i386: move hyperv_vendor_id initialization to x86_cpu_realizefn()
[qemu/ar7.git] / target / i386 / kvm / kvm.c
blob6a5d91e39f7d0f76121d8d663450eb4baab5f594
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
21 #include <linux/kvm.h>
22 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "hyperv.h"
31 #include "hyperv-proto.h"
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/x86.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci/msix.h"
49 #include "migration/blocker.h"
50 #include "exec/memattrs.h"
51 #include "trace.h"
53 //#define DEBUG_KVM
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 /* From arch/x86/kvm/lapic.h */
64 #define KVM_APIC_BUS_CYCLE_NS 1
65 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
67 #define MSR_KVM_WALL_CLOCK 0x11
68 #define MSR_KVM_SYSTEM_TIME 0x12
70 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
71 * 255 kvm_msr_entry structs */
72 #define MSR_BUF_SIZE 4096
74 static void kvm_init_msrs(X86CPU *cpu);
76 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
77 KVM_CAP_INFO(SET_TSS_ADDR),
78 KVM_CAP_INFO(EXT_CPUID),
79 KVM_CAP_INFO(MP_STATE),
80 KVM_CAP_LAST_INFO
83 static bool has_msr_star;
84 static bool has_msr_hsave_pa;
85 static bool has_msr_tsc_aux;
86 static bool has_msr_tsc_adjust;
87 static bool has_msr_tsc_deadline;
88 static bool has_msr_feature_control;
89 static bool has_msr_misc_enable;
90 static bool has_msr_smbase;
91 static bool has_msr_bndcfgs;
92 static int lm_capable_kernel;
93 static bool has_msr_hv_hypercall;
94 static bool has_msr_hv_crash;
95 static bool has_msr_hv_reset;
96 static bool has_msr_hv_vpindex;
97 static bool hv_vpindex_settable;
98 static bool has_msr_hv_runtime;
99 static bool has_msr_hv_synic;
100 static bool has_msr_hv_stimer;
101 static bool has_msr_hv_frequencies;
102 static bool has_msr_hv_reenlightenment;
103 static bool has_msr_xss;
104 static bool has_msr_umwait;
105 static bool has_msr_spec_ctrl;
106 static bool has_msr_tsx_ctrl;
107 static bool has_msr_virt_ssbd;
108 static bool has_msr_smi_count;
109 static bool has_msr_arch_capabs;
110 static bool has_msr_core_capabs;
111 static bool has_msr_vmx_vmfunc;
112 static bool has_msr_ucode_rev;
113 static bool has_msr_vmx_procbased_ctls2;
114 static bool has_msr_perf_capabs;
116 static uint32_t has_architectural_pmu_version;
117 static uint32_t num_architectural_pmu_gp_counters;
118 static uint32_t num_architectural_pmu_fixed_counters;
120 static int has_xsave;
121 static int has_xcrs;
122 static int has_pit_state2;
123 static int has_exception_payload;
125 static bool has_msr_mcg_ext_ctl;
127 static struct kvm_cpuid2 *cpuid_cache;
128 static struct kvm_msr_list *kvm_feature_msrs;
130 int kvm_has_pit_state2(void)
132 return has_pit_state2;
135 bool kvm_has_smm(void)
137 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
140 bool kvm_has_adjust_clock_stable(void)
142 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
144 return (ret == KVM_CLOCK_TSC_STABLE);
147 bool kvm_has_adjust_clock(void)
149 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
152 bool kvm_has_exception_payload(void)
154 return has_exception_payload;
157 static bool kvm_x2apic_api_set_flags(uint64_t flags)
159 KVMState *s = KVM_STATE(current_accel());
161 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
164 #define MEMORIZE(fn, _result) \
165 ({ \
166 static bool _memorized; \
168 if (_memorized) { \
169 return _result; \
171 _memorized = true; \
172 _result = fn; \
175 static bool has_x2apic_api;
177 bool kvm_has_x2apic_api(void)
179 return has_x2apic_api;
182 bool kvm_enable_x2apic(void)
184 return MEMORIZE(
185 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
186 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
187 has_x2apic_api);
190 bool kvm_hv_vpindex_settable(void)
192 return hv_vpindex_settable;
195 static int kvm_get_tsc(CPUState *cs)
197 X86CPU *cpu = X86_CPU(cs);
198 CPUX86State *env = &cpu->env;
199 struct {
200 struct kvm_msrs info;
201 struct kvm_msr_entry entries[1];
202 } msr_data = {};
203 int ret;
205 if (env->tsc_valid) {
206 return 0;
209 memset(&msr_data, 0, sizeof(msr_data));
210 msr_data.info.nmsrs = 1;
211 msr_data.entries[0].index = MSR_IA32_TSC;
212 env->tsc_valid = !runstate_is_running();
214 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
215 if (ret < 0) {
216 return ret;
219 assert(ret == 1);
220 env->tsc = msr_data.entries[0].data;
221 return 0;
224 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
226 kvm_get_tsc(cpu);
229 void kvm_synchronize_all_tsc(void)
231 CPUState *cpu;
233 if (kvm_enabled()) {
234 CPU_FOREACH(cpu) {
235 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
240 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
242 struct kvm_cpuid2 *cpuid;
243 int r, size;
245 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
246 cpuid = g_malloc0(size);
247 cpuid->nent = max;
248 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
249 if (r == 0 && cpuid->nent >= max) {
250 r = -E2BIG;
252 if (r < 0) {
253 if (r == -E2BIG) {
254 g_free(cpuid);
255 return NULL;
256 } else {
257 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
258 strerror(-r));
259 exit(1);
262 return cpuid;
265 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
266 * for all entries.
268 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
270 struct kvm_cpuid2 *cpuid;
271 int max = 1;
273 if (cpuid_cache != NULL) {
274 return cpuid_cache;
276 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
277 max *= 2;
279 cpuid_cache = cpuid;
280 return cpuid;
283 static bool host_tsx_broken(void)
285 int family, model, stepping;\
286 char vendor[CPUID_VENDOR_SZ + 1];
288 host_vendor_fms(vendor, &family, &model, &stepping);
290 /* Check if we are running on a Haswell host known to have broken TSX */
291 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
292 (family == 6) &&
293 ((model == 63 && stepping < 4) ||
294 model == 60 || model == 69 || model == 70);
297 /* Returns the value for a specific register on the cpuid entry
299 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
301 uint32_t ret = 0;
302 switch (reg) {
303 case R_EAX:
304 ret = entry->eax;
305 break;
306 case R_EBX:
307 ret = entry->ebx;
308 break;
309 case R_ECX:
310 ret = entry->ecx;
311 break;
312 case R_EDX:
313 ret = entry->edx;
314 break;
316 return ret;
319 /* Find matching entry for function/index on kvm_cpuid2 struct
321 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
322 uint32_t function,
323 uint32_t index)
325 int i;
326 for (i = 0; i < cpuid->nent; ++i) {
327 if (cpuid->entries[i].function == function &&
328 cpuid->entries[i].index == index) {
329 return &cpuid->entries[i];
332 /* not found: */
333 return NULL;
336 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
337 uint32_t index, int reg)
339 struct kvm_cpuid2 *cpuid;
340 uint32_t ret = 0;
341 uint32_t cpuid_1_edx;
343 cpuid = get_supported_cpuid(s);
345 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
346 if (entry) {
347 ret = cpuid_entry_get_reg(entry, reg);
350 /* Fixups for the data returned by KVM, below */
352 if (function == 1 && reg == R_EDX) {
353 /* KVM before 2.6.30 misreports the following features */
354 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
355 } else if (function == 1 && reg == R_ECX) {
356 /* We can set the hypervisor flag, even if KVM does not return it on
357 * GET_SUPPORTED_CPUID
359 ret |= CPUID_EXT_HYPERVISOR;
360 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
361 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
362 * and the irqchip is in the kernel.
364 if (kvm_irqchip_in_kernel() &&
365 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
366 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
369 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
370 * without the in-kernel irqchip
372 if (!kvm_irqchip_in_kernel()) {
373 ret &= ~CPUID_EXT_X2APIC;
376 if (enable_cpu_pm) {
377 int disable_exits = kvm_check_extension(s,
378 KVM_CAP_X86_DISABLE_EXITS);
380 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
381 ret |= CPUID_EXT_MONITOR;
384 } else if (function == 6 && reg == R_EAX) {
385 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
386 } else if (function == 7 && index == 0 && reg == R_EBX) {
387 if (host_tsx_broken()) {
388 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
390 } else if (function == 7 && index == 0 && reg == R_EDX) {
392 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
393 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
394 * returned by KVM_GET_MSR_INDEX_LIST.
396 if (!has_msr_arch_capabs) {
397 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
399 } else if (function == 0x80000001 && reg == R_ECX) {
401 * It's safe to enable TOPOEXT even if it's not returned by
402 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
403 * us to keep CPU models including TOPOEXT runnable on older kernels.
405 ret |= CPUID_EXT3_TOPOEXT;
406 } else if (function == 0x80000001 && reg == R_EDX) {
407 /* On Intel, kvm returns cpuid according to the Intel spec,
408 * so add missing bits according to the AMD spec:
410 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
411 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
412 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
413 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
414 * be enabled without the in-kernel irqchip
416 if (!kvm_irqchip_in_kernel()) {
417 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
419 if (kvm_irqchip_is_split()) {
420 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
422 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
423 ret |= 1U << KVM_HINTS_REALTIME;
426 return ret;
429 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
431 struct {
432 struct kvm_msrs info;
433 struct kvm_msr_entry entries[1];
434 } msr_data = {};
435 uint64_t value;
436 uint32_t ret, can_be_one, must_be_one;
438 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
439 return 0;
442 /* Check if requested MSR is supported feature MSR */
443 int i;
444 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
445 if (kvm_feature_msrs->indices[i] == index) {
446 break;
448 if (i == kvm_feature_msrs->nmsrs) {
449 return 0; /* if the feature MSR is not supported, simply return 0 */
452 msr_data.info.nmsrs = 1;
453 msr_data.entries[0].index = index;
455 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
456 if (ret != 1) {
457 error_report("KVM get MSR (index=0x%x) feature failed, %s",
458 index, strerror(-ret));
459 exit(1);
462 value = msr_data.entries[0].data;
463 switch (index) {
464 case MSR_IA32_VMX_PROCBASED_CTLS2:
465 if (!has_msr_vmx_procbased_ctls2) {
466 /* KVM forgot to add these bits for some time, do this ourselves. */
467 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
468 CPUID_XSAVE_XSAVES) {
469 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
471 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
472 CPUID_EXT_RDRAND) {
473 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
475 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
476 CPUID_7_0_EBX_INVPCID) {
477 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
479 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
480 CPUID_7_0_EBX_RDSEED) {
481 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
483 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
484 CPUID_EXT2_RDTSCP) {
485 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
488 /* fall through */
489 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
490 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
491 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
492 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
494 * Return true for bits that can be one, but do not have to be one.
495 * The SDM tells us which bits could have a "must be one" setting,
496 * so we can do the opposite transformation in make_vmx_msr_value.
498 must_be_one = (uint32_t)value;
499 can_be_one = (uint32_t)(value >> 32);
500 return can_be_one & ~must_be_one;
502 default:
503 return value;
507 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
508 int *max_banks)
510 int r;
512 r = kvm_check_extension(s, KVM_CAP_MCE);
513 if (r > 0) {
514 *max_banks = r;
515 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
517 return -ENOSYS;
520 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
522 CPUState *cs = CPU(cpu);
523 CPUX86State *env = &cpu->env;
524 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
525 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
526 uint64_t mcg_status = MCG_STATUS_MCIP;
527 int flags = 0;
529 if (code == BUS_MCEERR_AR) {
530 status |= MCI_STATUS_AR | 0x134;
531 mcg_status |= MCG_STATUS_EIPV;
532 } else {
533 status |= 0xc0;
534 mcg_status |= MCG_STATUS_RIPV;
537 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
538 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
539 * guest kernel back into env->mcg_ext_ctl.
541 cpu_synchronize_state(cs);
542 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
543 mcg_status |= MCG_STATUS_LMCE;
544 flags = 0;
547 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
548 (MCM_ADDR_PHYS << 6) | 0xc, flags);
551 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
553 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
555 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
556 &mff);
559 static void hardware_memory_error(void *host_addr)
561 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
562 error_report("QEMU got Hardware memory error at addr %p", host_addr);
563 exit(1);
566 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
568 X86CPU *cpu = X86_CPU(c);
569 CPUX86State *env = &cpu->env;
570 ram_addr_t ram_addr;
571 hwaddr paddr;
573 /* If we get an action required MCE, it has been injected by KVM
574 * while the VM was running. An action optional MCE instead should
575 * be coming from the main thread, which qemu_init_sigbus identifies
576 * as the "early kill" thread.
578 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
580 if ((env->mcg_cap & MCG_SER_P) && addr) {
581 ram_addr = qemu_ram_addr_from_host(addr);
582 if (ram_addr != RAM_ADDR_INVALID &&
583 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
584 kvm_hwpoison_page_add(ram_addr);
585 kvm_mce_inject(cpu, paddr, code);
588 * Use different logging severity based on error type.
589 * If there is additional MCE reporting on the hypervisor, QEMU VA
590 * could be another source to identify the PA and MCE details.
592 if (code == BUS_MCEERR_AR) {
593 error_report("Guest MCE Memory Error at QEMU addr %p and "
594 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
595 addr, paddr, "BUS_MCEERR_AR");
596 } else {
597 warn_report("Guest MCE Memory Error at QEMU addr %p and "
598 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
599 addr, paddr, "BUS_MCEERR_AO");
602 return;
605 if (code == BUS_MCEERR_AO) {
606 warn_report("Hardware memory error at addr %p of type %s "
607 "for memory used by QEMU itself instead of guest system!",
608 addr, "BUS_MCEERR_AO");
612 if (code == BUS_MCEERR_AR) {
613 hardware_memory_error(addr);
616 /* Hope we are lucky for AO MCE, just notify a event */
617 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
620 static void kvm_reset_exception(CPUX86State *env)
622 env->exception_nr = -1;
623 env->exception_pending = 0;
624 env->exception_injected = 0;
625 env->exception_has_payload = false;
626 env->exception_payload = 0;
629 static void kvm_queue_exception(CPUX86State *env,
630 int32_t exception_nr,
631 uint8_t exception_has_payload,
632 uint64_t exception_payload)
634 assert(env->exception_nr == -1);
635 assert(!env->exception_pending);
636 assert(!env->exception_injected);
637 assert(!env->exception_has_payload);
639 env->exception_nr = exception_nr;
641 if (has_exception_payload) {
642 env->exception_pending = 1;
644 env->exception_has_payload = exception_has_payload;
645 env->exception_payload = exception_payload;
646 } else {
647 env->exception_injected = 1;
649 if (exception_nr == EXCP01_DB) {
650 assert(exception_has_payload);
651 env->dr[6] = exception_payload;
652 } else if (exception_nr == EXCP0E_PAGE) {
653 assert(exception_has_payload);
654 env->cr[2] = exception_payload;
655 } else {
656 assert(!exception_has_payload);
661 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
663 CPUX86State *env = &cpu->env;
665 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
666 unsigned int bank, bank_num = env->mcg_cap & 0xff;
667 struct kvm_x86_mce mce;
669 kvm_reset_exception(env);
672 * There must be at least one bank in use if an MCE is pending.
