize_state(s->g_cpu);
1448 len = 0;
1449 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs; addr++) {
1450 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1451 len += reg_size;
1453 memtohex(buf, mem_buf, len);
1454 put_packet(s, buf);
1455 break;
1456 case 'G':
1457 cpu_synchronize_state(s->g_cpu);
1458 registers = mem_buf;
1459 len = strlen(p) / 2;
1460 hextomem((uint8_t *)registers, p, len);
1461 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs && len > 0; addr++) {
1462 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1463 len -= reg_size;
1464 registers += reg_size;
1466 put_packet(s, "OK");
1467 break;
1468 case 'm':
1469 addr = strtoull(p, (char **)&p, 16);
1470 if (*p == ',')
1471 p++;
1472 len = strtoull(p, NULL, 16);
1474 /* memtohex() doubles the required space */
1475 if (len > MAX_PACKET_LENGTH / 2) {
1476 put_packet (s, "E22");
1477 break;
1480 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, false) != 0) {
1481 put_packet (s, "E14");
1482 } else {
1483 memtohex(buf, mem_buf, len);
1484 put_packet(s, buf);
1486 break;
1487 case 'M':
1488 addr = strtoull(p, (char **)&p, 16);
1489 if (*p == ',')
1490 p++;
1491 len = strtoull(p, (char **)&p, 16);
1492 if (*p == ':')
1493 p++;
1495 /* hextomem() reads 2*len bytes */
1496 if (len > strlen(p) / 2) {
1497 put_packet (s, "E22");
1498 break;
1500 hextomem(mem_buf, p, len);
1501 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len,
1502 true) != 0) {
1503 put_packet(s, "E14");
1504 } else {
1505 put_packet(s, "OK");
1507 break;
1508 case 'p':
1509 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1510 This works, but can be very slow. Anything new enough to
1511 understand XML also knows how to use this properly. */
1512 if (!gdb_has_xml)
1513 goto unknown_command;
1514 addr = strtoull(p, (char **)&p, 16);
1515 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1516 if (reg_size) {
1517 memtohex(buf, mem_buf, reg_size);
1518 put_packet(s, buf);
1519 } else {
1520 put_packet(s, "E14");
1522 break;
1523 case 'P':
1524 if (!gdb_has_xml)
1525 goto unknown_command;
1526 addr = strtoull(p, (char **)&p, 16);
1527 if (*p == '=')
1528 p++;
1529 reg_size = strlen(p) / 2;
1530 hextomem(mem_buf, p, reg_size);
1531 gdb_write_register(s->g_cpu, mem_buf, addr);
1532 put_packet(s, "OK");
1533 break;
1534 case 'Z':
1535 case 'z':
1536 type = strtoul(p, (char **)&p, 16);
1537 if (*p == ',')
1538 p++;
1539 addr = strtoull(p, (char **)&p, 16);
1540 if (*p == ',')
1541 p++;
1542 len = strtoull(p, (char **)&p, 16);
1543 if (ch == 'Z')
1544 res = gdb_breakpoint_insert(addr, len, type);
1545 else
1546 res = gdb_breakpoint_remove(addr, len, type);
1547 if (res >= 0)
1548 put_packet(s, "OK");
1549 else if (res == -ENOSYS)
1550 put_packet(s, "");
1551 else
1552 put_packet(s, "E22");
1553 break;
1554 case 'H':
1555 type = *p++;
1557 thread_kind = read_thread_id(p, &p, &pid, &tid);
1558 if (thread_kind == GDB_READ_THREAD_ERR) {
1559 put_packet(s, "E22");
1560 break;
1563 if (thread_kind != GDB_ONE_THREAD) {
1564 put_packet(s, "OK");
1565 break;
1567 cpu = gdb_get_cpu(s, pid, tid);
1568 if (cpu == NULL) {
1569 put_packet(s, "E22");
1570 break;
1572 switch (type) {
1573 case 'c':
1574 s->c_cpu = cpu;
1575 put_packet(s, "OK");
1576 break;
1577 case 'g':
1578 s->g_cpu = cpu;
