s390x: Bump the "qemu" CPU model up to a stripped-down z13
[qemu/ar7.git] / tcg / i386 / tcg-target.inc.c
blobc0443da4afd9efdbdd511e38c49b13f255106b3a
1 /*
2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "tcg-pool.inc.c"
27 #ifdef CONFIG_DEBUG_TCG
28 static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
29 #if TCG_TARGET_REG_BITS == 64
30 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
31 #else
32 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
33 #endif
34 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
35 "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
36 #if TCG_TARGET_REG_BITS == 64
37 "%xmm8", "%xmm9", "%xmm10", "%xmm11",
38 "%xmm12", "%xmm13", "%xmm14", "%xmm15",
39 #endif
41 #endif
43 static const int tcg_target_reg_alloc_order[] = {
44 #if TCG_TARGET_REG_BITS == 64
45 TCG_REG_RBP,
46 TCG_REG_RBX,
47 TCG_REG_R12,
48 TCG_REG_R13,
49 TCG_REG_R14,
50 TCG_REG_R15,
51 TCG_REG_R10,
52 TCG_REG_R11,
53 TCG_REG_R9,
54 TCG_REG_R8,
55 TCG_REG_RCX,
56 TCG_REG_RDX,
57 TCG_REG_RSI,
58 TCG_REG_RDI,
59 TCG_REG_RAX,
60 #else
61 TCG_REG_EBX,
62 TCG_REG_ESI,
63 TCG_REG_EDI,
64 TCG_REG_EBP,
65 TCG_REG_ECX,
66 TCG_REG_EDX,
67 TCG_REG_EAX,
68 #endif
69 TCG_REG_XMM0,
70 TCG_REG_XMM1,
71 TCG_REG_XMM2,
72 TCG_REG_XMM3,
73 TCG_REG_XMM4,
74 TCG_REG_XMM5,
75 #ifndef _WIN64
76 /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
77 any of them. Therefore only allow xmm0-xmm5 to be allocated. */
78 TCG_REG_XMM6,
79 TCG_REG_XMM7,
80 #if TCG_TARGET_REG_BITS == 64
81 TCG_REG_XMM8,
82 TCG_REG_XMM9,
83 TCG_REG_XMM10,
84 TCG_REG_XMM11,
85 TCG_REG_XMM12,
86 TCG_REG_XMM13,
87 TCG_REG_XMM14,
88 TCG_REG_XMM15,
89 #endif
90 #endif
93 static const int tcg_target_call_iarg_regs[] = {
94 #if TCG_TARGET_REG_BITS == 64
95 #if defined(_WIN64)
96 TCG_REG_RCX,
97 TCG_REG_RDX,
98 #else
99 TCG_REG_RDI,
100 TCG_REG_RSI,
101 TCG_REG_RDX,
102 TCG_REG_RCX,
103 #endif
104 TCG_REG_R8,
105 TCG_REG_R9,
106 #else
107 /* 32 bit mode uses stack based calling convention (GCC default). */
108 #endif
111 static const int tcg_target_call_oarg_regs[] = {
112 TCG_REG_EAX,
113 #if TCG_TARGET_REG_BITS == 32
114 TCG_REG_EDX
115 #endif
118 /* Constants we accept. */
119 #define TCG_CT_CONST_S32 0x100
120 #define TCG_CT_CONST_U32 0x200
121 #define TCG_CT_CONST_I32 0x400
122 #define TCG_CT_CONST_WSZ 0x800
124 /* Registers used with L constraint, which are the first argument
125 registers on x86_64, and two random call clobbered registers on
126 i386. */
127 #if TCG_TARGET_REG_BITS == 64
128 # define TCG_REG_L0 tcg_target_call_iarg_regs[0]
129 # define TCG_REG_L1 tcg_target_call_iarg_regs[1]
130 #else
131 # define TCG_REG_L0 TCG_REG_EAX
132 # define TCG_REG_L1 TCG_REG_EDX
133 #endif
135 /* The host compiler should supply <cpuid.h> to enable runtime features
136 detection, as we're not going to go so far as our own inline assembly.
137 If not available, default values will be assumed. */
138 #if defined(CONFIG_CPUID_H)
139 #include "qemu/cpuid.h"
140 #endif
142 /* For 64-bit, we always know that CMOV is available. */
143 #if TCG_TARGET_REG_BITS == 64
144 # define have_cmov 1
145 #elif defined(CONFIG_CPUID_H)
146 static bool have_cmov;
147 #else
148 # define have_cmov 0
149 #endif
151 /* We need these symbols in tcg-target.h, and we can't properly conditionalize
152 it there. Therefore we always define the variable. */
153 bool have_bmi1;
154 bool have_popcnt;
155 bool have_avx1;
156 bool have_avx2;
158 #ifdef CONFIG_CPUID_H
159 static bool have_movbe;
160 static bool have_bmi2;
161 static bool have_lzcnt;
162 #else
163 # define have_movbe 0
164 # define have_bmi2 0
165 # define have_lzcnt 0
166 #endif
168 static tcg_insn_unit *tb_ret_addr;
170 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
171 intptr_t value, intptr_t addend)
173 value += addend;
174 switch(type) {
175 case R_386_PC32:
176 value -= (uintptr_t)code_ptr;
177 if (value != (int32_t)value) {
178 return false;
180 /* FALLTHRU */
181 case R_386_32:
182 tcg_patch32(code_ptr, value);
183 break;
184 case R_386_PC8:
185 value -= (uintptr_t)code_ptr;
186 if (value != (int8_t)value) {
187 return false;
189 tcg_patch8(code_ptr, value);
190 break;
191 default:
192 tcg_abort();
194 return true;
197 #if TCG_TARGET_REG_BITS == 64
198 #define ALL_GENERAL_REGS 0x0000ffffu
199 #define ALL_VECTOR_REGS 0xffff0000u
200 #else
201 #define ALL_GENERAL_REGS 0x000000ffu
202 #define ALL_VECTOR_REGS 0x00ff0000u
203 #endif
205 /* parse target specific constraints */
206 static const char *target_parse_constraint(TCGArgConstraint *ct,
207 const char *ct_str, TCGType type)
209 switch(*ct_str++) {
210 case 'a':
211 ct->ct |= TCG_CT_REG;
212 tcg_regset_set_reg(ct->u.regs, TCG_REG_EAX);
213 break;
214 case 'b':
215 ct->ct |= TCG_CT_REG;
216 tcg_regset_set_reg(ct->u.regs, TCG_REG_EBX);
217 break;
218 case 'c':
219 ct->ct |= TCG_CT_REG;
220 tcg_regset_set_reg(ct->u.regs, TCG_REG_ECX);
221 break;
222 case 'd':
223 ct->ct |= TCG_CT_REG;
224 tcg_regset_set_reg(ct->u.regs, TCG_REG_EDX);
225 break;
226 case 'S':
227 ct->ct |= TCG_CT_REG;
228 tcg_regset_set_reg(ct->u.regs, TCG_REG_ESI);
229 break;
230 case 'D':
231 ct->ct |= TCG_CT_REG;
232 tcg_regset_set_reg(ct->u.regs, TCG_REG_EDI);
233 break;
234 case 'q':
235 /* A register that can be used as a byte operand. */
236 ct->ct |= TCG_CT_REG;
237 ct->u.regs = TCG_TARGET_REG_BITS == 64 ? 0xffff : 0xf;
238 break;
239 case 'Q':
240 /* A register with an addressable second byte (e.g. %ah). */
241 ct->ct |= TCG_CT_REG;
242 ct->u.regs = 0xf;
243 break;
244 case 'r':
245 /* A general register. */
246 ct->ct |= TCG_CT_REG;
247 ct->u.regs |= ALL_GENERAL_REGS;
248 break;
249 case 'W':
250 /* With TZCNT/LZCNT, we can have operand-size as an input. */
251 ct->ct |= TCG_CT_CONST_WSZ;
252 break;
253 case 'x':
254 /* A vector register. */
255 ct->ct |= TCG_CT_REG;
256 ct->u.regs |= ALL_VECTOR_REGS;
257 break;
259 /* qemu_ld/st address constraint */
260 case 'L':
261 ct->ct |= TCG_CT_REG;
262 ct->u.regs = TCG_TARGET_REG_BITS == 64 ? 0xffff : 0xff;
263 tcg_regset_reset_reg(ct->u.regs, TCG_REG_L0);
264 tcg_regset_reset_reg(ct->u.regs, TCG_REG_L1);
265 break;
267 case 'e':
268 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_S32);
269 break;
270 case 'Z':
271 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_U32);
272 break;
273 case 'I':
274 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_I32);
275 break;
277 default:
278 return NULL;
280 return ct_str;
283 /* test if a constant matches the constraint */
284 static inline int tcg_target_const_match(tcg_target_long val, TCGType type,
285 const TCGArgConstraint *arg_ct)
287 int ct = arg_ct->ct;
288 if (ct & TCG_CT_CONST) {
289 return 1;
291 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
292 return 1;
294 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
295 return 1;
297 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
298 return 1;
300 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
301 return 1;
303 return 0;
306 # define LOWREGMASK(x) ((x) & 7)
308 #define P_EXT 0x100 /* 0x0f opcode prefix */
309 #define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */
310 #define P_DATA16 0x400 /* 0x66 opcode prefix */
311 #if TCG_TARGET_REG_BITS == 64
312 # define P_REXW 0x1000 /* Set REX.W = 1 */
313 # define P_REXB_R 0x2000 /* REG field as byte register */
314 # define P_REXB_RM 0x4000 /* R/M field as byte register */
315 # define P_GS 0x8000 /* gs segment override */
316 #else
317 # define P_REXW 0
318 # define P_REXB_R 0
319 # define P_REXB_RM 0
320 # define P_GS 0
321 #endif
322 #define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */
323 #define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */
324 #define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */
325 #define P_VEXL 0x80000 /* Set VEX.L = 1 */
327 #define OPC_ARITH_EvIz (0x81)
328 #define OPC_ARITH_EvIb (0x83)
329 #define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */
330 #define OPC_ANDN (0xf2 | P_EXT38)
331 #define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3))
332 #define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3))
333 #define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16)
334 #define OPC_BSF (0xbc | P_EXT)
335 #define OPC_BSR (0xbd | P_EXT)
336 #define OPC_BSWAP (0xc8 | P_EXT)
337 #define OPC_CALL_Jz (0xe8)
338 #define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */
339 #define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3))
340 #define OPC_DEC_r32 (0x48)
341 #define OPC_IMUL_GvEv (0xaf | P_EXT)
342 #define OPC_IMUL_GvEvIb (0x6b)
343 #define OPC_IMUL_GvEvIz (0x69)
344 #define OPC_INC_r32 (0x40)
345 #define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */
346 #define OPC_JCC_short (0x70) /* ... plus condition code */
347 #define OPC_JMP_long (0xe9)
348 #define OPC_JMP_short (0xeb)
349 #define OPC_LEA (0x8d)
350 #define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3)
351 #define OPC_MOVB_EvGv (0x88) /* stores, more or less */
352 #define OPC_MOVL_EvGv (0x89) /* stores, more or less */
353 #define OPC_MOVL_GvEv (0x8b) /* loads, more or less */
354 #define OPC_MOVB_EvIz (0xc6)
355 #define OPC_MOVL_EvIz (0xc7)
356 #define OPC_MOVL_Iv (0xb8)
357 #define OPC_MOVBE_GyMy (0xf0 | P_EXT38)
358 #define OPC_MOVBE_MyGy (0xf1 | P_EXT38)
359 #define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16)
360 #define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16)
361 #define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2)
362 #define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
363 #define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
364 #define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
365 #define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
366 #define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3)
367 #define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16)
368 #define OPC_MOVSBL (0xbe | P_EXT)
369 #define OPC_MOVSWL (0xbf | P_EXT)
370 #define OPC_MOVSLQ (0x63 | P_REXW)
371 #define OPC_MOVZBL (0xb6 | P_EXT)
372 #define OPC_MOVZWL (0xb7 | P_EXT)
373 #define OPC_PABSB (0x1c | P_EXT38 | P_DATA16)
374 #define OPC_PABSW (0x1d | P_EXT38 | P_DATA16)
375 #define OPC_PABSD (0x1e | P_EXT38 | P_DATA16)
376 #define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16)
377 #define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16)
378 #define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16)
379 #define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16)
380 #define OPC_PADDB (0xfc | P_EXT | P_DATA16)
381 #define OPC_PADDW (0xfd | P_EXT | P_DATA16)
382 #define OPC_PADDD (0xfe | P_EXT | P_DATA16)
383 #define OPC_PADDQ (0xd4 | P_EXT | P_DATA16)
384 #define OPC_PADDSB (0xec | P_EXT | P_DATA16)
385 #define OPC_PADDSW (0xed | P_EXT | P_DATA16)
386 #define OPC_PADDUB (0xdc | P_EXT | P_DATA16)
387 #define OPC_PADDUW (0xdd | P_EXT | P_DATA16)
388 #define OPC_PAND (0xdb | P_EXT | P_DATA16)
389 #define OPC_PANDN (0xdf | P_EXT | P_DATA16)
390 #define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16)
391 #define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16)
392 #define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16)
393 #define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16)
394 #define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16)
395 #define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16)
396 #define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16)
397 #define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16)
398 #define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16)
399 #define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16)
400 #define OPC_PMAXSW (0xee | P_EXT | P_DATA16)
401 #define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16)
402 #define OPC_PMAXUB (0xde | P_EXT | P_DATA16)
403 #define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16)
404 #define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16)
405 #define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16)
406 #define OPC_PMINSW (0xea | P_EXT | P_DATA16)
407 #define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16)
408 #define OPC_PMINUB (0xda | P_EXT | P_DATA16)
409 #define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16)
410 #define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16)
411 #define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16)
412 #define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16)
413 #define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16)
414 #define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16)
415 #define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16)
416 #define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16)
417 #define OPC_PMULLW (0xd5 | P_EXT | P_DATA16)
418 #define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16)
419 #define OPC_POR (0xeb | P_EXT | P_DATA16)
420 #define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16)
421 #define OPC_PSHUFD (0x70 | P_EXT | P_DATA16)
422 #define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2)
423 #define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3)
424 #define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
425 #define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /2 /6 /4 */
426 #define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
427 #define OPC_PSLLW (0xf1 | P_EXT | P_DATA16)
428 #define OPC_PSLLD (0xf2 | P_EXT | P_DATA16)
429 #define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16)
430 #define OPC_PSRAW (0xe1 | P_EXT | P_DATA16)
431 #define OPC_PSRAD (0xe2 | P_EXT | P_DATA16)
432 #define OPC_PSRLW (0xd1 | P_EXT | P_DATA16)
433 #define OPC_PSRLD (0xd2 | P_EXT | P_DATA16)
434 #define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16)
435 #define OPC_PSUBB (0xf8 | P_EXT | P_DATA16)
436 #define OPC_PSUBW (0xf9 | P_EXT | P_DATA16)
437 #define OPC_PSUBD (0xfa | P_EXT | P_DATA16)
438 #define OPC_PSUBQ (0xfb | P_EXT | P_DATA16)
439 #define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16)
440 #define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16)
441 #define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16)
442 #define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16)
443 #define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16)
444 #define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16)
445 #define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16)
446 #define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16)
447 #define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16)
448 #define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16)
449 #define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16)
450 #define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16)
451 #define OPC_PXOR (0xef | P_EXT | P_DATA16)
452 #define OPC_POP_r32 (0x58)
453 #define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3)
454 #define OPC_PUSH_r32 (0x50)
455 #define OPC_PUSH_Iv (0x68)
456 #define OPC_PUSH_Ib (0x6a)
457 #define OPC_RET (0xc3)
458 #define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
459 #define OPC_SHIFT_1 (0xd1)
460 #define OPC_SHIFT_Ib (0xc1)
461 #define OPC_SHIFT_cl (0xd3)
462 #define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3)
463 #define OPC_SHUFPS (0xc6 | P_EXT)
464 #define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16)
465 #define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2)
466 #define OPC_SHRD_Ib (0xac | P_EXT)
467 #define OPC_TESTL (0x85)
468 #define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3)
469 #define OPC_UD2 (0x0b | P_EXT)
470 #define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16)
471 #define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16)
472 #define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16)
473 #define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16)
474 #define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
475 #define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
476 #define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
477 #define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
478 #define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
479 #define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
480 #define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_REXW)
481 #define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
482 #define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16)
483 #define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_REXW)
484 #define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16)
485 #define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16)
486 #define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_REXW)
487 #define OPC_VZEROUPPER (0x77 | P_EXT)
488 #define OPC_XCHG_ax_r32 (0x90)
490 #define OPC_GRP3_Ev (0xf7)
491 #define OPC_GRP5 (0xff)
492 #define OPC_GRP14 (0x73 | P_EXT | P_DATA16)
494 /* Group 1 opcode extensions for 0x80-0x83.