673 * Find it and use its values for the event injection.
675 for (bank = 0; bank < bank_num; bank++) {
676 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
677 break;
680 assert(bank < bank_num);
682 mce.bank = bank;
683 mce.status = env->mce_banks[bank * 4 + 1];
684 mce.mcg_status = env->mcg_status;
685 mce.addr = env->mce_banks[bank * 4 + 2];
686 mce.misc = env->mce_banks[bank * 4 + 3];
688 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
690 return 0;
693 static void cpu_update_state(void *opaque, int running, RunState state)
695 CPUX86State *env = opaque;
697 if (running) {
698 env->tsc_valid = false;
702 unsigned long kvm_arch_vcpu_id(CPUState *cs)
704 X86CPU *cpu = X86_CPU(cs);
705 return cpu->apic_id;
708 #ifndef KVM_CPUID_SIGNATURE_NEXT
709 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
710 #endif
712 static bool hyperv_enabled(X86CPU *cpu)
714 CPUState *cs = CPU(cpu);
715 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
716 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
717 cpu->hyperv_features || cpu->hyperv_passthrough);
721 * Check whether target_freq is within conservative
722 * ntp correctable bounds (250ppm) of freq
724 static inline bool freq_within_bounds(int freq, int target_freq)
726 int max_freq = freq + (freq * 250 / 1000000);
727 int min_freq = freq - (freq * 250 / 1000000);
729 if (target_freq >= min_freq && target_freq <= max_freq) {
730 return true;
733 return false;
736 static int kvm_arch_set_tsc_khz(CPUState *cs)
738 X86CPU *cpu = X86_CPU(cs);
739 CPUX86State *env = &cpu->env;
740 int r, cur_freq;
741 bool set_ioctl = false;
743 if (!env->tsc_khz) {
744 return 0;
747 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
748 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
751 * If TSC scaling is supported, attempt to set TSC frequency.
753 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
754 set_ioctl = true;
758 * If desired TSC frequency is within bounds of NTP correction,
759 * attempt to set TSC frequency.
761 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
762 set_ioctl = true;
765 r = set_ioctl ?
766 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
767 -ENOTSUP;
769 if (r < 0) {
770 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
771 * TSC frequency doesn't match the one we want.
773 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
774 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
775 -ENOTSUP;
776 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
777 warn_report("TSC frequency mismatch between "
778 "VM (%" PRId64 " kHz) and host (%d kHz), "
779 "and TSC scaling unavailable",
780 env->tsc_khz, cur_freq);
781 return r;
785 return 0;
788 static bool tsc_is_stable_and_known(CPUX86State *env)
790 if (!env->tsc_khz) {
791 return false;
793 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
794 || env->user_tsc_khz;
797 static struct {
798 const char *desc;
799 struct {
800 uint32_t fw;
801 uint32_t bits;
802 } flags[2];
803 uint64_t dependencies;
804 } kvm_hyperv_properties[] = {
805 [HYPERV_FEAT_RELAXED] = {
806 .desc = "relaxed timing (hv-relaxed)",
807 .flags = {
808 {.fw = FEAT_HYPERV_EAX,
809 .bits = HV_HYPERCALL_AVAILABLE},
810 {.fw = FEAT_HV_RECOMM_EAX,
811 .bits = HV_RELAXED_TIMING_RECOMMENDED}
814 [HYPERV_FEAT_VAPIC] = {
815 .desc = "virtual APIC (hv-vapic)",
816 .flags = {
817 {.fw = FEAT_HYPERV_EAX,
818 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
819 {.fw = FEAT_HV_RECOMM_EAX,
820 .bits = HV_APIC_ACCESS_RECOMMENDED}
823 [HYPERV_FEAT_TIME] = {
824 .desc = "clocksources (hv-time)",
825 .flags = {
826 {.fw = FEAT_HYPERV_EAX,
827 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
828 HV_REFERENCE_TSC_AVAILABLE}
831 [HYPERV_FEAT_CRASH] = {
832 .desc = "crash MSRs (hv-crash)",
833 .flags = {
834 {.fw = FEAT_HYPERV_EDX,
835 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
838 [HYPERV_FEAT_RESET] = {
839 .desc = "reset MSR (hv-reset)",
840 .flags = {
841 {.fw = FEAT_HYPERV_EAX,
842 .bits = HV_RESET_AVAILABLE}
845 [HYPERV_FEAT_VPINDEX] = {
846 .desc = "VP_INDEX MSR (hv-vpindex)",
847 .flags = {
848 {.fw = FEAT_HYPERV_EAX,
849 .bits = HV_VP_INDEX_AVAILABLE}
852 [HYPERV_FEAT_RUNTIME] = {
853 .desc = "VP_RUNTIME MSR (hv-runtime)",
854 .flags = {
855 {.fw = FEAT_HYPERV_EAX,
856 .bits = HV_VP_RUNTIME_AVAILABLE}
859 [HYPERV_FEAT_SYNIC] = {
860 .desc = "synthetic interrupt controller (hv-synic)",
861 .flags = {
862 {.fw = FEAT_HYPERV_EAX,
863 .bits = HV_SYNIC_AVAILABLE}
866 [HYPERV_FEAT_STIMER] = {
867 .desc = "synthetic timers (hv-stimer)",
868 .flags = {
869 {.fw = FEAT_HYPERV_EAX,
870 .bits = HV_SYNTIMERS_AVAILABLE}
872 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
874 [HYPERV_FEAT_FREQUENCIES] = {
875 .desc = "frequency MSRs (hv-frequencies)",
876 .flags = {
877 {.fw = FEAT_HYPERV_EAX,
878 .bits = HV_ACCESS_FREQUENCY_MSRS},
879 {.fw = FEAT_HYPERV_EDX,
880 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
883 [HYPERV_FEAT_REENLIGHTENMENT] = {
884 .desc = "reenlightenment MSRs (hv-reenlightenment)",
885 .flags = {
886 {.fw = FEAT_HYPERV_EAX,
887 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
890 [HYPERV_FEAT_TLBFLUSH] = {
891 .desc = "paravirtualized TLB flush (hv-tlbflush)",
892 .flags = {
893 {.fw = FEAT_HV_RECOMM_EAX,
894 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
895 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
897 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
899 [HYPERV_FEAT_EVMCS] = {
900 .desc = "enlightened VMCS (hv-evmcs)",
901 .flags = {
902 {.fw = FEAT_HV_RECOMM_EAX,
903 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
905 .dependencies = BIT(HYPERV_FEAT_VAPIC)
907 [HYPERV_FEAT_IPI] = {
908 .desc = "paravirtualized IPI (hv-ipi)",
909 .flags = {
910 {.fw = FEAT_HV_RECOMM_EAX,
911 .bits = HV_CLUSTER_IPI_RECOMMENDED |
912 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
914 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
916 [HYPERV_FEAT_STIMER_DIRECT] = {
917 .desc = "direct mode synthetic timers (hv-stimer-direct)",
918 .flags = {
919 {.fw = FEAT_HYPERV_EDX,
920 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
922 .dependencies = BIT(HYPERV_FEAT_STIMER)
926 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
928 struct kvm_cpuid2 *cpuid;
929 int r, size;
931 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
932 cpuid = g_malloc0(size);
933 cpuid->nent = max;
935 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
936 if (r == 0 && cpuid->nent >= max) {
937 r = -E2BIG;
939 if (r < 0) {
940 if (r == -E2BIG) {
941 g_free(cpuid);
942 return NULL;
943 } else {
944 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
945 strerror(-r));
946 exit(1);
949 return cpuid;
953 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
954 * for all entries.
956 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
958 struct kvm_cpuid2 *cpuid;
959 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
962 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
963 * -E2BIG, however, it doesn't report back the right size. Keep increasing
964 * it and re-trying until we succeed.
966 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
967 max++;
969 return cpuid;
973 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
974 * leaves from KVM_CAP_HYPERV* and present MSRs data.
976 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
978 X86CPU *cpu = X86_CPU(cs);
979 struct kvm_cpuid2 *cpuid;
980 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
982 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
983 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
984 cpuid->nent = 2;
986 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
987 entry_feat = &cpuid->entries[0];
988 entry_feat->function = HV_CPUID_FEATURES;
990 entry_recomm = &cpuid->entries[1];
991 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
992 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
994 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
995 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
996 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
997 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
998 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
999 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1002 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1003 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1004 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1007 if (has_msr_hv_frequencies) {
1008 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1009 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1012 if (has_msr_hv_crash) {
1013 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1016 if (has_msr_hv_reenlightenment) {
1017 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1020 if (has_msr_hv_reset) {
1021 entry_feat->eax |= HV_RESET_AVAILABLE;
1024 if (has_msr_hv_vpindex) {
1025 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1028 if (has_msr_hv_runtime) {
1029 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1032 if (has_msr_hv_synic) {
1033 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1034 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1036 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1037 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1041 if (has_msr_hv_stimer) {
1042 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1045 if (kvm_check_extension(cs->kvm_state,
1046 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1047 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1048 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1051 if (kvm_check_extension(cs->kvm_state,
1052 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1053 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1056 if (kvm_check_extension(cs->kvm_state,
1057 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1058 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1059 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1062 return cpuid;
1065 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1067 struct kvm_cpuid_entry2 *entry;
1068 uint32_t func;
1069 int reg;
1071 switch (fw) {
1072 case FEAT_HYPERV_EAX:
1073 reg = R_EAX;
1074 func = HV_CPUID_FEATURES;
1075 break;
1076 case FEAT_HYPERV_EDX:
1077 reg = R_EDX;
1078 func = HV_CPUID_FEATURES;
1079 break;
1080 case FEAT_HV_RECOMM_EAX:
1081 reg = R_EAX;
1082 func = HV_CPUID_ENLIGHTMENT_INFO;
1083 break;
1084 default:
1085 return -EINVAL;
1088 entry = cpuid_find_entry(cpuid, func, 0);
1089 if (!entry) {
1090 return -ENOENT;
1093 switch (reg) {
1094 case R_EAX:
1095 *r = entry->eax;
1096 break;
1097 case R_EDX:
1098 *r = entry->edx;
1099 break;
1100 default:
1101 return -EINVAL;
1104 return 0;
1107 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1108 int feature)
1110 X86CPU *cpu = X86_CPU(cs);
1111 CPUX86State *env = &cpu->env;
1112 uint32_t r, fw, bits;
1113 uint64_t deps;
1114 int i, dep_feat;
1116 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1117 return 0;
1120 deps = kvm_hyperv_properties[feature].dependencies;
1121 while (deps) {
1122 dep_feat = ctz64(deps);
1123 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1124 fprintf(stderr,
1125 "Hyper-V %s requires Hyper-V %s\n",
1126 kvm_hyperv_properties[feature].desc,
1127 kvm_hyperv_properties[dep_feat].desc);
1128 return 1;
1130 deps &= ~(1ull << dep_feat);
1133 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1134 fw = kvm_hyperv_properties[feature].flags[i].fw;
1135 bits = kvm_hyperv_properties[feature].flags[i].bits;
1137 if (!fw) {
1138 continue;
1141 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1142 if (hyperv_feat_enabled(cpu, feature)) {
1143 fprintf(stderr,
1144 "Hyper-V %s is not supported by kernel\n",
1145 kvm_hyperv_properties[feature].desc);
1146 return 1;
1147 } else {
1148 return 0;
1152 env->features[fw] |= bits;
1155 if (cpu->hyperv_passthrough) {
1156 cpu->hyperv_features |= BIT(feature);
1159 return 0;
1163 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1164 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1165 * extentions are enabled.