1579 put_packet(s, "OK");
1580 break;
1581 default:
1582 put_packet(s, "E22");
1583 break;
1585 break;
1586 case 'T':
1587 thread_kind = read_thread_id(p, &p, &pid, &tid);
1588 if (thread_kind == GDB_READ_THREAD_ERR) {
1589 put_packet(s, "E22");
1590 break;
1592 cpu = gdb_get_cpu(s, pid, tid);
1594 if (cpu != NULL) {
1595 put_packet(s, "OK");
1596 } else {
1597 put_packet(s, "E22");
1599 break;
1600 case 'q':
1601 case 'Q':
1602 /* parse any 'q' packets here */
1603 if (!strcmp(p,"qemu.sstepbits")) {
1604 /* Query Breakpoint bit definitions */
1605 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1606 SSTEP_ENABLE,
1607 SSTEP_NOIRQ,
1608 SSTEP_NOTIMER);
1609 put_packet(s, buf);
1610 break;
1611 } else if (is_query_packet(p, "qemu.sstep", '=')) {
1612 /* Display or change the sstep_flags */
1613 p += 10;
1614 if (*p != '=') {
1615 /* Display current setting */
1616 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1617 put_packet(s, buf);
1618 break;
1620 p++;
1621 type = strtoul(p, (char **)&p, 16);
1622 sstep_flags = type;
1623 put_packet(s, "OK");
1624 break;
1625 } else if (strcmp(p,"C") == 0) {
1627 * "Current thread" remains vague in the spec, so always return
1628 * the first thread of the current process (gdb returns the
1629 * first thread).
1631 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
1632 snprintf(buf, sizeof(buf), "QC%s",
1633 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1634 put_packet(s, buf);
1635 break;
1636 } else if (strcmp(p,"fThreadInfo") == 0) {
1637 s->query_cpu = gdb_first_attached_cpu(s);
1638 goto report_cpuinfo;
1639 } else if (strcmp(p,"sThreadInfo") == 0) {
1640 report_cpuinfo:
1641 if (s->query_cpu) {
1642 snprintf(buf, sizeof(buf), "m%s",
1643 gdb_fmt_thread_id(s, s->query_cpu,
1644 thread_id, sizeof(thread_id)));
1645 put_packet(s, buf);
1646 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
1647 } else
1648 put_packet(s, "l");
1649 break;
1650 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1651 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
1652 put_packet(s, "E22");
1653 break;
1655 cpu = gdb_get_cpu(s, pid, tid);
1656 if (cpu != NULL) {
1657 cpu_synchronize_state(cpu);
1659 if (s->multiprocess && (s->process_num > 1)) {
1660 /* Print the CPU model and name in multiprocess mode */
1661 ObjectClass *oc = object_get_class(OBJECT(cpu));
1662 const char *cpu_model = object_class_get_name(oc);
1663 char *cpu_name =
1664 object_get_canonical_path_component(OBJECT(cpu));
1665 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1666 "%s %s [%s]", cpu_model, cpu_name,
1667 cpu->halted ? "halted " : "running");
1668 g_free(cpu_name);
1669 } else {
1670 /* memtohex() doubles the required space */
1671 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1672 "CPU#%d [%s]", cpu->cpu_index,
1673 cpu->halted ? "halted " : "running");
1675 trace_gdbstub_op_extra_info((char *)mem_buf);
1676 memtohex(buf, mem_buf, len);
1677 put_packet(s, buf);
1679 break;
1681 #ifdef CONFIG_USER_ONLY
1682 else if (strcmp(p, "Offsets") == 0) {
1683 TaskState *ts = s->c_cpu->opaque;
1685 snprintf(buf, sizeof(buf),
1686 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1687 ";Bss=" TARGET_ABI_FMT_lx,
1688 ts->info->code_offset,
1689 ts->info->data_offset,
1690 ts->info->data_offset);
