nvme: use TYPE_NVME instead of constant string
[qemu/ar7.git] / hw / block / nvme.c
blobf206391e8e1f9fb1dc1e69d134b74ff1afccf199
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * num_queues=<N[optional]>
24 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
25 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "hw/block/block.h"
31 #include "hw/hw.h"
32 #include "hw/pci/msix.h"
33 #include "hw/pci/pci.h"
34 #include "sysemu/sysemu.h"
35 #include "qapi/error.h"
36 #include "qapi/visitor.h"
37 #include "sysemu/block-backend.h"
39 #include "qemu/log.h"
40 #include "qemu/cutils.h"
41 #include "trace.h"
42 #include "nvme.h"
44 #define NVME_GUEST_ERR(trace, fmt, ...) \
45 do { \
46 (trace_##trace)(__VA_ARGS__); \
47 qemu_log_mask(LOG_GUEST_ERROR, #trace \
48 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
49 } while (0)
51 static void nvme_process_sq(void *opaque);
53 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
55 if (n->cmbsz && addr >= n->ctrl_mem.addr &&
56 addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
57 memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
58 } else {
59 pci_dma_read(&n->parent_obj, addr, buf, size);
63 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
65 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
68 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
70 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
73 static void nvme_inc_cq_tail(NvmeCQueue *cq)
75 cq->tail++;
76 if (cq->tail >= cq->size) {
77 cq->tail = 0;
78 cq->phase = !cq->phase;
82 static void nvme_inc_sq_head(NvmeSQueue *sq)
84 sq->head = (sq->head + 1) % sq->size;
87 static uint8_t nvme_cq_full(NvmeCQueue *cq)
89 return (cq->tail + 1) % cq->size == cq->head;
92 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
94 return sq->head == sq->tail;
97 static void nvme_irq_check(NvmeCtrl *n)
99 if (msix_enabled(&(n->parent_obj))) {
100 return;
102 if (~n->bar.intms & n->irq_status) {
103 pci_irq_assert(&n->parent_obj);
104 } else {
105 pci_irq_deassert(&n->parent_obj);
109 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
111 if (cq->irq_enabled) {
112 if (msix_enabled(&(n->parent_obj))) {
113 trace_nvme_irq_msix(cq->vector);
114 msix_notify(&(n->parent_obj), cq->vector);
115 } else {
116 trace_nvme_irq_pin();
117 assert(cq->cqid < 64);
118 n->irq_status |= 1 << cq->cqid;
119 nvme_irq_check(n);
121 } else {
122 trace_nvme_irq_masked();
126 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
128 if (cq->irq_enabled) {
129 if (msix_enabled(&(n->parent_obj))) {
130 return;
131 } else {
132 assert(cq->cqid < 64);
133 n->irq_status &= ~(1 << cq->cqid);
134 nvme_irq_check(n);
139 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
140 uint64_t prp2, uint32_t len, NvmeCtrl *n)
142 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
143 trans_len = MIN(len, trans_len);
144 int num_prps = (len >> n->page_bits) + 1;
146 if (unlikely(!prp1)) {
147 trace_nvme_err_invalid_prp();
148 return NVME_INVALID_FIELD | NVME_DNR;
149 } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
150 prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
151 qsg->nsg = 0;
152 qemu_iovec_init(iov, num_prps);
153 qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
154 } else {
155 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
156 qemu_sglist_add(qsg, prp1, trans_len);
158 len -= trans_len;
159 if (len) {
160 if (unlikely(!prp2)) {
161 trace_nvme_err_invalid_prp2_missing();
162 goto unmap;
164 if (len > n->page_size) {
165 uint64_t prp_list[n->max_prp_ents];
166 uint32_t nents, prp_trans;
167 int i = 0;
169 nents = (len + n->page_size - 1) >> n->page_bits;
170 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
171 nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
172 while (len != 0) {
173 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
175 if (i == n->max_prp_ents - 1 && len > n->page_size) {
176 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
177 trace_nvme_err_invalid_prplist_ent(prp_ent);
178 goto unmap;
181 i = 0;
182 nents = (len + n->page_size - 1) >> n->page_bits;
183 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
184 nvme_addr_read(n, prp_ent, (void *)prp_list,
185 prp_trans);
186 prp_ent = le64_to_cpu(prp_list[i]);
189 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
190 trace_nvme_err_invalid_prplist_ent(prp_ent);
191 goto unmap;
194 trans_len = MIN(len, n->page_size);
195 if (qsg->nsg){
196 qemu_sglist_add(qsg, prp_ent, trans_len);
197 } else {
198 qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
200 len -= trans_len;
201 i++;
203 } else {
204 if (unlikely(prp2 & (n->page_size - 1))) {
205 trace_nvme_err_invalid_prp2_align(prp2);
206 goto unmap;
208 if (qsg->nsg) {
209 qemu_sglist_add(qsg, prp2, len);
210 } else {
211 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
215 return NVME_SUCCESS;
217 unmap:
218 qemu_sglist_destroy(qsg);