495 These are also used as modifiers for OPC_ARITH. */
496 #define ARITH_ADD 0
497 #define ARITH_OR 1
498 #define ARITH_ADC 2
499 #define ARITH_SBB 3
500 #define ARITH_AND 4
501 #define ARITH_SUB 5
502 #define ARITH_XOR 6
503 #define ARITH_CMP 7
505 /* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */
506 #define SHIFT_ROL 0
507 #define SHIFT_ROR 1
508 #define SHIFT_SHL 4
509 #define SHIFT_SHR 5
510 #define SHIFT_SAR 7
512 /* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */
513 #define EXT3_NOT 2
514 #define EXT3_NEG 3
515 #define EXT3_MUL 4
516 #define EXT3_IMUL 5
517 #define EXT3_DIV 6
518 #define EXT3_IDIV 7
520 /* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */
521 #define EXT5_INC_Ev 0
522 #define EXT5_DEC_Ev 1
523 #define EXT5_CALLN_Ev 2
524 #define EXT5_JMPN_Ev 4
526 /* Condition codes to be added to OPC_JCC_{long,short}. */
527 #define JCC_JMP (-1)
528 #define JCC_JO 0x0
529 #define JCC_JNO 0x1
530 #define JCC_JB 0x2
531 #define JCC_JAE 0x3
532 #define JCC_JE 0x4
533 #define JCC_JNE 0x5
534 #define JCC_JBE 0x6
535 #define JCC_JA 0x7
536 #define JCC_JS 0x8
537 #define JCC_JNS 0x9
538 #define JCC_JP 0xa
539 #define JCC_JNP 0xb
540 #define JCC_JL 0xc
541 #define JCC_JGE 0xd
542 #define JCC_JLE 0xe
543 #define JCC_JG 0xf
545 static const uint8_t tcg_cond_to_jcc[] = {
546 [TCG_COND_EQ] = JCC_JE,
547 [TCG_COND_NE] = JCC_JNE,
548 [TCG_COND_LT] = JCC_JL,
549 [TCG_COND_GE] = JCC_JGE,
550 [TCG_COND_LE] = JCC_JLE,
551 [TCG_COND_GT] = JCC_JG,
552 [TCG_COND_LTU] = JCC_JB,
553 [TCG_COND_GEU] = JCC_JAE,
554 [TCG_COND_LEU] = JCC_JBE,
555 [TCG_COND_GTU] = JCC_JA,
558 #if TCG_TARGET_REG_BITS == 64
559 static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
561 int rex;
563 if (opc & P_GS) {
564 tcg_out8(s, 0x65);
566 if (opc & P_DATA16) {
567 /* We should never be asking for both 16 and 64-bit operation. */
568 tcg_debug_assert((opc & P_REXW) == 0);
569 tcg_out8(s, 0x66);
571 if (opc & P_SIMDF3) {
572 tcg_out8(s, 0xf3);
573 } else if (opc & P_SIMDF2) {
574 tcg_out8(s, 0xf2);
577 rex = 0;
578 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */
579 rex |= (r & 8) >> 1; /* REX.R */
580 rex |= (x & 8) >> 2; /* REX.X */
581 rex |= (rm & 8) >> 3; /* REX.B */
583 /* P_REXB_{R,RM} indicates that the given register is the low byte.
584 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
585 as otherwise the encoding indicates %[abcd]h. Note that the values
586 that are ORed in merely indicate that the REX byte must be present;
587 those bits get discarded in output. */
588 rex |= opc & (r >= 4 ? P_REXB_R : 0);
589 rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
591 if (rex) {
592 tcg_out8(s, (uint8_t)(rex | 0x40));
595 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
596 tcg_out8(s, 0x0f);
597 if (opc & P_EXT38) {
598 tcg_out8(s, 0x38);
599 } else if (opc & P_EXT3A) {
600 tcg_out8(s, 0x3a);
604 tcg_out8(s, opc);
606 #else
607 static void tcg_out_opc(TCGContext *s, int opc)
609 if (opc & P_DATA16) {
610 tcg_out8(s, 0x66);
612 if (opc & P_SIMDF3) {
613 tcg_out8(s, 0xf3);
614 } else if (opc & P_SIMDF2) {
615 tcg_out8(s, 0xf2);
617 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
618 tcg_out8(s, 0x0f);
619 if (opc & P_EXT38) {
620 tcg_out8(s, 0x38);
621 } else if (opc & P_EXT3A) {
622 tcg_out8(s, 0x3a);
625 tcg_out8(s, opc);
627 /* Discard the register arguments to tcg_out_opc early, so as not to penalize
628 the 32-bit compilation paths. This method works with all versions of gcc,
629 whereas relying on optimization may not be able to exclude them. */
630 #define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc)
631 #endif
633 static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
635 tcg_out_opc(s, opc, r, rm, 0);
636 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
639 static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
640 int rm, int index)
642 int tmp;
644 /* Use the two byte form if possible, which cannot encode
645 VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */
646 if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_REXW)) == P_EXT
647 && ((rm | index) & 8) == 0) {
648 /* Two byte VEX prefix. */
649 tcg_out8(s, 0xc5);
651 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */
652 } else {
653 /* Three byte VEX prefix. */
654 tcg_out8(s, 0xc4);
656 /* VEX.m-mmmm */
657 if (opc & P_EXT3A) {
658 tmp = 3;
659 } else if (opc & P_EXT38) {
660 tmp = 2;
661 } else if (opc & P_EXT) {
662 tmp = 1;
663 } else {
664 g_assert_not_reached();
666 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */
667 tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */
668 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */
669 tcg_out8(s, tmp);
671 tmp = (opc & P_REXW ? 0x80 : 0); /* VEX.W */
674 tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */
675 /* VEX.pp */
676 if (opc & P_DATA16) {
677 tmp |= 1; /* 0x66 */
678 } else if (opc & P_SIMDF3) {
679 tmp |= 2; /* 0xf3 */
680 } else if (opc & P_SIMDF2) {
681 tmp |= 3; /* 0xf2 */
683 tmp |= (~v & 15) << 3; /* VEX.vvvv */
684 tcg_out8(s, tmp);
685 tcg_out8(s, opc);
688 static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
690 tcg_out_vex_opc(s, opc, r, v, rm, 0);
691 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
694 /* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
695 We handle either RM and INDEX missing with a negative value. In 64-bit
696 mode for absolute addresses, ~RM is the size of the immediate operand
697 that will follow the instruction. */
699 static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
700 int shift, intptr_t offset)
702 int mod, len;
704 if (index < 0 && rm < 0) {
705 if (TCG_TARGET_REG_BITS == 64) {
706 /* Try for a rip-relative addressing mode. This has replaced
707 the 32-bit-mode absolute addressing encoding. */
708 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
709 intptr_t disp = offset - pc;
710 if (disp == (int32_t)disp) {
711 tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
712 tcg_out32(s, disp);
713 return;
716 /* Try for an absolute address encoding. This requires the
717 use of the MODRM+SIB encoding and is therefore larger than
718 rip-relative addressing. */
719 if (offset == (int32_t)offset) {
720 tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
721 tcg_out8(s, (4 << 3) | 5);
722 tcg_out32(s, offset);
723 return;
726 /* ??? The memory isn't directly addressable. */
727 g_assert_not_reached();
728 } else {
729 /* Absolute address. */
730 tcg_out8(s, (r << 3) | 5);
731 tcg_out32(s, offset);
732 return;
736 /* Find the length of the immediate addend. Note that the encoding
737 that would be used for (%ebp) indicates absolute addressing. */
738 if (rm < 0) {
739 mod = 0, len = 4, rm = 5;
740 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
741 mod = 0, len = 0;
742 } else if (offset == (int8_t)offset) {
743 mod = 0x40, len = 1;
744 } else {
745 mod = 0x80, len = 4;
748 /* Use a single byte MODRM format if possible. Note that the encoding
749 that would be used for %esp is the escape to the two byte form. */
750 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
751 /* Single byte MODRM format. */
752 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
753 } else {
754 /* Two byte MODRM+SIB format. */
756 /* Note that the encoding that would place %esp into the index
757 field indicates no index register. In 64-bit mode, the REX.X
758 bit counts, so %r12 can be used as the index. */
759 if (index < 0) {
760 index = 4;
761 } else {
762 tcg_debug_assert(index != TCG_REG_ESP);
765 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
766 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
769 if (len == 1) {
770 tcg_out8(s, offset);
771 } else if (len == 4) {
772 tcg_out32(s, offset);
776 static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
777 int index, int shift, intptr_t offset)
779 tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
780 tcg_out_sib_offset(s, r, rm, index, shift, offset);
783 static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
784 int rm, int index, int shift,
785 intptr_t offset)
787 tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
788 tcg_out_sib_offset(s, r, rm, index, shift, offset);
791 /* A simplification of the above with no index or shift. */
792 static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
793 int rm, intptr_t offset)
795 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
798 static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
799 int v, int rm, intptr_t offset)
801 tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
804 /* Output an opcode with an expected reference to the constant pool. */
805 static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
807 tcg_out_opc(s, opc, r, 0, 0);
808 /* Absolute for 32-bit, pc-relative for 64-bit. */
809 tcg_out8(s, LOWREGMASK(r) << 3 | 5);
810 tcg_out32(s, 0);
813 /* Output an opcode with an expected reference to the constant pool. */
814 static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
816 tcg_out_vex_opc(s, opc, r, 0, 0, 0);
817 /* Absolute for 32-bit, pc-relative for 64-bit. */
818 tcg_out8(s, LOWREGMASK(r) << 3 | 5);
819 tcg_out32(s, 0);
822 /* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */
823 static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
825 /* Propagate an opcode prefix, such as P_REXW. */
826 int ext = subop & ~0x7;
827 subop &= 0x7;
829 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
832 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
834 int rexw = 0;
836 if (arg == ret) {
837 return true;
839 switch (type) {
840 case TCG_TYPE_I64:
841 rexw = P_REXW;
842 /* fallthru */
843 case TCG_TYPE_I32:
844 if (ret < 16) {
845 if (arg < 16) {
846 tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
847 } else {
848 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
850 } else {
851 if (arg < 16) {
852 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
853 } else {
854 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
857 break;
859 case TCG_TYPE_V64:
860 tcg_debug_assert(ret >= 16 && arg >= 16);
861 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
862 break;
863 case TCG_TYPE_V128:
864 tcg_debug_assert(ret >= 16 && arg >= 16);
865 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
866 break;
867 case TCG_TYPE_V256:
868 tcg_debug_assert(ret >= 16 && arg >= 16);
869 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
870 break;
872 default:
873 g_assert_not_reached();
875 return true;
878 static const int avx2_dup_insn[4] = {
879 OPC_VPBROADCASTB, OPC_VPBROADCASTW,
880 OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
883 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
884 TCGReg r, TCGReg a)
886 if (have_avx2) {
887 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
888 tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a);
889 } else {
890 switch (vece) {
891 case MO_8:
892 /* ??? With zero in a register, use PSHUFB. */
893 tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
894 a = r;
895 /* FALLTHRU */
896 case MO_16:
897 tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
898 a = r;
899 /* FALLTHRU */
900 case MO_32:
901 tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
902 /* imm8 operand: all output lanes selected from input lane 0. */
903 tcg_out8(s, 0);
904 break;
905 case MO_64:
906 tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
907 break;
908 default:
909 g_assert_not_reached();
912 return true;
915 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
916 TCGReg r, TCGReg base, intptr_t offset)
918 if (have_avx2) {
919 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
920 tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
921 r, 0, base, offset);
922 } else {
923 switch (vece) {
924 case MO_64:
925 tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
926 break;
927 case MO_32:
928 tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
929 break;
930 case MO_16:
931 tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
932 tcg_out8(s, 0); /* imm8 */
933 tcg_out_dup_vec(s, type, vece, r, r);
934 break;
935 case MO_8:
936 tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
937 tcg_out8(s, 0); /* imm8 */
938 tcg_out_dup_vec(s, type, vece, r, r);
939 break;
940 default:
941 g_assert_not_reached();
944 return true;
947 static void tcg_out_dupi_vec(TCGContext *s, TCGType type,
948 TCGReg ret, tcg_target_long arg)
950 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
952 if (arg == 0) {
953 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
954 return;
956 if (arg == -1) {
957 tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
958 return;
961 if (TCG_TARGET_REG_BITS == 64) {
962 if (type == TCG_TYPE_V64) {
963 tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
964 } else if (have_avx2) {
965 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
966 } else {
967 tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
969 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
970 } else {
971 if (have_avx2) {
972 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTW + vex_l, ret);
973 } else {
974 tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
976 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
980 static void tcg_out_movi(TCGContext *s, TCGType type,
981 TCGReg ret, tcg_target_long arg)
983 tcg_target_long diff;
985 switch (type) {
986 case TCG_TYPE_I32:
987 #if TCG_TARGET_REG_BITS == 64
988 case TCG_TYPE_I64:
989 #endif
990 if (ret < 16) {
991 break;
993 /* fallthru */
994 case TCG_TYPE_V64:
995 case TCG_TYPE_V128:
996 case TCG_TYPE_V256:
997 tcg_debug_assert(ret >= 16);
998 tcg_out_dupi_vec(s, type, ret, arg);
999 return;
1000 default:
1001 g_assert_not_reached();
1004 if (arg == 0) {
1005 tgen_arithr(s, ARITH_XOR, ret, ret);
1006 return;
1008 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1009 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1010 tcg_out32(s, arg);
1011 return;
1013 if (arg == (int32_t)arg) {
1014 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1015 tcg_out32(s, arg);
1016 return;
1019 /* Try a 7 byte pc-relative lea before the 10 byte movq. */
1020 diff = arg - ((uintptr_t)s->code_ptr + 7);
1021 if (diff == (int32_t)diff) {
1022 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1023 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1024 tcg_out32(s, diff);
1025 return;
1028 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1029 tcg_out64(s, arg);
1032 static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1034 if (val == (int8_t)val) {
1035 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1036 tcg_out8(s, val);
1037 } else if (val == (int32_t)val) {
1038 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1039 tcg_out32(s, val);
1040 } else {
1041 tcg_abort();
1045 static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1047 /* Given the strength of x86 memory ordering, we only need care for
1048 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is
1049 faster than "mfence", so don't bother with the sse insn. */
1050 if (a0 & TCG_MO_ST_LD) {
1051 tcg_out8(s, 0xf0);
1052 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1053 tcg_out8(s, 0);
1057 static inline void tcg_out_push(TCGContext *s, int reg)
1059 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1062 static inline void tcg_out_pop(TCGContext *s, int reg)
1064 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1067 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1068 TCGReg arg1, intptr_t arg2)
1070 switch (type) {
1071 case TCG_TYPE_I32:
1072 if (ret < 16) {
1073 tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1074 } else {
1075 tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1077 break;
1078 case TCG_TYPE_I64:
1079 if (ret < 16) {
1080 tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1081 break;
1083 /* FALLTHRU */
1084 case TCG_TYPE_V64:
1085 /* There is no instruction that can validate 8-byte alignment. */
1086 tcg_debug_assert(ret >= 16);
1087 tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1088 break;
1089 case TCG_TYPE_V128:
1091 * The gvec infrastructure is asserts that v128 vector loads
1092 * and stores use a 16-byte aligned offset. Validate that the
1093 * final pointer is aligned by using an insn that will SIGSEGV.