1167 static int hyperv_handle_properties(CPUState *cs,
1168 struct kvm_cpuid_entry2 *cpuid_ent)
1170 X86CPU *cpu = X86_CPU(cs);
1171 CPUX86State *env = &cpu->env;
1172 struct kvm_cpuid2 *cpuid;
1173 struct kvm_cpuid_entry2 *c;
1174 uint32_t signature[3];
1175 uint32_t cpuid_i = 0;
1176 int r;
1178 if (!hyperv_enabled(cpu))
1179 return 0;
1181 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1182 cpu->hyperv_passthrough) {
1183 uint16_t evmcs_version;
1185 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1186 (uintptr_t)&evmcs_version);
1188 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1189 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1190 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1191 return -ENOSYS;
1194 if (!r) {
1195 env->features[FEAT_HV_RECOMM_EAX] |=
1196 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1197 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1201 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1202 cpuid = get_supported_hv_cpuid(cs);
1203 } else {
1204 cpuid = get_supported_hv_cpuid_legacy(cs);
1207 if (cpu->hyperv_passthrough) {
1208 memcpy(cpuid_ent, &cpuid->entries[0],
1209 cpuid->nent * sizeof(cpuid->entries[0]));
1211 c = cpuid_find_entry(cpuid, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, 0);
1212 if (c) {
1213 cpu->hyperv_vendor_id[0] = c->ebx;
1214 cpu->hyperv_vendor_id[1] = c->ecx;
1215 cpu->hyperv_vendor_id[2] = c->edx;
1218 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1219 if (c) {
1220 env->features[FEAT_HYPERV_EAX] = c->eax;
1221 env->features[FEAT_HYPERV_EBX] = c->ebx;
1222 env->features[FEAT_HYPERV_EDX] = c->edx;
1224 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1225 if (c) {
1226 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1228 /* hv-spinlocks may have been overriden */
1229 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) {
1230 c->ebx = cpu->hyperv_spinlock_attempts;
1233 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1234 if (c) {
1235 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1239 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1240 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1241 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1242 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1243 if (c) {
1244 env->features[FEAT_HV_RECOMM_EAX] |=
1245 c->eax & HV_NO_NONARCH_CORESHARING;
1249 /* Features */
1250 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1251 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1252 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1253 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1254 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1255 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1256 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1257 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1258 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1259 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1260 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1261 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1262 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1263 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1264 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1266 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1267 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1268 !cpu->hyperv_synic_kvm_only &&
1269 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1270 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1271 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1272 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1273 r |= 1;
1276 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1277 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1279 if (r) {
1280 r = -ENOSYS;
1281 goto free;
1284 if (cpu->hyperv_passthrough) {
1285 /* We already copied all feature words from KVM as is */
1286 r = cpuid->nent;
1287 goto free;
1290 c = &cpuid_ent[cpuid_i++];
1291 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1292 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1293 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1294 c->ebx = cpu->hyperv_vendor_id[0];
1295 c->ecx = cpu->hyperv_vendor_id[1];
1296 c->edx = cpu->hyperv_vendor_id[2];
1298 c = &cpuid_ent[cpuid_i++];
1299 c->function = HV_CPUID_INTERFACE;
1300 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1301 c->eax = signature[0];
1302 c->ebx = 0;
1303 c->ecx = 0;
1304 c->edx = 0;
1306 c = &cpuid_ent[cpuid_i++];
1307 c->function = HV_CPUID_VERSION;
1308 c->eax = 0x00001bbc;
1309 c->ebx = 0x00060001;
1311 c = &cpuid_ent[cpuid_i++];
1312 c->function = HV_CPUID_FEATURES;
1313 c->eax = env->features[FEAT_HYPERV_EAX];
1314 c->ebx = env->features[FEAT_HYPERV_EBX];
1315 c->edx = env->features[FEAT_HYPERV_EDX];
1317 c = &cpuid_ent[cpuid_i++];
1318 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1319 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1320 c->ebx = cpu->hyperv_spinlock_attempts;
1322 c = &cpuid_ent[cpuid_i++];
1323 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1324 c->eax = cpu->hv_max_vps;
1325 c->ebx = 0x40;
1327 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1328 __u32 function;
1330 /* Create zeroed 0x40000006..0x40000009 leaves */
1331 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1332 function < HV_CPUID_NESTED_FEATURES; function++) {
1333 c = &cpuid_ent[cpuid_i++];
1334 c->function = function;
1337 c = &cpuid_ent[cpuid_i++];
1338 c->function = HV_CPUID_NESTED_FEATURES;
1339 c->eax = env->features[FEAT_HV_NESTED_EAX];
1341 r = cpuid_i;
1343 free:
1344 g_free(cpuid);
1346 return r;
1349 static Error *hv_passthrough_mig_blocker;
1350 static Error *hv_no_nonarch_cs_mig_blocker;
1352 static int hyperv_init_vcpu(X86CPU *cpu)
1354 CPUState *cs = CPU(cpu);
1355 Error *local_err = NULL;
1356 int ret;
1358 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1359 error_setg(&hv_passthrough_mig_blocker,
1360 "'hv-passthrough' CPU flag prevents migration, use explicit"
1361 " set of hv-* flags instead");
1362 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1363 if (local_err) {
1364 error_report_err(local_err);
1365 error_free(hv_passthrough_mig_blocker);
1366 return ret;
1370 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1371 hv_no_nonarch_cs_mig_blocker == NULL) {
1372 error_setg(&hv_no_nonarch_cs_mig_blocker,
1373 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1374 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1375 " make sure SMT is disabled and/or that vCPUs are properly"
1376 " pinned)");
1377 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1378 if (local_err) {
1379 error_report_err(local_err);
1380 error_free(hv_no_nonarch_cs_mig_blocker);
1381 return ret;
1385 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1387 * the kernel doesn't support setting vp_index; assert that its value
1388 * is in sync
1390 struct {
1391 struct kvm_msrs info;
1392 struct kvm_msr_entry entries[1];
1393 } msr_data = {
1394 .info.nmsrs = 1,
1395 .entries[0].index = HV_X64_MSR_VP_INDEX,
1398 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1399 if (ret < 0) {
1400 return ret;
1402 assert(ret == 1);
1404 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1405 error_report("kernel's vp_index != QEMU's vp_index");
1406 return -ENXIO;
1410 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1411 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1412 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1413 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1414 if (ret < 0) {
1415 error_report("failed to turn on HyperV SynIC in KVM: %s",
1416 strerror(-ret));
1417 return ret;
1420 if (!cpu->hyperv_synic_kvm_only) {
1421 ret = hyperv_x86_synic_add(cpu);
1422 if (ret < 0) {
1423 error_report("failed to create HyperV SynIC: %s",
1424 strerror(-ret));
1425 return ret;
1430 return 0;
1433 static Error *invtsc_mig_blocker;
1435 #define KVM_MAX_CPUID_ENTRIES 100
1437 int kvm_arch_init_vcpu(CPUState *cs)
1439 struct {
1440 struct kvm_cpuid2 cpuid;
1441 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1442 } cpuid_data;
1444 * The kernel defines these structs with padding fields so there
1445 * should be no extra padding in our cpuid_data struct.
1447 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1448 sizeof(struct kvm_cpuid2) +
1449 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1451 X86CPU *cpu = X86_CPU(cs);
1452 CPUX86State *env = &cpu->env;
1453 uint32_t limit, i, j, cpuid_i;
1454 uint32_t unused;
1455 struct kvm_cpuid_entry2 *c;
1456 uint32_t signature[3];
1457 int kvm_base = KVM_CPUID_SIGNATURE;
1458 int max_nested_state_len;
1459 int r;
1460 Error *local_err = NULL;
1462 memset(&cpuid_data, 0, sizeof(cpuid_data));
1464 cpuid_i = 0;
1466 r = kvm_arch_set_tsc_khz(cs);
1467 if (r < 0) {
1468 return r;
1471 /* vcpu's TSC frequency is either specified by user, or following
1472 * the value used by KVM if the former is not present. In the
1473 * latter case, we query it from KVM and record in env->tsc_khz,
1474 * so that vcpu's TSC frequency can be migrated later via this field.
1476 if (!env->tsc_khz) {
1477 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1478 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1479 -ENOTSUP;
1480 if (r > 0) {
1481 env->tsc_khz = r;
1485 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1487 /* Paravirtualization CPUIDs */
1488 r = hyperv_handle_properties(cs, cpuid_data.entries);
1489 if (r < 0) {
1490 return r;
1491 } else if (r > 0) {
1492 cpuid_i = r;
1493 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1494 has_msr_hv_hypercall = true;
1497 if (cpu->expose_kvm) {
1498 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1499 c = &cpuid_data.entries[cpuid_i++];
1500 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1501 c->eax = KVM_CPUID_FEATURES | kvm_base;
1502 c->ebx = signature[0];
1503 c->ecx = signature[1];
1504 c->edx = signature[2];
1506 c = &cpuid_data.entries[cpuid_i++];
1507 c->function = KVM_CPUID_FEATURES | kvm_base;
1508 c->eax = env->features[FEAT_KVM];
1509 c->edx = env->features[FEAT_KVM_HINTS];
1512 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1514 for (i = 0; i <= limit; i++) {
1515 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1516 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1517 abort();
1519 c = &cpuid_data.entries[cpuid_i++];
1521 switch (i) {
1522 case 2: {
1523 /* Keep reading function 2 till all the input is received */
1524 int times;
1526 c->function = i;
1527 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1528 KVM_CPUID_FLAG_STATE_READ_NEXT;
1529 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1530 times = c->eax & 0xff;
1532 for (j = 1; j < times; ++j) {
1533 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1534 fprintf(stderr, "cpuid_data is full, no space for "
1535 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1536 abort();
1538 c = &cpuid_data.entries[cpuid_i++];
1539 c->function = i;
1540 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1541 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1543 break;
1545 case 0x1f:
1546 if (env->nr_dies < 2) {
1547 break;
1549 /* fallthrough */
1550 case 4:
1551 case 0xb:
1552 case 0xd:
1553 for (j = 0; ; j++) {
1554 if (i == 0xd && j == 64) {
1555 break;
1558 if (i == 0x1f && j == 64) {
1559 break;
1562 c->function = i;
1563 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1564 c->index = j;
1565 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1567 if (i == 4 && c->eax == 0) {
1568 break;
1570 if (i == 0xb && !(c->ecx & 0xff00)) {
1571 break;
1573 if (i == 0x1f && !(c->ecx & 0xff00)) {
1574 break;
1576 if (i == 0xd && c->eax == 0) {
1577 continue;
1579 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1580 fprintf(stderr, "cpuid_data is full, no space for "
1581 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1582 abort();
1584 c = &cpuid_data.entries[cpuid_i++];
1586 break;
1587 case 0x7:
1588 case 0x14: {
1589 uint32_t times;
1591 c->function = i;
1592 c->index = 0;
1593 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1594 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1595 times = c->eax;
1597 for (j = 1; j <= times; ++j) {
1598 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1599 fprintf(stderr, "cpuid_data is full, no space for "
1600 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1601 abort();
1603 c = &cpuid_data.entries[cpuid_i++];
1604 c->function = i;
1605 c->index = j;
1606 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1607 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1609 break;
1611 default:
1612 c->function = i;
1613 c->flags = 0;
1614 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1615 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1617 * KVM already returns all zeroes if a CPUID entry is missing,
1618 * so we can omit it and avoid hitting KVM's 80-entry limit.
1620 cpuid_i--;
1622 break;
1626 if (limit >= 0x0a) {
1627 uint32_t eax, edx;
1629 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1631 has_architectural_pmu_version = eax & 0xff;
1632 if (has_architectural_pmu_version > 0) {
1633 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1635 /* Shouldn't be more than 32, since that's the number of bits
1636 * available in EBX to tell us _which_ counters are available.
1637 * Play it safe.
1639 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1640 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1643 if (has_architectural_pmu_version > 1) {
1644 num_architectural_pmu_fixed_counters = edx & 0x1f;
1646 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1647 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1653 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1655 for (i = 0x80000000; i <= limit; i++) {
1656 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1657 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1658 abort();
1660 c = &cpuid_data.entries[cpuid_i++];
1662 switch (i) {
1663 case 0x8000001d:
1664 /* Query for all AMD cache information leaves */
1665 for (j = 0; ; j++) {
1666 c->function = i;
1667 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1668 c->index = j;
1669 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1671 if (c->eax == 0) {
1672 break;
1674 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1675 fprintf(stderr, "cpuid_data is full, no space for "
1676 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1677 abort();
1679 c = &cpuid_data.entries[cpuid_i++];
1681 break;
1682 default:
1683 c->function = i;
1684 c->flags = 0;
1685 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1686 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1688 * KVM already returns all zeroes if a CPUID entry is missing,
1689 * so we can omit it and avoid hitting KVM's 80-entry limit.
1691 cpuid_i--;
1693 break;
1697 /* Call Centaur's CPUID instructions they are supported. */
1698 if (env->cpuid_xlevel2 > 0) {
1699 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1701 for (i = 0xC0000000; i <= limit; i++) {
1702 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1703 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1704 abort();
1706 c = &cpuid_data.entries[cpuid_i++];
1708 c->function = i;
1709 c->flags = 0;
1710 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1714 cpuid_data.cpuid.nent = cpuid_i;
1716 if (((env->cpuid_version >> 8)&0xF) >= 6
1717 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1718 (CPUID_MCE | CPUID_MCA)
1719 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1720 uint64_t mcg_cap, unsupported_caps;
1721 int banks;
1722 int ret;
1724 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1725 if (ret < 0) {
1726 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1727 return ret;
1730 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1731 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1732 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1733 return -ENOTSUP;
1736 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1737 if (unsupported_caps) {
1738 if (unsupported_caps & MCG_LMCE_P) {
1739 error_report("kvm: LMCE not supported");
1740 return -ENOTSUP;
1742 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1743 unsupported_caps);
1746 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1747 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1748 if (ret < 0) {
1749 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1750 return ret;
1754 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1756 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1757 if (c) {
1758 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1759 !!(c->ecx & CPUID_EXT_SMX);
1762 if (env->mcg_cap & MCG_LMCE_P) {
1763 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1766 if (!env->user_tsc_khz) {
1767 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1768 invtsc_mig_blocker == NULL) {
1769 error_setg(&invtsc_mig_blocker,
1770 "State blocked by non-migratable CPU device"
1771 " (invtsc flag)");
1772 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1773 if (local_err) {
1774 error_report_err(local_err);
1775 error_free(invtsc_mig_blocker);
1776 return r;
1781 if (cpu->vmware_cpuid_freq
1782 /* Guests depend on 0x40000000 to detect this feature, so only expose
1783 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1784 && cpu->expose_kvm
1785 && kvm_base == KVM_CPUID_SIGNATURE
1786 /* TSC clock must be stable and known for this feature. */
1787 && tsc_is_stable_and_known(env)) {
1789 c = &cpuid_data.entries[cpuid_i++];
1790 c->function = KVM_CPUID_SIGNATURE | 0x10;
1791 c->eax = env->tsc_khz;
1792 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1793 c->ecx = c->edx = 0;
1795 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1796 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1799 cpuid_data.cpuid.nent = cpuid_i;
1801 cpuid_data.cpuid.padding = 0;
1802 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1803 if (r) {
1804 goto fail;
1807 if (has_xsave) {
1808 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1809 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1812 max_nested_state_len = kvm_max_nested_state_length();
1813 if (max_nested_state_len > 0) {
1814 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1816 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1817 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1819 env->nested_state = g_malloc0(max_nested_state_len);
1820 env->nested_state->size = max_nested_state_len;
1822 if (cpu_has_vmx(env)) {
1823 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1824 vmx_hdr = &env->nested_state->hdr.vmx;
1825 vmx_hdr->vmxon_pa = -1ull;
1826 vmx_hdr->vmcs12_pa = -1ull;
1827 } else {
1828 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1833 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1835 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1836 has_msr_tsc_aux = false;
1839 kvm_init_msrs(cpu);
1841 r = hyperv_init_vcpu(cpu);
1842 if (r) {
1843 goto fail;
1846 return 0;
1848 fail:
1849 migrate_del_blocker(invtsc_mig_blocker);
1851 return r;
1854 int kvm_arch_destroy_vcpu(CPUState *cs)
1856 X86CPU *cpu = X86_CPU(cs);
1857 CPUX86State *env = &cpu->env;
1859 if (cpu->kvm_msr_buf) {
1860 g_free(cpu->kvm_msr_buf);
1861 cpu->kvm_msr_buf = NULL;
1864 if (env->nested_state) {
1865 g_free(env->nested_state);
1866 env->nested_state = NULL;
1869 qemu_del_vm_change_state_handler(cpu->vmsentry);
1871 return 0;
1874 void kvm_arch_reset_vcpu(X86CPU *cpu)
1876 CPUX86State *env = &cpu->env;
1878 env->xcr0 = 1;
1879 if (kvm_irqchip_in_kernel()) {
1880 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1881 KVM_MP_STATE_UNINITIALIZED;
1882 } else {
1883 env->mp_state = KVM_MP_STATE_RUNNABLE;
1886 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1887 int i;
1888 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1889 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1892 hyperv_x86_synic_reset(cpu);
1894 /* enabled by default */
1895 env->poll_control_msr = 1;
1898 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1900 CPUX86State *env = &cpu->env;
1902 /* APs get directly into wait-for-SIPI state. */
1903 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1904 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1908 static int kvm_get_supported_feature_msrs(KVMState *s)
1910 int ret = 0;
1912 if (kvm_feature_msrs != NULL) {
1913 return 0;
1916 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1917 return 0;
1920 struct kvm_msr_list msr_list;
1922 msr_list.nmsrs = 0;
1923 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1924 if (ret < 0 && ret != -E2BIG) {
1925 error_report("Fetch KVM feature MSR list failed: %s",
1926 strerror(-ret));
1927 return ret;
1930 assert(msr_list.nmsrs > 0);
1931 kvm_feature_msrs = (struct kvm_msr_list *) \
1932 g_malloc0(sizeof(msr_list) +
1933 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1935 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1936 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1938 if (ret < 0) {
1939 error_report("Fetch KVM feature MSR list failed: %s",
1940 strerror(-ret));
1941 g_free(kvm_feature_msrs);
1942 kvm_feature_msrs = NULL;
1943 return ret;
1946 return 0;
1949 static int kvm_get_supported_msrs(KVMState *s)
1951 int ret = 0;
1952 struct kvm_msr_list msr_list, *kvm_msr_list;
1955 * Obtain MSR list from KVM. These are the MSRs that we must
1956 * save/restore.