219 return NVME_INVALID_FIELD | NVME_DNR;
222 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
223 uint64_t prp1, uint64_t prp2)
225 QEMUSGList qsg;
226 QEMUIOVector iov;
227 uint16_t status = NVME_SUCCESS;
229 trace_nvme_dma_read(prp1, prp2);
231 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
232 return NVME_INVALID_FIELD | NVME_DNR;
234 if (qsg.nsg > 0) {
235 if (unlikely(dma_buf_read(ptr, len, &qsg))) {
236 trace_nvme_err_invalid_dma();
237 status = NVME_INVALID_FIELD | NVME_DNR;
239 qemu_sglist_destroy(&qsg);
240 } else {
241 if (unlikely(qemu_iovec_to_buf(&iov, 0, ptr, len) != len)) {
242 trace_nvme_err_invalid_dma();
243 status = NVME_INVALID_FIELD | NVME_DNR;
245 qemu_iovec_destroy(&iov);
247 return status;
250 static void nvme_post_cqes(void *opaque)
252 NvmeCQueue *cq = opaque;
253 NvmeCtrl *n = cq->ctrl;
254 NvmeRequest *req, *next;
256 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
257 NvmeSQueue *sq;
258 hwaddr addr;
260 if (nvme_cq_full(cq)) {
261 break;
264 QTAILQ_REMOVE(&cq->req_list, req, entry);
265 sq = req->sq;
266 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
267 req->cqe.sq_id = cpu_to_le16(sq->sqid);
268 req->cqe.sq_head = cpu_to_le16(sq->head);
269 addr = cq->dma_addr + cq->tail * n->cqe_size;
270 nvme_inc_cq_tail(cq);
271 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
272 sizeof(req->cqe));
273 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
275 if (cq->tail != cq->head) {
276 nvme_irq_assert(n, cq);
280 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
282 assert(cq->cqid == req->sq->cqid);
283 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
284 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
285 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
288 static void nvme_rw_cb(void *opaque, int ret)
290 NvmeRequest *req = opaque;
291 NvmeSQueue *sq = req->sq;
292 NvmeCtrl *n = sq->ctrl;
293 NvmeCQueue *cq = n->cq[sq->cqid];
295 if (!ret) {
296 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
297 req->status = NVME_SUCCESS;
298 } else {
299 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
300 req->status = NVME_INTERNAL_DEV_ERROR;
302 if (req->has_sg) {
303 qemu_sglist_destroy(&req->qsg);
305 nvme_enqueue_req_completion(cq, req);
308 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
309 NvmeRequest *req)
311 req->has_sg = false;
312 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
313 BLOCK_ACCT_FLUSH);
314 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
316 return NVME_NO_COMPLETE;
319 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
320 NvmeRequest *req)
322 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
323 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
324 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
325 uint64_t slba = le64_to_cpu(rw->slba);
326 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
327 uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
328 uint32_t aio_nlb = nlb << (data_shift - BDRV_SECTOR_BITS);
330 if (unlikely(slba + nlb > ns->id_ns.nsze)) {
331 trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
332 return NVME_LBA_RANGE | NVME_DNR;
335 req->has_sg = false;
336 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
337 BLOCK_ACCT_WRITE);
338 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, aio_slba, aio_nlb,
339 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
340 return NVME_NO_COMPLETE;
343 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
344 NvmeRequest *req)
346 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
347 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
348 uint64_t slba = le64_to_cpu(rw->slba);
349 uint64_t prp1 = le64_to_cpu(rw->prp1);
350 uint64_t prp2 = le64_to_cpu(rw->prp2);
352 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
353 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
354 uint64_t data_size = (uint64_t)nlb << data_shift;
355 uint64_t data_offset = slba << data_shift;
356 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
357 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
359 trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
361 if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
362 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
363 trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
364 return NVME_LBA_RANGE | NVME_DNR;
367 if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
368 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
369 return NVME_INVALID_FIELD | NVME_DNR;
372 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
373 if (req->qsg.nsg > 0) {
374 req->has_sg = true;
375 req->aiocb = is_write ?
376 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
377 nvme_rw_cb, req) :
378 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
379 nvme_rw_cb, req);
380 } else {
381 req->has_sg = false;
382 req->aiocb = is_write ?
