i386: move hyperv_vendor_id initialization to x86_cpu_realizefn()
[qemu/ar7.git] / target / arm / m_helper.c
blob643dcafb83d4bca51df66bd8e80cf8e1b9ee4f1a
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 #ifdef CONFIG_TCG
32 #include "arm_ldst.h"
33 #include "exec/cpu_ldst.h"
34 #endif
36 static void v7m_msr_xpsr(CPUARMState *env, uint32_t mask,
37 uint32_t reg, uint32_t val)
39 /* Only APSR is actually writable */
40 if (!(reg & 4)) {
41 uint32_t apsrmask = 0;
43 if (mask & 8) {
44 apsrmask |= XPSR_NZCV | XPSR_Q;
46 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
47 apsrmask |= XPSR_GE;
49 xpsr_write(env, val, apsrmask);
53 static uint32_t v7m_mrs_xpsr(CPUARMState *env, uint32_t reg, unsigned el)
55 uint32_t mask = 0;
57 if ((reg & 1) && el) {
58 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
60 if (!(reg & 4)) {
61 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
62 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
63 mask |= XPSR_GE;
66 /* EPSR reads as zero */
67 return xpsr_read(env) & mask;
70 static uint32_t v7m_mrs_control(CPUARMState *env, uint32_t secure)
72 uint32_t value = env->v7m.control[secure];
74 if (!secure) {
75 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
76 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
78 return value;
81 #ifdef CONFIG_USER_ONLY
83 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
85 uint32_t mask = extract32(maskreg, 8, 4);
86 uint32_t reg = extract32(maskreg, 0, 8);
88 switch (reg) {
89 case 0 ... 7: /* xPSR sub-fields */
90 v7m_msr_xpsr(env, mask, reg, val);
91 break;
92 case 20: /* CONTROL */
93 /* There are no sub-fields that are actually writable from EL0. */
94 break;
95 default:
96 /* Unprivileged writes to other registers are ignored */
97 break;
101 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
103 switch (reg) {
104 case 0 ... 7: /* xPSR sub-fields */
105 return v7m_mrs_xpsr(env, reg, 0);
106 case 20: /* CONTROL */
107 return v7m_mrs_control(env, 0);
108 default:
109 /* Unprivileged reads others as zero. */
110 return 0;
114 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
116 /* translate.c should never generate calls here in user-only mode */
117 g_assert_not_reached();
120 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
122 /* translate.c should never generate calls here in user-only mode */
123 g_assert_not_reached();
126 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
128 /* translate.c should never generate calls here in user-only mode */
129 g_assert_not_reached();
132 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
134 /* translate.c should never generate calls here in user-only mode */
135 g_assert_not_reached();
138 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
140 /* translate.c should never generate calls here in user-only mode */
141 g_assert_not_reached();
144 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
147 * The TT instructions can be used by unprivileged code, but in
148 * user-only emulation we don't have the MPU.
149 * Luckily since we know we are NonSecure unprivileged (and that in
150 * turn means that the A flag wasn't specified), all the bits in the
151 * register must be zero:
152 * IREGION: 0 because IRVALID is 0
153 * IRVALID: 0 because NS
154 * S: 0 because NS
155 * NSRW: 0 because NS
156 * NSR: 0 because NS
157 * RW: 0 because unpriv and A flag not set
158 * R: 0 because unpriv and A flag not set
159 * SRVALID: 0 because NS
160 * MRVALID: 0 because unpriv and A flag not set
161 * SREGION: 0 becaus SRVALID is 0
162 * MREGION: 0 because MRVALID is 0
164 return 0;
167 #else
170 * What kind of stack write are we doing? This affects how exceptions
171 * generated during the stacking are treated.
173 typedef enum StackingMode {
174 STACK_NORMAL,
175 STACK_IGNFAULTS,
176 STACK_LAZYFP,
177 } StackingMode;
179 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
180 ARMMMUIdx mmu_idx, StackingMode mode)
182 CPUState *cs = CPU(cpu);
183 CPUARMState *env = &cpu->env;
184 MemTxAttrs attrs = {};
185 MemTxResult txres;
186 target_ulong page_size;
187 hwaddr physaddr;
188 int prot;
189 ARMMMUFaultInfo fi = {};
190 ARMCacheAttrs cacheattrs = {};
191 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
192 int exc;
193 bool exc_secure;
195 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
196 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
197 /* MPU/SAU lookup failed */
198 if (fi.type == ARMFault_QEMU_SFault) {
199 if (mode == STACK_LAZYFP) {
200 qemu_log_mask(CPU_LOG_INT,
201 "...SecureFault with SFSR.LSPERR "
202 "during lazy stacking\n");
203 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
204 } else {
205 qemu_log_mask(CPU_LOG_INT,
206 "...SecureFault with SFSR.AUVIOL "
207 "during stacking\n");
208 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
210 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
211 env->v7m.sfar = addr;
212 exc = ARMV7M_EXCP_SECURE;
213 exc_secure = false;
214 } else {
215 if (mode == STACK_LAZYFP) {
216 qemu_log_mask(CPU_LOG_INT,
217 "...MemManageFault with CFSR.MLSPERR\n");
218 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
219 } else {
220 qemu_log_mask(CPU_LOG_INT,
221 "...MemManageFault with CFSR.MSTKERR\n");
222 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
224 exc = ARMV7M_EXCP_MEM;
225 exc_secure = secure;
227 goto pend_fault;
229 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
230 attrs, &txres);
231 if (txres != MEMTX_OK) {
232 /* BusFault trying to write the data */
233 if (mode == STACK_LAZYFP) {
234 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
235 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
236 } else {
237 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
238 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
240 exc = ARMV7M_EXCP_BUS;
241 exc_secure = false;
242 goto pend_fault;
244 return true;
246 pend_fault:
248 * By pending the exception at this point we are making
249 * the IMPDEF choice "overridden exceptions pended" (see the
250 * MergeExcInfo() pseudocode). The other choice would be to not
251 * pend them now and then make a choice about which to throw away
252 * later if we have two derived exceptions.
253 * The only case when we must not pend the exception but instead
254 * throw it away is if we are doing the push of the callee registers
255 * and we've already generated a derived exception (this is indicated
256 * by the caller passing STACK_IGNFAULTS). Even in this case we will
257 * still update the fault status registers.
259 switch (mode) {
260 case STACK_NORMAL:
261 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
262 break;
263 case STACK_LAZYFP:
264 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
265 break;
266 case STACK_IGNFAULTS:
267 break;
269 return false;
272 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
273 ARMMMUIdx mmu_idx)
275 CPUState *cs = CPU(cpu);
276 CPUARMState *env = &cpu->env;
277 MemTxAttrs attrs = {};
278 MemTxResult txres;
279 target_ulong page_size;
280 hwaddr physaddr;
281 int prot;
282 ARMMMUFaultInfo fi = {};
283 ARMCacheAttrs cacheattrs = {};
284 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
285 int exc;
286 bool exc_secure;
287 uint32_t value;
289 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
290 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
291 /* MPU/SAU lookup failed */
292 if (fi.type == ARMFault_QEMU_SFault) {
293 qemu_log_mask(CPU_LOG_INT,
294 "...SecureFault with SFSR.AUVIOL during unstack\n");
295 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
296 env->v7m.sfar = addr;
297 exc = ARMV7M_EXCP_SECURE;
298 exc_secure = false;
299 } else {
300 qemu_log_mask(CPU_LOG_INT,
301 "...MemManageFault with CFSR.MUNSTKERR\n");
302 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
303 exc = ARMV7M_EXCP_MEM;
304 exc_secure = secure;
306 goto pend_fault;
309 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
310 attrs, &txres);
311 if (txres != MEMTX_OK) {
312 /* BusFault trying to read the data */
313 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
314 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
315 exc = ARMV7M_EXCP_BUS;
316 exc_secure = false;
317 goto pend_fault;
320 *dest = value;
321 return true;
323 pend_fault:
325 * By pending the exception at this point we are making
326 * the IMPDEF choice "overridden exceptions pended" (see the
327 * MergeExcInfo() pseudocode). The other choice would be to not
328 * pend them now and then make a choice about which to throw away
329 * later if we have two derived exceptions.