1958 msr_list.nmsrs = 0;
1959 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1960 if (ret < 0 && ret != -E2BIG) {
1961 return ret;
1964 * Old kernel modules had a bug and could write beyond the provided
1965 * memory. Allocate at least a safe amount of 1K.
1967 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1968 msr_list.nmsrs *
1969 sizeof(msr_list.indices[0])));
1971 kvm_msr_list->nmsrs = msr_list.nmsrs;
1972 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1973 if (ret >= 0) {
1974 int i;
1976 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1977 switch (kvm_msr_list->indices[i]) {
1978 case MSR_STAR:
1979 has_msr_star = true;
1980 break;
1981 case MSR_VM_HSAVE_PA:
1982 has_msr_hsave_pa = true;
1983 break;
1984 case MSR_TSC_AUX:
1985 has_msr_tsc_aux = true;
1986 break;
1987 case MSR_TSC_ADJUST:
1988 has_msr_tsc_adjust = true;
1989 break;
1990 case MSR_IA32_TSCDEADLINE:
1991 has_msr_tsc_deadline = true;
1992 break;
1993 case MSR_IA32_SMBASE:
1994 has_msr_smbase = true;
1995 break;
1996 case MSR_SMI_COUNT:
1997 has_msr_smi_count = true;
1998 break;
1999 case MSR_IA32_MISC_ENABLE:
2000 has_msr_misc_enable = true;
2001 break;
2002 case MSR_IA32_BNDCFGS:
2003 has_msr_bndcfgs = true;
2004 break;
2005 case MSR_IA32_XSS:
2006 has_msr_xss = true;
2007 break;
2008 case MSR_IA32_UMWAIT_CONTROL:
2009 has_msr_umwait = true;
2010 break;
2011 case HV_X64_MSR_CRASH_CTL:
2012 has_msr_hv_crash = true;
2013 break;
2014 case HV_X64_MSR_RESET:
2015 has_msr_hv_reset = true;
2016 break;
2017 case HV_X64_MSR_VP_INDEX:
2018 has_msr_hv_vpindex = true;
2019 break;
2020 case HV_X64_MSR_VP_RUNTIME:
2021 has_msr_hv_runtime = true;
2022 break;
2023 case HV_X64_MSR_SCONTROL:
2024 has_msr_hv_synic = true;
2025 break;
2026 case HV_X64_MSR_STIMER0_CONFIG:
2027 has_msr_hv_stimer = true;
2028 break;
2029 case HV_X64_MSR_TSC_FREQUENCY:
2030 has_msr_hv_frequencies = true;
2031 break;
2032 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2033 has_msr_hv_reenlightenment = true;
2034 break;
2035 case MSR_IA32_SPEC_CTRL:
2036 has_msr_spec_ctrl = true;
2037 break;
2038 case MSR_IA32_TSX_CTRL:
2039 has_msr_tsx_ctrl = true;
2040 break;
2041 case MSR_VIRT_SSBD:
2042 has_msr_virt_ssbd = true;
2043 break;
2044 case MSR_IA32_ARCH_CAPABILITIES:
2045 has_msr_arch_capabs = true;
2046 break;
2047 case MSR_IA32_CORE_CAPABILITY:
2048 has_msr_core_capabs = true;
2049 break;
2050 case MSR_IA32_PERF_CAPABILITIES:
2051 has_msr_perf_capabs = true;
2052 break;
2053 case MSR_IA32_VMX_VMFUNC:
2054 has_msr_vmx_vmfunc = true;
2055 break;
2056 case MSR_IA32_UCODE_REV:
2057 has_msr_ucode_rev = true;
2058 break;
2059 case MSR_IA32_VMX_PROCBASED_CTLS2:
2060 has_msr_vmx_procbased_ctls2 = true;
2061 break;
2066 g_free(kvm_msr_list);
2068 return ret;
2071 static Notifier smram_machine_done;
2072 static KVMMemoryListener smram_listener;
2073 static AddressSpace smram_address_space;
2074 static MemoryRegion smram_as_root;
2075 static MemoryRegion smram_as_mem;
2077 static void register_smram_listener(Notifier *n, void *unused)
2079 MemoryRegion *smram =
2080 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2082 /* Outer container... */
2083 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2084 memory_region_set_enabled(&smram_as_root, true);
2086 /* ... with two regions inside: normal system memory with low
2087 * priority, and...
2089 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2090 get_system_memory(), 0, ~0ull);
2091 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2092 memory_region_set_enabled(&smram_as_mem, true);
2094 if (smram) {
2095 /* ... SMRAM with higher priority */
2096 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2097 memory_region_set_enabled(smram, true);
2100 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2101 kvm_memory_listener_register(kvm_state, &smram_listener,
2102 &smram_address_space, 1);
2105 int kvm_arch_init(MachineState *ms, KVMState *s)
2107 uint64_t identity_base = 0xfffbc000;
2108 uint64_t shadow_mem;
2109 int ret;
2110 struct utsname utsname;
2112 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2113 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2114 return -ENOTSUP;
2117 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2118 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2119 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2121 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2123 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2124 if (has_exception_payload) {
2125 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2126 if (ret < 0) {
2127 error_report("kvm: Failed to enable exception payload cap: %s",
2128 strerror(-ret));
2129 return ret;
2133 ret = kvm_get_supported_msrs(s);
2134 if (ret < 0) {
2135 return ret;
2138 kvm_get_supported_feature_msrs(s);
2140 uname(&utsname);
2141 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2144 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2145 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2146 * Since these must be part of guest physical memory, we need to allocate
2147 * them, both by setting their start addresses in the kernel and by
2148 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2150 * Older KVM versions may not support setting the identity map base. In
2151 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2152 * size.
2154 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2155 /* Allows up to 16M BIOSes. */
2156 identity_base = 0xfeffc000;
2158 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2159 if (ret < 0) {
2160 return ret;
2164 /* Set TSS base one page after EPT identity map. */
2165 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2166 if (ret < 0) {
2167 return ret;
2170 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2171 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2172 if (ret < 0) {
2173 fprintf(stderr, "e820_add_entry() table is full\n");
2174 return ret;
2177 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2178 if (shadow_mem != -1) {
2179 shadow_mem /= 4096;
2180 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2181 if (ret < 0) {
2182 return ret;
2186 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2187 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2188 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2189 smram_machine_done.notify = register_smram_listener;
2190 qemu_add_machine_init_done_notifier(&smram_machine_done);
2193 if (enable_cpu_pm) {
2194 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2195 int ret;
2197 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2198 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2199 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2200 #endif
2201 if (disable_exits) {
2202 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2203 KVM_X86_DISABLE_EXITS_HLT |
2204 KVM_X86_DISABLE_EXITS_PAUSE |
2205 KVM_X86_DISABLE_EXITS_CSTATE);
2208 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2209 disable_exits);
2210 if (ret < 0) {
2211 error_report("kvm: guest stopping CPU not supported: %s",
2212 strerror(-ret));
2216 return 0;
2219 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2221 lhs->selector = rhs->selector;
2222 lhs->base = rhs->base;
2223 lhs->limit = rhs->limit;
2224 lhs->type = 3;
2225 lhs->present = 1;
2226 lhs->dpl = 3;
2227 lhs->db = 0;
2228 lhs->s = 1;
2229 lhs->l = 0;
2230 lhs->g = 0;
2231 lhs->avl = 0;
2232 lhs->unusable = 0;
2235 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2237 unsigned flags = rhs->flags;
2238 lhs->selector = rhs->selector;
2239 lhs->base = rhs->base;
2240 lhs->limit = rhs->limit;
2241 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2242 lhs->present = (flags & DESC_P_MASK) != 0;
2243 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2244 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2245 lhs->s = (flags & DESC_S_MASK) != 0;
2246 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2247 lhs->g = (flags & DESC_G_MASK) != 0;
2248 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2249 lhs->unusable = !lhs->present;
2250 lhs->padding = 0;
2253 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2255 lhs->selector = rhs->selector;
2256 lhs->base = rhs->base;
2257 lhs->limit = rhs->limit;
2258 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2259 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2260 (rhs->dpl << DESC_DPL_SHIFT) |
2261 (rhs->db << DESC_B_SHIFT) |
2262 (rhs->s * DESC_S_MASK) |
2263 (rhs->l << DESC_L_SHIFT) |
2264 (rhs->g * DESC_G_MASK) |
2265 (rhs->avl * DESC_AVL_MASK);
2268 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2270 if (set) {
2271 *kvm_reg = *qemu_reg;
2272 } else {
2273 *qemu_reg = *kvm_reg;
2277 static int kvm_getput_regs(X86CPU *cpu, int set)
2279 CPUX86State *env = &cpu->env;
2280 struct kvm_regs regs;
2281 int ret = 0;
2283 if (!set) {
2284 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2285 if (ret < 0) {
2286 return ret;
2290 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2291 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2292 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2293 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2294 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2295 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2296 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2297 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2298 #ifdef TARGET_X86_64
2299 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2300 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2301 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2302 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2303 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2304 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2305 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2306 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2307 #endif
2309 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2310 kvm_getput_reg(&regs.rip, &env->eip, set);
2312 if (set) {
2313 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2316 return ret;
2319 static int kvm_put_fpu(X86CPU *cpu)
2321 CPUX86State *env = &cpu->env;
2322 struct kvm_fpu fpu;
2323 int i;
2325 memset(&fpu, 0, sizeof fpu);
2326 fpu.fsw = env->fpus & ~(7 << 11);
2327 fpu.fsw |= (env->fpstt & 7) << 11;
2328 fpu.fcw = env->fpuc;
2329 fpu.last_opcode = env->fpop;
2330 fpu.last_ip = env->fpip;
2331 fpu.last_dp = env->fpdp;
2332 for (i = 0; i < 8; ++i) {
2333 fpu.ftwx |= (!env->fptags[i]) << i;
2335 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2336 for (i = 0; i < CPU_NB_REGS; i++) {
2337 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2338 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2340 fpu.mxcsr = env->mxcsr;
2342 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2345 #define XSAVE_FCW_FSW 0
2346 #define XSAVE_FTW_FOP 1
2347 #define XSAVE_CWD_RIP 2
2348 #define XSAVE_CWD_RDP 4
2349 #define XSAVE_MXCSR 6
2350 #define XSAVE_ST_SPACE 8
2351 #define XSAVE_XMM_SPACE 40
2352 #define XSAVE_XSTATE_BV 128
2353 #define XSAVE_YMMH_SPACE 144
2354 #define XSAVE_BNDREGS 240
2355 #define XSAVE_BNDCSR 256
2356 #define XSAVE_OPMASK 272
2357 #define XSAVE_ZMM_Hi256 288
2358 #define XSAVE_Hi16_ZMM 416
2359 #define XSAVE_PKRU 672
2361 #define XSAVE_BYTE_OFFSET(word_offset) \
2362 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2364 #define ASSERT_OFFSET(word_offset, field) \
2365 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2366 offsetof(X86XSaveArea, field))
2368 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2369 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2370 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2371 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2372 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2373 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2374 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2375 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2376 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2377 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2378 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2379 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2380 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2381 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2382 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2384 static int kvm_put_xsave(X86CPU *cpu)
2386 CPUX86State *env = &cpu->env;
2387 X86XSaveArea *xsave = env->xsave_buf;
2389 if (!has_xsave) {
2390 return kvm_put_fpu(cpu);
2392 x86_cpu_xsave_all_areas(cpu, xsave);
2394 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2397 static int kvm_put_xcrs(X86CPU *cpu)
2399 CPUX86State *env = &cpu->env;
2400 struct kvm_xcrs xcrs = {};
2402 if (!has_xcrs) {
2403 return 0;
2406 xcrs.nr_xcrs = 1;
2407 xcrs.flags = 0;
2408 xcrs.xcrs[0].xcr = 0;
2409 xcrs.xcrs[0].value = env->xcr0;
2410 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2413 static int kvm_put_sregs(X86CPU *cpu)
2415 CPUX86State *env = &cpu->env;
2416 struct kvm_sregs sregs;
2418 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2419 if (env->interrupt_injected >= 0) {
2420 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2421 (uint64_t)1 << (env->interrupt_injected % 64);
2424 if ((env->eflags & VM_MASK)) {
2425 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2426 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2427 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2428 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2429 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2430 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2431 } else {
2432 set_seg(&sregs.cs, &env->segs[R_CS]);
2433 set_seg(&sregs.ds, &env->segs[R_DS]);
2434 set_seg(&sregs.es, &env->segs[R_ES]);
2435 set_seg(&sregs.fs, &env->segs[R_FS]);
2436 set_seg(&sregs.gs, &env->segs[R_GS]);
2437 set_seg(&sregs.ss, &env->segs[R_SS]);
2440 set_seg(&sregs.tr, &env->tr);
2441 set_seg(&sregs.ldt, &env->ldt);
2443 sregs.idt.limit = env->idt.limit;
2444 sregs.idt.base = env->idt.base;
2445 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2446 sregs.gdt.limit = env->gdt.limit;
2447 sregs.gdt.base = env->gdt.base;
2448 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2450 sregs.cr0 = env->cr[0];
2451 sregs.cr2 = env->cr[2];
2452 sregs.cr3 = env->cr[3];
2453 sregs.cr4 = env->cr[4];
2455 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2456 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2458 sregs.efer = env->efer;
2460 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2463 static void kvm_msr_buf_reset(X86CPU *cpu)
2465 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2468 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2470 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2471 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2472 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2474 assert((void *)(entry + 1) <= limit);
2476 entry->index = index;
2477 entry->reserved = 0;
2478 entry->data = value;
2479 msrs->nmsrs++;
2482 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2484 kvm_msr_buf_reset(cpu);
2485 kvm_msr_entry_add(cpu, index, value);
2487 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2490 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2492 int ret;
2494 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2495 assert(ret == 1);
2498 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2500 CPUX86State *env = &cpu->env;
2501 int ret;
2503 if (!has_msr_tsc_deadline) {
2504 return 0;
2507 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2508 if (ret < 0) {
2509 return ret;
2512 assert(ret == 1);
2513 return 0;
2517 * Provide a separate write service for the feature control MSR in order to
2518 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2519 * before writing any other state because forcibly leaving nested mode
2520 * invalidates the VCPU state.