1691 put_packet(s, buf);
1692 break;
1694 #else /* !CONFIG_USER_ONLY */
1695 else if (strncmp(p, "Rcmd,", 5) == 0) {
1696 int len = strlen(p + 5);
1698 if ((len % 2) != 0) {
1699 put_packet(s, "E01");
1700 break;
1702 len = len / 2;
1703 hextomem(mem_buf, p + 5, len);
1704 mem_buf[len++] = 0;
1705 qemu_chr_be_write(s->mon_chr, mem_buf, len);
1706 put_packet(s, "OK");
1707 break;
1709 #endif /* !CONFIG_USER_ONLY */
1710 if (is_query_packet(p, "Supported", ':')) {
1711 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1712 cc = CPU_GET_CLASS(first_cpu);
1713 if (cc->gdb_core_xml_file != NULL) {
1714 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1717 if (strstr(p, "multiprocess+")) {
1718 s->multiprocess = true;
1720 pstrcat(buf, sizeof(buf), ";multiprocess+");
1722 put_packet(s, buf);
1723 break;
1725 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1726 const char *xml;
1727 target_ulong total_len;
1729 process = gdb_get_cpu_process(s, s->g_cpu);
1730 cc = CPU_GET_CLASS(s->g_cpu);
1731 if (cc->gdb_core_xml_file == NULL) {
1732 goto unknown_command;
1735 gdb_has_xml = true;
1736 p += 19;
1737 xml = get_feature_xml(s, p, &p, process);
1738 if (!xml) {
1739 snprintf(buf, sizeof(buf), "E00");
1740 put_packet(s, buf);
1741 break;
1744 if (*p == ':')
1745 p++;
1746 addr = strtoul(p, (char **)&p, 16);
1747 if (*p == ',')
1748 p++;
1749 len = strtoul(p, (char **)&p, 16);
1751 total_len = strlen(xml);
1752 if (addr > total_len) {
1753 snprintf(buf, sizeof(buf), "E00");
1754 put_packet(s, buf);
1755 break;
1757 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1758 len = (MAX_PACKET_LENGTH - 5) / 2;
1759 if (len < total_len - addr) {
1760 buf[0] = 'm';
1761 len = memtox(buf + 1, xml + addr, len);
1762 } else {
1763 buf[0] = 'l';
1764 len = memtox(buf + 1, xml + addr, total_len - addr);
1766 put_packet_binary(s, buf, len + 1, true);
1767 break;
1769 if (is_query_packet(p, "Attached", ':')) {
1770 put_packet(s, GDB_ATTACHED);
1771 break;
1773 /* Unrecognised 'q' command. */
1774 goto unknown_command;
1776 default:
1777 unknown_command:
1778 /* put empty packet */
1779 buf[0] = '\0';
1780 put_packet(s, buf);
1781 break;
1783 return RS_IDLE;
1786 void gdb_set_stop_cpu(CPUState *cpu)
1788 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
1790 if (!p->attached) {
1792 * Having a stop CPU corresponding to a process that is not attached
1793 * confuses GDB. So we ignore the request.
1795 return;
1798 gdbserver_state->c_cpu = cpu;
1799 gdbserver_state->g_cpu = cpu;
1802 #ifndef CONFIG_USER_ONLY
1803 static void gdb_vm_state_change(void *opaque, int running, RunState state)
1805 GDBState *s = gdbserver_state;
1806 CPUState *cpu = s->c_cpu;
1807 char buf[256];
1808 char thread_id[16];
1809 const char *type;
1810 int ret;
1812 if (running || s->state == RS_INACTIVE) {
1813 return;
1815 /* Is there a GDB syscall waiting to be sent? */
1816 if (s->current_syscall_cb) {
1817 put_packet(s, s->syscall_buf);
1818 return;
1821 if (cpu == NULL) {
1822 /* No process attached */
1823 return;
1826 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
1828 switch (state) {
1829 case RUN_STATE_DEBUG:
1830 if (cpu->watchpoint_hit) {
1831 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
1832 case BP_MEM_READ:
1833 type = "r";
1834 break;