331 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
332 return false;
335 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
338 * Preserve FP state (because LSPACT was set and we are about
339 * to execute an FP instruction). This corresponds to the
340 * PreserveFPState() pseudocode.
341 * We may throw an exception if the stacking fails.
343 ARMCPU *cpu = env_archcpu(env);
344 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
345 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
346 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
347 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
348 uint32_t fpcar = env->v7m.fpcar[is_secure];
349 bool stacked_ok = true;
350 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
351 bool take_exception;
353 /* Take the iothread lock as we are going to touch the NVIC */
354 qemu_mutex_lock_iothread();
356 /* Check the background context had access to the FPU */
357 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
358 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
359 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
360 stacked_ok = false;
361 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
362 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
363 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
364 stacked_ok = false;
367 if (!splimviol && stacked_ok) {
368 /* We only stack if the stack limit wasn't violated */
369 int i;
370 ARMMMUIdx mmu_idx;
372 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
373 for (i = 0; i < (ts ? 32 : 16); i += 2) {
374 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
375 uint32_t faddr = fpcar + 4 * i;
376 uint32_t slo = extract64(dn, 0, 32);
377 uint32_t shi = extract64(dn, 32, 32);
379 if (i >= 16) {
380 faddr += 8; /* skip the slot for the FPSCR */
382 stacked_ok = stacked_ok &&
383 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
384 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
387 stacked_ok = stacked_ok &&
388 v7m_stack_write(cpu, fpcar + 0x40,
389 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
393 * We definitely pended an exception, but it's possible that it
394 * might not be able to be taken now. If its priority permits us
395 * to take it now, then we must not update the LSPACT or FP regs,
396 * but instead jump out to take the exception immediately.
397 * If it's just pending and won't be taken until the current
398 * handler exits, then we do update LSPACT and the FP regs.
400 take_exception = !stacked_ok &&
401 armv7m_nvic_can_take_pending_exception(env->nvic);
403 qemu_mutex_unlock_iothread();
405 if (take_exception) {
406 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
409 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
411 if (ts) {
412 /* Clear s0 to s31 and the FPSCR */
413 int i;
415 for (i = 0; i < 32; i += 2) {
416 *aa32_vfp_dreg(env, i / 2) = 0;
418 vfp_set_fpscr(env, 0);
421 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
422 * unchanged.
427 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
428 * This may change the current stack pointer between Main and Process
429 * stack pointers if it is done for the CONTROL register for the current
430 * security state.
432 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
433 bool new_spsel,
434 bool secstate)
436 bool old_is_psp = v7m_using_psp(env);
438 env->v7m.control[secstate] =
439 deposit32(env->v7m.control[secstate],
440 R_V7M_CONTROL_SPSEL_SHIFT,
441 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
443 if (secstate == env->v7m.secure) {
444 bool new_is_psp = v7m_using_psp(env);
445 uint32_t tmp;
447 if (old_is_psp != new_is_psp) {
448 tmp = env->v7m.other_sp;
449 env->v7m.other_sp = env->regs[13];
450 env->regs[13] = tmp;
456 * Write to v7M CONTROL.SPSEL bit. This may change the current
457 * stack pointer between Main and Process stack pointers.
459 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
461 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
464 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
467 * Write a new value to v7m.exception, thus transitioning into or out
468 * of Handler mode; this may result in a change of active stack pointer.
470 bool new_is_psp, old_is_psp = v7m_using_psp(env);
471 uint32_t tmp;
473 env->v7m.exception = new_exc;
475 new_is_psp = v7m_using_psp(env);
477 if (old_is_psp != new_is_psp) {
478 tmp = env->v7m.other_sp;
479 env->v7m.other_sp = env->regs[13];
480 env->regs[13] = tmp;
484 /* Switch M profile security state between NS and S */
485 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
487 uint32_t new_ss_msp, new_ss_psp;
489 if (env->v7m.secure == new_secstate) {
490 return;
494 * All the banked state is accessed by looking at env->v7m.secure
495 * except for the stack pointer; rearrange the SP appropriately.
497 new_ss_msp = env->v7m.other_ss_msp;
498 new_ss_psp = env->v7m.other_ss_psp;
500 if (v7m_using_psp(env)) {
501 env->v7m.other_ss_psp = env->regs[13];
502 env->v7m.other_ss_msp = env->v7m.other_sp;
503 } else {
504 env->v7m.other_ss_msp = env->regs[13];
505 env->v7m.other_ss_psp = env->v7m.other_sp;
508 env->v7m.secure = new_secstate;
510 if (v7m_using_psp(env)) {
511 env->regs[13] = new_ss_psp;
512 env->v7m.other_sp = new_ss_msp;
513 } else {
514 env->regs[13] = new_ss_msp;
515 env->v7m.other_sp = new_ss_psp;
519 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
522 * Handle v7M BXNS:
523 * - if the return value is a magic value, do exception return (like BX)
524 * - otherwise bit 0 of the return value is the target security state
526 uint32_t min_magic;
528 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
529 /* Covers FNC_RETURN and EXC_RETURN magic */
530 min_magic = FNC_RETURN_MIN_MAGIC;
531 } else {
532 /* EXC_RETURN magic only */
533 min_magic = EXC_RETURN_MIN_MAGIC;
536 if (dest >= min_magic) {
538 * This is an exception return magic value; put it where
539 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
540 * Note that if we ever add gen_ss_advance() singlestep support to
541 * M profile this should count as an "instruction execution complete"
542 * event (compare gen_bx_excret_final_code()).
544 env->regs[15] = dest & ~1;
545 env->thumb = dest & 1;
546 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
547 /* notreached */
550 /* translate.c should have made BXNS UNDEF unless we're secure */
551 assert(env->v7m.secure);
553 if (!(dest & 1)) {
554 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
556 switch_v7m_security_state(env, dest & 1);
557 env->thumb = 1;
558 env->regs[15] = dest & ~1;
559 arm_rebuild_hflags(env);
562 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
565 * Handle v7M BLXNS:
566 * - bit 0 of the destination address is the target security state
569 /* At this point regs[15] is the address just after the BLXNS */
570 uint32_t nextinst = env->regs[15] | 1;
571 uint32_t sp = env->regs[13] - 8;
572 uint32_t saved_psr;
574 /* translate.c will have made BLXNS UNDEF unless we're secure */
575 assert(env->v7m.secure);
577 if (dest & 1) {
579 * Target is Secure, so this is just a normal BLX,
580 * except that the low bit doesn't indicate Thumb/not.