2522 static int kvm_put_msr_feature_control(X86CPU *cpu)
2524 int ret;
2526 if (!has_msr_feature_control) {
2527 return 0;
2530 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2531 cpu->env.msr_ia32_feature_control);
2532 if (ret < 0) {
2533 return ret;
2536 assert(ret == 1);
2537 return 0;
2540 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2542 uint32_t default1, can_be_one, can_be_zero;
2543 uint32_t must_be_one;
2545 switch (index) {
2546 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2547 default1 = 0x00000016;
2548 break;
2549 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2550 default1 = 0x0401e172;
2551 break;
2552 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2553 default1 = 0x000011ff;
2554 break;
2555 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2556 default1 = 0x00036dff;
2557 break;
2558 case MSR_IA32_VMX_PROCBASED_CTLS2:
2559 default1 = 0;
2560 break;
2561 default:
2562 abort();
2565 /* If a feature bit is set, the control can be either set or clear.
2566 * Otherwise the value is limited to either 0 or 1 by default1.
2568 can_be_one = features | default1;
2569 can_be_zero = features | ~default1;
2570 must_be_one = ~can_be_zero;
2573 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2574 * Bit 32:63 -> 1 if the control bit can be one.
2576 return must_be_one | (((uint64_t)can_be_one) << 32);
2579 #define VMCS12_MAX_FIELD_INDEX (0x17)
2581 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2583 uint64_t kvm_vmx_basic =
2584 kvm_arch_get_supported_msr_feature(kvm_state,
2585 MSR_IA32_VMX_BASIC);
2587 if (!kvm_vmx_basic) {
2588 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2589 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2591 return;
2594 uint64_t kvm_vmx_misc =
2595 kvm_arch_get_supported_msr_feature(kvm_state,
2596 MSR_IA32_VMX_MISC);
2597 uint64_t kvm_vmx_ept_vpid =
2598 kvm_arch_get_supported_msr_feature(kvm_state,
2599 MSR_IA32_VMX_EPT_VPID_CAP);
2602 * If the guest is 64-bit, a value of 1 is allowed for the host address
2603 * space size vmexit control.
2605 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2606 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2609 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2610 * not change them for backwards compatibility.
2612 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2613 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2614 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2615 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2618 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2619 * change in the future but are always zero for now, clear them to be
2620 * future proof. Bits 32-63 in theory could change, though KVM does
2621 * not support dual-monitor treatment and probably never will; mask
2622 * them out as well.
2624 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2625 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2626 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2629 * EPT memory types should not change either, so we do not bother
2630 * adding features for them.
2632 uint64_t fixed_vmx_ept_mask =
2633 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2634 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2635 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2637 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2638 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2639 f[FEAT_VMX_PROCBASED_CTLS]));
2640 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2641 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2642 f[FEAT_VMX_PINBASED_CTLS]));
2643 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2644 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2645 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2646 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2647 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2648 f[FEAT_VMX_ENTRY_CTLS]));
2649 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2650 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2651 f[FEAT_VMX_SECONDARY_CTLS]));
2652 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2653 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2654 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2655 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2656 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2657 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2658 if (has_msr_vmx_vmfunc) {
2659 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2663 * Just to be safe, write these with constant values. The CRn_FIXED1
2664 * MSRs are generated by KVM based on the vCPU's CPUID.
2666 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2667 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2668 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2669 CR4_VMXE_MASK);
2670 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2671 VMCS12_MAX_FIELD_INDEX << 1);
2674 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2676 uint64_t kvm_perf_cap =
2677 kvm_arch_get_supported_msr_feature(kvm_state,
2678 MSR_IA32_PERF_CAPABILITIES);
2680 if (kvm_perf_cap) {
2681 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2682 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2686 static int kvm_buf_set_msrs(X86CPU *cpu)
2688 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2689 if (ret < 0) {
2690 return ret;
2693 if (ret < cpu->kvm_msr_buf->nmsrs) {
2694 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2695 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2696 (uint32_t)e->index, (uint64_t)e->data);
2699 assert(ret == cpu->kvm_msr_buf->nmsrs);
2700 return 0;
2703 static void kvm_init_msrs(X86CPU *cpu)
2705 CPUX86State *env = &cpu->env;
2707 kvm_msr_buf_reset(cpu);
2708 if (has_msr_arch_capabs) {
2709 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2710 env->features[FEAT_ARCH_CAPABILITIES]);
2713 if (has_msr_core_capabs) {
2714 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2715 env->features[FEAT_CORE_CAPABILITY]);
2718 if (has_msr_perf_capabs && cpu->enable_pmu) {
2719 kvm_msr_entry_add_perf(cpu, env->features);
2722 if (has_msr_ucode_rev) {
2723 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2727 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2728 * all kernels with MSR features should have them.
2730 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2731 kvm_msr_entry_add_vmx(cpu, env->features);
2734 assert(kvm_buf_set_msrs(cpu) == 0);
2737 static int kvm_put_msrs(X86CPU *cpu, int level)
2739 CPUX86State *env = &cpu->env;
2740 int i;
2742 kvm_msr_buf_reset(cpu);
2744 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2745 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2746 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2747 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2748 if (has_msr_star) {
2749 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2751 if (has_msr_hsave_pa) {
2752 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2754 if (has_msr_tsc_aux) {
2755 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2757 if (has_msr_tsc_adjust) {
2758 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2760 if (has_msr_misc_enable) {
2761 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2762 env->msr_ia32_misc_enable);
2764 if (has_msr_smbase) {
2765 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2767 if (has_msr_smi_count) {
2768 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2770 if (has_msr_bndcfgs) {
2771 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2773 if (has_msr_xss) {
2774 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2776 if (has_msr_umwait) {
2777 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2779 if (has_msr_spec_ctrl) {
2780 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2782 if (has_msr_tsx_ctrl) {
2783 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2785 if (has_msr_virt_ssbd) {
2786 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2789 #ifdef TARGET_X86_64
2790 if (lm_capable_kernel) {
2791 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2792 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2793 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2794 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2796 #endif
2799 * The following MSRs have side effects on the guest or are too heavy
2800 * for normal writeback. Limit them to reset or full state updates.
2802 if (level >= KVM_PUT_RESET_STATE) {
2803 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2804 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2805 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2806 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2807 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2809 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2810 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2812 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2813 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2815 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2816 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2819 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2820 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2823 if (has_architectural_pmu_version > 0) {
2824 if (has_architectural_pmu_version > 1) {
2825 /* Stop the counter. */
2826 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2827 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2830 /* Set the counter values. */
2831 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2832 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2833 env->msr_fixed_counters[i]);
2835 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2836 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2837 env->msr_gp_counters[i]);
2838 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2839 env->msr_gp_evtsel[i]);
2841 if (has_architectural_pmu_version > 1) {
2842 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2843 env->msr_global_status);
2844 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2845 env->msr_global_ovf_ctrl);
2847 /* Now start the PMU. */
2848 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2849 env->msr_fixed_ctr_ctrl);
2850 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2851 env->msr_global_ctrl);
2855 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2856 * only sync them to KVM on the first cpu
2858 if (current_cpu == first_cpu) {
2859 if (has_msr_hv_hypercall) {
2860 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2861 env->msr_hv_guest_os_id);
2862 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2863 env->msr_hv_hypercall);
2865 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2866 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2867 env->msr_hv_tsc);
2869 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2870 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2871 env->msr_hv_reenlightenment_control);
2872 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2873 env->msr_hv_tsc_emulation_control);
2874 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2875 env->msr_hv_tsc_emulation_status);
2878 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2879 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2880 env->msr_hv_vapic);
2882 if (has_msr_hv_crash) {
2883 int j;
2885 for (j = 0; j < HV_CRASH_PARAMS; j++)
2886 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2887 env->msr_hv_crash_params[j]);
2889 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2891 if (has_msr_hv_runtime) {
2892 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2894 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2895 && hv_vpindex_settable) {
2896 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2897 hyperv_vp_index(CPU(cpu)));
2899 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2900 int j;
2902 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2904 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2905 env->msr_hv_synic_control);
2906 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2907 env->msr_hv_synic_evt_page);
2908 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2909 env->msr_hv_synic_msg_page);
2911 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2912 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2913 env->msr_hv_synic_sint[j]);
2916 if (has_msr_hv_stimer) {
2917 int j;
2919 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2920 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2921 env->msr_hv_stimer_config[j]);
2924 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2925 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2926 env->msr_hv_stimer_count[j]);
2929 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2930 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2932 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2933 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2934 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2935 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2936 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2937 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2938 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2939 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2940 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2941 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2942 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2943 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2944 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2945 /* The CPU GPs if we write to a bit above the physical limit of
2946 * the host CPU (and KVM emulates that)
2948 uint64_t mask = env->mtrr_var[i].mask;
2949 mask &= phys_mask;
2951 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2952 env->mtrr_var[i].base);
2953 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2956 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2957 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2958 0x14, 1, R_EAX) & 0x7;
2960 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2961 env->msr_rtit_ctrl);
2962 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2963 env->msr_rtit_status);
2964 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2965 env->msr_rtit_output_base);
2966 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2967 env->msr_rtit_output_mask);
2968 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2969 env->msr_rtit_cr3_match);
2970 for (i = 0; i < addr_num; i++) {
2971 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2972 env->msr_rtit_addrs[i]);
2976 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2977 * kvm_put_msr_feature_control. */
2980 if (env->mcg_cap) {
2981 int i;
2983 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2984 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2985 if (has_msr_mcg_ext_ctl) {
2986 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2988 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2989 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2993 return kvm_buf_set_msrs(cpu);
2997 static int kvm_get_fpu(X86CPU *cpu)
2999 CPUX86State *env = &cpu->env;
3000 struct kvm_fpu fpu;
3001 int i, ret;
3003 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3004 if (ret < 0) {
3005 return ret;
3008 env->fpstt = (fpu.fsw >> 11) & 7;
3009 env->fpus = fpu.fsw;
3010 env->fpuc = fpu.fcw;
3011 env->fpop = fpu.last_opcode;
3012 env->fpip = fpu.last_ip;
3013 env->fpdp = fpu.last_dp;
3014 for (i = 0; i < 8; ++i) {
3015 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3017 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3018 for (i = 0; i < CPU_NB_REGS; i++) {
3019 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3020 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3022 env->mxcsr = fpu.mxcsr;
3024 return 0;
3027 static int kvm_get_xsave(X86CPU *cpu)
3029 CPUX86State *env = &cpu->env;
3030 X86XSaveArea *xsave = env->xsave_buf;
3031 int ret;
3033 if (!has_xsave) {
3034 return kvm_get_fpu(cpu);
3037 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3038 if (ret < 0) {
3039 return ret;
3041 x86_cpu_xrstor_all_areas(cpu, xsave);
3043 return 0;
3046 static int kvm_get_xcrs(X86CPU *cpu)
3048 CPUX86State *env = &cpu->env;
3049 int i, ret;
3050 struct kvm_xcrs xcrs;
3052 if (!has_xcrs) {
3053 return 0;
3056 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3057 if (ret < 0) {
3058 return ret;
3061 for (i = 0; i < xcrs.nr_xcrs; i++) {
3062 /* Only support xcr0 now */
3063 if (xcrs.xcrs[i].xcr == 0) {
3064 env->xcr0 = xcrs.xcrs[i].value;
3065 break;
3068 return 0;
3071 static int kvm_get_sregs(X86CPU *cpu)
3073 CPUX86State *env = &cpu->env;
3074 struct kvm_sregs sregs;
3075 int bit, i, ret;
3077 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3078 if (ret < 0) {
3079 return ret;
3082 /* There can only be one pending IRQ set in the bitmap at a time, so try
3083 to find it and save its number instead (-1 for none). */
3084 env->interrupt_injected = -1;
3085 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3086 if (sregs.interrupt_bitmap[i]) {
3087 bit = ctz64(sregs.interrupt_bitmap[i]);
3088 env->interrupt_injected = i * 64 + bit;
3089 break;
3093 get_seg(&env->segs[R_CS], &sregs.cs);
3094 get_seg(&env->segs[R_DS], &sregs.ds);
3095 get_seg(&env->segs[R_ES], &sregs.es);
3096 get_seg(&env->segs[R_FS], &sregs.fs);
3097 get_seg(&env->segs[R_GS], &sregs.gs);
3098 get_seg(&env->segs[R_SS], &sregs.ss);
3100 get_seg(&env->tr, &sregs.tr);
3101 get_seg(&env->ldt, &sregs.ldt);
3103 env->idt.limit = sregs.idt.limit;
3104 env->idt.base = sregs.idt.base;
3105 env->gdt.limit = sregs.gdt.limit;