1835 case BP_MEM_ACCESS:
1836 type = "a";
1837 break;
1838 default:
1839 type = "";
1840 break;
1842 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
1843 (target_ulong)cpu->watchpoint_hit->vaddr);
1844 snprintf(buf, sizeof(buf),
1845 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
1846 GDB_SIGNAL_TRAP, thread_id, type,
1847 (target_ulong)cpu->watchpoint_hit->vaddr);
1848 cpu->watchpoint_hit = NULL;
1849 goto send_packet;
1850 } else {
1851 trace_gdbstub_hit_break();
1853 tb_flush(cpu);
1854 ret = GDB_SIGNAL_TRAP;
1855 break;
1856 case RUN_STATE_PAUSED:
1857 trace_gdbstub_hit_paused();
1858 ret = GDB_SIGNAL_INT;
1859 break;
1860 case RUN_STATE_SHUTDOWN:
1861 trace_gdbstub_hit_shutdown();
1862 ret = GDB_SIGNAL_QUIT;
1863 break;
1864 case RUN_STATE_IO_ERROR:
1865 trace_gdbstub_hit_io_error();
1866 ret = GDB_SIGNAL_IO;
1867 break;
1868 case RUN_STATE_WATCHDOG:
1869 trace_gdbstub_hit_watchdog();
1870 ret = GDB_SIGNAL_ALRM;
1871 break;
1872 case RUN_STATE_INTERNAL_ERROR:
1873 trace_gdbstub_hit_internal_error();
1874 ret = GDB_SIGNAL_ABRT;
1875 break;
1876 case RUN_STATE_SAVE_VM:
1877 case RUN_STATE_RESTORE_VM:
1878 return;
1879 case RUN_STATE_FINISH_MIGRATE:
1880 ret = GDB_SIGNAL_XCPU;
1881 break;
1882 default:
1883 trace_gdbstub_hit_unknown(state);
1884 ret = GDB_SIGNAL_UNKNOWN;
1885 break;
1887 gdb_set_stop_cpu(cpu);
1888 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
1890 send_packet:
1891 put_packet(s, buf);
1893 /* disable single step if it was enabled */
1894 cpu_single_step(cpu, 0);
1896 #endif
1898 /* Send a gdb syscall request.
1899 This accepts limited printf-style format specifiers, specifically:
1900 %x - target_ulong argument printed in hex.
1901 %lx - 64-bit argument printed in hex.
1902 %s - string pointer (target_ulong) and length (int) pair. */
1903 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
1905 char *p;
1906 char *p_end;
1907 target_ulong addr;
1908 uint64_t i64;
1909 GDBState *s;
1911 s = gdbserver_state;
1912 if (!s)
1913 return;
1914 s->current_syscall_cb = cb;
1915 #ifndef CONFIG_USER_ONLY
1916 vm_stop(RUN_STATE_DEBUG);
1917 #endif
1918 p = s->syscall_buf;
1919 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
1920 *(p++) = 'F';
1921 while (*fmt) {
1922 if (*fmt == '%') {
1923 fmt++;
1924 switch (*fmt++) {
1925 case 'x':
1926 addr = va_arg(va, target_ulong);
1927 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
1928 break;
1929 case 'l':
1930 if (*(fmt++) != 'x')
1931 goto bad_format;
1932 i64 = va_arg(va, uint64_t);
1933 p += snprintf(p, p_end - p, "%" PRIx64, i64);
1934 break;
1935 case 's':
1936 addr = va_arg(va, target_ulong);
1937 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
1938 addr, va_arg(va, int));
1939 break;
1940 default:
1941 bad_format:
1942 error_report("gdbstub: Bad syscall format string '%s'",
1943 fmt - 1);
1944 break;
1946 } else {
1947 *(p++) = *(fmt++);
1950 *p = 0;
1951 #ifdef CONFIG_USER_ONLY
1952 put_packet(s, s->syscall_buf);
1953 /* Return control to gdb for it to process the syscall request.
1954 * Since the protocol requires that gdb hands control back to us
1955 * using a "here are the results" F packet, we don't need to check
1956 * gdb_handlesig's return value (which is the signal to deliver if
1957 * execution was resumed via a continue packet).