383 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
384 req) :
385 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
386 req);
389 return NVME_NO_COMPLETE;
392 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
394 NvmeNamespace *ns;
395 uint32_t nsid = le32_to_cpu(cmd->nsid);
397 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
398 trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
399 return NVME_INVALID_NSID | NVME_DNR;
402 ns = &n->namespaces[nsid - 1];
403 switch (cmd->opcode) {
404 case NVME_CMD_FLUSH:
405 return nvme_flush(n, ns, cmd, req);
406 case NVME_CMD_WRITE_ZEROS:
407 return nvme_write_zeros(n, ns, cmd, req);
408 case NVME_CMD_WRITE:
409 case NVME_CMD_READ:
410 return nvme_rw(n, ns, cmd, req);
411 default:
412 trace_nvme_err_invalid_opc(cmd->opcode);
413 return NVME_INVALID_OPCODE | NVME_DNR;
417 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
419 n->sq[sq->sqid] = NULL;
420 timer_del(sq->timer);
421 timer_free(sq->timer);
422 g_free(sq->io_req);
423 if (sq->sqid) {
424 g_free(sq);
428 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
430 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
431 NvmeRequest *req, *next;
432 NvmeSQueue *sq;
433 NvmeCQueue *cq;
434 uint16_t qid = le16_to_cpu(c->qid);
436 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
437 trace_nvme_err_invalid_del_sq(qid);
438 return NVME_INVALID_QID | NVME_DNR;
441 trace_nvme_del_sq(qid);
443 sq = n->sq[qid];
444 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
445 req = QTAILQ_FIRST(&sq->out_req_list);
446 assert(req->aiocb);
447 blk_aio_cancel(req->aiocb);
449 if (!nvme_check_cqid(n, sq->cqid)) {
450 cq = n->cq[sq->cqid];
451 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
453 nvme_post_cqes(cq);
454 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
455 if (req->sq == sq) {
456 QTAILQ_REMOVE(&cq->req_list, req, entry);
457 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
462 nvme_free_sq(sq, n);
463 return NVME_SUCCESS;
466 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
467 uint16_t sqid, uint16_t cqid, uint16_t size)
469 int i;
470 NvmeCQueue *cq;
472 sq->ctrl = n;
473 sq->dma_addr = dma_addr;
474 sq->sqid = sqid;
475 sq->size = size;
476 sq->cqid = cqid;
477 sq->head = sq->tail = 0;
478 sq->io_req = g_new(NvmeRequest, sq->size);
480 QTAILQ_INIT(&sq->req_list);
481 QTAILQ_INIT(&sq->out_req_list);
482 for (i = 0; i < sq->size; i++) {
483 sq->io_req[i].sq = sq;
484 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
486 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
488 assert(n->cq[cqid]);
489 cq = n->cq[cqid];
490 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
491 n->sq[sqid] = sq;
494 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
496 NvmeSQueue *sq;
497 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
499 uint16_t cqid = le16_to_cpu(c->cqid);
500 uint16_t sqid = le16_to_cpu(c->sqid);
501 uint16_t qsize = le16_to_cpu(c->qsize);
502 uint16_t qflags = le16_to_cpu(c->sq_flags);
503 uint64_t prp1 = le64_to_cpu(c->prp1);
505 trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
507 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
508 trace_nvme_err_invalid_create_sq_cqid(cqid);
509 return NVME_INVALID_CQID | NVME_DNR;
511 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
512 trace_nvme_err_invalid_create_sq_sqid(sqid);
513 return NVME_INVALID_QID | NVME_DNR;
515 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
516 trace_nvme_err_invalid_create_sq_size(qsize);
517 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
519 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
520 trace_nvme_err_invalid_create_sq_addr(prp1);
521 return NVME_INVALID_FIELD | NVME_DNR;
523 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
524 trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
525 return NVME_INVALID_FIELD | NVME_DNR;
527 sq = g_malloc0(sizeof(*sq));
528 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
529 return NVME_SUCCESS;
532 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
534 n->cq[cq->cqid] = NULL;
535 timer_del(cq->timer);
536 timer_free(cq->timer);
537 msix_vector_unuse(&n->parent_obj, cq->vector);
538 if (cq->cqid) {
539 g_free(cq);
543 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
545 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
546 NvmeCQueue *cq;
547 uint16_t qid = le16_to_cpu(c->qid);
549 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
550 trace_nvme_err_invalid_del_cq_cqid(qid);
551 return NVME_INVALID_CQID | NVME_DNR;
554 cq = n->cq[qid];
555 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
556 trace_nvme_err_invalid_del_cq_notempty(qid);
557 return NVME_INVALID_QUEUE_DEL;
559 nvme_irq_deassert(n, cq);