3106 env->gdt.base = sregs.gdt.base;
3108 env->cr[0] = sregs.cr0;
3109 env->cr[2] = sregs.cr2;
3110 env->cr[3] = sregs.cr3;
3111 env->cr[4] = sregs.cr4;
3113 env->efer = sregs.efer;
3115 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3116 x86_update_hflags(env);
3118 return 0;
3121 static int kvm_get_msrs(X86CPU *cpu)
3123 CPUX86State *env = &cpu->env;
3124 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3125 int ret, i;
3126 uint64_t mtrr_top_bits;
3128 kvm_msr_buf_reset(cpu);
3130 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3131 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3132 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3133 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3134 if (has_msr_star) {
3135 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3137 if (has_msr_hsave_pa) {
3138 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3140 if (has_msr_tsc_aux) {
3141 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3143 if (has_msr_tsc_adjust) {
3144 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3146 if (has_msr_tsc_deadline) {
3147 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3149 if (has_msr_misc_enable) {
3150 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3152 if (has_msr_smbase) {
3153 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3155 if (has_msr_smi_count) {
3156 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3158 if (has_msr_feature_control) {
3159 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3161 if (has_msr_bndcfgs) {
3162 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3164 if (has_msr_xss) {
3165 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3167 if (has_msr_umwait) {
3168 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3170 if (has_msr_spec_ctrl) {
3171 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3173 if (has_msr_tsx_ctrl) {
3174 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3176 if (has_msr_virt_ssbd) {
3177 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3179 if (!env->tsc_valid) {
3180 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3181 env->tsc_valid = !runstate_is_running();
3184 #ifdef TARGET_X86_64
3185 if (lm_capable_kernel) {
3186 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3187 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3188 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3189 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3191 #endif
3192 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3193 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3194 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3195 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3197 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3198 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3200 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3201 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3203 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3204 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3206 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3207 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3209 if (has_architectural_pmu_version > 0) {
3210 if (has_architectural_pmu_version > 1) {
3211 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3212 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3213 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3214 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3216 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3217 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3219 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3220 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3221 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3225 if (env->mcg_cap) {
3226 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3227 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3228 if (has_msr_mcg_ext_ctl) {
3229 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3231 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3232 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3236 if (has_msr_hv_hypercall) {
3237 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3238 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3240 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3241 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3243 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3244 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3246 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3247 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3248 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3249 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3251 if (has_msr_hv_crash) {
3252 int j;
3254 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3255 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3258 if (has_msr_hv_runtime) {
3259 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3261 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3262 uint32_t msr;
3264 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3265 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3266 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3267 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3268 kvm_msr_entry_add(cpu, msr, 0);
3271 if (has_msr_hv_stimer) {
3272 uint32_t msr;
3274 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3275 msr++) {
3276 kvm_msr_entry_add(cpu, msr, 0);
3279 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3280 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3281 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3282 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3283 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3284 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3285 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3286 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3287 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3288 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3289 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3290 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3291 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3292 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3293 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3294 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3298 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3299 int addr_num =
3300 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3302 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3303 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3304 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3305 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3306 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3307 for (i = 0; i < addr_num; i++) {
3308 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3312 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3313 if (ret < 0) {
3314 return ret;
3317 if (ret < cpu->kvm_msr_buf->nmsrs) {
3318 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3319 error_report("error: failed to get MSR 0x%" PRIx32,
3320 (uint32_t)e->index);
3323 assert(ret == cpu->kvm_msr_buf->nmsrs);
3325 * MTRR masks: Each mask consists of 5 parts
3326 * a 10..0: must be zero
3327 * b 11 : valid bit
3328 * c n-1.12: actual mask bits
3329 * d 51..n: reserved must be zero
3330 * e 63.52: reserved must be zero
3332 * 'n' is the number of physical bits supported by the CPU and is
3333 * apparently always <= 52. We know our 'n' but don't know what
3334 * the destinations 'n' is; it might be smaller, in which case
3335 * it masks (c) on loading. It might be larger, in which case
3336 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3337 * we're migrating to.
3340 if (cpu->fill_mtrr_mask) {
3341 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3342 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3343 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3344 } else {
3345 mtrr_top_bits = 0;
3348 for (i = 0; i < ret; i++) {
3349 uint32_t index = msrs[i].index;
3350 switch (index) {
3351 case MSR_IA32_SYSENTER_CS:
3352 env->sysenter_cs = msrs[i].data;
3353 break;
3354 case MSR_IA32_SYSENTER_ESP:
3355 env->sysenter_esp = msrs[i].data;
3356 break;
3357 case MSR_IA32_SYSENTER_EIP:
3358 env->sysenter_eip = msrs[i].data;
3359 break;
3360 case MSR_PAT:
3361 env->pat = msrs[i].data;
3362 break;
3363 case MSR_STAR:
3364 env->star = msrs[i].data;
3365 break;
3366 #ifdef TARGET_X86_64
3367 case MSR_CSTAR:
3368 env->cstar = msrs[i].data;
3369 break;
3370 case MSR_KERNELGSBASE:
3371 env->kernelgsbase = msrs[i].data;
3372 break;
3373 case MSR_FMASK:
3374 env->fmask = msrs[i].data;
3375 break;
3376 case MSR_LSTAR:
3377 env->lstar = msrs[i].data;
3378 break;
3379 #endif
3380 case MSR_IA32_TSC:
3381 env->tsc = msrs[i].data;
3382 break;
3383 case MSR_TSC_AUX:
3384 env->tsc_aux = msrs[i].data;
3385 break;
3386 case MSR_TSC_ADJUST:
3387 env->tsc_adjust = msrs[i].data;
3388 break;
3389 case MSR_IA32_TSCDEADLINE:
3390 env->tsc_deadline = msrs[i].data;
3391 break;
3392 case MSR_VM_HSAVE_PA:
3393 env->vm_hsave = msrs[i].data;
3394 break;
3395 case MSR_KVM_SYSTEM_TIME:
3396 env->system_time_msr = msrs[i].data;
3397 break;
3398 case MSR_KVM_WALL_CLOCK:
3399 env->wall_clock_msr = msrs[i].data;
3400 break;
3401 case MSR_MCG_STATUS:
3402 env->mcg_status = msrs[i].data;
3403 break;
3404 case MSR_MCG_CTL:
3405 env->mcg_ctl = msrs[i].data;
3406 break;
3407 case MSR_MCG_EXT_CTL:
3408 env->mcg_ext_ctl = msrs[i].data;
3409 break;
3410 case MSR_IA32_MISC_ENABLE:
3411 env->msr_ia32_misc_enable = msrs[i].data;
3412 break;
3413 case MSR_IA32_SMBASE:
3414 env->smbase = msrs[i].data;
3415 break;
3416 case MSR_SMI_COUNT:
3417 env->msr_smi_count = msrs[i].data;
3418 break;
3419 case MSR_IA32_FEATURE_CONTROL:
3420 env->msr_ia32_feature_control = msrs[i].data;
3421 break;
3422 case MSR_IA32_BNDCFGS:
3423 env->msr_bndcfgs = msrs[i].data;
3424 break;
3425 case MSR_IA32_XSS:
3426 env->xss = msrs[i].data;
3427 break;
3428 case MSR_IA32_UMWAIT_CONTROL:
3429 env->umwait = msrs[i].data;
3430 break;
3431 default:
3432 if (msrs[i].index >= MSR_MC0_CTL &&
3433 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3434 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3436 break;
3437 case MSR_KVM_ASYNC_PF_EN:
3438 env->async_pf_en_msr = msrs[i].data;
3439 break;
3440 case MSR_KVM_ASYNC_PF_INT:
3441 env->async_pf_int_msr = msrs[i].data;
3442 break;
3443 case MSR_KVM_PV_EOI_EN:
3444 env->pv_eoi_en_msr = msrs[i].data;
3445 break;
3446 case MSR_KVM_STEAL_TIME:
3447 env->steal_time_msr = msrs[i].data;
3448 break;
3449 case MSR_KVM_POLL_CONTROL: {
3450 env->poll_control_msr = msrs[i].data;
3451 break;
3453 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3454 env->msr_fixed_ctr_ctrl = msrs[i].data;
3455 break;
3456 case MSR_CORE_PERF_GLOBAL_CTRL:
3457 env->msr_global_ctrl = msrs[i].data;
3458 break;
3459 case MSR_CORE_PERF_GLOBAL_STATUS:
3460 env->msr_global_status = msrs[i].data;
3461 break;
3462 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3463 env->msr_global_ovf_ctrl = msrs[i].data;
3464 break;
3465 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3466 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3467 break;
3468 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3469 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3470 break;
3471 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3472 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3473 break;
3474 case HV_X64_MSR_HYPERCALL:
3475 env->msr_hv_hypercall = msrs[i].data;
3476 break;
3477 case HV_X64_MSR_GUEST_OS_ID:
3478 env->msr_hv_guest_os_id = msrs[i].data;
3479 break;
3480 case HV_X64_MSR_APIC_ASSIST_PAGE:
3481 env->msr_hv_vapic = msrs[i].data;
3482 break;
3483 case HV_X64_MSR_REFERENCE_TSC:
3484 env->msr_hv_tsc = msrs[i].data;
3485 break;
3486 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3487 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3488 break;
3489 case HV_X64_MSR_VP_RUNTIME:
3490 env->msr_hv_runtime = msrs[i].data;
3491 break;
3492 case HV_X64_MSR_SCONTROL:
3493 env->msr_hv_synic_control = msrs[i].data;
3494 break;
3495 case HV_X64_MSR_SIEFP:
3496 env->msr_hv_synic_evt_page = msrs[i].data;
3497 break;
3498 case HV_X64_MSR_SIMP:
3499 env->msr_hv_synic_msg_page = msrs[i].data;
3500 break;
3501 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3502 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3503 break;
3504 case HV_X64_MSR_STIMER0_CONFIG:
3505 case HV_X64_MSR_STIMER1_CONFIG:
3506 case HV_X64_MSR_STIMER2_CONFIG:
3507 case HV_X64_MSR_STIMER3_CONFIG:
3508 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3509 msrs[i].data;
3510 break;
3511 case HV_X64_MSR_STIMER0_COUNT:
3512 case HV_X64_MSR_STIMER1_COUNT:
3513 case HV_X64_MSR_STIMER2_COUNT:
3514 case HV_X64_MSR_STIMER3_COUNT:
3515 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3516 msrs[i].data;
3517 break;
3518 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3519 env->msr_hv_reenlightenment_control = msrs[i].data;
3520 break;
3521 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3522 env->msr_hv_tsc_emulation_control = msrs[i].data;
3523 break;
3524 case HV_X64_MSR_TSC_EMULATION_STATUS:
3525 env->msr_hv_tsc_emulation_status = msrs[i].data;
3526 break;
3527 case MSR_MTRRdefType:
3528 env->mtrr_deftype = msrs[i].data;
3529 break;
3530 case MSR_MTRRfix64K_00000:
3531 env->mtrr_fixed[0] = msrs[i].data;
3532 break;
3533 case MSR_MTRRfix16K_80000:
3534 env->mtrr_fixed[1] = msrs[i].data;
3535 break;
3536 case MSR_MTRRfix16K_A0000:
3537 env->mtrr_fixed[2] = msrs[i].data;
3538 break;
3539 case MSR_MTRRfix4K_C0000:
3540 env->mtrr_fixed[3] = msrs[i].data;
3541 break;
3542 case MSR_MTRRfix4K_C8000:
3543 env->mtrr_fixed[4] = msrs[i].data;
3544 break;
3545 case MSR_MTRRfix4K_D0000:
3546 env->mtrr_fixed[5] = msrs[i].data;
3547 break;
3548 case MSR_MTRRfix4K_D8000:
3549 env->mtrr_fixed[6] = msrs[i].data;
3550 break;
3551 case MSR_MTRRfix4K_E0000:
3552 env->mtrr_fixed[7] = msrs[i].data;
3553 break;
3554 case MSR_MTRRfix4K_E8000:
3555 env->mtrr_fixed[8] = msrs[i].data;
3556 break;
3557 case MSR_MTRRfix4K_F0000:
3558 env->mtrr_fixed[9] = msrs[i].data;
3559 break;
3560 case MSR_MTRRfix4K_F8000:
3561 env->mtrr_fixed[10] = msrs[i].data;
3562 break;
3563 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3564 if (index & 1) {
3565 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3566 mtrr_top_bits;
3567 } else {
3568 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3570 break;
3571 case MSR_IA32_SPEC_CTRL:
3572 env->spec_ctrl = msrs[i].data;
3573 break;
3574 case MSR_IA32_TSX_CTRL:
3575 env->tsx_ctrl = msrs[i].data;
3576 break;
3577 case MSR_VIRT_SSBD:
3578 env->virt_ssbd = msrs[i].data;
3579 break;
3580 case MSR_IA32_RTIT_CTL:
3581 env->msr_rtit_ctrl = msrs[i].data;
3582 break;
3583 case MSR_IA32_RTIT_STATUS:
3584 env->msr_rtit_status = msrs[i].data;
3585 break;
3586 case MSR_IA32_RTIT_OUTPUT_BASE:
3587 env->msr_rtit_output_base = msrs[i].data;
3588 break;
3589 case MSR_IA32_RTIT_OUTPUT_MASK:
3590 env->msr_rtit_output_mask = msrs[i].data;
3591 break;
3592 case MSR_IA32_RTIT_CR3_MATCH:
3593 env->msr_rtit_cr3_match = msrs[i].data;
3594 break;
3595 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3596 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3597 break;
3601 return 0;
3604 static int kvm_put_mp_state(X86CPU *cpu)
3606 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3608 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3611 static int kvm_get_mp_state(X86CPU *cpu)
3613 CPUState *cs = CPU(cpu);
3614 CPUX86State *env = &cpu->env;
3615 struct kvm_mp_state mp_state;
3616 int ret;
3618 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3619 if (ret < 0) {
3620 return ret;
3622 env->mp_state = mp_state.mp_state;
3623 if (kvm_irqchip_in_kernel()) {
3624 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3626 return 0;
3629 static int kvm_get_apic(X86CPU *cpu)
3631 DeviceState *apic = cpu->apic_state;
3632 struct kvm_lapic_state kapic;
3633 int ret;
3635 if (apic && kvm_irqchip_in_kernel()) {
3636 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3637 if (ret < 0) {
3638 return ret;
3641 kvm_get_apic_state(apic, &kapic);
3643 return 0;
3646 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3648 CPUState *cs = CPU(cpu);
3649 CPUX86State *env = &cpu->env;
3650 struct kvm_vcpu_events events = {};
3652 if (!kvm_has_vcpu_events()) {
3653 return 0;
3656 events.flags = 0;
3658 if (has_exception_payload) {
3659 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3660 events.exception.pending = env->exception_pending;
3661 events.exception_has_payload = env->exception_has_payload;
3662 events.exception_payload = env->exception_payload;
3664 events.exception.nr = env->exception_nr;
3665 events.exception.injected = env->exception_injected;
3666 events.exception.has_error_code = env->has_error_code;
3667 events.exception.error_code = env->error_code;
3669 events.interrupt.injected = (env->interrupt_injected >= 0);
3670 events.interrupt.nr = env->interrupt_injected;
3671 events.interrupt.soft = env->soft_interrupt;
3673 events.nmi.injected = env->nmi_injected;
3674 events.nmi.pending = env->nmi_pending;
3675 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3677 events.sipi_vector = env->sipi_vector;
3679 if (has_msr_smbase) {
3680 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3681 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3682 if (kvm_irqchip_in_kernel()) {
3683 /* As soon as these are moved to the kernel, remove them
3684 * from cs->interrupt_request.