1095 tcg_debug_assert(ret >= 16);
1096 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1097 break;
1098 case TCG_TYPE_V256:
1100 * The gvec infrastructure only requires 16-byte alignment,
1101 * so here we must use an unaligned load.
1103 tcg_debug_assert(ret >= 16);
1104 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1105 ret, 0, arg1, arg2);
1106 break;
1107 default:
1108 g_assert_not_reached();
1112 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1113 TCGReg arg1, intptr_t arg2)
1115 switch (type) {
1116 case TCG_TYPE_I32:
1117 if (arg < 16) {
1118 tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1119 } else {
1120 tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1122 break;
1123 case TCG_TYPE_I64:
1124 if (arg < 16) {
1125 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1126 break;
1128 /* FALLTHRU */
1129 case TCG_TYPE_V64:
1130 /* There is no instruction that can validate 8-byte alignment. */
1131 tcg_debug_assert(arg >= 16);
1132 tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1133 break;
1134 case TCG_TYPE_V128:
1136 * The gvec infrastructure is asserts that v128 vector loads
1137 * and stores use a 16-byte aligned offset. Validate that the
1138 * final pointer is aligned by using an insn that will SIGSEGV.
1140 tcg_debug_assert(arg >= 16);
1141 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1142 break;
1143 case TCG_TYPE_V256:
1145 * The gvec infrastructure only requires 16-byte alignment,
1146 * so here we must use an unaligned store.
1148 tcg_debug_assert(arg >= 16);
1149 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1150 arg, 0, arg1, arg2);
1151 break;
1152 default:
1153 g_assert_not_reached();
1157 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1158 TCGReg base, intptr_t ofs)
1160 int rexw = 0;
1161 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1162 if (val != (int32_t)val) {
1163 return false;
1165 rexw = P_REXW;
1166 } else if (type != TCG_TYPE_I32) {
1167 return false;
1169 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1170 tcg_out32(s, val);
1171 return true;
1174 static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1176 /* Propagate an opcode prefix, such as P_DATA16. */
1177 int ext = subopc & ~0x7;
1178 subopc &= 0x7;
1180 if (count == 1) {
1181 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1182 } else {
1183 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1184 tcg_out8(s, count);
1188 static inline void tcg_out_bswap32(TCGContext *s, int reg)
1190 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1193 static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1195 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1198 static inline void tcg_out_ext8u(TCGContext *s, int dest, int src)
1200 /* movzbl */
1201 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1202 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1205 static void tcg_out_ext8s(TCGContext *s, int dest, int src, int rexw)
1207 /* movsbl */
1208 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1209 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1212 static inline void tcg_out_ext16u(TCGContext *s, int dest, int src)
1214 /* movzwl */
1215 tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1218 static inline void tcg_out_ext16s(TCGContext *s, int dest, int src, int rexw)
1220 /* movsw[lq] */
1221 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1224 static inline void tcg_out_ext32u(TCGContext *s, int dest, int src)
1226 /* 32-bit mov zero extends. */
1227 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1230 static inline void tcg_out_ext32s(TCGContext *s, int dest, int src)
1232 tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1235 static inline void tcg_out_bswap64(TCGContext *s, int reg)
1237 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1240 static void tgen_arithi(TCGContext *s, int c, int r0,
1241 tcg_target_long val, int cf)
1243 int rexw = 0;
1245 if (TCG_TARGET_REG_BITS == 64) {
1246 rexw = c & -8;
1247 c &= 7;
1250 /* ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1251 partial flags update stalls on Pentium4 and are not recommended
1252 by current Intel optimization manuals. */
1253 if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) {
1254 int is_inc = (c == ARITH_ADD) ^ (val < 0);
1255 if (TCG_TARGET_REG_BITS == 64) {
1256 /* The single-byte increment encodings are re-tasked as the
1257 REX prefixes. Use the MODRM encoding. */
1258 tcg_out_modrm(s, OPC_GRP5 + rexw,
1259 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1260 } else {
1261 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1263 return;
1266 if (c == ARITH_AND) {
1267 if (TCG_TARGET_REG_BITS == 64) {
1268 if (val == 0xffffffffu) {
1269 tcg_out_ext32u(s, r0, r0);
1270 return;
1272 if (val == (uint32_t)val) {
1273 /* AND with no high bits set can use a 32-bit operation. */
1274 rexw = 0;
1277 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1278 tcg_out_ext8u(s, r0, r0);
1279 return;
1281 if (val == 0xffffu) {
1282 tcg_out_ext16u(s, r0, r0);
1283 return;
1287 if (val == (int8_t)val) {
1288 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1289 tcg_out8(s, val);
1290 return;
1292 if (rexw == 0 || val == (int32_t)val) {
1293 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1294 tcg_out32(s, val);
1295 return;
1298 tcg_abort();
1301 static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1303 if (val != 0) {
1304 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1308 /* Use SMALL != 0 to force a short forward branch. */
1309 static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, int small)
1311 int32_t val, val1;
1313 if (l->has_value) {
1314 val = tcg_pcrel_diff(s, l->u.value_ptr);
1315 val1 = val - 2;
1316 if ((int8_t)val1 == val1) {
1317 if (opc == -1) {
1318 tcg_out8(s, OPC_JMP_short);
1319 } else {
1320 tcg_out8(s, OPC_JCC_short + opc);
1322 tcg_out8(s, val1);
1323 } else {
1324 if (small) {
1325 tcg_abort();
1327 if (opc == -1) {
1328 tcg_out8(s, OPC_JMP_long);
1329 tcg_out32(s, val - 5);
1330 } else {
1331 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1332 tcg_out32(s, val - 6);
1335 } else if (small) {
1336 if (opc == -1) {
1337 tcg_out8(s, OPC_JMP_short);
1338 } else {
1339 tcg_out8(s, OPC_JCC_short + opc);
1341 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1342 s->code_ptr += 1;
1343 } else {
1344 if (opc == -1) {
1345 tcg_out8(s, OPC_JMP_long);
1346 } else {
1347 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1349 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1350 s->code_ptr += 4;
1354 static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2,
1355 int const_arg2, int rexw)
1357 if (const_arg2) {
1358 if (arg2 == 0) {
1359 /* test r, r */
1360 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1361 } else {
1362 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1364 } else {
1365 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1369 static void tcg_out_brcond32(TCGContext *s, TCGCond cond,
1370 TCGArg arg1, TCGArg arg2, int const_arg2,
1371 TCGLabel *label, int small)
1373 tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1374 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1377 #if TCG_TARGET_REG_BITS == 64
1378 static void tcg_out_brcond64(TCGContext *s, TCGCond cond,
1379 TCGArg arg1, TCGArg arg2, int const_arg2,
1380 TCGLabel *label, int small)
1382 tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1383 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1385 #else
1386 /* XXX: we implement it at the target level to avoid having to
1387 handle cross basic blocks temporaries */
1388 static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1389 const int *const_args, int small)
1391 TCGLabel *label_next = gen_new_label();
1392 TCGLabel *label_this = arg_label(args[5]);
1394 switch(args[4]) {
1395 case TCG_COND_EQ:
1396 tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
1397 label_next, 1);
1398 tcg_out_brcond32(s, TCG_COND_EQ, args[1], args[3], const_args[3],
1399 label_this, small);
1400 break;
1401 case TCG_COND_NE:
1402 tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
1403 label_this, small);
1404 tcg_out_brcond32(s, TCG_COND_NE, args[1], args[3], const_args[3],
1405 label_this, small);
1406 break;
1407 case TCG_COND_LT:
1408 tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
1409 label_this, small);
1410 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1411 tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1412 label_this, small);
1413 break;
1414 case TCG_COND_LE:
1415 tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
1416 label_this, small);
1417 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1418 tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1419 label_this, small);
1420 break;
1421 case TCG_COND_GT:
1422 tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1423 label_this, small);
1424 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1425 tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1426 label_this, small);
1427 break;
1428 case TCG_COND_GE:
1429 tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1430 label_this, small);
1431 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1432 tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1433 label_this, small);
1434 break;
1435 case TCG_COND_LTU:
1436 tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1437 label_this, small);
1438 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1439 tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1440 label_this, small);
1441 break;
1442 case TCG_COND_LEU:
1443 tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1444 label_this, small);
1445 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1446 tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1447 label_this, small);
1448 break;
1449 case TCG_COND_GTU:
1450 tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1451 label_this, small);
1452 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1453 tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1454 label_this, small);
1455 break;
1456 case TCG_COND_GEU:
1457 tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1458 label_this, small);
1459 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1460 tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1461 label_this, small);
1462 break;
1463 default:
1464 tcg_abort();
1466 tcg_out_label(s, label_next, s->code_ptr);
1468 #endif
1470 static void tcg_out_setcond32(TCGContext *s, TCGCond cond, TCGArg dest,
1471 TCGArg arg1, TCGArg arg2, int const_arg2)
1473 tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1474 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1475 tcg_out_ext8u(s, dest, dest);
1478 #if TCG_TARGET_REG_BITS == 64
1479 static void tcg_out_setcond64(TCGContext *s, TCGCond cond, TCGArg dest,
1480 TCGArg arg1, TCGArg arg2, int const_arg2)
1482 tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1483 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1484 tcg_out_ext8u(s, dest, dest);
1486 #else
1487 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1488 const int *const_args)
1490 TCGArg new_args[6];
1491 TCGLabel *label_true, *label_over;
1493 memcpy(new_args, args+1, 5*sizeof(TCGArg));
1495 if (args[0] == args[1] || args[0] == args[2]
1496 || (!const_args[3] && args[0] == args[3])
1497 || (!const_args[4] && args[0] == args[4])) {
1498 /* When the destination overlaps with one of the argument
1499 registers, don't do anything tricky. */
1500 label_true = gen_new_label();
1501 label_over = gen_new_label();
1503 new_args[5] = label_arg(label_true);
1504 tcg_out_brcond2(s, new_args, const_args+1, 1);
1506 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1507 tcg_out_jxx(s, JCC_JMP, label_over, 1);
1508 tcg_out_label(s, label_true, s->code_ptr);
1510 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1511 tcg_out_label(s, label_over, s->code_ptr);
1512 } else {
1513 /* When the destination does not overlap one of the arguments,
1514 clear the destination first, jump if cond false, and emit an
1515 increment in the true case. This results in smaller code. */
1517 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1519 label_over = gen_new_label();
1520 new_args[4] = tcg_invert_cond(new_args[4]);
1521 new_args[5] = label_arg(label_over);
1522 tcg_out_brcond2(s, new_args, const_args+1, 1);
1524 tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1525 tcg_out_label(s, label_over, s->code_ptr);
1528 #endif
1530 static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw,
1531 TCGReg dest, TCGReg v1)
1533 if (have_cmov) {
1534 tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1);
1535 } else {
1536 TCGLabel *over = gen_new_label();
1537 tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1);
1538 tcg_out_mov(s, TCG_TYPE_I32, dest, v1);
1539 tcg_out_label(s, over, s->code_ptr);
1543 static void tcg_out_movcond32(TCGContext *s, TCGCond cond, TCGReg dest,
1544 TCGReg c1, TCGArg c2, int const_c2,
1545 TCGReg v1)
1547 tcg_out_cmp(s, c1, c2, const_c2, 0);
1548 tcg_out_cmov(s, cond, 0, dest, v1);
1551 #if TCG_TARGET_REG_BITS == 64
1552 static void tcg_out_movcond64(TCGContext *s, TCGCond cond, TCGReg dest,
1553 TCGReg c1, TCGArg c2, int const_c2,
1554 TCGReg v1)
1556 tcg_out_cmp(s, c1, c2, const_c2, P_REXW);
1557 tcg_out_cmov(s, cond, P_REXW, dest, v1);
1559 #endif
1561 static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1562 TCGArg arg2, bool const_a2)
1564 if (have_bmi1) {
1565 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
1566 if (const_a2) {
1567 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1568 } else {
1569 tcg_debug_assert(dest != arg2);
1570 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1572 } else {
1573 tcg_debug_assert(dest != arg2);
1574 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
1575 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1579 static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1580 TCGArg arg2, bool const_a2)
1582 if (have_lzcnt) {
1583 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
1584 if (const_a2) {
1585 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1586 } else {
1587 tcg_debug_assert(dest != arg2);
1588 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1590 } else {
1591 tcg_debug_assert(!const_a2);
1592 tcg_debug_assert(dest != arg1);
1593 tcg_debug_assert(dest != arg2);
1595 /* Recall that the output of BSR is the index not the count. */
1596 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
1597 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
1599 /* Since we have destroyed the flags from BSR, we have to re-test. */
1600 tcg_out_cmp(s, arg1, 0, 1, rexw);
1601 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1605 static void tcg_out_branch(TCGContext *s, int call, tcg_insn_unit *dest)
1607 intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1609 if (disp == (int32_t)disp) {
1610 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1611 tcg_out32(s, disp);
1612 } else {
1613 /* rip-relative addressing into the constant pool.