582 env->regs[14] = nextinst;
583 env->thumb = 1;
584 env->regs[15] = dest & ~1;
585 return;
588 /* Target is non-secure: first push a stack frame */
589 if (!QEMU_IS_ALIGNED(sp, 8)) {
590 qemu_log_mask(LOG_GUEST_ERROR,
591 "BLXNS with misaligned SP is UNPREDICTABLE\n");
594 if (sp < v7m_sp_limit(env)) {
595 raise_exception(env, EXCP_STKOF, 0, 1);
598 saved_psr = env->v7m.exception;
599 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
600 saved_psr |= XPSR_SFPA;
603 /* Note that these stores can throw exceptions on MPU faults */
604 cpu_stl_data_ra(env, sp, nextinst, GETPC());
605 cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
607 env->regs[13] = sp;
608 env->regs[14] = 0xfeffffff;
609 if (arm_v7m_is_handler_mode(env)) {
611 * Write a dummy value to IPSR, to avoid leaking the current secure
612 * exception number to non-secure code. This is guaranteed not
613 * to cause write_v7m_exception() to actually change stacks.
615 write_v7m_exception(env, 1);
617 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
618 switch_v7m_security_state(env, 0);
619 env->thumb = 1;
620 env->regs[15] = dest;
621 arm_rebuild_hflags(env);
624 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
625 bool spsel)
628 * Return a pointer to the location where we currently store the
629 * stack pointer for the requested security state and thread mode.
630 * This pointer will become invalid if the CPU state is updated
631 * such that the stack pointers are switched around (eg changing
632 * the SPSEL control bit).
633 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
634 * Unlike that pseudocode, we require the caller to pass us in the
635 * SPSEL control bit value; this is because we also use this
636 * function in handling of pushing of the callee-saves registers
637 * part of the v8M stack frame (pseudocode PushCalleeStack()),
638 * and in the tailchain codepath the SPSEL bit comes from the exception
639 * return magic LR value from the previous exception. The pseudocode
640 * opencodes the stack-selection in PushCalleeStack(), but we prefer
641 * to make this utility function generic enough to do the job.
643 bool want_psp = threadmode && spsel;
645 if (secure == env->v7m.secure) {
646 if (want_psp == v7m_using_psp(env)) {
647 return &env->regs[13];
648 } else {
649 return &env->v7m.other_sp;
651 } else {
652 if (want_psp) {
653 return &env->v7m.other_ss_psp;
654 } else {
655 return &env->v7m.other_ss_msp;
660 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
661 uint32_t *pvec)
663 CPUState *cs = CPU(cpu);
664 CPUARMState *env = &cpu->env;
665 MemTxResult result;
666 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
667 uint32_t vector_entry;
668 MemTxAttrs attrs = {};
669 ARMMMUIdx mmu_idx;
670 bool exc_secure;
672 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
675 * We don't do a get_phys_addr() here because the rules for vector
676 * loads are special: they always use the default memory map, and
677 * the default memory map permits reads from all addresses.
678 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
679 * that we want this special case which would always say "yes",
680 * we just do the SAU lookup here followed by a direct physical load.
682 attrs.secure = targets_secure;
683 attrs.user = false;
685 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
686 V8M_SAttributes sattrs = {};
688 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
689 if (sattrs.ns) {
690 attrs.secure = false;
691 } else if (!targets_secure) {
693 * NS access to S memory: the underlying exception which we escalate
694 * to HardFault is SecureFault, which always targets Secure.
696 exc_secure = true;
697 goto load_fail;
701 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
702 attrs, &result);
703 if (result != MEMTX_OK) {
705 * Underlying exception is BusFault: its target security state
706 * depends on BFHFNMINS.
708 exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
709 goto load_fail;
711 *pvec = vector_entry;
712 return true;
714 load_fail:
716 * All vector table fetch fails are reported as HardFault, with
717 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
718 * technically the underlying exception is a SecureFault or BusFault
719 * that is escalated to HardFault.) This is a terminal exception,
720 * so we will either take the HardFault immediately or else enter
721 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
722 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
723 * secure); otherwise it targets the same security state as the
724 * underlying exception.
725 * In v8.1M HardFaults from vector table fetch fails don't set FORCED.
727 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
728 exc_secure = true;
730 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK;
731 if (!arm_feature(env, ARM_FEATURE_V8_1M)) {
732 env->v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
734 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
735 return false;
738 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
741 * Return the integrity signature value for the callee-saves
742 * stack frame section. @lr is the exception return payload/LR value
743 * whose FType bit forms bit 0 of the signature if FP is present.
745 uint32_t sig = 0xfefa125a;
747 if (!cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))
748 || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
749 sig |= 1;
751 return sig;
754 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
755 bool ignore_faults)
758 * For v8M, push the callee-saves register part of the stack frame.
759 * Compare the v8M pseudocode PushCalleeStack().
760 * In the tailchaining case this may not be the current stack.
762 CPUARMState *env = &cpu->env;
763 uint32_t *frame_sp_p;
764 uint32_t frameptr;
765 ARMMMUIdx mmu_idx;
766 bool stacked_ok;
767 uint32_t limit;
768 bool want_psp;
769 uint32_t sig;
770 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
772 if (dotailchain) {
773 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
774 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
775 !mode;
777 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
778 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
779 lr & R_V7M_EXCRET_SPSEL_MASK);
780 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
781 if (want_psp) {
782 limit = env->v7m.psplim[M_REG_S];
783 } else {
784 limit = env->v7m.msplim[M_REG_S];
786 } else {
787 mmu_idx = arm_mmu_idx(env);
788 frame_sp_p = &env->regs[13];
789 limit = v7m_sp_limit(env);
792 frameptr = *frame_sp_p - 0x28;
793 if (frameptr < limit) {
795 * Stack limit failure: set SP to the limit value, and generate
796 * STKOF UsageFault. Stack pushes below the limit must not be
797 * performed. It is IMPDEF whether pushes above the limit are
798 * performed; we choose not to.
800 qemu_log_mask(CPU_LOG_INT,
801 "...STKOF during callee-saves register stacking\n");
802 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
803 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
804 env->v7m.secure);
805 *frame_sp_p = limit;
806 return true;
810 * Write as much of the stack frame as we can. A write failure may
811 * cause us to pend a derived exception.
813 sig = v7m_integrity_sig(env, lr);
814 stacked_ok =
815 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
816 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
817 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
818 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
819 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
820 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
821 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
822 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
823 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
825 /* Update SP regardless of whether any of the stack accesses failed. */
826 *frame_sp_p = frameptr;
828 return !stacked_ok;
831 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
832 bool ignore_stackfaults)
835 * Do the "take the exception" parts of exception entry,
836 * but not the pushing of state to the stack. This is
837 * similar to the pseudocode ExceptionTaken() function.
839 CPUARMState *env = &cpu->env;
840 uint32_t addr;
841 bool targets_secure;
842 int exc;
843 bool push_failed = false;
845 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
846 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
847 targets_secure ? "secure" : "nonsecure", exc);
849 if (dotailchain) {
850 /* Sanitize LR FType and PREFIX bits */
851 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
852 lr |= R_V7M_EXCRET_FTYPE_MASK;
854 lr = deposit32(lr, 24, 8, 0xff);
857 if (arm_feature(env, ARM_FEATURE_V8)) {
858 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
859 (lr & R_V7M_EXCRET_S_MASK)) {
861 * The background code (the owner of the registers in the
862 * exception frame) is Secure. This means it may either already
863 * have or now needs to push callee-saves registers.
865 if (targets_secure) {
866 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
868 * We took an exception from Secure to NonSecure
869 * (which means the callee-saved registers got stacked)
870 * and are now tailchaining to a Secure exception.
871 * Clear DCRS so eventual return from this Secure
872 * exception unstacks the callee-saved registers.
874 lr &= ~R_V7M_EXCRET_DCRS_MASK;
876 } else {
878 * We're going to a non-secure exception; push the
879 * callee-saves registers to the stack now, if they're
880 * not already saved.