1959 gdb_handlesig(s->c_cpu, 0);
1960 #else
1961 /* In this case wait to send the syscall packet until notification that
1962 the CPU has stopped. This must be done because if the packet is sent
1963 now the reply from the syscall request could be received while the CPU
1964 is still in the running state, which can cause packets to be dropped
1965 and state transition 'T' packets to be sent while the syscall is still
1966 being processed. */
1967 qemu_cpu_kick(s->c_cpu);
1968 #endif
1971 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1973 va_list va;
1975 va_start(va, fmt);
1976 gdb_do_syscallv(cb, fmt, va);
1977 va_end(va);
1980 static void gdb_read_byte(GDBState *s, int ch)
1982 uint8_t reply;
1984 #ifndef CONFIG_USER_ONLY
1985 if (s->last_packet_len) {
1986 /* Waiting for a response to the last packet. If we see the start
1987 of a new command then abandon the previous response. */
1988 if (ch == '-') {
1989 trace_gdbstub_err_got_nack();
1990 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1991 } else if (ch == '+') {
1992 trace_gdbstub_io_got_ack();
1993 } else {
1994 trace_gdbstub_io_got_unexpected((uint8_t)ch);
1997 if (ch == '+' || ch == '$')
1998 s->last_packet_len = 0;
1999 if (ch != '$')
2000 return;
2002 if (runstate_is_running()) {
2003 /* when the CPU is running, we cannot do anything except stop
2004 it when receiving a char */
2005 vm_stop(RUN_STATE_PAUSED);
2006 } else
2007 #endif
2009 switch(s->state) {
2010 case RS_IDLE:
2011 if (ch == '$') {
2012 /* start of command packet */
2013 s->line_buf_index = 0;
2014 s->line_sum = 0;
2015 s->state = RS_GETLINE;
2016 } else {
2017 trace_gdbstub_err_garbage((uint8_t)ch);
2019 break;
2020 case RS_GETLINE:
2021 if (ch == '}') {
2022 /* start escape sequence */
2023 s->state = RS_GETLINE_ESC;
2024 s->line_sum += ch;
2025 } else if (ch == '*') {
2026 /* start run length encoding sequence */
2027 s->state = RS_GETLINE_RLE;
2028 s->line_sum += ch;
2029 } else if (ch == '#') {
2030 /* end of command, start of checksum*/
2031 s->state = RS_CHKSUM1;
2032 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2033 trace_gdbstub_err_overrun();
2034 s->state = RS_IDLE;
2035 } else {
2036 /* unescaped command character */
2037 s->line_buf[s->line_buf_index++] = ch;
2038 s->line_sum += ch;
2040 break;
2041 case RS_GETLINE_ESC:
2042 if (ch == '#') {
2043 /* unexpected end of command in escape sequence */
2044 s->state = RS_CHKSUM1;
2045 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2046 /* command buffer overrun */
2047 trace_gdbstub_err_overrun();
2048 s->state = RS_IDLE;
2049 } else {
2050 /* parse escaped character and leave escape state */
2051 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2052 s->line_sum += ch;
2053 s->state = RS_GETLINE;
2055 break;
2056 case RS_GETLINE_RLE:
2057 if (ch < ' ') {
2058 /* invalid RLE count encoding */
2059 trace_gdbstub_err_invalid_repeat((uint8_t)ch);
2060 s->state = RS_GETLINE;
2061 } else {
2062 /* decode repeat length */
2063 int repeat = (unsigned char)ch - ' ' + 3;
2064 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2065 /* that many repeats would overrun the command buffer */
2066 trace_gdbstub_err_overrun();
2067 s->state = RS_IDLE;
2068 } else if (s->line_buf_index < 1) {
2069 /* got a repeat but we have nothing to repeat */
2070 trace_gdbstub_err_invalid_rle();
2071 s->state = RS_GETLINE;
2072 } else {
2073 /* repeat the last character */
2074 memset(s->line_buf + s->line_buf_index,
2075 s->line_buf[s->line_buf_index - 1], repeat);
2076 s->line_buf_index += repeat;
2077 s->line_sum += ch;
2078 s->state = RS_GETLINE;
2081 break;
2082 case RS_CHKSUM1:
2083 /* get high hex digit of checksum */
2084 if (!isxdigit(ch)) {
2085 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2086 s->state = RS_GETLINE;
2087 break;
2089 s->line_buf[s->line_buf_index] = '\0';
2090 s->line_csum = fromhex(ch) << 4;