560 trace_nvme_del_cq(qid);
561 nvme_free_cq(cq, n);
562 return NVME_SUCCESS;
565 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
566 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
568 cq->ctrl = n;
569 cq->cqid = cqid;
570 cq->size = size;
571 cq->dma_addr = dma_addr;
572 cq->phase = 1;
573 cq->irq_enabled = irq_enabled;
574 cq->vector = vector;
575 cq->head = cq->tail = 0;
576 QTAILQ_INIT(&cq->req_list);
577 QTAILQ_INIT(&cq->sq_list);
578 msix_vector_use(&n->parent_obj, cq->vector);
579 n->cq[cqid] = cq;
580 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
583 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
585 NvmeCQueue *cq;
586 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
587 uint16_t cqid = le16_to_cpu(c->cqid);
588 uint16_t vector = le16_to_cpu(c->irq_vector);
589 uint16_t qsize = le16_to_cpu(c->qsize);
590 uint16_t qflags = le16_to_cpu(c->cq_flags);
591 uint64_t prp1 = le64_to_cpu(c->prp1);
593 trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
594 NVME_CQ_FLAGS_IEN(qflags) != 0);
596 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
597 trace_nvme_err_invalid_create_cq_cqid(cqid);
598 return NVME_INVALID_CQID | NVME_DNR;
600 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
601 trace_nvme_err_invalid_create_cq_size(qsize);
602 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
604 if (unlikely(!prp1)) {
605 trace_nvme_err_invalid_create_cq_addr(prp1);
606 return NVME_INVALID_FIELD | NVME_DNR;
608 if (unlikely(vector > n->num_queues)) {
609 trace_nvme_err_invalid_create_cq_vector(vector);
610 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
612 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
613 trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
614 return NVME_INVALID_FIELD | NVME_DNR;
617 cq = g_malloc0(sizeof(*cq));
618 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
619 NVME_CQ_FLAGS_IEN(qflags));
620 return NVME_SUCCESS;
623 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
625 uint64_t prp1 = le64_to_cpu(c->prp1);
626 uint64_t prp2 = le64_to_cpu(c->prp2);
628 trace_nvme_identify_ctrl();
630 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
631 prp1, prp2);
634 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
636 NvmeNamespace *ns;
637 uint32_t nsid = le32_to_cpu(c->nsid);
638 uint64_t prp1 = le64_to_cpu(c->prp1);
639 uint64_t prp2 = le64_to_cpu(c->prp2);
641 trace_nvme_identify_ns(nsid);
643 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
644 trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
645 return NVME_INVALID_NSID | NVME_DNR;
648 ns = &n->namespaces[nsid - 1];
650 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
651 prp1, prp2);
654 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
656 static const int data_len = 4 * KiB;
657 uint32_t min_nsid = le32_to_cpu(c->nsid);
658 uint64_t prp1 = le64_to_cpu(c->prp1);
659 uint64_t prp2 = le64_to_cpu(c->prp2);
660 uint32_t *list;
661 uint16_t ret;
662 int i, j = 0;
664 trace_nvme_identify_nslist(min_nsid);
666 list = g_malloc0(data_len);
667 for (i = 0; i < n->num_namespaces; i++) {
668 if (i < min_nsid) {
669 continue;
671 list[j++] = cpu_to_le32(i + 1);
672 if (j == data_len / sizeof(uint32_t)) {
673 break;
676 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
677 g_free(list);
678 return ret;
682 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
684 NvmeIdentify *c = (NvmeIdentify *)cmd;
686 switch (le32_to_cpu(c->cns)) {
687 case 0x00:
688 return nvme_identify_ns(n, c);
689 case 0x01:
690 return nvme_identify_ctrl(n, c);
691 case 0x02:
692 return nvme_identify_nslist(n, c);
693 default:
694 trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
695 return NVME_INVALID_FIELD | NVME_DNR;
699 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
701 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
702 uint32_t result;
704 switch (dw10) {
705 case NVME_VOLATILE_WRITE_CACHE:
706 result = blk_enable_write_cache(n->conf.blk);
707 trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
708 break;
709 case NVME_NUMBER_OF_QUEUES:
710 result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
711 trace_nvme_getfeat_numq(result);
712 break;
713 default:
714 trace_nvme_err_invalid_getfeat(dw10);
715 return NVME_INVALID_FIELD | NVME_DNR;
718 req->cqe.result = result;
719 return NVME_SUCCESS;
722 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
724 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
725 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
727 switch (dw10) {
728 case NVME_VOLATILE_WRITE_CACHE:
729 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
730 break;
731 case NVME_NUMBER_OF_QUEUES:
732 trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