1614 This is 6 + 8 = 14 bytes, as compared to using an
1615 an immediate load 10 + 6 = 16 bytes, plus we may
1616 be able to re-use the pool constant for more calls. */
1617 tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1618 tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1619 new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1620 tcg_out32(s, 0);
1624 static inline void tcg_out_call(TCGContext *s, tcg_insn_unit *dest)
1626 tcg_out_branch(s, 1, dest);
1629 static void tcg_out_jmp(TCGContext *s, tcg_insn_unit *dest)
1631 tcg_out_branch(s, 0, dest);
1634 static void tcg_out_nopn(TCGContext *s, int n)
1636 int i;
1637 /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1638 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1639 * duplicate prefix, and all of the interesting recent cores can
1640 * decode and discard the duplicates in a single cycle.
1642 tcg_debug_assert(n >= 1);
1643 for (i = 1; i < n; ++i) {
1644 tcg_out8(s, 0x66);
1646 tcg_out8(s, 0x90);
1649 #if defined(CONFIG_SOFTMMU)
1650 #include "tcg-ldst.inc.c"
1652 /* helper signature: helper_ret_ld_mmu(CPUState *env, target_ulong addr,
1653 * int mmu_idx, uintptr_t ra)
1655 static void * const qemu_ld_helpers[16] = {
1656 [MO_UB] = helper_ret_ldub_mmu,
1657 [MO_LEUW] = helper_le_lduw_mmu,
1658 [MO_LEUL] = helper_le_ldul_mmu,
1659 [MO_LEQ] = helper_le_ldq_mmu,
1660 [MO_BEUW] = helper_be_lduw_mmu,
1661 [MO_BEUL] = helper_be_ldul_mmu,
1662 [MO_BEQ] = helper_be_ldq_mmu,
1665 /* helper signature: helper_ret_st_mmu(CPUState *env, target_ulong addr,
1666 * uintxx_t val, int mmu_idx, uintptr_t ra)
1668 static void * const qemu_st_helpers[16] = {
1669 [MO_UB] = helper_ret_stb_mmu,
1670 [MO_LEUW] = helper_le_stw_mmu,
1671 [MO_LEUL] = helper_le_stl_mmu,
1672 [MO_LEQ] = helper_le_stq_mmu,
1673 [MO_BEUW] = helper_be_stw_mmu,
1674 [MO_BEUL] = helper_be_stl_mmu,
1675 [MO_BEQ] = helper_be_stq_mmu,
1678 /* Perform the TLB load and compare.
1680 Inputs:
1681 ADDRLO and ADDRHI contain the low and high part of the address.
1683 MEM_INDEX and S_BITS are the memory context and log2 size of the load.
1685 WHICH is the offset into the CPUTLBEntry structure of the slot to read.
1686 This should be offsetof addr_read or addr_write.
1688 Outputs:
1689 LABEL_PTRS is filled with 1 (32-bit addresses) or 2 (64-bit addresses)
1690 positions of the displacements of forward jumps to the TLB miss case.
1692 Second argument register is loaded with the low part of the address.
1693 In the TLB hit case, it has been adjusted as indicated by the TLB
1694 and so is a host address. In the TLB miss case, it continues to
1695 hold a guest address.
1697 First argument register is clobbered. */
1699 static inline void tcg_out_tlb_load(TCGContext *s, TCGReg addrlo, TCGReg addrhi,
1700 int mem_index, TCGMemOp opc,
1701 tcg_insn_unit **label_ptr, int which)
1703 const TCGReg r0 = TCG_REG_L0;
1704 const TCGReg r1 = TCG_REG_L1;
1705 TCGType ttype = TCG_TYPE_I32;
1706 TCGType tlbtype = TCG_TYPE_I32;
1707 int trexw = 0, hrexw = 0, tlbrexw = 0;
1708 unsigned a_bits = get_alignment_bits(opc);
1709 unsigned s_bits = opc & MO_SIZE;
1710 unsigned a_mask = (1 << a_bits) - 1;
1711 unsigned s_mask = (1 << s_bits) - 1;
1712 target_ulong tlb_mask;
1714 if (TCG_TARGET_REG_BITS == 64) {
1715 if (TARGET_LONG_BITS == 64) {
1716 ttype = TCG_TYPE_I64;
1717 trexw = P_REXW;
1719 if (TCG_TYPE_PTR == TCG_TYPE_I64) {
1720 hrexw = P_REXW;
1721 if (TARGET_PAGE_BITS + CPU_TLB_DYN_MAX_BITS > 32) {
1722 tlbtype = TCG_TYPE_I64;
1723 tlbrexw = P_REXW;
1728 tcg_out_mov(s, tlbtype, r0, addrlo);
1729 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, r0,
1730 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1732 tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, r0, TCG_AREG0,
1733 offsetof(CPUArchState, tlb_mask[mem_index]));
1735 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r0, TCG_AREG0,
1736 offsetof(CPUArchState, tlb_table[mem_index]));
1738 /* If the required alignment is at least as large as the access, simply
1739 copy the address and mask. For lesser alignments, check that we don't
1740 cross pages for the complete access. */
1741 if (a_bits >= s_bits) {
1742 tcg_out_mov(s, ttype, r1, addrlo);
1743 } else {
1744 tcg_out_modrm_offset(s, OPC_LEA + trexw, r1, addrlo, s_mask - a_mask);
1746 tlb_mask = (target_ulong)TARGET_PAGE_MASK | a_mask;
1747 tgen_arithi(s, ARITH_AND + trexw, r1, tlb_mask, 0);
1749 /* cmp 0(r0), r1 */
1750 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, r1, r0, which);
1752 /* Prepare for both the fast path add of the tlb addend, and the slow
1753 path function argument setup. */
1754 tcg_out_mov(s, ttype, r1, addrlo);
1756 /* jne slow_path */
1757 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1758 label_ptr[0] = s->code_ptr;
1759 s->code_ptr += 4;
1761 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1762 /* cmp 4(r0), addrhi */
1763 tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, r0, which + 4);
1765 /* jne slow_path */
1766 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1767 label_ptr[1] = s->code_ptr;
1768 s->code_ptr += 4;
1771 /* TLB Hit. */
1773 /* add addend(r0), r1 */
1774 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r1, r0,
1775 offsetof(CPUTLBEntry, addend));
1779 * Record the context of a call to the out of line helper code for the slow path
1780 * for a load or store, so that we can later generate the correct helper code
1782 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, bool is_64,
1783 TCGMemOpIdx oi,
1784 TCGReg datalo, TCGReg datahi,
1785 TCGReg addrlo, TCGReg addrhi,
1786 tcg_insn_unit *raddr,
1787 tcg_insn_unit **label_ptr)
1789 TCGLabelQemuLdst *label = new_ldst_label(s);
1791 label->is_ld = is_ld;
1792 label->oi = oi;
1793 label->type = is_64 ? TCG_TYPE_I64 : TCG_TYPE_I32;
1794 label->datalo_reg = datalo;
1795 label->datahi_reg = datahi;
1796 label->addrlo_reg = addrlo;
1797 label->addrhi_reg = addrhi;
1798 label->raddr = raddr;
1799 label->label_ptr[0] = label_ptr[0];
1800 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1801 label->label_ptr[1] = label_ptr[1];
1806 * Generate code for the slow path for a load at the end of block
1808 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1810 TCGMemOpIdx oi = l->oi;
1811 TCGMemOp opc = get_memop(oi);
1812 TCGReg data_reg;
1813 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1814 int rexw = (l->type == TCG_TYPE_I64 ? P_REXW : 0);
1816 /* resolve label address */
1817 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1818 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1819 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1822 if (TCG_TARGET_REG_BITS == 32) {
1823 int ofs = 0;
1825 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1826 ofs += 4;
1828 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1829 ofs += 4;
1831 if (TARGET_LONG_BITS == 64) {
1832 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1833 ofs += 4;
1836 tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1837 ofs += 4;
1839 tcg_out_sti(s, TCG_TYPE_PTR, (uintptr_t)l->raddr, TCG_REG_ESP, ofs);
1840 } else {
1841 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1842 /* The second argument is already loaded with addrlo. */
1843 tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[2], oi);
1844 tcg_out_movi(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[3],
1845 (uintptr_t)l->raddr);
1848 tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
1850 data_reg = l->datalo_reg;
1851 switch (opc & MO_SSIZE) {
1852 case MO_SB:
1853 tcg_out_ext8s(s, data_reg, TCG_REG_EAX, rexw);
1854 break;
1855 case MO_SW:
1856 tcg_out_ext16s(s, data_reg, TCG_REG_EAX, rexw);
1857 break;
1858 #if TCG_TARGET_REG_BITS == 64
1859 case MO_SL:
1860 tcg_out_ext32s(s, data_reg, TCG_REG_EAX);
1861 break;
1862 #endif
1863 case MO_UB:
1864 case MO_UW:
1865 /* Note that the helpers have zero-extended to tcg_target_long. */
1866 case MO_UL:
1867 tcg_out_mov(s, TCG_TYPE_I32, data_reg, TCG_REG_EAX);
1868 break;
1869 case MO_Q:
1870 if (TCG_TARGET_REG_BITS == 64) {
1871 tcg_out_mov(s, TCG_TYPE_I64, data_reg, TCG_REG_RAX);
1872 } else if (data_reg == TCG_REG_EDX) {
1873 /* xchg %edx, %eax */
1874 tcg_out_opc(s, OPC_XCHG_ax_r32 + TCG_REG_EDX, 0, 0, 0);
1875 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_EAX);
1876 } else {
1877 tcg_out_mov(s, TCG_TYPE_I32, data_reg, TCG_REG_EAX);
1878 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_EDX);
1880 break;
1881 default:
1882 tcg_abort();
1885 /* Jump to the code corresponding to next IR of qemu_st */
1886 tcg_out_jmp(s, l->raddr);
1887 return true;
1891 * Generate code for the slow path for a store at the end of block
1893 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1895 TCGMemOpIdx oi = l->oi;
1896 TCGMemOp opc = get_memop(oi);
1897 TCGMemOp s_bits = opc & MO_SIZE;
1898 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1899 TCGReg retaddr;
1901 /* resolve label address */
1902 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1903 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1904 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1907 if (TCG_TARGET_REG_BITS == 32) {
1908 int ofs = 0;
1910 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1911 ofs += 4;
1913 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1914 ofs += 4;
1916 if (TARGET_LONG_BITS == 64) {
1917 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1918 ofs += 4;
1921 tcg_out_st(s, TCG_TYPE_I32, l->datalo_reg, TCG_REG_ESP, ofs);
1922 ofs += 4;
1924 if (s_bits == MO_64) {
1925 tcg_out_st(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_ESP, ofs);
1926 ofs += 4;
1929 tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1930 ofs += 4;
1932 retaddr = TCG_REG_EAX;
1933 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1934 tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP, ofs);
1935 } else {
1936 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1937 /* The second argument is already loaded with addrlo. */
1938 tcg_out_mov(s, (s_bits == MO_64 ? TCG_TYPE_I64 : TCG_TYPE_I32),
1939 tcg_target_call_iarg_regs[2], l->datalo_reg);
1940 tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[3], oi);
1942 if (ARRAY_SIZE(tcg_target_call_iarg_regs) > 4) {
1943 retaddr = tcg_target_call_iarg_regs[4];
1944 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1945 } else {
1946 retaddr = TCG_REG_RAX;
1947 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1948 tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP,
1949 TCG_TARGET_CALL_STACK_OFFSET);
1953 /* "Tail call" to the helper, with the return address back inline. */
1954 tcg_out_push(s, retaddr);
1955 tcg_out_jmp(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
1956 return true;
1958 #elif TCG_TARGET_REG_BITS == 32
1959 # define x86_guest_base_seg 0
1960 # define x86_guest_base_index -1
1961 # define x86_guest_base_offset guest_base
1962 #else
1963 static int x86_guest_base_seg;
1964 static int x86_guest_base_index = -1;
1965 static int32_t x86_guest_base_offset;
1966 # if defined(__x86_64__) && defined(__linux__)
1967 # include <asm/prctl.h>
1968 # include <sys/prctl.h>
1969 int arch_prctl(int code, unsigned long addr);
1970 static inline int setup_guest_base_seg(void)
1972 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
1973 return P_GS;
1975 return 0;
1977 # elif defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
1978 # include <machine/sysarch.h>
1979 static inline int setup_guest_base_seg(void)
1981 if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
1982 return P_GS;
1984 return 0;
1986 # else
1987 static inline int setup_guest_base_seg(void)
1989 return 0;
1991 # endif
1992 #endif /* SOFTMMU */
1994 static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
1995 TCGReg base, int index, intptr_t ofs,
1996 int seg, bool is64, TCGMemOp memop)
1998 const TCGMemOp real_bswap = memop & MO_BSWAP;
1999 TCGMemOp bswap = real_bswap;
2000 int rexw = is64 * P_REXW;
2001 int movop = OPC_MOVL_GvEv;
2003 if (have_movbe && real_bswap) {
2004 bswap = 0;
2005 movop = OPC_MOVBE_GyMy;
2008 switch (memop & MO_SSIZE) {
2009 case MO_UB:
2010 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + seg, datalo,
2011 base, index, 0, ofs);
2012 break;
2013 case MO_SB:
2014 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + seg, datalo,
2015 base, index, 0, ofs);
2016 break;
2017 case MO_UW:
2018 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + seg, datalo,
2019 base, index, 0, ofs);
2020 if (real_bswap) {
2021 tcg_out_rolw_8(s, datalo);
2023 break;
2024 case MO_SW:
2025 if (real_bswap) {
2026 if (have_movbe) {
2027 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
2028 datalo, base, index, 0, ofs);
2029 } else {
2030 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + seg, datalo,
2031 base, index, 0, ofs);
2032 tcg_out_rolw_8(s, datalo);
2034 tcg_out_modrm(s, OPC_MOVSWL + rexw, datalo, datalo);
2035 } else {
2036 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + seg,
2037 datalo, base, index, 0, ofs);
2039 break;
2040 case MO_UL:
2041 tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
2042 if (bswap) {
2043 tcg_out_bswap32(s, datalo);
2045 break;
2046 #if TCG_TARGET_REG_BITS == 64
2047 case MO_SL:
2048 if (real_bswap) {
2049 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2050 base, index, 0, ofs);
2051 if (bswap) {
2052 tcg_out_bswap32(s, datalo);
2054 tcg_out_ext32s(s, datalo, datalo);
2055 } else {
2056 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + seg, datalo,
2057 base, index, 0, ofs);
2059 break;
2060 #endif
2061 case MO_Q:
2062 if (TCG_TARGET_REG_BITS == 64) {
2063 tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
2064 base, index, 0, ofs);
2065 if (bswap) {
2066 tcg_out_bswap64(s, datalo);
2068 } else {
2069 if (real_bswap) {
2070 int t = datalo;
2071 datalo = datahi;
2072 datahi = t;
2074 if (base != datalo) {
2075 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2076 base, index, 0, ofs);
2077 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2078 base, index, 0, ofs + 4);
2079 } else {
2080 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2081 base, index, 0, ofs + 4);
2082 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2083 base, index, 0, ofs);
2085 if (bswap) {
2086 tcg_out_bswap32(s, datalo);
2087 tcg_out_bswap32(s, datahi);
2090 break;
2091 default:
2092 tcg_abort();
2096 /* XXX: qemu_ld and qemu_st could be modified to clobber only EDX and
2097 EAX. It will be useful once fixed registers globals are less
2098 common. */
2099 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is64)
2101 TCGReg datalo, datahi, addrlo;
2102 TCGReg addrhi __attribute__((unused));
2103 TCGMemOpIdx oi;
2104 TCGMemOp opc;
2105 #if defined(CONFIG_SOFTMMU)
2106 int mem_index;
2107 tcg_insn_unit *label_ptr[2];
2108 #endif
2110 datalo = *args++;
2111 datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
2112 addrlo = *args++;
2113 addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
2114 oi = *args++;
2115 opc = get_memop(oi);
2117 #if defined(CONFIG_SOFTMMU)
2118 mem_index = get_mmuidx(oi);
2120 tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
2121 label_ptr, offsetof(CPUTLBEntry, addr_read));
2123 /* TLB Hit. */
2124 tcg_out_qemu_ld_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, is64, opc);
2126 /* Record the current context of a load into ldst label */
2127 add_qemu_ldst_label(s, true, is64, oi, datalo, datahi, addrlo, addrhi,
2128 s->code_ptr, label_ptr);
2129 #else
2130 tcg_out_qemu_ld_direct(s, datalo, datahi, addrlo, x86_guest_base_index,
2131 x86_guest_base_offset, x86_guest_base_seg,
2132 is64, opc);
2133 #endif
2136 static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2137 TCGReg base, int index, intptr_t ofs,
2138 int seg, TCGMemOp memop)
2140 /* ??? Ideally we wouldn't need a scratch register. For user-only,
2141 we could perform the bswap twice to restore the original value
2142 instead of moving to the scratch. But as it is, the L constraint
2143 means that TCG_REG_L0 is definitely free here. */
2144 const TCGReg scratch = TCG_REG_L0;
2145 const TCGMemOp real_bswap = memop & MO_BSWAP;
2146 TCGMemOp bswap = real_bswap;
2147 int movop = OPC_MOVL_EvGv;
2149 if (have_movbe && real_bswap) {
2150 bswap = 0;
2151 movop = OPC_MOVBE_MyGy;
2154 switch (memop & MO_SIZE) {
2155 case MO_8:
2156 /* In 32-bit mode, 8-bit stores can only happen from [abcd]x.