3686 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3687 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3688 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3689 } else {
3690 /* Keep these in cs->interrupt_request. */
3691 events.smi.pending = 0;
3692 events.smi.latched_init = 0;
3694 /* Stop SMI delivery on old machine types to avoid a reboot
3695 * on an inward migration of an old VM.
3697 if (!cpu->kvm_no_smi_migration) {
3698 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3702 if (level >= KVM_PUT_RESET_STATE) {
3703 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3704 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3705 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3709 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3712 static int kvm_get_vcpu_events(X86CPU *cpu)
3714 CPUX86State *env = &cpu->env;
3715 struct kvm_vcpu_events events;
3716 int ret;
3718 if (!kvm_has_vcpu_events()) {
3719 return 0;
3722 memset(&events, 0, sizeof(events));
3723 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3724 if (ret < 0) {
3725 return ret;
3728 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3729 env->exception_pending = events.exception.pending;
3730 env->exception_has_payload = events.exception_has_payload;
3731 env->exception_payload = events.exception_payload;
3732 } else {
3733 env->exception_pending = 0;
3734 env->exception_has_payload = false;
3736 env->exception_injected = events.exception.injected;
3737 env->exception_nr =
3738 (env->exception_pending || env->exception_injected) ?
3739 events.exception.nr : -1;
3740 env->has_error_code = events.exception.has_error_code;
3741 env->error_code = events.exception.error_code;
3743 env->interrupt_injected =
3744 events.interrupt.injected ? events.interrupt.nr : -1;
3745 env->soft_interrupt = events.interrupt.soft;
3747 env->nmi_injected = events.nmi.injected;
3748 env->nmi_pending = events.nmi.pending;
3749 if (events.nmi.masked) {
3750 env->hflags2 |= HF2_NMI_MASK;
3751 } else {
3752 env->hflags2 &= ~HF2_NMI_MASK;
3755 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3756 if (events.smi.smm) {
3757 env->hflags |= HF_SMM_MASK;
3758 } else {
3759 env->hflags &= ~HF_SMM_MASK;
3761 if (events.smi.pending) {
3762 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3763 } else {
3764 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3766 if (events.smi.smm_inside_nmi) {
3767 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3768 } else {
3769 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3771 if (events.smi.latched_init) {
3772 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3773 } else {
3774 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3778 env->sipi_vector = events.sipi_vector;
3780 return 0;
3783 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3785 CPUState *cs = CPU(cpu);
3786 CPUX86State *env = &cpu->env;
3787 int ret = 0;
3788 unsigned long reinject_trap = 0;
3790 if (!kvm_has_vcpu_events()) {
3791 if (env->exception_nr == EXCP01_DB) {
3792 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3793 } else if (env->exception_injected == EXCP03_INT3) {
3794 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3796 kvm_reset_exception(env);
3800 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3801 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3802 * by updating the debug state once again if single-stepping is on.
3803 * Another reason to call kvm_update_guest_debug here is a pending debug
3804 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3805 * reinject them via SET_GUEST_DEBUG.
3807 if (reinject_trap ||
3808 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3809 ret = kvm_update_guest_debug(cs, reinject_trap);
3811 return ret;
3814 static int kvm_put_debugregs(X86CPU *cpu)
3816 CPUX86State *env = &cpu->env;
3817 struct kvm_debugregs dbgregs;
3818 int i;
3820 if (!kvm_has_debugregs()) {
3821 return 0;
3824 memset(&dbgregs, 0, sizeof(dbgregs));
3825 for (i = 0; i < 4; i++) {
3826 dbgregs.db[i] = env->dr[i];
3828 dbgregs.dr6 = env->dr[6];
3829 dbgregs.dr7 = env->dr[7];
3830 dbgregs.flags = 0;
3832 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3835 static int kvm_get_debugregs(X86CPU *cpu)
3837 CPUX86State *env = &cpu->env;
3838 struct kvm_debugregs dbgregs;
3839 int i, ret;
3841 if (!kvm_has_debugregs()) {
3842 return 0;
3845 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3846 if (ret < 0) {
3847 return ret;
3849 for (i = 0; i < 4; i++) {
3850 env->dr[i] = dbgregs.db[i];
3852 env->dr[4] = env->dr[6] = dbgregs.dr6;
3853 env->dr[5] = env->dr[7] = dbgregs.dr7;
3855 return 0;
3858 static int kvm_put_nested_state(X86CPU *cpu)
3860 CPUX86State *env = &cpu->env;
3861 int max_nested_state_len = kvm_max_nested_state_length();
3863 if (!env->nested_state) {
3864 return 0;
3868 * Copy flags that are affected by reset from env->hflags and env->hflags2.
3870 if (env->hflags & HF_GUEST_MASK) {
3871 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
3872 } else {
3873 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
3876 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
3877 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
3878 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
3879 } else {
3880 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
3883 assert(env->nested_state->size <= max_nested_state_len);
3884 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3887 static int kvm_get_nested_state(X86CPU *cpu)
3889 CPUX86State *env = &cpu->env;
3890 int max_nested_state_len = kvm_max_nested_state_length();
3891 int ret;
3893 if (!env->nested_state) {
3894 return 0;
3898 * It is possible that migration restored a smaller size into
3899 * nested_state->hdr.size than what our kernel support.
3900 * We preserve migration origin nested_state->hdr.size for
3901 * call to KVM_SET_NESTED_STATE but wish that our next call
3902 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3904 env->nested_state->size = max_nested_state_len;
3906 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3907 if (ret < 0) {
3908 return ret;
3912 * Copy flags that are affected by reset to env->hflags and env->hflags2.
3914 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3915 env->hflags |= HF_GUEST_MASK;
3916 } else {
3917 env->hflags &= ~HF_GUEST_MASK;
3920 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
3921 if (cpu_has_svm(env)) {
3922 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
3923 env->hflags2 |= HF2_GIF_MASK;
3924 } else {
3925 env->hflags2 &= ~HF2_GIF_MASK;
3929 return ret;
3932 int kvm_arch_put_registers(CPUState *cpu, int level)
3934 X86CPU *x86_cpu = X86_CPU(cpu);
3935 int ret;
3937 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3939 /* must be before kvm_put_nested_state so that EFER.SVME is set */
3940 ret = kvm_put_sregs(x86_cpu);
3941 if (ret < 0) {
3942 return ret;
3945 if (level >= KVM_PUT_RESET_STATE) {
3946 ret = kvm_put_nested_state(x86_cpu);
3947 if (ret < 0) {
3948 return ret;
3951 ret = kvm_put_msr_feature_control(x86_cpu);
3952 if (ret < 0) {
3953 return ret;
3957 if (level == KVM_PUT_FULL_STATE) {
3958 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3959 * because TSC frequency mismatch shouldn't abort migration,
3960 * unless the user explicitly asked for a more strict TSC
3961 * setting (e.g. using an explicit "tsc-freq" option).
3963 kvm_arch_set_tsc_khz(cpu);
3966 ret = kvm_getput_regs(x86_cpu, 1);
3967 if (ret < 0) {
3968 return ret;
3970 ret = kvm_put_xsave(x86_cpu);
3971 if (ret < 0) {
3972 return ret;
3974 ret = kvm_put_xcrs(x86_cpu);
3975 if (ret < 0) {
3976 return ret;
3978 /* must be before kvm_put_msrs */
3979 ret = kvm_inject_mce_oldstyle(x86_cpu);
3980 if (ret < 0) {
3981 return ret;
3983 ret = kvm_put_msrs(x86_cpu, level);
3984 if (ret < 0) {
3985 return ret;
3987 ret = kvm_put_vcpu_events(x86_cpu, level);
3988 if (ret < 0) {
3989 return ret;
3991 if (level >= KVM_PUT_RESET_STATE) {
3992 ret = kvm_put_mp_state(x86_cpu);
3993 if (ret < 0) {
3994 return ret;
3998 ret = kvm_put_tscdeadline_msr(x86_cpu);
3999 if (ret < 0) {
4000 return ret;
4002 ret = kvm_put_debugregs(x86_cpu);
4003 if (ret < 0) {
4004 return ret;
4006 /* must be last */
4007 ret = kvm_guest_debug_workarounds(x86_cpu);
4008 if (ret < 0) {
4009 return ret;
4011 return 0;
4014 int kvm_arch_get_registers(CPUState *cs)
4016 X86CPU *cpu = X86_CPU(cs);
4017 int ret;
4019 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4021 ret = kvm_get_vcpu_events(cpu);
4022 if (ret < 0) {
4023 goto out;
4026 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4027 * KVM_GET_REGS and KVM_GET_SREGS.
4029 ret = kvm_get_mp_state(cpu);
4030 if (ret < 0) {
4031 goto out;
4033 ret = kvm_getput_regs(cpu, 0);
4034 if (ret < 0) {
4035 goto out;
4037 ret = kvm_get_xsave(cpu);
4038 if (ret < 0) {
4039 goto out;
4041 ret = kvm_get_xcrs(cpu);
4042 if (ret < 0) {
4043 goto out;
4045 ret = kvm_get_sregs(cpu);
4046 if (ret < 0) {
4047 goto out;
4049 ret = kvm_get_msrs(cpu);
4050 if (ret < 0) {
4051 goto out;
4053 ret = kvm_get_apic(cpu);
4054 if (ret < 0) {
4055 goto out;
4057 ret = kvm_get_debugregs(cpu);
4058 if (ret < 0) {
4059 goto out;
4061 ret = kvm_get_nested_state(cpu);
4062 if (ret < 0) {
4063 goto out;
4065 ret = 0;
4066 out:
4067 cpu_sync_bndcs_hflags(&cpu->env);
4068 return ret;
4071 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4073 X86CPU *x86_cpu = X86_CPU(cpu);
4074 CPUX86State *env = &x86_cpu->env;
4075 int ret;
4077 /* Inject NMI */
4078 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4079 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4080 qemu_mutex_lock_iothread();
4081 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4082 qemu_mutex_unlock_iothread();
4083 DPRINTF("injected NMI\n");
4084 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4085 if (ret < 0) {
4086 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4087 strerror(-ret));
4090 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4091 qemu_mutex_lock_iothread();
4092 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4093 qemu_mutex_unlock_iothread();
4094 DPRINTF("injected SMI\n");
4095 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4096 if (ret < 0) {
4097 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4098 strerror(-ret));
4103 if (!kvm_pic_in_kernel()) {
4104 qemu_mutex_lock_iothread();
4107 /* Force the VCPU out of its inner loop to process any INIT requests
4108 * or (for userspace APIC, but it is cheap to combine the checks here)
4109 * pending TPR access reports.