733 ((dw11 >> 16) & 0xFFFF) + 1,
734 n->num_queues - 1, n->num_queues - 1);
735 req->cqe.result =
736 cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
737 break;
738 default:
739 trace_nvme_err_invalid_setfeat(dw10);
740 return NVME_INVALID_FIELD | NVME_DNR;
742 return NVME_SUCCESS;
745 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
747 switch (cmd->opcode) {
748 case NVME_ADM_CMD_DELETE_SQ:
749 return nvme_del_sq(n, cmd);
750 case NVME_ADM_CMD_CREATE_SQ:
751 return nvme_create_sq(n, cmd);
752 case NVME_ADM_CMD_DELETE_CQ:
753 return nvme_del_cq(n, cmd);
754 case NVME_ADM_CMD_CREATE_CQ:
755 return nvme_create_cq(n, cmd);
756 case NVME_ADM_CMD_IDENTIFY:
757 return nvme_identify(n, cmd);
758 case NVME_ADM_CMD_SET_FEATURES:
759 return nvme_set_feature(n, cmd, req);
760 case NVME_ADM_CMD_GET_FEATURES:
761 return nvme_get_feature(n, cmd, req);
762 default:
763 trace_nvme_err_invalid_admin_opc(cmd->opcode);
764 return NVME_INVALID_OPCODE | NVME_DNR;
768 static void nvme_process_sq(void *opaque)
770 NvmeSQueue *sq = opaque;
771 NvmeCtrl *n = sq->ctrl;
772 NvmeCQueue *cq = n->cq[sq->cqid];
774 uint16_t status;
775 hwaddr addr;
776 NvmeCmd cmd;
777 NvmeRequest *req;
779 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
780 addr = sq->dma_addr + sq->head * n->sqe_size;
781 nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
782 nvme_inc_sq_head(sq);
784 req = QTAILQ_FIRST(&sq->req_list);
785 QTAILQ_REMOVE(&sq->req_list, req, entry);
786 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
787 memset(&req->cqe, 0, sizeof(req->cqe));
788 req->cqe.cid = cmd.cid;
790 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
791 nvme_admin_cmd(n, &cmd, req);
792 if (status != NVME_NO_COMPLETE) {
793 req->status = status;
794 nvme_enqueue_req_completion(cq, req);
799 static void nvme_clear_ctrl(NvmeCtrl *n)
801 int i;
803 blk_drain(n->conf.blk);
805 for (i = 0; i < n->num_queues; i++) {
806 if (n->sq[i] != NULL) {
807 nvme_free_sq(n->sq[i], n);
810 for (i = 0; i < n->num_queues; i++) {
811 if (n->cq[i] != NULL) {
812 nvme_free_cq(n->cq[i], n);
816 blk_flush(n->conf.blk);
817 n->bar.cc = 0;
820 static int nvme_start_ctrl(NvmeCtrl *n)
822 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
823 uint32_t page_size = 1 << page_bits;
825 if (unlikely(n->cq[0])) {
826 trace_nvme_err_startfail_cq();
827 return -1;
829 if (unlikely(n->sq[0])) {
830 trace_nvme_err_startfail_sq();
831 return -1;
833 if (unlikely(!n->bar.asq)) {
834 trace_nvme_err_startfail_nbarasq();
835 return -1;
837 if (unlikely(!n->bar.acq)) {
838 trace_nvme_err_startfail_nbaracq();
839 return -1;
841 if (unlikely(n->bar.asq & (page_size - 1))) {
842 trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
843 return -1;
845 if (unlikely(n->bar.acq & (page_size - 1))) {
846 trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
847 return -1;
849 if (unlikely(NVME_CC_MPS(n->bar.cc) <
850 NVME_CAP_MPSMIN(n->bar.cap))) {
851 trace_nvme_err_startfail_page_too_small(
852 NVME_CC_MPS(n->bar.cc),
853 NVME_CAP_MPSMIN(n->bar.cap));
854 return -1;
856 if (unlikely(NVME_CC_MPS(n->bar.cc) >
857 NVME_CAP_MPSMAX(n->bar.cap))) {
858 trace_nvme_err_startfail_page_too_large(
859 NVME_CC_MPS(n->bar.cc),
860 NVME_CAP_MPSMAX(n->bar.cap));
861 return -1;
863 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
864 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
865 trace_nvme_err_startfail_cqent_too_small(
866 NVME_CC_IOCQES(n->bar.cc),
867 NVME_CTRL_CQES_MIN(n->bar.cap));
868 return -1;
870 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
871 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
872 trace_nvme_err_startfail_cqent_too_large(
873 NVME_CC_IOCQES(n->bar.cc),
874 NVME_CTRL_CQES_MAX(n->bar.cap));
875 return -1;
877 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
878 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
879 trace_nvme_err_startfail_sqent_too_small(
880 NVME_CC_IOSQES(n->bar.cc),
881 NVME_CTRL_SQES_MIN(n->bar.cap));
882 return -1;
884 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
885 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
886 trace_nvme_err_startfail_sqent_too_large(
887 NVME_CC_IOSQES(n->bar.cc),
888 NVME_CTRL_SQES_MAX(n->bar.cap));
889 return -1;
891 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
892 trace_nvme_err_startfail_asqent_sz_zero();
893 return -1;
895 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
896 trace_nvme_err_startfail_acqent_sz_zero();
897 return -1;
900 n->page_bits = page_bits;
901 n->page_size = page_size;
902 n->max_prp_ents = n->page_size / sizeof(uint64_t);
903 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
904 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
905 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