2091 s->state = RS_CHKSUM2;
2092 break;
2093 case RS_CHKSUM2:
2094 /* get low hex digit of checksum */
2095 if (!isxdigit(ch)) {
2096 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2097 s->state = RS_GETLINE;
2098 break;
2100 s->line_csum |= fromhex(ch);
2102 if (s->line_csum != (s->line_sum & 0xff)) {
2103 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2104 /* send NAK reply */
2105 reply = '-';
2106 put_buffer(s, &reply, 1);
2107 s->state = RS_IDLE;
2108 } else {
2109 /* send ACK reply */
2110 reply = '+';
2111 put_buffer(s, &reply, 1);
2112 s->state = gdb_handle_packet(s, s->line_buf);
2114 break;
2115 default:
2116 abort();
2121 /* Tell the remote gdb that the process has exited. */
2122 void gdb_exit(CPUArchState *env, int code)
2124 GDBState *s;
2125 char buf[4];
2127 s = gdbserver_state;
2128 if (!s) {
2129 return;
2131 #ifdef CONFIG_USER_ONLY
2132 if (gdbserver_fd < 0 || s->fd < 0) {
2133 return;
2135 #endif
2137 trace_gdbstub_op_exiting((uint8_t)code);
2139 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2140 put_packet(s, buf);
2142 #ifndef CONFIG_USER_ONLY
2143 qemu_chr_fe_deinit(&s->chr, true);
2144 #endif
2148 * Create the process that will contain all the "orphan" CPUs (that are not
2149 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2150 * be attachable and thus will be invisible to the user.
2152 static void create_default_process(GDBState *s)
2154 GDBProcess *process;
2155 int max_pid = 0;
2157 if (s->process_num) {
2158 max_pid = s->processes[s->process_num - 1].pid;
2161 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2162 process = &s->processes[s->process_num - 1];
2164 /* We need an available PID slot for this process */
2165 assert(max_pid < UINT32_MAX);
2167 process->pid = max_pid + 1;
2168 process->attached = false;
2169 process->target_xml[0] = '\0';
2172 #ifdef CONFIG_USER_ONLY
2174 gdb_handlesig(CPUState *cpu, int sig)
2176 GDBState *s;
2177 char buf[256];
2178 int n;
2180 s = gdbserver_state;
2181 if (gdbserver_fd < 0 || s->fd < 0) {
2182 return sig;
2185 /* disable single step if it was enabled */
2186 cpu_single_step(cpu, 0);
2187 tb_flush(cpu);
2189 if (sig != 0) {
2190 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2191 put_packet(s, buf);
2193 /* put_packet() might have detected that the peer terminated the
2194 connection. */
2195 if (s->fd < 0) {
2196 return sig;
2199 sig = 0;
2200 s->state = RS_IDLE;
2201 s->running_state = 0;
2202 while (s->running_state == 0) {
2203 n = read(s->fd, buf, 256);
2204 if (n > 0) {
2205 int i;
2207 for (i = 0; i < n; i++) {
2208 gdb_read_byte(s, buf[i]);
2210 } else {
2211 /* XXX: Connection closed. Should probably wait for another
2212 connection before continuing. */
2213 if (n == 0) {
2214 close(s->fd);
2216 s->fd = -1;
2217 return sig;
2220 sig = s->signal;
2221 s->signal = 0;
2222 return sig;
2225 /* Tell the remote gdb that the process has exited due to SIG. */
2226 void gdb_signalled(CPUArchState *env, int sig)
2228 GDBState *s;
2229 char buf[4];
2231 s = gdbserver_state;
2232 if (gdbserver_fd < 0 || s->fd < 0) {
2233 return;
2236 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2237 put_packet(s, buf);
2240 static bool gdb_accept(void)
2242 GDBState *s;
2243 struct sockaddr_in sockaddr;
2244 socklen_t len;
2245 int fd;
2247 for(;;) {
2248 len = sizeof(sockaddr);
2249 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2250 if (fd < 0 && errno != EINTR) {
2251 perror("accept");
2252 return false;
2253 } else if (fd >= 0) {
2254 qemu_set_cloexec(fd);
2255 break;
2259 /* set short latency */
2260 if (socket_set_nodelay(fd)) {
2261 perror("setsockopt");
2262 close(fd);
2263 return false;
2266 s = g_malloc0(sizeof(GDBState));
2267 create_default_process(s);
2268 s->processes[0].attached = true;
2269 s->c_cpu = gdb_first_attached_cpu(s);
2270 s->g_cpu = s->c_cpu;
2271 s->fd = fd;
2272 gdb_has_xml = false;