882 if (lr & R_V7M_EXCRET_DCRS_MASK &&
883 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
884 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
885 ignore_stackfaults);
887 lr |= R_V7M_EXCRET_DCRS_MASK;
891 lr &= ~R_V7M_EXCRET_ES_MASK;
892 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
893 lr |= R_V7M_EXCRET_ES_MASK;
895 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
896 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
897 lr |= R_V7M_EXCRET_SPSEL_MASK;
901 * Clear registers if necessary to prevent non-secure exception
902 * code being able to see register values from secure code.
903 * Where register values become architecturally UNKNOWN we leave
904 * them with their previous values. v8.1M is tighter than v8.0M
905 * here and always zeroes the caller-saved registers regardless
906 * of the security state the exception is targeting.
908 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
909 if (!targets_secure || arm_feature(env, ARM_FEATURE_V8_1M)) {
911 * Always clear the caller-saved registers (they have been
912 * pushed to the stack earlier in v7m_push_stack()).
913 * Clear callee-saved registers if the background code is
914 * Secure (in which case these regs were saved in
915 * v7m_push_callee_stack()).
917 int i;
919 * r4..r11 are callee-saves, zero only if background
920 * state was Secure (EXCRET.S == 1) and exception
921 * targets Non-secure state
923 bool zero_callee_saves = !targets_secure &&
924 (lr & R_V7M_EXCRET_S_MASK);
926 for (i = 0; i < 13; i++) {
927 if (i < 4 || i > 11 || zero_callee_saves) {
928 env->regs[i] = 0;
931 /* Clear EAPSR */
932 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
937 if (push_failed && !ignore_stackfaults) {
939 * Derived exception on callee-saves register stacking:
940 * we might now want to take a different exception which
941 * targets a different security state, so try again from the top.
943 qemu_log_mask(CPU_LOG_INT,
944 "...derived exception on callee-saves register stacking");
945 v7m_exception_taken(cpu, lr, true, true);
946 return;
949 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
950 /* Vector load failed: derived exception */
951 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
952 v7m_exception_taken(cpu, lr, true, true);
953 return;
957 * Now we've done everything that might cause a derived exception
958 * we can go ahead and activate whichever exception we're going to
959 * take (which might now be the derived exception).
961 armv7m_nvic_acknowledge_irq(env->nvic);
963 /* Switch to target security state -- must do this before writing SPSEL */
964 switch_v7m_security_state(env, targets_secure);
965 write_v7m_control_spsel(env, 0);
966 arm_clear_exclusive(env);
967 /* Clear SFPA and FPCA (has no effect if no FPU) */
968 env->v7m.control[M_REG_S] &=
969 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
970 /* Clear IT bits */
971 env->condexec_bits = 0;
972 env->regs[14] = lr;
973 env->regs[15] = addr & 0xfffffffe;
974 env->thumb = addr & 1;
975 arm_rebuild_hflags(env);
978 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
979 bool apply_splim)
982 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
983 * that we will need later in order to do lazy FP reg stacking.
985 bool is_secure = env->v7m.secure;
986 void *nvic = env->nvic;
988 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
989 * are banked and we want to update the bit in the bank for the
990 * current security state; and in one case we want to specifically
991 * update the NS banked version of a bit even if we are secure.
993 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
994 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
995 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
996 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
998 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
1000 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
1001 bool splimviol;
1002 uint32_t splim = v7m_sp_limit(env);
1003 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
1004 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
1006 splimviol = !ign && frameptr < splim;
1007 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
1010 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
1012 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
1014 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
1016 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
1017 !arm_v7m_is_handler_mode(env));
1019 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
1020 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1022 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
1023 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1025 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
1026 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
1028 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
1029 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
1031 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
1032 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1034 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1035 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
1036 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
1038 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
1039 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
1043 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
1045 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1046 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1047 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
1048 uintptr_t ra = GETPC();
1050 assert(env->v7m.secure);
1052 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1053 return;
1056 /* Check access to the coprocessor is permitted */
1057 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1058 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1061 if (lspact) {
1062 /* LSPACT should not be active when there is active FP state */
1063 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
1066 if (fptr & 7) {
1067 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1071 * Note that we do not use v7m_stack_write() here, because the
1072 * accesses should not set the FSR bits for stacking errors if they
1073 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1074 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1075 * and longjmp out.
1077 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1078 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1079 int i;
1081 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1082 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1083 uint32_t faddr = fptr + 4 * i;
1084 uint32_t slo = extract64(dn, 0, 32);
1085 uint32_t shi = extract64(dn, 32, 32);
1087 if (i >= 16) {
1088 faddr += 8; /* skip the slot for the FPSCR */
1090 cpu_stl_data_ra(env, faddr, slo, ra);
1091 cpu_stl_data_ra(env, faddr + 4, shi, ra);
1093 cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
1096 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
1097 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1099 if (ts) {
1100 for (i = 0; i < 32; i += 2) {
1101 *aa32_vfp_dreg(env, i / 2) = 0;
1103 vfp_set_fpscr(env, 0);
1105 } else {
1106 v7m_update_fpccr(env, fptr, false);
1109 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
1112 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
1114 uintptr_t ra = GETPC();
1116 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1117 assert(env->v7m.secure);
1119 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1120 return;
1123 /* Check access to the coprocessor is permitted */
1124 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1125 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1128 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1129 /* State in FP is still valid */
1130 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
1131 } else {
1132 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1133 int i;
1134 uint32_t fpscr;
1136 if (fptr & 7) {
1137 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1140 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1141 uint32_t slo, shi;
1142 uint64_t dn;
1143 uint32_t faddr = fptr + 4 * i;
1145 if (i >= 16) {
1146 faddr += 8; /* skip the slot for the FPSCR */
1149 slo = cpu_ldl_data_ra(env, faddr, ra);
1150 shi = cpu_ldl_data_ra(env, faddr + 4, ra);
1152 dn = (uint64_t) shi << 32 | slo;
1153 *aa32_vfp_dreg(env, i / 2) = dn;
1155 fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
1156 vfp_set_fpscr(env, fpscr);
1159 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
1162 static bool v7m_push_stack(ARMCPU *cpu)
1165 * Do the "set up stack frame" part of exception entry,
1166 * similar to pseudocode PushStack().
1167 * Return true if we generate a derived exception (and so
1168 * should ignore further stack faults trying to process
1169 * that derived exception.)
1171 bool stacked_ok = true, limitviol = false;
1172 CPUARMState *env = &cpu->env;
1173 uint32_t xpsr = xpsr_read(env);
1174 uint32_t frameptr = env->regs[13];
1175 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
1176 uint32_t framesize;
1177 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
1179 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
1180 (env->v7m.secure || nsacr_cp10)) {
1181 if (env->v7m.secure &&
1182 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
1183 framesize = 0xa8;
1184 } else {
1185 framesize = 0x68;
1187 } else {
1188 framesize = 0x20;
1191 /* Align stack pointer if the guest wants that */
1192 if ((frameptr & 4) &&
1193 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
1194 frameptr -= 4;
1195 xpsr |= XPSR_SPREALIGN;
1198 xpsr &= ~XPSR_SFPA;
1199 if (env->v7m.secure &&
1200 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1201 xpsr |= XPSR_SFPA;
1204 frameptr -= framesize;
1206 if (arm_feature(env, ARM_FEATURE_V8)) {
1207 uint32_t limit = v7m_sp_limit(env);
1209 if (frameptr < limit) {
1211 * Stack limit failure: set SP to the limit value, and generate
1212 * STKOF UsageFault. Stack pushes below the limit must not be
1213 * performed. It is IMPDEF whether pushes above the limit are
1214 * performed; we choose not to.