906 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
907 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
908 NVME_AQA_ASQS(n->bar.aqa) + 1);
910 return 0;
913 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
914 unsigned size)
916 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
917 NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
918 "MMIO write not 32-bit aligned,"
919 " offset=0x%"PRIx64"", offset);
920 /* should be ignored, fall through for now */
923 if (unlikely(size < sizeof(uint32_t))) {
924 NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
925 "MMIO write smaller than 32-bits,"
926 " offset=0x%"PRIx64", size=%u",
927 offset, size);
928 /* should be ignored, fall through for now */
931 switch (offset) {
932 case 0xc: /* INTMS */
933 if (unlikely(msix_enabled(&(n->parent_obj)))) {
934 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
935 "undefined access to interrupt mask set"
936 " when MSI-X is enabled");
937 /* should be ignored, fall through for now */
939 n->bar.intms |= data & 0xffffffff;
940 n->bar.intmc = n->bar.intms;
941 trace_nvme_mmio_intm_set(data & 0xffffffff,
942 n->bar.intmc);
943 nvme_irq_check(n);
944 break;
945 case 0x10: /* INTMC */
946 if (unlikely(msix_enabled(&(n->parent_obj)))) {
947 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
948 "undefined access to interrupt mask clr"
949 " when MSI-X is enabled");
950 /* should be ignored, fall through for now */
952 n->bar.intms &= ~(data & 0xffffffff);
953 n->bar.intmc = n->bar.intms;
954 trace_nvme_mmio_intm_clr(data & 0xffffffff,
955 n->bar.intmc);
956 nvme_irq_check(n);
957 break;
958 case 0x14: /* CC */
959 trace_nvme_mmio_cfg(data & 0xffffffff);
960 /* Windows first sends data, then sends enable bit */
961 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
962 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
964 n->bar.cc = data;
967 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
968 n->bar.cc = data;
969 if (unlikely(nvme_start_ctrl(n))) {
970 trace_nvme_err_startfail();
971 n->bar.csts = NVME_CSTS_FAILED;
972 } else {
973 trace_nvme_mmio_start_success();
974 n->bar.csts = NVME_CSTS_READY;
976 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
977 trace_nvme_mmio_stopped();
978 nvme_clear_ctrl(n);
979 n->bar.csts &= ~NVME_CSTS_READY;
981 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
982 trace_nvme_mmio_shutdown_set();
983 nvme_clear_ctrl(n);
984 n->bar.cc = data;
985 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
986 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
987 trace_nvme_mmio_shutdown_cleared();
988 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
989 n->bar.cc = data;
991 break;
992 case 0x1C: /* CSTS */
993 if (data & (1 << 4)) {
994 NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
995 "attempted to W1C CSTS.NSSRO"
996 " but CAP.NSSRS is zero (not supported)");
997 } else if (data != 0) {
998 NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
999 "attempted to set a read only bit"
1000 " of controller status");
1002 break;
1003 case 0x20: /* NSSR */
1004 if (data == 0x4E564D65) {
1005 trace_nvme_ub_mmiowr_ssreset_unsupported();
1006 } else {
1007 /* The spec says that writes of other values have no effect */
1008 return;
1010 break;
1011 case 0x24: /* AQA */
1012 n->bar.aqa = data & 0xffffffff;
1013 trace_nvme_mmio_aqattr(data & 0xffffffff);
1014 break;
1015 case 0x28: /* ASQ */
1016 n->bar.asq = data;
1017 trace_nvme_mmio_asqaddr(data);
1018 break;
1019 case 0x2c: /* ASQ hi */
1020 n->bar.asq |= data << 32;
1021 trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1022 break;
1023 case 0x30: /* ACQ */
1024 trace_nvme_mmio_acqaddr(data);
1025 n->bar.acq = data;
1026 break;
1027 case 0x34: /* ACQ hi */
1028 n->bar.acq |= data << 32;
1029 trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1030 break;
1031 case 0x38: /* CMBLOC */
1032 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1033 "invalid write to reserved CMBLOC"
1034 " when CMBSZ is zero, ignored");
1035 return;
1036 case 0x3C: /* CMBSZ */
1037 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1038 "invalid write to read only CMBSZ, ignored");
1039 return;
1040 default:
1041 NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1042 "invalid MMIO write,"
1043 " offset=0x%"PRIx64", data=%"PRIx64"",
1044 offset, data);
1045 break;
1049 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1051 NvmeCtrl *n = (NvmeCtrl *)opaque;
1052 uint8_t *ptr = (uint8_t *)&n->bar;
1053 uint64_t val = 0;
1055 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1056 NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1057 "MMIO read not 32-bit aligned,"
1058 " offset=0x%"PRIx64"", addr);