2274 gdbserver_state = s;
2275 return true;
2278 static int gdbserver_open(int port)
2280 struct sockaddr_in sockaddr;
2281 int fd, ret;
2283 fd = socket(PF_INET, SOCK_STREAM, 0);
2284 if (fd < 0) {
2285 perror("socket");
2286 return -1;
2288 qemu_set_cloexec(fd);
2290 socket_set_fast_reuse(fd);
2292 sockaddr.sin_family = AF_INET;
2293 sockaddr.sin_port = htons(port);
2294 sockaddr.sin_addr.s_addr = 0;
2295 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2296 if (ret < 0) {
2297 perror("bind");
2298 close(fd);
2299 return -1;
2301 ret = listen(fd, 1);
2302 if (ret < 0) {
2303 perror("listen");
2304 close(fd);
2305 return -1;
2307 return fd;
2310 int gdbserver_start(int port)
2312 gdbserver_fd = gdbserver_open(port);
2313 if (gdbserver_fd < 0)
2314 return -1;
2315 /* accept connections */
2316 if (!gdb_accept()) {
2317 close(gdbserver_fd);
2318 gdbserver_fd = -1;
2319 return -1;
2321 return 0;
2324 /* Disable gdb stub for child processes. */
2325 void gdbserver_fork(CPUState *cpu)
2327 GDBState *s = gdbserver_state;
2329 if (gdbserver_fd < 0 || s->fd < 0) {
2330 return;
2332 close(s->fd);
2333 s->fd = -1;
2334 cpu_breakpoint_remove_all(cpu, BP_GDB);
2335 cpu_watchpoint_remove_all(cpu, BP_GDB);
2337 #else
2338 static int gdb_chr_can_receive(void *opaque)
2340 /* We can handle an arbitrarily large amount of data.
2341 Pick the maximum packet size, which is as good as anything. */
2342 return MAX_PACKET_LENGTH;
2345 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2347 int i;
2349 for (i = 0; i < size; i++) {
2350 gdb_read_byte(gdbserver_state, buf[i]);
2354 static void gdb_chr_event(void *opaque, int event)
2356 int i;
2357 GDBState *s = (GDBState *) opaque;
2359 switch (event) {
2360 case CHR_EVENT_OPENED:
2361 /* Start with first process attached, others detached */
2362 for (i = 0; i < s->process_num; i++) {
2363 s->processes[i].attached = !i;
2366 s->c_cpu = gdb_first_attached_cpu(s);
2367 s->g_cpu = s->c_cpu;
2369 vm_stop(RUN_STATE_PAUSED);
2370 gdb_has_xml = false;
2371 break;
2372 default:
2373 break;
2377 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2379 char buf[MAX_PACKET_LENGTH];
2381 buf[0] = 'O';
2382 if (len > (MAX_PACKET_LENGTH/2) - 1)
2383 len = (MAX_PACKET_LENGTH/2) - 1;
2384 memtohex(buf + 1, (uint8_t *)msg, len);
2385 put_packet(s, buf);
2388 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2390 const char *p = (const char *)buf;
2391 int max_sz;
2393 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2394 for (;;) {
2395 if (len <= max_sz) {
2396 gdb_monitor_output(gdbserver_state, p, len);
2397 break;
2399 gdb_monitor_output(gdbserver_state, p, max_sz);
2400 p += max_sz;
2401 len -= max_sz;
2403 return len;
2406 #ifndef _WIN32
2407 static void gdb_sigterm_handler(int signal)
2409 if (runstate_is_running()) {
2410 vm_stop(RUN_STATE_PAUSED);
2413 #endif
2415 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2416 bool *be_opened, Error **errp)
2418 *be_opened = false;
2421 static void char_gdb_class_init(ObjectClass *oc, void *data)
2423 ChardevClass *cc = CHARDEV_CLASS(oc);
2425 cc->internal = true;
2426 cc->open = gdb_monitor_open;
2427 cc->chr_write = gdb_monitor_write;
2430 #define TYPE_CHARDEV_GDB "chardev-gdb"
2432 static const TypeInfo char_gdb_type_info = {
2433 .name = TYPE_CHARDEV_GDB,
2434 .parent = TYPE_CHARDEV,
2435 .class_init = char_gdb_class_init,
2438 static int find_cpu_clusters(Object *child, void *opaque)
2440 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2441 GDBState *s = (GDBState *) opaque;
2442 CPUClusterState *cluster = CPU_CLUSTER(child);
2443 GDBProcess *process;
2445 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2447 process = &s->processes[s->process_num - 1];
2450 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2451 * runtime, we enforce here that the machine does not use a cluster ID
2452 * that would lead to PID 0.