1216 qemu_log_mask(CPU_LOG_INT,
1217 "...STKOF during stacking\n");
1218 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
1219 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1220 env->v7m.secure);
1221 env->regs[13] = limit;
1223 * We won't try to perform any further memory accesses but
1224 * we must continue through the following code to check for
1225 * permission faults during FPU state preservation, and we
1226 * must update FPCCR if lazy stacking is enabled.
1228 limitviol = true;
1229 stacked_ok = false;
1234 * Write as much of the stack frame as we can. If we fail a stack
1235 * write this will result in a derived exception being pended
1236 * (which may be taken in preference to the one we started with
1237 * if it has higher priority).
1239 stacked_ok = stacked_ok &&
1240 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
1241 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
1242 mmu_idx, STACK_NORMAL) &&
1243 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
1244 mmu_idx, STACK_NORMAL) &&
1245 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
1246 mmu_idx, STACK_NORMAL) &&
1247 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
1248 mmu_idx, STACK_NORMAL) &&
1249 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
1250 mmu_idx, STACK_NORMAL) &&
1251 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
1252 mmu_idx, STACK_NORMAL) &&
1253 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
1255 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
1256 /* FPU is active, try to save its registers */
1257 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1258 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
1260 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1261 qemu_log_mask(CPU_LOG_INT,
1262 "...SecureFault because LSPACT and FPCA both set\n");
1263 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1264 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1265 } else if (!env->v7m.secure && !nsacr_cp10) {
1266 qemu_log_mask(CPU_LOG_INT,
1267 "...Secure UsageFault with CFSR.NOCP because "
1268 "NSACR.CP10 prevents stacking FP regs\n");
1269 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
1270 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1271 } else {
1272 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1273 /* Lazy stacking disabled, save registers now */
1274 int i;
1275 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
1276 arm_current_el(env) != 0);
1278 if (stacked_ok && !cpacr_pass) {
1280 * Take UsageFault if CPACR forbids access. The pseudocode
1281 * here does a full CheckCPEnabled() but we know the NSACR
1282 * check can never fail as we have already handled that.
1284 qemu_log_mask(CPU_LOG_INT,
1285 "...UsageFault with CFSR.NOCP because "
1286 "CPACR.CP10 prevents stacking FP regs\n");
1287 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1288 env->v7m.secure);
1289 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
1290 stacked_ok = false;
1293 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1294 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1295 uint32_t faddr = frameptr + 0x20 + 4 * i;
1296 uint32_t slo = extract64(dn, 0, 32);
1297 uint32_t shi = extract64(dn, 32, 32);
1299 if (i >= 16) {
1300 faddr += 8; /* skip the slot for the FPSCR */
1302 stacked_ok = stacked_ok &&
1303 v7m_stack_write(cpu, faddr, slo,
1304 mmu_idx, STACK_NORMAL) &&
1305 v7m_stack_write(cpu, faddr + 4, shi,
1306 mmu_idx, STACK_NORMAL);
1308 stacked_ok = stacked_ok &&
1309 v7m_stack_write(cpu, frameptr + 0x60,
1310 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
1311 if (cpacr_pass) {
1312 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1313 *aa32_vfp_dreg(env, i / 2) = 0;
1315 vfp_set_fpscr(env, 0);
1317 } else {
1318 /* Lazy stacking enabled, save necessary info to stack later */
1319 v7m_update_fpccr(env, frameptr + 0x20, true);
1325 * If we broke a stack limit then SP was already updated earlier;
1326 * otherwise we update SP regardless of whether any of the stack
1327 * accesses failed or we took some other kind of fault.
1329 if (!limitviol) {
1330 env->regs[13] = frameptr;
1333 return !stacked_ok;
1336 static void do_v7m_exception_exit(ARMCPU *cpu)
1338 CPUARMState *env = &cpu->env;
1339 uint32_t excret;
1340 uint32_t xpsr, xpsr_mask;
1341 bool ufault = false;
1342 bool sfault = false;
1343 bool return_to_sp_process;
1344 bool return_to_handler;
1345 bool rettobase = false;
1346 bool exc_secure = false;
1347 bool return_to_secure;
1348 bool ftype;
1349 bool restore_s16_s31;
1352 * If we're not in Handler mode then jumps to magic exception-exit
1353 * addresses don't have magic behaviour. However for the v8M
1354 * security extensions the magic secure-function-return has to
1355 * work in thread mode too, so to avoid doing an extra check in
1356 * the generated code we allow exception-exit magic to also cause the
1357 * internal exception and bring us here in thread mode. Correct code
1358 * will never try to do this (the following insn fetch will always
1359 * fault) so we the overhead of having taken an unnecessary exception
1360 * doesn't matter.
1362 if (!arm_v7m_is_handler_mode(env)) {
1363 return;
1367 * In the spec pseudocode ExceptionReturn() is called directly
1368 * from BXWritePC() and gets the full target PC value including
1369 * bit zero. In QEMU's implementation we treat it as a normal
1370 * jump-to-register (which is then caught later on), and so split
1371 * the target value up between env->regs[15] and env->thumb in
1372 * gen_bx(). Reconstitute it.
1374 excret = env->regs[15];
1375 if (env->thumb) {
1376 excret |= 1;
1379 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
1380 " previous exception %d\n",
1381 excret, env->v7m.exception);
1383 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
1384 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
1385 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
1386 excret);
1389 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
1391 if (!ftype && !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1392 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
1393 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
1394 "if FPU not present\n",
1395 excret);
1396 ftype = true;
1399 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1401 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1402 * we pick which FAULTMASK to clear.
1404 if (!env->v7m.secure &&
1405 ((excret & R_V7M_EXCRET_ES_MASK) ||
1406 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
1407 sfault = 1;
1408 /* For all other purposes, treat ES as 0 (R_HXSR) */
1409 excret &= ~R_V7M_EXCRET_ES_MASK;
1411 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
1414 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
1416 * Auto-clear FAULTMASK on return from other than NMI.
1417 * If the security extension is implemented then this only
1418 * happens if the raw execution priority is >= 0; the
1419 * value of the ES bit in the exception return value indicates
1420 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1422 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1423 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
1424 env->v7m.faultmask[exc_secure] = 0;
1426 } else {
1427 env->v7m.faultmask[M_REG_NS] = 0;
1431 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
1432 exc_secure)) {
1433 case -1:
1434 /* attempt to exit an exception that isn't active */
1435 ufault = true;
1436 break;
1437 case 0:
1438 /* still an irq active now */
1439 break;
1440 case 1:
1442 * We returned to base exception level, no nesting.
1443 * (In the pseudocode this is written using "NestedActivation != 1"
1444 * where we have 'rettobase == false'.)
1446 rettobase = true;
1447 break;
1448 default:
1449 g_assert_not_reached();
1452 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
1453 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
1454 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
1455 (excret & R_V7M_EXCRET_S_MASK);
1457 if (arm_feature(env, ARM_FEATURE_V8)) {
1458 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1460 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1461 * we choose to take the UsageFault.
1463 if ((excret & R_V7M_EXCRET_S_MASK) ||
1464 (excret & R_V7M_EXCRET_ES_MASK) ||
1465 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
1466 ufault = true;
1469 if (excret & R_V7M_EXCRET_RES0_MASK) {
1470 ufault = true;
1472 } else {
1473 /* For v7M we only recognize certain combinations of the low bits */
1474 switch (excret & 0xf) {
1475 case 1: /* Return to Handler */
1476 break;
1477 case 13: /* Return to Thread using Process stack */
1478 case 9: /* Return to Thread using Main stack */
1480 * We only need to check NONBASETHRDENA for v7M, because in
1481 * v8M this bit does not exist (it is RES1).