1059 /* should RAZ, fall through for now */
1060 } else if (unlikely(size < sizeof(uint32_t))) {
1061 NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1062 "MMIO read smaller than 32-bits,"
1063 " offset=0x%"PRIx64"", addr);
1064 /* should RAZ, fall through for now */
1067 if (addr < sizeof(n->bar)) {
1068 memcpy(&val, ptr + addr, size);
1069 } else {
1070 NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1071 "MMIO read beyond last register,"
1072 " offset=0x%"PRIx64", returning 0", addr);
1075 return val;
1078 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1080 uint32_t qid;
1082 if (unlikely(addr & ((1 << 2) - 1))) {
1083 NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1084 "doorbell write not 32-bit aligned,"
1085 " offset=0x%"PRIx64", ignoring", addr);
1086 return;
1089 if (((addr - 0x1000) >> 2) & 1) {
1090 /* Completion queue doorbell write */
1092 uint16_t new_head = val & 0xffff;
1093 int start_sqs;
1094 NvmeCQueue *cq;
1096 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1097 if (unlikely(nvme_check_cqid(n, qid))) {
1098 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1099 "completion queue doorbell write"
1100 " for nonexistent queue,"
1101 " sqid=%"PRIu32", ignoring", qid);
1102 return;
1105 cq = n->cq[qid];
1106 if (unlikely(new_head >= cq->size)) {
1107 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1108 "completion queue doorbell write value"
1109 " beyond queue size, sqid=%"PRIu32","
1110 " new_head=%"PRIu16", ignoring",
1111 qid, new_head);
1112 return;
1115 start_sqs = nvme_cq_full(cq) ? 1 : 0;
1116 cq->head = new_head;
1117 if (start_sqs) {
1118 NvmeSQueue *sq;
1119 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1120 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1122 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1125 if (cq->tail == cq->head) {
1126 nvme_irq_deassert(n, cq);
1128 } else {
1129 /* Submission queue doorbell write */
1131 uint16_t new_tail = val & 0xffff;
1132 NvmeSQueue *sq;
1134 qid = (addr - 0x1000) >> 3;
1135 if (unlikely(nvme_check_sqid(n, qid))) {
1136 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1137 "submission queue doorbell write"
1138 " for nonexistent queue,"
1139 " sqid=%"PRIu32", ignoring", qid);
1140 return;
1143 sq = n->sq[qid];
1144 if (unlikely(new_tail >= sq->size)) {
1145 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1146 "submission queue doorbell write value"
1147 " beyond queue size, sqid=%"PRIu32","
1148 " new_tail=%"PRIu16", ignoring",
1149 qid, new_tail);
1150 return;
1153 sq->tail = new_tail;
1154 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1158 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1159 unsigned size)
1161 NvmeCtrl *n = (NvmeCtrl *)opaque;
1162 if (addr < sizeof(n->bar)) {
1163 nvme_write_bar(n, addr, data, size);
1164 } else if (addr >= 0x1000) {
1165 nvme_process_db(n, addr, data);
1169 static const MemoryRegionOps nvme_mmio_ops = {
1170 .read = nvme_mmio_read,
1171 .write = nvme_mmio_write,
1172 .endianness = DEVICE_LITTLE_ENDIAN,
1173 .impl = {
1174 .min_access_size = 2,
1175 .max_access_size = 8,
1179 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1180 unsigned size)
1182 NvmeCtrl *n = (NvmeCtrl *)opaque;
1183 stn_le_p(&n->cmbuf[addr], size, data);
1186 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1188 NvmeCtrl *n = (NvmeCtrl *)opaque;
1189 return ldn_le_p(&n->cmbuf[addr], size);
1192 static const MemoryRegionOps nvme_cmb_ops = {
1193 .read = nvme_cmb_read,
1194 .write = nvme_cmb_write,
1195 .endianness = DEVICE_LITTLE_ENDIAN,
1196 .impl = {
1197 .min_access_size = 1,
1198 .max_access_size = 8,
1202 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1204 NvmeCtrl *n = NVME(pci_dev);
1205 NvmeIdCtrl *id = &n->id_ctrl;
1207 int i;
1208 int64_t bs_size;
1209 uint8_t *pci_conf;
1211 if (!n->conf.blk) {
1212 error_setg(errp, "drive property not set");
1213 return;
1216 bs_size = blk_getlength(n->conf.blk);
1217 if (bs_size < 0) {
1218 error_setg(errp, "could not get backing file size");
1219 return;
1222 if (!n->serial) {
1223 error_setg(errp, "serial property not set");
1224 return;
1226 blkconf_blocksizes(&n->conf);
1227 if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1228 false, errp)) {
1229 return;
1232 pci_conf = pci_dev->config;
1233 pci_conf[PCI_INTERRUPT_PIN] = 1;
1234 pci_config_set_prog_interface(pci_dev->config, 0x2);
1235 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1236 pcie_endpoint_cap_init(&n->parent_obj, 0x80);
1238 n->num_namespaces = 1;
1239 n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1240 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1242 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1243 n->sq = g_new0(NvmeSQueue *, n->num_queues);