2454 assert(cluster->cluster_id != UINT32_MAX);
2455 process->pid = cluster->cluster_id + 1;
2456 process->attached = false;
2457 process->target_xml[0] = '\0';
2459 return 0;
2462 return object_child_foreach(child, find_cpu_clusters, opaque);
2465 static int pid_order(const void *a, const void *b)
2467 GDBProcess *pa = (GDBProcess *) a;
2468 GDBProcess *pb = (GDBProcess *) b;
2470 if (pa->pid < pb->pid) {
2471 return -1;
2472 } else if (pa->pid > pb->pid) {
2473 return 1;
2474 } else {
2475 return 0;
2479 static void create_processes(GDBState *s)
2481 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2483 if (s->processes) {
2484 /* Sort by PID */
2485 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2488 create_default_process(s);
2491 static void cleanup_processes(GDBState *s)
2493 g_free(s->processes);
2494 s->process_num = 0;
2495 s->processes = NULL;
2498 int gdbserver_start(const char *device)
2500 trace_gdbstub_op_start(device);
2502 GDBState *s;
2503 char gdbstub_device_name[128];
2504 Chardev *chr = NULL;
2505 Chardev *mon_chr;
2507 if (!first_cpu) {
2508 error_report("gdbstub: meaningless to attach gdb to a "
2509 "machine without any CPU.");
2510 return -1;
2513 if (!device)
2514 return -1;
2515 if (strcmp(device, "none") != 0) {
2516 if (strstart(device, "tcp:", NULL)) {
2517 /* enforce required TCP attributes */
2518 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2519 "%s,nowait,nodelay,server", device);
2520 device = gdbstub_device_name;
2522 #ifndef _WIN32
2523 else if (strcmp(device, "stdio") == 0) {
2524 struct sigaction act;
2526 memset(&act, 0, sizeof(act));
2527 act.sa_handler = gdb_sigterm_handler;
2528 sigaction(SIGINT, &act, NULL);
2530 #endif
2532 * FIXME: it's a bit weird to allow using a mux chardev here
2533 * and implicitly setup a monitor. We may want to break this.
2535 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
2536 if (!chr)
2537 return -1;
2540 s = gdbserver_state;
2541 if (!s) {
2542 s = g_malloc0(sizeof(GDBState));
2543 gdbserver_state = s;
2545 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2547 /* Initialize a monitor terminal for gdb */
2548 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
2549 NULL, NULL, &error_abort);
2550 monitor_init(mon_chr, 0);
2551 } else {
2552 qemu_chr_fe_deinit(&s->chr, true);
2553 mon_chr = s->mon_chr;
2554 cleanup_processes(s);
2555 memset(s, 0, sizeof(GDBState));
2556 s->mon_chr = mon_chr;
2559 create_processes(s);
2561 if (chr) {
2562 qemu_chr_fe_init(&s->chr, chr, &error_abort);
2563 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
2564 gdb_chr_event, NULL, s, NULL, true);
2566 s->state = chr ? RS_IDLE : RS_INACTIVE;
2567 s->mon_chr = mon_chr;
2568 s->current_syscall_cb = NULL;
2570 return 0;
2573 void gdbserver_cleanup(void)
2575 if (gdbserver_state) {
2576 put_packet(gdbserver_state, "W00");
2580 static void register_types(void)
2582 type_register_static(&char_gdb_type_info);
2585 type_init(register_types);
2586 #endif