2157 Use the scratch register if necessary. */
2158 if (TCG_TARGET_REG_BITS == 32 && datalo >= 4) {
2159 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
2160 datalo = scratch;
2162 tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + seg,
2163 datalo, base, index, 0, ofs);
2164 break;
2165 case MO_16:
2166 if (bswap) {
2167 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
2168 tcg_out_rolw_8(s, scratch);
2169 datalo = scratch;
2171 tcg_out_modrm_sib_offset(s, movop + P_DATA16 + seg, datalo,
2172 base, index, 0, ofs);
2173 break;
2174 case MO_32:
2175 if (bswap) {
2176 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
2177 tcg_out_bswap32(s, scratch);
2178 datalo = scratch;
2180 tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
2181 break;
2182 case MO_64:
2183 if (TCG_TARGET_REG_BITS == 64) {
2184 if (bswap) {
2185 tcg_out_mov(s, TCG_TYPE_I64, scratch, datalo);
2186 tcg_out_bswap64(s, scratch);
2187 datalo = scratch;
2189 tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
2190 base, index, 0, ofs);
2191 } else if (bswap) {
2192 tcg_out_mov(s, TCG_TYPE_I32, scratch, datahi);
2193 tcg_out_bswap32(s, scratch);
2194 tcg_out_modrm_sib_offset(s, OPC_MOVL_EvGv + seg, scratch,
2195 base, index, 0, ofs);
2196 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
2197 tcg_out_bswap32(s, scratch);
2198 tcg_out_modrm_sib_offset(s, OPC_MOVL_EvGv + seg, scratch,
2199 base, index, 0, ofs + 4);
2200 } else {
2201 if (real_bswap) {
2202 int t = datalo;
2203 datalo = datahi;
2204 datahi = t;
2206 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2207 base, index, 0, ofs);
2208 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2209 base, index, 0, ofs + 4);
2211 break;
2212 default:
2213 tcg_abort();
2217 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is64)
2219 TCGReg datalo, datahi, addrlo;
2220 TCGReg addrhi __attribute__((unused));
2221 TCGMemOpIdx oi;
2222 TCGMemOp opc;
2223 #if defined(CONFIG_SOFTMMU)
2224 int mem_index;
2225 tcg_insn_unit *label_ptr[2];
2226 #endif
2228 datalo = *args++;
2229 datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
2230 addrlo = *args++;
2231 addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
2232 oi = *args++;
2233 opc = get_memop(oi);
2235 #if defined(CONFIG_SOFTMMU)
2236 mem_index = get_mmuidx(oi);
2238 tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
2239 label_ptr, offsetof(CPUTLBEntry, addr_write));
2241 /* TLB Hit. */
2242 tcg_out_qemu_st_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, opc);
2244 /* Record the current context of a store into ldst label */
2245 add_qemu_ldst_label(s, false, is64, oi, datalo, datahi, addrlo, addrhi,
2246 s->code_ptr, label_ptr);
2247 #else
2248 tcg_out_qemu_st_direct(s, datalo, datahi, addrlo, x86_guest_base_index,
2249 x86_guest_base_offset, x86_guest_base_seg, opc);
2250 #endif
2253 static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
2254 const TCGArg *args, const int *const_args)
2256 TCGArg a0, a1, a2;
2257 int c, const_a2, vexop, rexw = 0;
2259 #if TCG_TARGET_REG_BITS == 64
2260 # define OP_32_64(x) \
2261 case glue(glue(INDEX_op_, x), _i64): \
2262 rexw = P_REXW; /* FALLTHRU */ \
2263 case glue(glue(INDEX_op_, x), _i32)
2264 #else
2265 # define OP_32_64(x) \
2266 case glue(glue(INDEX_op_, x), _i32)
2267 #endif
2269 /* Hoist the loads of the most common arguments. */
2270 a0 = args[0];
2271 a1 = args[1];
2272 a2 = args[2];
2273 const_a2 = const_args[2];
2275 switch (opc) {
2276 case INDEX_op_exit_tb:
2277 /* Reuse the zeroing that exists for goto_ptr. */
2278 if (a0 == 0) {
2279 tcg_out_jmp(s, s->code_gen_epilogue);
2280 } else {
2281 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2282 tcg_out_jmp(s, tb_ret_addr);
2284 break;
2285 case INDEX_op_goto_tb:
2286 if (s->tb_jmp_insn_offset) {
2287 /* direct jump method */
2288 int gap;
2289 /* jump displacement must be aligned for atomic patching;
2290 * see if we need to add extra nops before jump
2292 gap = tcg_pcrel_diff(s, QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4));
2293 if (gap != 1) {
2294 tcg_out_nopn(s, gap - 1);
2296 tcg_out8(s, OPC_JMP_long); /* jmp im */
2297 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
2298 tcg_out32(s, 0);
2299 } else {
2300 /* indirect jump method */
2301 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, -1,
2302 (intptr_t)(s->tb_jmp_target_addr + a0));
2304 set_jmp_reset_offset(s, a0);
2305 break;
2306 case INDEX_op_goto_ptr:
2307 /* jmp to the given host address (could be epilogue) */
2308 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
2309 break;
2310 case INDEX_op_br:
2311 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
2312 break;
2313 OP_32_64(ld8u):
2314 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
2315 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
2316 break;
2317 OP_32_64(ld8s):
2318 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
2319 break;
2320 OP_32_64(ld16u):
2321 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
2322 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
2323 break;
2324 OP_32_64(ld16s):
2325 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
2326 break;
2327 #if TCG_TARGET_REG_BITS == 64
2328 case INDEX_op_ld32u_i64:
2329 #endif
2330 case INDEX_op_ld_i32:
2331 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
2332 break;
2334 OP_32_64(st8):
2335 if (const_args[0]) {
2336 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
2337 tcg_out8(s, a0);
2338 } else {
2339 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
2341 break;
2342 OP_32_64(st16):
2343 if (const_args[0]) {
2344 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
2345 tcg_out16(s, a0);
2346 } else {
2347 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
2349 break;
2350 #if TCG_TARGET_REG_BITS == 64
2351 case INDEX_op_st32_i64:
2352 #endif
2353 case INDEX_op_st_i32:
2354 if (const_args[0]) {
2355 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
2356 tcg_out32(s, a0);
2357 } else {
2358 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
2360 break;
2362 OP_32_64(add):
2363 /* For 3-operand addition, use LEA. */
2364 if (a0 != a1) {
2365 TCGArg c3 = 0;
2366 if (const_a2) {
2367 c3 = a2, a2 = -1;
2368 } else if (a0 == a2) {
2369 /* Watch out for dest = src + dest, since we've removed
2370 the matching constraint on the add. */
2371 tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2372 break;
2375 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3);
2376 break;
2378 c = ARITH_ADD;
2379 goto gen_arith;
2380 OP_32_64(sub):
2381 c = ARITH_SUB;
2382 goto gen_arith;
2383 OP_32_64(and):
2384 c = ARITH_AND;
2385 goto gen_arith;
2386 OP_32_64(or):
2387 c = ARITH_OR;
2388 goto gen_arith;
2389 OP_32_64(xor):
2390 c = ARITH_XOR;
2391 goto gen_arith;
2392 gen_arith:
2393 if (const_a2) {
2394 tgen_arithi(s, c + rexw, a0, a2, 0);
2395 } else {
2396 tgen_arithr(s, c + rexw, a0, a2);
2398 break;
2400 OP_32_64(andc):
2401 if (const_a2) {
2402 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2403 tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0);
2404 } else {
2405 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2407 break;
2409 OP_32_64(mul):
2410 if (const_a2) {
2411 int32_t val;
2412 val = a2;
2413 if (val == (int8_t)val) {
2414 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2415 tcg_out8(s, val);
2416 } else {
2417 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2418 tcg_out32(s, val);
2420 } else {
2421 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2423 break;
2425 OP_32_64(div2):
2426 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
2427 break;
2428 OP_32_64(divu2):
2429 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
2430 break;
2432 OP_32_64(shl):
2433 /* For small constant 3-operand shift, use LEA. */
2434 if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
2435 if (a2 - 1 == 0) {
2436 /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2437 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2438 } else {
2439 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2440 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2442 break;
2444 c = SHIFT_SHL;
2445 vexop = OPC_SHLX;
2446 goto gen_shift_maybe_vex;
2447 OP_32_64(shr):
2448 c = SHIFT_SHR;
2449 vexop = OPC_SHRX;
2450 goto gen_shift_maybe_vex;
2451 OP_32_64(sar):
2452 c = SHIFT_SAR;
2453 vexop = OPC_SARX;
2454 goto gen_shift_maybe_vex;
2455 OP_32_64(rotl):
2456 c = SHIFT_ROL;
2457 goto gen_shift;
2458 OP_32_64(rotr):
2459 c = SHIFT_ROR;
2460 goto gen_shift;
2461 gen_shift_maybe_vex:
2462 if (have_bmi2) {
2463 if (!const_a2) {
2464 tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
2465 break;
2467 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2469 /* FALLTHRU */
2470 gen_shift:
2471 if (const_a2) {
2472 tcg_out_shifti(s, c + rexw, a0, a2);
2473 } else {
2474 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
2476 break;
2478 OP_32_64(ctz):
2479 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
2480 break;
2481 OP_32_64(clz):
2482 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
2483 break;
2484 OP_32_64(ctpop):
2485 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2486 break;
2488 case INDEX_op_brcond_i32:
2489 tcg_out_brcond32(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2490 break;
2491 case INDEX_op_setcond_i32:
2492 tcg_out_setcond32(s, args[3], a0, a1, a2, const_a2);
2493 break;
2494 case INDEX_op_movcond_i32:
2495 tcg_out_movcond32(s, args[5], a0, a1, a2, const_a2, args[3]);
2496 break;
2498 OP_32_64(bswap16):
2499 tcg_out_rolw_8(s, a0);
2500 break;
2501 OP_32_64(bswap32):
2502 tcg_out_bswap32(s, a0);
2503 break;
2505 OP_32_64(neg):
2506 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2507 break;
2508 OP_32_64(not):
2509 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2510 break;
2512 OP_32_64(ext8s):
2513 tcg_out_ext8s(s, a0, a1, rexw);
2514 break;
2515 OP_32_64(ext16s):
2516 tcg_out_ext16s(s, a0, a1, rexw);
2517 break;
2518 OP_32_64(ext8u):
2519 tcg_out_ext8u(s, a0, a1);
2520 break;
2521 OP_32_64(ext16u):
2522 tcg_out_ext16u(s, a0, a1);
2523 break;
2525 case INDEX_op_qemu_ld_i32:
2526 tcg_out_qemu_ld(s, args, 0);
2527 break;
2528 case INDEX_op_qemu_ld_i64:
2529 tcg_out_qemu_ld(s, args, 1);
2530 break;
2531 case INDEX_op_qemu_st_i32:
2532 tcg_out_qemu_st(s, args, 0);
2533 break;
2534 case INDEX_op_qemu_st_i64:
2535 tcg_out_qemu_st(s, args, 1);
2536 break;
2538 OP_32_64(mulu2):
2539 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
2540 break;
2541 OP_32_64(muls2):
2542 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
2543 break;
2544 OP_32_64(add2):
2545 if (const_args[4]) {
2546 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
2547 } else {
2548 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
2550 if (const_args[5]) {
2551 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
2552 } else {
2553 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
2555 break;
2556 OP_32_64(sub2):
2557 if (const_args[4]) {
2558 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
2559 } else {
2560 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
2562 if (const_args[5]) {
2563 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
2564 } else {
2565 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
2567 break;
2569 #if TCG_TARGET_REG_BITS == 32
2570 case INDEX_op_brcond2_i32:
2571 tcg_out_brcond2(s, args, const_args, 0);
2572 break;
2573 case INDEX_op_setcond2_i32:
2574 tcg_out_setcond2(s, args, const_args);
2575 break;
2576 #else /* TCG_TARGET_REG_BITS == 64 */
2577 case INDEX_op_ld32s_i64:
2578 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
2579 break;
2580 case INDEX_op_ld_i64:
2581 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
2582 break;
2583 case INDEX_op_st_i64:
2584 if (const_args[0]) {
2585 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
2586 tcg_out32(s, a0);
2587 } else {
2588 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
2590 break;
2592 case INDEX_op_brcond_i64:
2593 tcg_out_brcond64(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2594 break;
2595 case INDEX_op_setcond_i64:
2596 tcg_out_setcond64(s, args[3], a0, a1, a2, const_a2);
2597 break;
2598 case INDEX_op_movcond_i64:
2599 tcg_out_movcond64(s, args[5], a0, a1, a2, const_a2, args[3]);
2600 break;
2602 case INDEX_op_bswap64_i64:
2603 tcg_out_bswap64(s, a0);
2604 break;
2605 case INDEX_op_extu_i32_i64:
2606 case INDEX_op_ext32u_i64:
2607 case INDEX_op_extrl_i64_i32:
2608 tcg_out_ext32u(s, a0, a1);
2609 break;
2610 case INDEX_op_ext_i32_i64:
2611 case INDEX_op_ext32s_i64:
2612 tcg_out_ext32s(s, a0, a1);
2613 break;
2614 case INDEX_op_extrh_i64_i32:
2615 tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
2616 break;
2617 #endif
2619 OP_32_64(deposit):
2620 if (args[3] == 0 && args[4] == 8) {
2621 /* load bits 0..7 */
2622 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
2623 } else if (args[3] == 8 && args[4] == 8) {
2624 /* load bits 8..15 */
2625 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
2626 } else if (args[3] == 0 && args[4] == 16) {
2627 /* load bits 0..15 */
2628 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
2629 } else {
2630 tcg_abort();
2632 break;
2634 case INDEX_op_extract_i64:
2635 if (a2 + args[3] == 32) {
2636 /* This is a 32-bit zero-extending right shift. */
2637 tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
2638 tcg_out_shifti(s, SHIFT_SHR, a0, a2);
2639 break;
2641 /* FALLTHRU */
2642 case INDEX_op_extract_i32:
2643 /* On the off-chance that we can use the high-byte registers.