1244 n->cq = g_new0(NvmeCQueue *, n->num_queues);
1246 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1247 "nvme", n->reg_size);
1248 pci_register_bar(&n->parent_obj, 0,
1249 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1250 &n->iomem);
1251 msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4, NULL);
1253 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1254 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1255 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1256 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1257 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1258 id->rab = 6;
1259 id->ieee[0] = 0x00;
1260 id->ieee[1] = 0x02;
1261 id->ieee[2] = 0xb3;
1262 id->oacs = cpu_to_le16(0);
1263 id->frmw = 7 << 1;
1264 id->lpa = 1 << 0;
1265 id->sqes = (0x6 << 4) | 0x6;
1266 id->cqes = (0x4 << 4) | 0x4;
1267 id->nn = cpu_to_le32(n->num_namespaces);
1268 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
1269 id->psd[0].mp = cpu_to_le16(0x9c4);
1270 id->psd[0].enlat = cpu_to_le32(0x10);
1271 id->psd[0].exlat = cpu_to_le32(0x4);
1272 if (blk_enable_write_cache(n->conf.blk)) {
1273 id->vwc = 1;
1276 n->bar.cap = 0;
1277 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1278 NVME_CAP_SET_CQR(n->bar.cap, 1);
1279 NVME_CAP_SET_AMS(n->bar.cap, 1);
1280 NVME_CAP_SET_TO(n->bar.cap, 0xf);
1281 NVME_CAP_SET_CSS(n->bar.cap, 1);
1282 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1284 n->bar.vs = 0x00010200;
1285 n->bar.intmc = n->bar.intms = 0;
1287 if (n->cmb_size_mb) {
1289 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1290 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1292 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1293 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1294 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1295 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1296 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1297 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1298 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1300 n->cmbloc = n->bar.cmbloc;
1301 n->cmbsz = n->bar.cmbsz;
1303 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1304 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1305 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1306 pci_register_bar(&n->parent_obj, NVME_CMBLOC_BIR(n->bar.cmbloc),
1307 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1308 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1312 for (i = 0; i < n->num_namespaces; i++) {
1313 NvmeNamespace *ns = &n->namespaces[i];
1314 NvmeIdNs *id_ns = &ns->id_ns;
1315 id_ns->nsfeat = 0;
1316 id_ns->nlbaf = 0;
1317 id_ns->flbas = 0;
1318 id_ns->mc = 0;
1319 id_ns->dpc = 0;
1320 id_ns->dps = 0;
1321 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1322 id_ns->ncap = id_ns->nuse = id_ns->nsze =
1323 cpu_to_le64(n->ns_size >>
1324 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1328 static void nvme_exit(PCIDevice *pci_dev)
1330 NvmeCtrl *n = NVME(pci_dev);
1332 nvme_clear_ctrl(n);
1333 g_free(n->namespaces);
1334 g_free(n->cq);
1335 g_free(n->sq);
1337 if (n->cmb_size_mb) {
1338 g_free(n->cmbuf);
1340 msix_uninit_exclusive_bar(pci_dev);
1343 static Property nvme_props[] = {
1344 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1345 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1346 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1347 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
1348 DEFINE_PROP_END_OF_LIST(),
1351 static const VMStateDescription nvme_vmstate = {
1352 .name = "nvme",
1353 .unmigratable = 1,
1356 static void nvme_class_init(ObjectClass *oc, void *data)
1358 DeviceClass *dc = DEVICE_CLASS(oc);
1359 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1361 pc->realize = nvme_realize;
1362 pc->exit = nvme_exit;
1363 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1364 pc->vendor_id = PCI_VENDOR_ID_INTEL;
1365 pc->device_id = 0x5845;
1366 pc->revision = 2;
1368 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1369 dc->desc = "Non-Volatile Memory Express";
1370 dc->props = nvme_props;
1371 dc->vmsd = &nvme_vmstate;
1374 static void nvme_instance_init(Object *obj)
1376 NvmeCtrl *s = NVME(obj);
1378 device_add_bootindex_property(obj, &s->conf.bootindex,
1379 "bootindex", "/namespace@1,0",
1380 DEVICE(obj), &error_abort);
1383 static const TypeInfo nvme_info = {
1384 .name = TYPE_NVME,
1385 .parent = TYPE_PCI_DEVICE,
1386 .instance_size = sizeof(NvmeCtrl),
1387 .class_init = nvme_class_init,
1388 .instance_init = nvme_instance_init,
1389 .interfaces = (InterfaceInfo[]) {
1390 { INTERFACE_PCIE_DEVICE },
1395 static void nvme_register_types(void)
1397 type_register_static(&nvme_info);
1400 type_init(nvme_register_types)