1483 if (!rettobase &&
1484 !(env->v7m.ccr[env->v7m.secure] &
1485 R_V7M_CCR_NONBASETHRDENA_MASK)) {
1486 ufault = true;
1488 break;
1489 default:
1490 ufault = true;
1495 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1496 * Handler mode (and will be until we write the new XPSR.Interrupt
1497 * field) this does not switch around the current stack pointer.
1498 * We must do this before we do any kind of tailchaining, including
1499 * for the derived exceptions on integrity check failures, or we will
1500 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1502 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
1505 * Clear scratch FP values left in caller saved registers; this
1506 * must happen before any kind of tail chaining.
1508 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
1509 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
1510 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1511 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1512 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1513 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1514 "stackframe: error during lazy state deactivation\n");
1515 v7m_exception_taken(cpu, excret, true, false);
1516 return;
1517 } else {
1518 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1519 /* v8.1M adds this NOCP check */
1520 bool nsacr_pass = exc_secure ||
1521 extract32(env->v7m.nsacr, 10, 1);
1522 bool cpacr_pass = v7m_cpacr_pass(env, exc_secure, true);
1523 if (!nsacr_pass) {
1524 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1525 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1526 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1527 "stackframe: NSACR prevents clearing FPU registers\n");
1528 v7m_exception_taken(cpu, excret, true, false);
1529 } else if (!cpacr_pass) {
1530 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1531 exc_secure);
1532 env->v7m.cfsr[exc_secure] |= R_V7M_CFSR_NOCP_MASK;
1533 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1534 "stackframe: CPACR prevents clearing FPU registers\n");
1535 v7m_exception_taken(cpu, excret, true, false);
1538 /* Clear s0..s15 and FPSCR; TODO also VPR when MVE is implemented */
1539 int i;
1541 for (i = 0; i < 16; i += 2) {
1542 *aa32_vfp_dreg(env, i / 2) = 0;
1544 vfp_set_fpscr(env, 0);
1548 if (sfault) {
1549 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
1550 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1551 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1552 "stackframe: failed EXC_RETURN.ES validity check\n");
1553 v7m_exception_taken(cpu, excret, true, false);
1554 return;
1557 if (ufault) {
1559 * Bad exception return: instead of popping the exception
1560 * stack, directly take a usage fault on the current stack.
1562 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1563 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1564 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1565 "stackframe: failed exception return integrity check\n");
1566 v7m_exception_taken(cpu, excret, true, false);
1567 return;
1571 * Tailchaining: if there is currently a pending exception that
1572 * is high enough priority to preempt execution at the level we're
1573 * about to return to, then just directly take that exception now,
1574 * avoiding an unstack-and-then-stack. Note that now we have
1575 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1576 * our current execution priority is already the execution priority we are
1577 * returning to -- none of the state we would unstack or set based on
1578 * the EXCRET value affects it.
1580 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
1581 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
1582 v7m_exception_taken(cpu, excret, true, false);
1583 return;
1586 switch_v7m_security_state(env, return_to_secure);
1590 * The stack pointer we should be reading the exception frame from
1591 * depends on bits in the magic exception return type value (and
1592 * for v8M isn't necessarily the stack pointer we will eventually
1593 * end up resuming execution with). Get a pointer to the location
1594 * in the CPU state struct where the SP we need is currently being
1595 * stored; we will use and modify it in place.
1596 * We use this limited C variable scope so we don't accidentally
1597 * use 'frame_sp_p' after we do something that makes it invalid.
1599 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
1600 return_to_secure,
1601 !return_to_handler,
1602 return_to_sp_process);
1603 uint32_t frameptr = *frame_sp_p;
1604 bool pop_ok = true;
1605 ARMMMUIdx mmu_idx;
1606 bool return_to_priv = return_to_handler ||
1607 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
1609 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
1610 return_to_priv);
1612 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
1613 arm_feature(env, ARM_FEATURE_V8)) {
1614 qemu_log_mask(LOG_GUEST_ERROR,
1615 "M profile exception return with non-8-aligned SP "
1616 "for destination state is UNPREDICTABLE\n");
1619 /* Do we need to pop callee-saved registers? */
1620 if (return_to_secure &&
1621 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
1622 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
1623 uint32_t actual_sig;
1625 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
1627 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
1628 /* Take a SecureFault on the current stack */
1629 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
1630 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1631 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1632 "stackframe: failed exception return integrity "
1633 "signature check\n");
1634 v7m_exception_taken(cpu, excret, true, false);
1635 return;
1638 pop_ok = pop_ok &&
1639 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
1640 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
1641 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
1642 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
1643 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
1644 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
1645 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
1646 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
1648 frameptr += 0x28;
1651 /* Pop registers */
1652 pop_ok = pop_ok &&
1653 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
1654 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
1655 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
1656 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
1657 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
1658 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
1659 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
1660 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
1662 if (!pop_ok) {
1664 * v7m_stack_read() pended a fault, so take it (as a tail
1665 * chained exception on the same stack frame)
1667 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
1668 v7m_exception_taken(cpu, excret, true, false);
1669 return;
1673 * Returning from an exception with a PC with bit 0 set is defined
1674 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1675 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1676 * the lsbit, and there are several RTOSes out there which incorrectly
1677 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1678 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1679 * complain about the badly behaved guest.
1681 if (env->regs[15] & 1) {
1682 env->regs[15] &= ~1U;
1683 if (!arm_feature(env, ARM_FEATURE_V8)) {
1684 qemu_log_mask(LOG_GUEST_ERROR,
1685 "M profile return from interrupt with misaligned "
1686 "PC is UNPREDICTABLE on v7M\n");
1690 if (arm_feature(env, ARM_FEATURE_V8)) {
1692 * For v8M we have to check whether the xPSR exception field
1693 * matches the EXCRET value for return to handler/thread
1694 * before we commit to changing the SP and xPSR.
1696 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
1697 if (return_to_handler != will_be_handler) {
1699 * Take an INVPC UsageFault on the current stack.
1700 * By this point we will have switched to the security state
1701 * for the background state, so this UsageFault will target
1702 * that state.
1704 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1705 env->v7m.secure);
1706 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1707 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1708 "stackframe: failed exception return integrity "
1709 "check\n");
1710 v7m_exception_taken(cpu, excret, true, false);
1711 return;
1715 if (!ftype) {
1716 /* FP present and we need to handle it */
1717 if (!return_to_secure &&
1718 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
1719 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1720 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1721 qemu_log_mask(CPU_LOG_INT,
1722 "...taking SecureFault on existing stackframe: "
1723 "Secure LSPACT set but exception return is "
1724 "not to secure state\n");
1725 v7m_exception_taken(cpu, excret, true, false);
1726 return;
1729 restore_s16_s31 = return_to_secure &&
1730 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
1732 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
1733 /* State in FPU is still valid, just clear LSPACT */
1734 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
1735 } else {
1736 int i;
1737 uint32_t fpscr;
1738 bool cpacr_pass, nsacr_pass;
1740 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
1741 return_to_priv);
1742 nsacr_pass = return_to_secure ||
1743 extract32(env->v7m.nsacr, 10, 1);
1745 if (!cpacr_pass) {
1746 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1747 return_to_secure);
1748 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
1749 qemu_log_mask(CPU_LOG_INT,
1750 "...taking UsageFault on existing "
1751 "stackframe: CPACR.CP10 prevents unstacking "
1752 "FP regs\n");
1753 v7m_exception_taken(cpu, excret, true, false);
1754 return;
1755 } else if (!nsacr_pass) {
1756 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1757 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
1758 qemu_log_mask(CPU_LOG_INT,
1759 "...taking Secure UsageFault on existing "
1760 "stackframe: NSACR.CP10 prevents unstacking "
1761 "FP regs\n");
1762 v7m_exception_taken(cpu, excret, true, false);
1763 return;
1766 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1767 uint32_t slo, shi;
1768 uint64_t dn;
1769 uint32_t faddr = frameptr + 0x20 + 4 * i;
1771 if (i >= 16) {
1772 faddr += 8; /* Skip the slot for the FPSCR */
1775 pop_ok = pop_ok &&
1776 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
1777 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
1779 if (!pop_ok) {
1780 break;
1783 dn = (uint64_t)shi << 32 | slo;
1784 *aa32_vfp_dreg(env, i / 2) = dn;
1786 pop_ok = pop_ok &&
1787 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
1788 if (pop_ok) {
1789 vfp_set_fpscr(env, fpscr);
1791 if (!pop_ok) {
1793 * These regs are 0 if security extension present;
1794 * otherwise merely UNKNOWN. We zero always.