4111 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4112 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4113 !(env->hflags & HF_SMM_MASK)) {
4114 cpu->exit_request = 1;
4116 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4117 cpu->exit_request = 1;
4121 if (!kvm_pic_in_kernel()) {
4122 /* Try to inject an interrupt if the guest can accept it */
4123 if (run->ready_for_interrupt_injection &&
4124 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4125 (env->eflags & IF_MASK)) {
4126 int irq;
4128 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4129 irq = cpu_get_pic_interrupt(env);
4130 if (irq >= 0) {
4131 struct kvm_interrupt intr;
4133 intr.irq = irq;
4134 DPRINTF("injected interrupt %d\n", irq);
4135 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4136 if (ret < 0) {
4137 fprintf(stderr,
4138 "KVM: injection failed, interrupt lost (%s)\n",
4139 strerror(-ret));
4144 /* If we have an interrupt but the guest is not ready to receive an
4145 * interrupt, request an interrupt window exit. This will
4146 * cause a return to userspace as soon as the guest is ready to
4147 * receive interrupts. */
4148 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4149 run->request_interrupt_window = 1;
4150 } else {
4151 run->request_interrupt_window = 0;
4154 DPRINTF("setting tpr\n");
4155 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4157 qemu_mutex_unlock_iothread();
4161 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4163 X86CPU *x86_cpu = X86_CPU(cpu);
4164 CPUX86State *env = &x86_cpu->env;
4166 if (run->flags & KVM_RUN_X86_SMM) {
4167 env->hflags |= HF_SMM_MASK;
4168 } else {
4169 env->hflags &= ~HF_SMM_MASK;
4171 if (run->if_flag) {
4172 env->eflags |= IF_MASK;
4173 } else {
4174 env->eflags &= ~IF_MASK;
4177 /* We need to protect the apic state against concurrent accesses from
4178 * different threads in case the userspace irqchip is used. */
4179 if (!kvm_irqchip_in_kernel()) {
4180 qemu_mutex_lock_iothread();
4182 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4183 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4184 if (!kvm_irqchip_in_kernel()) {
4185 qemu_mutex_unlock_iothread();
4187 return cpu_get_mem_attrs(env);
4190 int kvm_arch_process_async_events(CPUState *cs)
4192 X86CPU *cpu = X86_CPU(cs);
4193 CPUX86State *env = &cpu->env;
4195 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4196 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4197 assert(env->mcg_cap);
4199 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4201 kvm_cpu_synchronize_state(cs);
4203 if (env->exception_nr == EXCP08_DBLE) {
4204 /* this means triple fault */
4205 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4206 cs->exit_request = 1;
4207 return 0;
4209 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4210 env->has_error_code = 0;
4212 cs->halted = 0;
4213 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4214 env->mp_state = KVM_MP_STATE_RUNNABLE;
4218 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4219 !(env->hflags & HF_SMM_MASK)) {
4220 kvm_cpu_synchronize_state(cs);
4221 do_cpu_init(cpu);
4224 if (kvm_irqchip_in_kernel()) {
4225 return 0;
4228 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4229 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4230 apic_poll_irq(cpu->apic_state);
4232 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4233 (env->eflags & IF_MASK)) ||
4234 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4235 cs->halted = 0;
4237 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4238 kvm_cpu_synchronize_state(cs);
4239 do_cpu_sipi(cpu);
4241 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4242 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4243 kvm_cpu_synchronize_state(cs);
4244 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4245 env->tpr_access_type);
4248 return cs->halted;
4251 static int kvm_handle_halt(X86CPU *cpu)
4253 CPUState *cs = CPU(cpu);
4254 CPUX86State *env = &cpu->env;
4256 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4257 (env->eflags & IF_MASK)) &&
4258 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4259 cs->halted = 1;
4260 return EXCP_HLT;
4263 return 0;
4266 static int kvm_handle_tpr_access(X86CPU *cpu)
4268 CPUState *cs = CPU(cpu);
4269 struct kvm_run *run = cs->kvm_run;
4271 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4272 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4273 : TPR_ACCESS_READ);
4274 return 1;
4277 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4279 static const uint8_t int3 = 0xcc;
4281 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4282 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4283 return -EINVAL;
4285 return 0;
4288 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4290 uint8_t int3;
4292 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4293 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4294 return -EINVAL;
4296 return 0;
4299 static struct {
4300 target_ulong addr;
4301 int len;
4302 int type;
4303 } hw_breakpoint[4];
4305 static int nb_hw_breakpoint;
4307 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4309 int n;
4311 for (n = 0; n < nb_hw_breakpoint; n++) {
4312 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4313 (hw_breakpoint[n].len == len || len == -1)) {
4314 return n;
4317 return -1;
4320 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4321 target_ulong len, int type)
4323 switch (type) {
4324 case GDB_BREAKPOINT_HW:
4325 len = 1;
4326 break;
4327 case GDB_WATCHPOINT_WRITE:
4328 case GDB_WATCHPOINT_ACCESS:
4329 switch (len) {
4330 case 1:
4331 break;
4332 case 2:
4333 case 4:
4334 case 8:
4335 if (addr & (len - 1)) {
4336 return -EINVAL;
4338 break;
4339 default:
4340 return -EINVAL;
4342 break;
4343 default:
4344 return -ENOSYS;
4347 if (nb_hw_breakpoint == 4) {
4348 return -ENOBUFS;
4350 if (find_hw_breakpoint(addr, len, type) >= 0) {
4351 return -EEXIST;
4353 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4354 hw_breakpoint[nb_hw_breakpoint].len = len;
4355 hw_breakpoint[nb_hw_breakpoint].type = type;
4356 nb_hw_breakpoint++;
4358 return 0;
4361 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4362 target_ulong len, int type)
4364 int n;
4366 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4367 if (n < 0) {
4368 return -ENOENT;
4370 nb_hw_breakpoint--;
4371 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4373 return 0;
4376 void kvm_arch_remove_all_hw_breakpoints(void)
4378 nb_hw_breakpoint = 0;
4381 static CPUWatchpoint hw_watchpoint;
4383 static int kvm_handle_debug(X86CPU *cpu,
4384 struct kvm_debug_exit_arch *arch_info)
4386 CPUState *cs = CPU(cpu);
4387 CPUX86State *env = &cpu->env;
4388 int ret = 0;
4389 int n;
4391 if (arch_info->exception == EXCP01_DB) {
4392 if (arch_info->dr6 & DR6_BS) {
4393 if (cs->singlestep_enabled) {
4394 ret = EXCP_DEBUG;
4396 } else {
4397 for (n = 0; n < 4; n++) {
4398 if (arch_info->dr6 & (1 << n)) {
4399 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4400 case 0x0:
4401 ret = EXCP_DEBUG;
4402 break;
4403 case 0x1:
4404 ret = EXCP_DEBUG;
4405 cs->watchpoint_hit = &hw_watchpoint;
4406 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4407 hw_watchpoint.flags = BP_MEM_WRITE;
4408 break;
4409 case 0x3:
4410 ret = EXCP_DEBUG;
4411 cs->watchpoint_hit = &hw_watchpoint;
4412 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4413 hw_watchpoint.flags = BP_MEM_ACCESS;
4414 break;
4419 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4420 ret = EXCP_DEBUG;
4422 if (ret == 0) {
4423 cpu_synchronize_state(cs);
4424 assert(env->exception_nr == -1);
4426 /* pass to guest */
4427 kvm_queue_exception(env, arch_info->exception,
4428 arch_info->exception == EXCP01_DB,
4429 arch_info->dr6);
4430 env->has_error_code = 0;
4433 return ret;
4436 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4438 const uint8_t type_code[] = {
4439 [GDB_BREAKPOINT_HW] = 0x0,
4440 [GDB_WATCHPOINT_WRITE] = 0x1,
4441 [GDB_WATCHPOINT_ACCESS] = 0x3
4443 const uint8_t len_code[] = {
4444 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4446 int n;
4448 if (kvm_sw_breakpoints_active(cpu)) {
4449 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4451 if (nb_hw_breakpoint > 0) {
4452 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4453 dbg->arch.debugreg[7] = 0x0600;
4454 for (n = 0; n < nb_hw_breakpoint; n++) {
4455 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4456 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4457 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4458 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4463 static bool host_supports_vmx(void)
4465 uint32_t ecx, unused;
4467 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4468 return ecx & CPUID_EXT_VMX;
4471 #define VMX_INVALID_GUEST_STATE 0x80000021
4473 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4475 X86CPU *cpu = X86_CPU(cs);
4476 uint64_t code;
4477 int ret;
4479 switch (run->exit_reason) {
4480 case KVM_EXIT_HLT:
4481 DPRINTF("handle_hlt\n");
4482 qemu_mutex_lock_iothread();
4483 ret = kvm_handle_halt(cpu);
4484 qemu_mutex_unlock_iothread();
4485 break;
4486 case KVM_EXIT_SET_TPR:
4487 ret = 0;
4488 break;
4489 case KVM_EXIT_TPR_ACCESS:
4490 qemu_mutex_lock_iothread();
4491 ret = kvm_handle_tpr_access(cpu);
4492 qemu_mutex_unlock_iothread();
4493 break;
4494 case KVM_EXIT_FAIL_ENTRY:
4495 code = run->fail_entry.hardware_entry_failure_reason;
4496 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4497 code);
4498 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4499 fprintf(stderr,
4500 "\nIf you're running a guest on an Intel machine without "
4501 "unrestricted mode\n"
4502 "support, the failure can be most likely due to the guest "
4503 "entering an invalid\n"
4504 "state for Intel VT. For example, the guest maybe running "
4505 "in big real mode\n"
4506 "which is not supported on less recent Intel processors."
4507 "\n\n");
4509 ret = -1;
4510 break;
4511 case KVM_EXIT_EXCEPTION:
4512 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4513 run->ex.exception, run->ex.error_code);
4514 ret = -1;
4515 break;
4516 case KVM_EXIT_DEBUG:
4517 DPRINTF("kvm_exit_debug\n");
4518 qemu_mutex_lock_iothread();
4519 ret = kvm_handle_debug(cpu, &run->debug.arch);
4520 qemu_mutex_unlock_iothread();
4521 break;
4522 case KVM_EXIT_HYPERV:
4523 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4524 break;
4525 case KVM_EXIT_IOAPIC_EOI:
4526 ioapic_eoi_broadcast(run->eoi.vector);
4527 ret = 0;
4528 break;
4529 default:
4530 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4531 ret = -1;
4532 break;
4535 return ret;
4538 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4540 X86CPU *cpu = X86_CPU(cs);
4541 CPUX86State *env = &cpu->env;
4543 kvm_cpu_synchronize_state(cs);
4544 return !(env->cr[0] & CR0_PE_MASK) ||
4545 ((env->segs[R_CS].selector & 3) != 3);
4548 void kvm_arch_init_irq_routing(KVMState *s)
4550 /* We know at this point that we're using the in-kernel
4551 * irqchip, so we can use irqfds, and on x86 we know
4552 * we can use msi via irqfd and GSI routing.
4554 kvm_msi_via_irqfd_allowed = true;
4555 kvm_gsi_routing_allowed = true;
4557 if (kvm_irqchip_is_split()) {
4558 int i;
4560 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4561 MSI routes for signaling interrupts to the local apics. */
4562 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4563 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4564 error_report("Could not enable split IRQ mode.");
4565 exit(1);
4571 int kvm_arch_irqchip_create(KVMState *s)
4573 int ret;
4574 if (kvm_kernel_irqchip_split()) {
4575 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4576 if (ret) {
4577 error_report("Could not enable split irqchip mode: %s",
4578 strerror(-ret));
4579 exit(1);
4580 } else {
4581 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4582 kvm_split_irqchip = true;
4583 return 1;
4585 } else {
4586 return 0;
4590 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4592 CPUX86State *env;
4593 uint64_t ext_id;
4595 if (!first_cpu) {
4596 return address;
4598 env = &X86_CPU(first_cpu)->env;
4599 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4600 return address;
4604 * If the remappable format bit is set, or the upper bits are
4605 * already set in address_hi, or the low extended bits aren't
4606 * there anyway, do nothing.
4608 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4609 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4610 return address;
4613 address &= ~ext_id;
4614 address |= ext_id << 35;
4615 return address;
4618 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4619 uint64_t address, uint32_t data, PCIDevice *dev)
4621 X86IOMMUState *iommu = x86_iommu_get_default();
4623 if (iommu) {
4624 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
4626 if (class->int_remap) {
4627 int ret;
4628 MSIMessage src, dst;
4630 src.address = route->u.msi.address_hi;
4631 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4632 src.address |= route->u.msi.address_lo;
4633 src.data = route->u.msi.data;
4635 ret = class->int_remap(iommu, &src, &dst, dev ? \
4636 pci_requester_id(dev) : \
4637 X86_IOMMU_SID_INVALID);
4638 if (ret) {
4639 trace_kvm_x86_fixup_msi_error(route->gsi);
4640 return 1;
4644 * Handled untranslated compatibilty format interrupt with
4645 * extended destination ID in the low bits 11-5. */
4646 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
4648 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4649 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4650 route->u.msi.data = dst.data;
4651 return 0;
4655 address = kvm_swizzle_msi_ext_dest_id(address);
4656 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4657 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
4658 return 0;
4661 typedef struct MSIRouteEntry MSIRouteEntry;
4663 struct MSIRouteEntry {
4664 PCIDevice *dev; /* Device pointer */
4665 int vector; /* MSI/MSIX vector index */
4666 int virq; /* Virtual IRQ index */
4667 QLIST_ENTRY(MSIRouteEntry) list;
4670 /* List of used GSI routes */
4671 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4672 QLIST_HEAD_INITIALIZER(msi_route_list);
4674 static void kvm_update_msi_routes_all(void *private, bool global,
4675 uint32_t index, uint32_t mask)
4677 int cnt = 0, vector;
4678 MSIRouteEntry *entry;
4679 MSIMessage msg;
4680 PCIDevice *dev;
4682 /* TODO: explicit route update */
4683 QLIST_FOREACH(entry, &msi_route_list, list) {
4684 cnt++;
4685 vector = entry->vector;
4686 dev = entry->dev;
4687 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4688 msg = msix_get_message(dev, vector);
4689 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4690 msg = msi_get_message(dev, vector);
4691 } else {
4693 * Either MSI/MSIX is disabled for the device, or the
4694 * specific message was masked out. Skip this one.
4696 continue;
4698 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4700 kvm_irqchip_commit_routes(kvm_state);
4701 trace_kvm_x86_update_msi_routes(cnt);
4704 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4705 int vector, PCIDevice *dev)
4707 static bool notify_list_inited = false;
4708 MSIRouteEntry *entry;
4710 if (!dev) {
4711 /* These are (possibly) IOAPIC routes only used for split
4712 * kernel irqchip mode, while what we are housekeeping are
4713 * PCI devices only. */
4714 return 0;
4717 entry = g_new0(MSIRouteEntry, 1);
4718 entry->dev = dev;
4719 entry->vector = vector;
4720 entry->virq = route->gsi;
4721 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4723 trace_kvm_x86_add_msi_route(route->gsi);
4725 if (!notify_list_inited) {
4726 /* For the first time we do add route, add ourselves into
4727 * IOMMU's IEC notify list if needed. */
4728 X86IOMMUState *iommu = x86_iommu_get_default();
4729 if (iommu) {
4730 x86_iommu_iec_register_notifier(iommu,
4731 kvm_update_msi_routes_all,
4732 NULL);
4734 notify_list_inited = true;
4736 return 0;
4739 int kvm_arch_release_virq_post(int virq)
4741 MSIRouteEntry *entry, *next;
4742 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4743 if (entry->virq == virq) {
4744 trace_kvm_x86_remove_msi_route(virq);
4745 QLIST_REMOVE(entry, list);
4746 g_free(entry);
4747 break;
4750 return 0;
4753 int kvm_arch_msi_data_to_gsi(uint32_t data)
4755 abort();
4758 bool kvm_has_waitpkg(void)
4760 return has_msr_umwait;