2644 Otherwise we emit the same ext16 + shift pattern that we
2645 would have gotten from the normal tcg-op.c expansion. */
2646 tcg_debug_assert(a2 == 8 && args[3] == 8);
2647 if (a1 < 4 && a0 < 8) {
2648 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
2649 } else {
2650 tcg_out_ext16u(s, a0, a1);
2651 tcg_out_shifti(s, SHIFT_SHR, a0, 8);
2653 break;
2655 case INDEX_op_sextract_i32:
2656 /* We don't implement sextract_i64, as we cannot sign-extend to
2657 64-bits without using the REX prefix that explicitly excludes
2658 access to the high-byte registers. */
2659 tcg_debug_assert(a2 == 8 && args[3] == 8);
2660 if (a1 < 4 && a0 < 8) {
2661 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
2662 } else {
2663 tcg_out_ext16s(s, a0, a1, 0);
2664 tcg_out_shifti(s, SHIFT_SAR, a0, 8);
2666 break;
2668 OP_32_64(extract2):
2669 /* Note that SHRD outputs to the r/m operand. */
2670 tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
2671 tcg_out8(s, args[3]);
2672 break;
2674 case INDEX_op_mb:
2675 tcg_out_mb(s, a0);
2676 break;
2677 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
2678 case INDEX_op_mov_i64:
2679 case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
2680 case INDEX_op_movi_i64:
2681 case INDEX_op_call: /* Always emitted via tcg_out_call. */
2682 default:
2683 tcg_abort();
2686 #undef OP_32_64
2689 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
2690 unsigned vecl, unsigned vece,
2691 const TCGArg *args, const int *const_args)
2693 static int const add_insn[4] = {
2694 OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
2696 static int const ssadd_insn[4] = {
2697 OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
2699 static int const usadd_insn[4] = {
2700 OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
2702 static int const sub_insn[4] = {
2703 OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
2705 static int const sssub_insn[4] = {
2706 OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
2708 static int const ussub_insn[4] = {
2709 OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
2711 static int const mul_insn[4] = {
2712 OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_UD2
2714 static int const shift_imm_insn[4] = {
2715 OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
2717 static int const cmpeq_insn[4] = {
2718 OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
2720 static int const cmpgt_insn[4] = {
2721 OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
2723 static int const punpckl_insn[4] = {
2724 OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
2726 static int const punpckh_insn[4] = {
2727 OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
2729 static int const packss_insn[4] = {
2730 OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
2732 static int const packus_insn[4] = {
2733 OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
2735 static int const smin_insn[4] = {
2736 OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_UD2
2738 static int const smax_insn[4] = {
2739 OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_UD2
2741 static int const umin_insn[4] = {
2742 OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_UD2
2744 static int const umax_insn[4] = {
2745 OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_UD2
2747 static int const shlv_insn[4] = {
2748 /* TODO: AVX512 adds support for MO_16. */
2749 OPC_UD2, OPC_UD2, OPC_VPSLLVD, OPC_VPSLLVQ
2751 static int const shrv_insn[4] = {
2752 /* TODO: AVX512 adds support for MO_16. */
2753 OPC_UD2, OPC_UD2, OPC_VPSRLVD, OPC_VPSRLVQ
2755 static int const sarv_insn[4] = {
2756 /* TODO: AVX512 adds support for MO_16, MO_64. */
2757 OPC_UD2, OPC_UD2, OPC_VPSRAVD, OPC_UD2
2759 static int const shls_insn[4] = {
2760 OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
2762 static int const shrs_insn[4] = {
2763 OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
2765 static int const sars_insn[4] = {
2766 OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_UD2
2768 static int const abs_insn[4] = {
2769 /* TODO: AVX512 adds support for MO_64. */
2770 OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_UD2
2773 TCGType type = vecl + TCG_TYPE_V64;
2774 int insn, sub;
2775 TCGArg a0, a1, a2;
2777 a0 = args[0];
2778 a1 = args[1];
2779 a2 = args[2];
2781 switch (opc) {
2782 case INDEX_op_add_vec:
2783 insn = add_insn[vece];
2784 goto gen_simd;
2785 case INDEX_op_ssadd_vec:
2786 insn = ssadd_insn[vece];
2787 goto gen_simd;
2788 case INDEX_op_usadd_vec:
2789 insn = usadd_insn[vece];
2790 goto gen_simd;
2791 case INDEX_op_sub_vec:
2792 insn = sub_insn[vece];
2793 goto gen_simd;
2794 case INDEX_op_sssub_vec:
2795 insn = sssub_insn[vece];
2796 goto gen_simd;
2797 case INDEX_op_ussub_vec:
2798 insn = ussub_insn[vece];
2799 goto gen_simd;
2800 case INDEX_op_mul_vec:
2801 insn = mul_insn[vece];
2802 goto gen_simd;
2803 case INDEX_op_and_vec:
2804 insn = OPC_PAND;
2805 goto gen_simd;
2806 case INDEX_op_or_vec:
2807 insn = OPC_POR;
2808 goto gen_simd;
2809 case INDEX_op_xor_vec:
2810 insn = OPC_PXOR;
2811 goto gen_simd;
2812 case INDEX_op_smin_vec:
2813 insn = smin_insn[vece];
2814 goto gen_simd;
2815 case INDEX_op_umin_vec:
2816 insn = umin_insn[vece];
2817 goto gen_simd;
2818 case INDEX_op_smax_vec:
2819 insn = smax_insn[vece];
2820 goto gen_simd;
2821 case INDEX_op_umax_vec:
2822 insn = umax_insn[vece];
2823 goto gen_simd;
2824 case INDEX_op_shlv_vec:
2825 insn = shlv_insn[vece];
2826 goto gen_simd;
2827 case INDEX_op_shrv_vec:
2828 insn = shrv_insn[vece];
2829 goto gen_simd;
2830 case INDEX_op_sarv_vec:
2831 insn = sarv_insn[vece];
2832 goto gen_simd;
2833 case INDEX_op_shls_vec:
2834 insn = shls_insn[vece];
2835 goto gen_simd;
2836 case INDEX_op_shrs_vec:
2837 insn = shrs_insn[vece];
2838 goto gen_simd;
2839 case INDEX_op_sars_vec:
2840 insn = sars_insn[vece];
2841 goto gen_simd;
2842 case INDEX_op_x86_punpckl_vec:
2843 insn = punpckl_insn[vece];
2844 goto gen_simd;
2845 case INDEX_op_x86_punpckh_vec:
2846 insn = punpckh_insn[vece];
2847 goto gen_simd;
2848 case INDEX_op_x86_packss_vec:
2849 insn = packss_insn[vece];
2850 goto gen_simd;
2851 case INDEX_op_x86_packus_vec:
2852 insn = packus_insn[vece];
2853 goto gen_simd;
2854 #if TCG_TARGET_REG_BITS == 32
2855 case INDEX_op_dup2_vec:
2856 /* Constraints have already placed both 32-bit inputs in xmm regs. */
2857 insn = OPC_PUNPCKLDQ;
2858 goto gen_simd;
2859 #endif
2860 case INDEX_op_abs_vec:
2861 insn = abs_insn[vece];
2862 a2 = a1;
2863 a1 = 0;
2864 goto gen_simd;
2865 gen_simd:
2866 tcg_debug_assert(insn != OPC_UD2);
2867 if (type == TCG_TYPE_V256) {
2868 insn |= P_VEXL;
2870 tcg_out_vex_modrm(s, insn, a0, a1, a2);
2871 break;
2873 case INDEX_op_cmp_vec:
2874 sub = args[3];
2875 if (sub == TCG_COND_EQ) {
2876 insn = cmpeq_insn[vece];
2877 } else if (sub == TCG_COND_GT) {
2878 insn = cmpgt_insn[vece];
2879 } else {
2880 g_assert_not_reached();
2882 goto gen_simd;
2884 case INDEX_op_andc_vec:
2885 insn = OPC_PANDN;
2886 if (type == TCG_TYPE_V256) {
2887 insn |= P_VEXL;
2889 tcg_out_vex_modrm(s, insn, a0, a2, a1);
2890 break;
2892 case INDEX_op_shli_vec:
2893 sub = 6;
2894 goto gen_shift;
2895 case INDEX_op_shri_vec:
2896 sub = 2;
2897 goto gen_shift;
2898 case INDEX_op_sari_vec:
2899 tcg_debug_assert(vece != MO_64);
2900 sub = 4;
2901 gen_shift:
2902 tcg_debug_assert(vece != MO_8);
2903 insn = shift_imm_insn[vece];
2904 if (type == TCG_TYPE_V256) {
2905 insn |= P_VEXL;
2907 tcg_out_vex_modrm(s, insn, sub, a0, a1);
2908 tcg_out8(s, a2);
2909 break;
2911 case INDEX_op_ld_vec:
2912 tcg_out_ld(s, type, a0, a1, a2);
2913 break;
2914 case INDEX_op_st_vec:
2915 tcg_out_st(s, type, a0, a1, a2);
2916 break;
2917 case INDEX_op_dupm_vec:
2918 tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
2919 break;
2921 case INDEX_op_x86_shufps_vec:
2922 insn = OPC_SHUFPS;
2923 sub = args[3];
2924 goto gen_simd_imm8;
2925 case INDEX_op_x86_blend_vec:
2926 if (vece == MO_16) {
2927 insn = OPC_PBLENDW;
2928 } else if (vece == MO_32) {
2929 insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
2930 } else {
2931 g_assert_not_reached();
2933 sub = args[3];
2934 goto gen_simd_imm8;
2935 case INDEX_op_x86_vperm2i128_vec:
2936 insn = OPC_VPERM2I128;
2937 sub = args[3];
2938 goto gen_simd_imm8;
2939 gen_simd_imm8:
2940 if (type == TCG_TYPE_V256) {
2941 insn |= P_VEXL;
2943 tcg_out_vex_modrm(s, insn, a0, a1, a2);
2944 tcg_out8(s, sub);
2945 break;
2947 case INDEX_op_x86_vpblendvb_vec:
2948 insn = OPC_VPBLENDVB;
2949 if (type == TCG_TYPE_V256) {
2950 insn |= P_VEXL;
2952 tcg_out_vex_modrm(s, insn, a0, a1, a2);
2953 tcg_out8(s, args[3] << 4);
2954 break;
2956 case INDEX_op_x86_psrldq_vec:
2957 tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
2958 tcg_out8(s, a2);
2959 break;
2961 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
2962 case INDEX_op_dupi_vec: /* Always emitted via tcg_out_movi. */
2963 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
2964 default:
2965 g_assert_not_reached();
2969 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode op)
2971 static const TCGTargetOpDef r = { .args_ct_str = { "r" } };
2972 static const TCGTargetOpDef ri_r = { .args_ct_str = { "ri", "r" } };
2973 static const TCGTargetOpDef re_r = { .args_ct_str = { "re", "r" } };
2974 static const TCGTargetOpDef qi_r = { .args_ct_str = { "qi", "r" } };
2975 static const TCGTargetOpDef r_r = { .args_ct_str = { "r", "r" } };
2976 static const TCGTargetOpDef r_q = { .args_ct_str = { "r", "q" } };
2977 static const TCGTargetOpDef r_re = { .args_ct_str = { "r", "re" } };
2978 static const TCGTargetOpDef r_0 = { .args_ct_str = { "r", "0" } };
2979 static const TCGTargetOpDef r_r_ri = { .args_ct_str = { "r", "r", "ri" } };
2980 static const TCGTargetOpDef r_r_re = { .args_ct_str = { "r", "r", "re" } };
2981 static const TCGTargetOpDef r_0_r = { .args_ct_str = { "r", "0", "r" } };
2982 static const TCGTargetOpDef r_0_re = { .args_ct_str = { "r", "0", "re" } };
2983 static const TCGTargetOpDef r_0_ci = { .args_ct_str = { "r", "0", "ci" } };
2984 static const TCGTargetOpDef r_L = { .args_ct_str = { "r", "L" } };
2985 static const TCGTargetOpDef L_L = { .args_ct_str = { "L", "L" } };
2986 static const TCGTargetOpDef r_L_L = { .args_ct_str = { "r", "L", "L" } };
2987 static const TCGTargetOpDef r_r_L = { .args_ct_str = { "r", "r", "L" } };
2988 static const TCGTargetOpDef L_L_L = { .args_ct_str = { "L", "L", "L" } };
2989 static const TCGTargetOpDef r_r_L_L
2990 = { .args_ct_str = { "r", "r", "L", "L" } };
2991 static const TCGTargetOpDef L_L_L_L
2992 = { .args_ct_str = { "L", "L", "L", "L" } };
2993 static const TCGTargetOpDef x_x = { .args_ct_str = { "x", "x" } };
2994 static const TCGTargetOpDef x_x_x = { .args_ct_str = { "x", "x", "x" } };
2995 static const TCGTargetOpDef x_x_x_x
2996 = { .args_ct_str = { "x", "x", "x", "x" } };
2997 static const TCGTargetOpDef x_r = { .args_ct_str = { "x", "r" } };
2999 switch (op) {
3000 case INDEX_op_goto_ptr:
3001 return &r;
3003 case INDEX_op_ld8u_i32:
3004 case INDEX_op_ld8u_i64:
3005 case INDEX_op_ld8s_i32:
3006 case INDEX_op_ld8s_i64:
3007 case INDEX_op_ld16u_i32:
3008 case INDEX_op_ld16u_i64:
3009 case INDEX_op_ld16s_i32:
3010 case INDEX_op_ld16s_i64:
3011 case INDEX_op_ld_i32:
3012 case INDEX_op_ld32u_i64:
3013 case INDEX_op_ld32s_i64:
3014 case INDEX_op_ld_i64:
3015 return &r_r;
3017 case INDEX_op_st8_i32:
3018 case INDEX_op_st8_i64:
3019 return &qi_r;
3020 case INDEX_op_st16_i32:
3021 case INDEX_op_st16_i64:
3022 case INDEX_op_st_i32:
3023 case INDEX_op_st32_i64:
3024 return &ri_r;
3025 case INDEX_op_st_i64:
3026 return &re_r;
3028 case INDEX_op_add_i32:
3029 case INDEX_op_add_i64:
3030 return &r_r_re;
3031 case INDEX_op_sub_i32:
3032 case INDEX_op_sub_i64:
3033 case INDEX_op_mul_i32:
3034 case INDEX_op_mul_i64:
3035 case INDEX_op_or_i32:
3036 case INDEX_op_or_i64:
3037 case INDEX_op_xor_i32:
3038 case INDEX_op_xor_i64:
3039 return &r_0_re;
3041 case INDEX_op_and_i32:
3042 case INDEX_op_and_i64:
3044 static const TCGTargetOpDef and
3045 = { .args_ct_str = { "r", "0", "reZ" } };
3046 return &and;
3048 break;
3049 case INDEX_op_andc_i32:
3050 case INDEX_op_andc_i64:
3052 static const TCGTargetOpDef andc
3053 = { .args_ct_str = { "r", "r", "rI" } };
3054 return &andc;
3056 break;
3058 case INDEX_op_shl_i32:
3059 case INDEX_op_shl_i64:
3060 case INDEX_op_shr_i32:
3061 case INDEX_op_shr_i64:
3062 case INDEX_op_sar_i32:
3063 case INDEX_op_sar_i64:
3064 return have_bmi2 ? &r_r_ri : &r_0_ci;
3065 case INDEX_op_rotl_i32:
3066 case INDEX_op_rotl_i64:
3067 case INDEX_op_rotr_i32:
3068 case INDEX_op_rotr_i64:
3069 return &r_0_ci;
3071 case INDEX_op_brcond_i32:
3072 case INDEX_op_brcond_i64:
3073 return &r_re;
3075 case INDEX_op_bswap16_i32:
3076 case INDEX_op_bswap16_i64:
3077 case INDEX_op_bswap32_i32:
3078 case INDEX_op_bswap32_i64:
3079 case INDEX_op_bswap64_i64:
3080 case INDEX_op_neg_i32:
3081 case INDEX_op_neg_i64:
3082 case INDEX_op_not_i32:
3083 case INDEX_op_not_i64:
3084 case INDEX_op_extrh_i64_i32:
3085 return &r_0;
3087 case INDEX_op_ext8s_i32:
3088 case INDEX_op_ext8s_i64:
3089 case INDEX_op_ext8u_i32:
3090 case INDEX_op_ext8u_i64:
3091 return &r_q;
3092 case INDEX_op_ext16s_i32:
3093 case INDEX_op_ext16s_i64:
3094 case INDEX_op_ext16u_i32:
3095 case INDEX_op_ext16u_i64:
3096 case INDEX_op_ext32s_i64:
3097 case INDEX_op_ext32u_i64:
3098 case INDEX_op_ext_i32_i64:
3099 case INDEX_op_extu_i32_i64:
3100 case INDEX_op_extrl_i64_i32:
3101 case INDEX_op_extract_i32:
3102 case INDEX_op_extract_i64:
3103 case INDEX_op_sextract_i32:
3104 case INDEX_op_ctpop_i32:
3105 case INDEX_op_ctpop_i64:
3106 return &r_r;
3107 case INDEX_op_extract2_i32:
3108 case INDEX_op_extract2_i64:
3109 return &r_0_r;
3111 case INDEX_op_deposit_i32:
3112 case INDEX_op_deposit_i64:
3114 static const TCGTargetOpDef dep
3115 = { .args_ct_str = { "Q", "0", "Q" } };
3116 return &dep;
3118 case INDEX_op_setcond_i32:
3119 case INDEX_op_setcond_i64:
3121 static const TCGTargetOpDef setc
3122 = { .args_ct_str = { "q", "r", "re" } };
3123 return &setc;
3125 case INDEX_op_movcond_i32:
3126 case INDEX_op_movcond_i64:
3128 static const TCGTargetOpDef movc
3129 = { .args_ct_str = { "r", "r", "re", "r", "0" } };
3130 return &movc;
3132 case INDEX_op_div2_i32:
3133 case INDEX_op_div2_i64:
3134 case INDEX_op_divu2_i32:
3135 case INDEX_op_divu2_i64:
3137 static const TCGTargetOpDef div2
3138 = { .args_ct_str = { "a", "d", "0", "1", "r" } };
3139 return &div2;
3141 case INDEX_op_mulu2_i32:
3142 case INDEX_op_mulu2_i64:
3143 case INDEX_op_muls2_i32:
3144 case INDEX_op_muls2_i64:
3146 static const TCGTargetOpDef mul2
3147 = { .args_ct_str = { "a", "d", "a", "r" } };
3148 return &mul2;
3150 case INDEX_op_add2_i32:
3151 case INDEX_op_add2_i64:
3152 case INDEX_op_sub2_i32:
3153 case INDEX_op_sub2_i64:
3155 static const TCGTargetOpDef arith2
3156 = { .args_ct_str = { "r", "r", "0", "1", "re", "re" } };
3157 return &arith2;
3159 case INDEX_op_ctz_i32:
3160 case INDEX_op_ctz_i64:
3162 static const TCGTargetOpDef ctz[2] = {
3163 { .args_ct_str = { "&r", "r", "r" } },
3164 { .args_ct_str = { "&r", "r", "rW" } },
3166 return &ctz[have_bmi1];
3168 case INDEX_op_clz_i32:
3169 case INDEX_op_clz_i64:
3171 static const TCGTargetOpDef clz[2] = {
3172 { .args_ct_str = { "&r", "r", "r" } },
3173 { .args_ct_str = { "&r", "r", "rW" } },
3175 return &clz[have_lzcnt];
3178 case INDEX_op_qemu_ld_i32:
3179 return TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &r_L : &r_L_L;
3180 case INDEX_op_qemu_st_i32:
3181 return TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &L_L : &L_L_L;
3182 case INDEX_op_qemu_ld_i64:
3183 return (TCG_TARGET_REG_BITS == 64 ? &r_L
3184 : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &r_r_L
3185 : &r_r_L_L);
3186 case INDEX_op_qemu_st_i64:
3187 return (TCG_TARGET_REG_BITS == 64 ? &L_L
3188 : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &L_L_L
3189 : &L_L_L_L);
3191 case INDEX_op_brcond2_i32:
3193 static const TCGTargetOpDef b2
3194 = { .args_ct_str = { "r", "r", "ri", "ri" } };
3195 return &b2;
3197 case INDEX_op_setcond2_i32:
3199 static const TCGTargetOpDef s2
3200 = { .args_ct_str = { "r", "r", "r", "ri", "ri" } };
3201 return &s2;
3204 case INDEX_op_ld_vec:
3205 case INDEX_op_st_vec:
3206 case INDEX_op_dupm_vec:
3207 return &x_r;
3209 case INDEX_op_add_vec:
3210 case INDEX_op_sub_vec:
3211 case INDEX_op_mul_vec:
3212 case INDEX_op_and_vec:
3213 case INDEX_op_or_vec:
3214 case INDEX_op_xor_vec:
3215 case INDEX_op_andc_vec:
3216 case INDEX_op_ssadd_vec:
3217 case INDEX_op_usadd_vec:
3218 case INDEX_op_sssub_vec:
3219 case INDEX_op_ussub_vec:
3220 case INDEX_op_smin_vec:
3221 case INDEX_op_umin_vec:
3222 case INDEX_op_smax_vec:
3223 case INDEX_op_umax_vec:
3224 case INDEX_op_shlv_vec:
3225 case INDEX_op_shrv_vec:
3226 case INDEX_op_sarv_vec:
3227 case INDEX_op_shls_vec:
3228 case INDEX_op_shrs_vec:
3229 case INDEX_op_sars_vec:
3230 case INDEX_op_cmp_vec:
3231 case INDEX_op_x86_shufps_vec:
3232 case INDEX_op_x86_blend_vec:
3233 case INDEX_op_x86_packss_vec:
3234 case INDEX_op_x86_packus_vec:
3235 case INDEX_op_x86_vperm2i128_vec:
3236 case INDEX_op_x86_punpckl_vec:
3237 case INDEX_op_x86_punpckh_vec:
3238 #if TCG_TARGET_REG_BITS == 32
3239 case INDEX_op_dup2_vec:
3240 #endif
3241 return &x_x_x;
3242 case INDEX_op_abs_vec:
3243 case INDEX_op_dup_vec:
3244 case INDEX_op_shli_vec:
3245 case INDEX_op_shri_vec:
3246 case INDEX_op_sari_vec:
3247 case INDEX_op_x86_psrldq_vec:
3248 return &x_x;
3249 case INDEX_op_x86_vpblendvb_vec:
3250 return &x_x_x_x;
3252 default:
3253 break;
3255 return NULL;
3258 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3260 switch (opc) {
3261 case INDEX_op_add_vec:
3262 case INDEX_op_sub_vec:
3263 case INDEX_op_and_vec:
3264 case INDEX_op_or_vec:
3265 case INDEX_op_xor_vec:
3266 case INDEX_op_andc_vec:
3267 return 1;
3268 case INDEX_op_cmp_vec:
3269 case INDEX_op_cmpsel_vec:
3270 return -1;
3272 case INDEX_op_shli_vec:
3273 case INDEX_op_shri_vec:
3274 /* We must expand the operation for MO_8. */
3275 return vece == MO_8 ? -1 : 1;
3277 case INDEX_op_sari_vec:
3278 /* We must expand the operation for MO_8. */
3279 if (vece == MO_8) {
3280 return -1;
3282 /* We can emulate this for MO_64, but it does not pay off
3283 unless we're producing at least 4 values. */
3284 if (vece == MO_64) {
3285 return type >= TCG_TYPE_V256 ? -1 : 0;
3287 return 1;
3289 case INDEX_op_shls_vec:
3290 case INDEX_op_shrs_vec:
3291 return vece >= MO_16;
3292 case INDEX_op_sars_vec:
3293 return vece >= MO_16 && vece <= MO_32;
3295 case INDEX_op_shlv_vec:
3296 case INDEX_op_shrv_vec:
3297 return have_avx2 && vece >= MO_32;
3298 case INDEX_op_sarv_vec:
3299 return have_avx2 && vece == MO_32;
3301 case INDEX_op_mul_vec:
3302 if (vece == MO_8) {
3303 /* We can expand the operation for MO_8. */
3304 return -1;
3306 if (vece == MO_64) {
3307 return 0;
3309 return 1;
3311 case INDEX_op_ssadd_vec:
3312 case INDEX_op_usadd_vec:
3313 case INDEX_op_sssub_vec:
3314 case INDEX_op_ussub_vec:
3315 return vece <= MO_16;
3316 case INDEX_op_smin_vec:
3317 case INDEX_op_smax_vec:
3318 case INDEX_op_umin_vec:
3319 case INDEX_op_umax_vec:
3320 case INDEX_op_abs_vec:
3321 return vece <= MO_32;
3323 default:
3324 return 0;
3328 static void expand_vec_shi(TCGType type, unsigned vece, bool shr,
3329 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3331 TCGv_vec t1, t2;
3333 tcg_debug_assert(vece == MO_8);
3335 t1 = tcg_temp_new_vec(type);
3336 t2 = tcg_temp_new_vec(type);
3338 /* Unpack to W, shift, and repack. Tricky bits:
3339 (1) Use punpck*bw x,x to produce DDCCBBAA,
3340 i.e. duplicate in other half of the 16-bit lane.
3341 (2) For right-shift, add 8 so that the high half of
3342 the lane becomes zero. For left-shift, we must
3343 shift up and down again.
3344 (3) Step 2 leaves high half zero such that PACKUSWB
3345 (pack with unsigned saturation) does not modify
3346 the quantity. */
3347 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3348 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3349 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3350 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3352 if (shr) {
3353 tcg_gen_shri_vec(MO_16, t1, t1, imm + 8);
3354 tcg_gen_shri_vec(MO_16, t2, t2, imm + 8);
3355 } else {
3356 tcg_gen_shli_vec(MO_16, t1, t1, imm + 8);
3357 tcg_gen_shli_vec(MO_16, t2, t2, imm + 8);
3358 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3359 tcg_gen_shri_vec(MO_16, t2, t2, 8);
3362 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3363 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3364 tcg_temp_free_vec(t1);
3365 tcg_temp_free_vec(t2);
3368 static void expand_vec_sari(TCGType type, unsigned vece,
3369 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3371 TCGv_vec t1, t2;
3373 switch (vece) {
3374 case MO_8:
3375 /* Unpack to W, shift, and repack, as in expand_vec_shi. */
3376 t1 = tcg_temp_new_vec(type);
3377 t2 = tcg_temp_new_vec(type);
3378 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3379 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3380 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3381 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3382 tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
3383 tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
3384 vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
3385 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3386 tcg_temp_free_vec(t1);
3387 tcg_temp_free_vec(t2);
3388 break;
3390 case MO_64:
3391 if (imm <= 32) {
3392 /* We can emulate a small sign extend by performing an arithmetic
3393 * 32-bit shift and overwriting the high half of a 64-bit logical
3394 * shift (note that the ISA says shift of 32 is valid).
3396 t1 = tcg_temp_new_vec(type);
3397 tcg_gen_sari_vec(MO_32, t1, v1, imm);
3398 tcg_gen_shri_vec(MO_64, v0, v1, imm);
3399 vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
3400 tcgv_vec_arg(v0), tcgv_vec_arg(v0),
3401 tcgv_vec_arg(t1), 0xaa);
3402 tcg_temp_free_vec(t1);
3403 } else {
3404 /* Otherwise we will need to use a compare vs 0 to produce
3405 * the sign-extend, shift and merge.
3407 t1 = tcg_const_zeros_vec(type);
3408 tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1, t1, v1);
3409 tcg_gen_shri_vec(MO_64, v0, v1, imm);
3410 tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
3411 tcg_gen_or_vec(MO_64, v0, v0, t1);
3412 tcg_temp_free_vec(t1);
3414 break;
3416 default:
3417 g_assert_not_reached();
3421 static void expand_vec_mul(TCGType type, unsigned vece,
3422 TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
3424 TCGv_vec t1, t2, t3, t4;
3426 tcg_debug_assert(vece == MO_8);
3429 * Unpack v1 bytes to words, 0 | x.
3430 * Unpack v2 bytes to words, y | 0.
3431 * This leaves the 8-bit result, x * y, with 8 bits of right padding.
3432 * Shift logical right by 8 bits to clear the high 8 bytes before
3433 * using an unsigned saturated pack.
3435 * The difference between the V64, V128 and V256 cases is merely how
3436 * we distribute the expansion between temporaries.