1796 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1797 *aa32_vfp_dreg(env, i / 2) = 0;
1799 vfp_set_fpscr(env, 0);
1803 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1804 V7M_CONTROL, FPCA, !ftype);
1806 /* Commit to consuming the stack frame */
1807 frameptr += 0x20;
1808 if (!ftype) {
1809 frameptr += 0x48;
1810 if (restore_s16_s31) {
1811 frameptr += 0x40;
1815 * Undo stack alignment (the SPREALIGN bit indicates that the original
1816 * pre-exception SP was not 8-aligned and we added a padding word to
1817 * align it, so we undo this by ORing in the bit that increases it
1818 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1819 * would work too but a logical OR is how the pseudocode specifies it.)
1821 if (xpsr & XPSR_SPREALIGN) {
1822 frameptr |= 4;
1824 *frame_sp_p = frameptr;
1827 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
1828 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
1829 xpsr_mask &= ~XPSR_GE;
1831 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1832 xpsr_write(env, xpsr, xpsr_mask);
1834 if (env->v7m.secure) {
1835 bool sfpa = xpsr & XPSR_SFPA;
1837 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1838 V7M_CONTROL, SFPA, sfpa);
1842 * The restored xPSR exception field will be zero if we're
1843 * resuming in Thread mode. If that doesn't match what the
1844 * exception return excret specified then this is a UsageFault.
1845 * v7M requires we make this check here; v8M did it earlier.
1847 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
1849 * Take an INVPC UsageFault by pushing the stack again;
1850 * we know we're v7M so this is never a Secure UsageFault.
1852 bool ignore_stackfaults;
1854 assert(!arm_feature(env, ARM_FEATURE_V8));
1855 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
1856 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1857 ignore_stackfaults = v7m_push_stack(cpu);
1858 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
1859 "failed exception return integrity check\n");
1860 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
1861 return;
1864 /* Otherwise, we have a successful exception exit. */
1865 arm_clear_exclusive(env);
1866 arm_rebuild_hflags(env);
1867 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
1870 static bool do_v7m_function_return(ARMCPU *cpu)
1873 * v8M security extensions magic function return.
1874 * We may either:
1875 * (1) throw an exception (longjump)
1876 * (2) return true if we successfully handled the function return
1877 * (3) return false if we failed a consistency check and have
1878 * pended a UsageFault that needs to be taken now
1880 * At this point the magic return value is split between env->regs[15]
1881 * and env->thumb. We don't bother to reconstitute it because we don't
1882 * need it (all values are handled the same way).
1884 CPUARMState *env = &cpu->env;
1885 uint32_t newpc, newpsr, newpsr_exc;
1887 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
1890 bool threadmode, spsel;
1891 TCGMemOpIdx oi;
1892 ARMMMUIdx mmu_idx;
1893 uint32_t *frame_sp_p;
1894 uint32_t frameptr;
1896 /* Pull the return address and IPSR from the Secure stack */
1897 threadmode = !arm_v7m_is_handler_mode(env);
1898 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
1900 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
1901 frameptr = *frame_sp_p;
1904 * These loads may throw an exception (for MPU faults). We want to
1905 * do them as secure, so work out what MMU index that is.
1907 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1908 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
1909 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
1910 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
1912 /* Consistency checks on new IPSR */
1913 newpsr_exc = newpsr & XPSR_EXCP;
1914 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
1915 (env->v7m.exception == 1 && newpsr_exc != 0))) {
1916 /* Pend the fault and tell our caller to take it */
1917 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1918 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1919 env->v7m.secure);
1920 qemu_log_mask(CPU_LOG_INT,
1921 "...taking INVPC UsageFault: "
1922 "IPSR consistency check failed\n");
1923 return false;
1926 *frame_sp_p = frameptr + 8;
1929 /* This invalidates frame_sp_p */
1930 switch_v7m_security_state(env, true);
1931 env->v7m.exception = newpsr_exc;
1932 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1933 if (newpsr & XPSR_SFPA) {
1934 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
1936 xpsr_write(env, 0, XPSR_IT);
1937 env->thumb = newpc & 1;
1938 env->regs[15] = newpc & ~1;
1939 arm_rebuild_hflags(env);
1941 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
1942 return true;
1945 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1946 uint32_t addr, uint16_t *insn)
1949 * Load a 16-bit portion of a v7M instruction, returning true on success,
1950 * or false on failure (in which case we will have pended the appropriate
1951 * exception).
1952 * We need to do the instruction fetch's MPU and SAU checks
1953 * like this because there is no MMU index that would allow
1954 * doing the load with a single function call. Instead we must
1955 * first check that the security attributes permit the load
1956 * and that they don't mismatch on the two halves of the instruction,
1957 * and then we do the load as a secure load (ie using the security
1958 * attributes of the address, not the CPU, as architecturally required).
1960 CPUState *cs = CPU(cpu);
1961 CPUARMState *env = &cpu->env;
1962 V8M_SAttributes sattrs = {};
1963 MemTxAttrs attrs = {};
1964 ARMMMUFaultInfo fi = {};
1965 ARMCacheAttrs cacheattrs = {};
1966 MemTxResult txres;
1967 target_ulong page_size;
1968 hwaddr physaddr;
1969 int prot;
1971 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
1972 if (!sattrs.nsc || sattrs.ns) {
1974 * This must be the second half of the insn, and it straddles a
1975 * region boundary with the second half not being S&NSC.
1977 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
1978 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1979 qemu_log_mask(CPU_LOG_INT,
1980 "...really SecureFault with SFSR.INVEP\n");
1981 return false;
1983 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, &physaddr,
1984 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
1985 /* the MPU lookup failed */
1986 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
1987 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
1988 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
1989 return false;
1991 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
1992 attrs, &txres);
1993 if (txres != MEMTX_OK) {
1994 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
1995 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
1996 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
1997 return false;
1999 return true;
2002 static bool v7m_read_sg_stack_word(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2003 uint32_t addr, uint32_t *spdata)
2006 * Read a word of data from the stack for the SG instruction,
2007 * writing the value into *spdata. If the load succeeds, return
2008 * true; otherwise pend an appropriate exception and return false.
2009 * (We can't use data load helpers here that throw an exception
2010 * because of the context we're called in, which is halfway through
2011 * arm_v7m_cpu_do_interrupt().)