3438 switch (type) {
3439 case TCG_TYPE_V64:
3440 t1 = tcg_temp_new_vec(TCG_TYPE_V128);
3441 t2 = tcg_temp_new_vec(TCG_TYPE_V128);
3442 tcg_gen_dup16i_vec(t2, 0);
3443 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3444 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(t2));
3445 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3446 tcgv_vec_arg(t2), tcgv_vec_arg(t2), tcgv_vec_arg(v2));
3447 tcg_gen_mul_vec(MO_16, t1, t1, t2);
3448 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3449 vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
3450 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
3451 tcg_temp_free_vec(t1);
3452 tcg_temp_free_vec(t2);
3453 break;
3455 case TCG_TYPE_V128:
3456 case TCG_TYPE_V256:
3457 t1 = tcg_temp_new_vec(type);
3458 t2 = tcg_temp_new_vec(type);
3459 t3 = tcg_temp_new_vec(type);
3460 t4 = tcg_temp_new_vec(type);
3461 tcg_gen_dup16i_vec(t4, 0);
3462 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3463 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(t4));
3464 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3465 tcgv_vec_arg(t2), tcgv_vec_arg(t4), tcgv_vec_arg(v2));
3466 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3467 tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(t4));
3468 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3469 tcgv_vec_arg(t4), tcgv_vec_arg(t4), tcgv_vec_arg(v2));
3470 tcg_gen_mul_vec(MO_16, t1, t1, t2);
3471 tcg_gen_mul_vec(MO_16, t3, t3, t4);
3472 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3473 tcg_gen_shri_vec(MO_16, t3, t3, 8);
3474 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3475 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
3476 tcg_temp_free_vec(t1);
3477 tcg_temp_free_vec(t2);
3478 tcg_temp_free_vec(t3);
3479 tcg_temp_free_vec(t4);
3480 break;
3482 default:
3483 g_assert_not_reached();
3487 static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0,
3488 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3490 enum {
3491 NEED_INV = 1,
3492 NEED_SWAP = 2,
3493 NEED_BIAS = 4,
3494 NEED_UMIN = 8,
3495 NEED_UMAX = 16,
3497 TCGv_vec t1, t2;
3498 uint8_t fixup;
3500 switch (cond) {
3501 case TCG_COND_EQ:
3502 case TCG_COND_GT:
3503 fixup = 0;
3504 break;
3505 case TCG_COND_NE:
3506 case TCG_COND_LE:
3507 fixup = NEED_INV;
3508 break;
3509 case TCG_COND_LT:
3510 fixup = NEED_SWAP;
3511 break;
3512 case TCG_COND_GE:
3513 fixup = NEED_SWAP | NEED_INV;
3514 break;
3515 case TCG_COND_LEU:
3516 if (vece <= MO_32) {
3517 fixup = NEED_UMIN;
3518 } else {
3519 fixup = NEED_BIAS | NEED_INV;
3521 break;
3522 case TCG_COND_GTU:
3523 if (vece <= MO_32) {
3524 fixup = NEED_UMIN | NEED_INV;
3525 } else {
3526 fixup = NEED_BIAS;
3528 break;
3529 case TCG_COND_GEU:
3530 if (vece <= MO_32) {
3531 fixup = NEED_UMAX;
3532 } else {
3533 fixup = NEED_BIAS | NEED_SWAP | NEED_INV;
3535 break;
3536 case TCG_COND_LTU:
3537 if (vece <= MO_32) {
3538 fixup = NEED_UMAX | NEED_INV;
3539 } else {
3540 fixup = NEED_BIAS | NEED_SWAP;
3542 break;
3543 default:
3544 g_assert_not_reached();
3547 if (fixup & NEED_INV) {
3548 cond = tcg_invert_cond(cond);
3550 if (fixup & NEED_SWAP) {
3551 t1 = v1, v1 = v2, v2 = t1;
3552 cond = tcg_swap_cond(cond);
3555 t1 = t2 = NULL;
3556 if (fixup & (NEED_UMIN | NEED_UMAX)) {
3557 t1 = tcg_temp_new_vec(type);
3558 if (fixup & NEED_UMIN) {
3559 tcg_gen_umin_vec(vece, t1, v1, v2);
3560 } else {
3561 tcg_gen_umax_vec(vece, t1, v1, v2);
3563 v2 = t1;
3564 cond = TCG_COND_EQ;
3565 } else if (fixup & NEED_BIAS) {
3566 t1 = tcg_temp_new_vec(type);
3567 t2 = tcg_temp_new_vec(type);
3568 tcg_gen_dupi_vec(vece, t2, 1ull << ((8 << vece) - 1));
3569 tcg_gen_sub_vec(vece, t1, v1, t2);
3570 tcg_gen_sub_vec(vece, t2, v2, t2);
3571 v1 = t1;
3572 v2 = t2;
3573 cond = tcg_signed_cond(cond);
3576 tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT);
3577 /* Expand directly; do not recurse. */
3578 vec_gen_4(INDEX_op_cmp_vec, type, vece,
3579 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3581 if (t1) {
3582 tcg_temp_free_vec(t1);
3583 if (t2) {
3584 tcg_temp_free_vec(t2);
3587 return fixup & NEED_INV;
3590 static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3591 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3593 if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) {
3594 tcg_gen_not_vec(vece, v0, v0);
3598 static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0,
3599 TCGv_vec c1, TCGv_vec c2,
3600 TCGv_vec v3, TCGv_vec v4, TCGCond cond)
3602 TCGv_vec t = tcg_temp_new_vec(type);
3604 if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) {
3605 /* Invert the sense of the compare by swapping arguments. */
3606 TCGv_vec x;
3607 x = v3, v3 = v4, v4 = x;
3609 vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece,
3610 tcgv_vec_arg(v0), tcgv_vec_arg(v4),
3611 tcgv_vec_arg(v3), tcgv_vec_arg(t));
3612 tcg_temp_free_vec(t);
3615 void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3616 TCGArg a0, ...)
3618 va_list va;
3619 TCGArg a2;
3620 TCGv_vec v0, v1, v2, v3, v4;
3622 va_start(va, a0);
3623 v0 = temp_tcgv_vec(arg_temp(a0));
3624 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3625 a2 = va_arg(va, TCGArg);
3627 switch (opc) {
3628 case INDEX_op_shli_vec:
3629 case INDEX_op_shri_vec:
3630 expand_vec_shi(type, vece, opc == INDEX_op_shri_vec, v0, v1, a2);
3631 break;
3633 case INDEX_op_sari_vec:
3634 expand_vec_sari(type, vece, v0, v1, a2);
3635 break;
3637 case INDEX_op_mul_vec:
3638 v2 = temp_tcgv_vec(arg_temp(a2));
3639 expand_vec_mul(type, vece, v0, v1, v2);
3640 break;
3642 case INDEX_op_cmp_vec:
3643 v2 = temp_tcgv_vec(arg_temp(a2));
3644 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
3645 break;
3647 case INDEX_op_cmpsel_vec:
3648 v2 = temp_tcgv_vec(arg_temp(a2));
3649 v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3650 v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3651 expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg));
3652 break;
3654 default:
3655 break;
3658 va_end(va);
3661 static const int tcg_target_callee_save_regs[] = {
3662 #if TCG_TARGET_REG_BITS == 64
3663 TCG_REG_RBP,
3664 TCG_REG_RBX,
3665 #if defined(_WIN64)
3666 TCG_REG_RDI,
3667 TCG_REG_RSI,
3668 #endif
3669 TCG_REG_R12,
3670 TCG_REG_R13,
3671 TCG_REG_R14, /* Currently used for the global env. */
3672 TCG_REG_R15,
3673 #else
3674 TCG_REG_EBP, /* Currently used for the global env. */
3675 TCG_REG_EBX,
3676 TCG_REG_ESI,
3677 TCG_REG_EDI,
3678 #endif
3681 /* Compute frame size via macros, to share between tcg_target_qemu_prologue
3682 and tcg_register_jit. */
3684 #define PUSH_SIZE \
3685 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
3686 * (TCG_TARGET_REG_BITS / 8))
3688 #define FRAME_SIZE \
3689 ((PUSH_SIZE \
3690 + TCG_STATIC_CALL_ARGS_SIZE \
3691 + CPU_TEMP_BUF_NLONGS * sizeof(long) \
3692 + TCG_TARGET_STACK_ALIGN - 1) \
3693 & ~(TCG_TARGET_STACK_ALIGN - 1))
3695 /* Generate global QEMU prologue and epilogue code */
3696 static void tcg_target_qemu_prologue(TCGContext *s)
3698 int i, stack_addend;
3700 /* TB prologue */
3702 /* Reserve some stack space, also for TCG temps. */
3703 stack_addend = FRAME_SIZE - PUSH_SIZE;
3704 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
3705 CPU_TEMP_BUF_NLONGS * sizeof(long));
3707 /* Save all callee saved registers. */
3708 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
3709 tcg_out_push(s, tcg_target_callee_save_regs[i]);
3712 #if TCG_TARGET_REG_BITS == 32
3713 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
3714 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
3715 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
3716 /* jmp *tb. */
3717 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
3718 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
3719 + stack_addend);
3720 #else
3721 # if !defined(CONFIG_SOFTMMU) && TCG_TARGET_REG_BITS == 64
3722 if (guest_base) {
3723 int seg = setup_guest_base_seg();
3724 if (seg != 0) {
3725 x86_guest_base_seg = seg;
3726 } else if (guest_base == (int32_t)guest_base) {
3727 x86_guest_base_offset = guest_base;
3728 } else {
3729 /* Choose R12 because, as a base, it requires a SIB byte. */
3730 x86_guest_base_index = TCG_REG_R12;
3731 tcg_out_mov(s, TCG_TYPE_PTR, x86_guest_base_index, guest_base);
3732 tcg_regset_set_reg(s->reserved_regs, x86_guest_base_index);
3735 # endif
3736 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
3737 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
3738 /* jmp *tb. */
3739 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
3740 #endif
3743 * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
3744 * and fall through to the rest of the epilogue.
3746 s->code_gen_epilogue = s->code_ptr;
3747 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
3749 /* TB epilogue */
3750 tb_ret_addr = s->code_ptr;
3752 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
3754 if (have_avx2) {
3755 tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
3757 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
3758 tcg_out_pop(s, tcg_target_callee_save_regs[i]);
3760 tcg_out_opc(s, OPC_RET, 0, 0, 0);
3763 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
3765 memset(p, 0x90, count);
3768 static void tcg_target_init(TCGContext *s)
3770 #ifdef CONFIG_CPUID_H
3771 unsigned a, b, c, d, b7 = 0;
3772 int max = __get_cpuid_max(0, 0);
3774 if (max >= 7) {
3775 /* BMI1 is available on AMD Piledriver and Intel Haswell CPUs. */
3776 __cpuid_count(7, 0, a, b7, c, d);
3777 have_bmi1 = (b7 & bit_BMI) != 0;
3778 have_bmi2 = (b7 & bit_BMI2) != 0;
3781 if (max >= 1) {
3782 __cpuid(1, a, b, c, d);
3783 #ifndef have_cmov
3784 /* For 32-bit, 99% certainty that we're running on hardware that
3785 supports cmov, but we still need to check. In case cmov is not
3786 available, we'll use a small forward branch. */
3787 have_cmov = (d & bit_CMOV) != 0;
3788 #endif
3790 /* MOVBE is only available on Intel Atom and Haswell CPUs, so we
3791 need to probe for it. */
3792 have_movbe = (c & bit_MOVBE) != 0;
3793 have_popcnt = (c & bit_POPCNT) != 0;
3795 /* There are a number of things we must check before we can be
3796 sure of not hitting invalid opcode. */
3797 if (c & bit_OSXSAVE) {
3798 unsigned xcrl, xcrh;
3799 /* The xgetbv instruction is not available to older versions of
3800 * the assembler, so we encode the instruction manually.
3802 asm(".byte 0x0f, 0x01, 0xd0" : "=a" (xcrl), "=d" (xcrh) : "c" (0));
3803 if ((xcrl & 6) == 6) {
3804 have_avx1 = (c & bit_AVX) != 0;
3805 have_avx2 = (b7 & bit_AVX2) != 0;
3810 max = __get_cpuid_max(0x8000000, 0);
3811 if (max >= 1) {
3812 __cpuid(0x80000001, a, b, c, d);
3813 /* LZCNT was introduced with AMD Barcelona and Intel Haswell CPUs. */
3814 have_lzcnt = (c & bit_LZCNT) != 0;
3816 #endif /* CONFIG_CPUID_H */
3818 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
3819 if (TCG_TARGET_REG_BITS == 64) {
3820 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
3822 if (have_avx1) {
3823 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
3824 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
3826 if (have_avx2) {
3827 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
3830 tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
3831 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
3832 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
3833 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
3834 if (TCG_TARGET_REG_BITS == 64) {
3835 #if !defined(_WIN64)
3836 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
3837 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
3838 #endif
3839 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
3840 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
3841 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
3842 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
3845 s->reserved_regs = 0;
3846 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
3849 typedef struct {
3850 DebugFrameHeader h;
3851 uint8_t fde_def_cfa[4];
3852 uint8_t fde_reg_ofs[14];
3853 } DebugFrame;
3855 /* We're expecting a 2 byte uleb128 encoded value. */
3856 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
3858 #if !defined(__ELF__)
3859 /* Host machine without ELF. */
3860 #elif TCG_TARGET_REG_BITS == 64
3861 #define ELF_HOST_MACHINE EM_X86_64
3862 static const DebugFrame debug_frame = {
3863 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
3864 .h.cie.id = -1,
3865 .h.cie.version = 1,
3866 .h.cie.code_align = 1,
3867 .h.cie.data_align = 0x78, /* sleb128 -8 */
3868 .h.cie.return_column = 16,
3870 /* Total FDE size does not include the "len" member. */
3871 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
3873 .fde_def_cfa = {
3874 12, 7, /* DW_CFA_def_cfa %rsp, ... */
3875 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
3876 (FRAME_SIZE >> 7)
3878 .fde_reg_ofs = {
3879 0x90, 1, /* DW_CFA_offset, %rip, -8 */
3880 /* The following ordering must match tcg_target_callee_save_regs. */
3881 0x86, 2, /* DW_CFA_offset, %rbp, -16 */
3882 0x83, 3, /* DW_CFA_offset, %rbx, -24 */
3883 0x8c, 4, /* DW_CFA_offset, %r12, -32 */
3884 0x8d, 5, /* DW_CFA_offset, %r13, -40 */
3885 0x8e, 6, /* DW_CFA_offset, %r14, -48 */
3886 0x8f, 7, /* DW_CFA_offset, %r15, -56 */
3889 #else
3890 #define ELF_HOST_MACHINE EM_386
3891 static const DebugFrame debug_frame = {
3892 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
3893 .h.cie.id = -1,
3894 .h.cie.version = 1,
3895 .h.cie.code_align = 1,
3896 .h.cie.data_align = 0x7c, /* sleb128 -4 */
3897 .h.cie.return_column = 8,
3899 /* Total FDE size does not include the "len" member. */
3900 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
3902 .fde_def_cfa = {
3903 12, 4, /* DW_CFA_def_cfa %esp, ... */
3904 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
3905 (FRAME_SIZE >> 7)
3907 .fde_reg_ofs = {
3908 0x88, 1, /* DW_CFA_offset, %eip, -4 */
3909 /* The following ordering must match tcg_target_callee_save_regs. */
3910 0x85, 2, /* DW_CFA_offset, %ebp, -8 */
3911 0x83, 3, /* DW_CFA_offset, %ebx, -12 */
3912 0x86, 4, /* DW_CFA_offset, %esi, -16 */
3913 0x87, 5, /* DW_CFA_offset, %edi, -20 */
3916 #endif
3918 #if defined(ELF_HOST_MACHINE)
3919 void tcg_register_jit(void *buf, size_t buf_size)
3921 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
3923 #endif