2013 CPUState *cs = CPU(cpu);
2014 CPUARMState *env = &cpu->env;
2015 MemTxAttrs attrs = {};
2016 MemTxResult txres;
2017 target_ulong page_size;
2018 hwaddr physaddr;
2019 int prot;
2020 ARMMMUFaultInfo fi = {};
2021 ARMCacheAttrs cacheattrs = {};
2022 uint32_t value;
2024 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
2025 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
2026 /* MPU/SAU lookup failed */
2027 if (fi.type == ARMFault_QEMU_SFault) {
2028 qemu_log_mask(CPU_LOG_INT,
2029 "...SecureFault during stack word read\n");
2030 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
2031 env->v7m.sfar = addr;
2032 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2033 } else {
2034 qemu_log_mask(CPU_LOG_INT,
2035 "...MemManageFault during stack word read\n");
2036 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_DACCVIOL_MASK |
2037 R_V7M_CFSR_MMARVALID_MASK;
2038 env->v7m.mmfar[M_REG_S] = addr;
2039 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, false);
2041 return false;
2043 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
2044 attrs, &txres);
2045 if (txres != MEMTX_OK) {
2046 /* BusFault trying to read the data */
2047 qemu_log_mask(CPU_LOG_INT,
2048 "...BusFault during stack word read\n");
2049 env->v7m.cfsr[M_REG_NS] |=
2050 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2051 env->v7m.bfar = addr;
2052 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2053 return false;
2056 *spdata = value;
2057 return true;
2060 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
2063 * Check whether this attempt to execute code in a Secure & NS-Callable
2064 * memory region is for an SG instruction; if so, then emulate the
2065 * effect of the SG instruction and return true. Otherwise pend
2066 * the correct kind of exception and return false.
2068 CPUARMState *env = &cpu->env;
2069 ARMMMUIdx mmu_idx;
2070 uint16_t insn;
2073 * We should never get here unless get_phys_addr_pmsav8() caused
2074 * an exception for NS executing in S&NSC memory.
2076 assert(!env->v7m.secure);
2077 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2079 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
2080 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
2082 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
2083 return false;
2086 if (!env->thumb) {
2087 goto gen_invep;
2090 if (insn != 0xe97f) {
2092 * Not an SG instruction first half (we choose the IMPDEF
2093 * early-SG-check option).
2095 goto gen_invep;
2098 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
2099 return false;
2102 if (insn != 0xe97f) {
2104 * Not an SG instruction second half (yes, both halves of the SG
2105 * insn have the same hex value)
2107 goto gen_invep;
2111 * OK, we have confirmed that we really have an SG instruction.
2112 * We know we're NS in S memory so don't need to repeat those checks.
2114 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
2115 ", executing it\n", env->regs[15]);
2117 if (cpu_isar_feature(aa32_m_sec_state, cpu) &&
2118 !arm_v7m_is_handler_mode(env)) {
2120 * v8.1M exception stack frame integrity check. Note that we
2121 * must perform the memory access even if CCR_S.TRD is zero
2122 * and we aren't going to check what the data loaded is.
2124 uint32_t spdata, sp;
2127 * We know we are currently NS, so the S stack pointers must be
2128 * in other_ss_{psp,msp}, not in regs[13]/other_sp.
2130 sp = v7m_using_psp(env) ? env->v7m.other_ss_psp : env->v7m.other_ss_msp;
2131 if (!v7m_read_sg_stack_word(cpu, mmu_idx, sp, &spdata)) {
2132 /* Stack access failed and an exception has been pended */
2133 return false;
2136 if (env->v7m.ccr[M_REG_S] & R_V7M_CCR_TRD_MASK) {
2137 if (((spdata & ~1) == 0xfefa125a) ||
2138 !(env->v7m.control[M_REG_S] & 1)) {
2139 goto gen_invep;
2144 env->regs[14] &= ~1;
2145 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2146 switch_v7m_security_state(env, true);
2147 xpsr_write(env, 0, XPSR_IT);
2148 env->regs[15] += 4;
2149 arm_rebuild_hflags(env);
2150 return true;
2152 gen_invep:
2153 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2154 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2155 qemu_log_mask(CPU_LOG_INT,
2156 "...really SecureFault with SFSR.INVEP\n");
2157 return false;
2160 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2162 ARMCPU *cpu = ARM_CPU(cs);
2163 CPUARMState *env = &cpu->env;
2164 uint32_t lr;
2165 bool ignore_stackfaults;
2167 arm_log_exception(cs->exception_index);
2170 * For exceptions we just mark as pending on the NVIC, and let that
2171 * handle it.
2173 switch (cs->exception_index) {
2174 case EXCP_UDEF:
2175 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2176 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
2177 break;
2178 case EXCP_NOCP:
2181 * NOCP might be directed to something other than the current
2182 * security state if this fault is because of NSACR; we indicate
2183 * the target security state using exception.target_el.
2185 int target_secstate;
2187 if (env->exception.target_el == 3) {
2188 target_secstate = M_REG_S;
2189 } else {
2190 target_secstate = env->v7m.secure;
2192 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
2193 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
2194 break;
2196 case EXCP_INVSTATE:
2197 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2198 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
2199 break;
2200 case EXCP_STKOF:
2201 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2202 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
2203 break;
2204 case EXCP_LSERR:
2205 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2206 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
2207 break;
2208 case EXCP_UNALIGNED:
2209 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2210 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2211 break;
2212 case EXCP_SWI:
2213 /* The PC already points to the next instruction. */
2214 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
2215 break;
2216 case EXCP_PREFETCH_ABORT:
2217 case EXCP_DATA_ABORT:
2219 * Note that for M profile we don't have a guest facing FSR, but
2220 * the env->exception.fsr will be populated by the code that
2221 * raises the fault, in the A profile short-descriptor format.
2223 switch (env->exception.fsr & 0xf) {
2224 case M_FAKE_FSR_NSC_EXEC:
2226 * Exception generated when we try to execute code at an address
2227 * which is marked as Secure & Non-Secure Callable and the CPU
2228 * is in the Non-Secure state. The only instruction which can
2229 * be executed like this is SG (and that only if both halves of
2230 * the SG instruction have the same security attributes.)
2231 * Everything else must generate an INVEP SecureFault, so we
2232 * emulate the SG instruction here.
2234 if (v7m_handle_execute_nsc(cpu)) {
2235 return;
2237 break;
2238 case M_FAKE_FSR_SFAULT:
2240 * Various flavours of SecureFault for attempts to execute or
2241 * access data in the wrong security state.
2243 switch (cs->exception_index) {
2244 case EXCP_PREFETCH_ABORT:
2245 if (env->v7m.secure) {
2246 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
2247 qemu_log_mask(CPU_LOG_INT,
2248 "...really SecureFault with SFSR.INVTRAN\n");
2249 } else {
2250 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2251 qemu_log_mask(CPU_LOG_INT,
2252 "...really SecureFault with SFSR.INVEP\n");
2254 break;
2255 case EXCP_DATA_ABORT:
2256 /* This must be an NS access to S memory */
2257 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
2258 qemu_log_mask(CPU_LOG_INT,
2259 "...really SecureFault with SFSR.AUVIOL\n");
2260 break;
2262 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2263 break;
2264 case 0x8: /* External Abort */
2265 switch (cs->exception_index) {
2266 case EXCP_PREFETCH_ABORT:
2267 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2268 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
2269 break;
2270 case EXCP_DATA_ABORT:
2271 env->v7m.cfsr[M_REG_NS] |=
2272 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2273 env->v7m.bfar = env->exception.vaddress;
2274 qemu_log_mask(CPU_LOG_INT,
2275 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2276 env->v7m.bfar);
2277 break;
2279 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2280 break;
2281 default:
2283 * All other FSR values are either MPU faults or "can't happen
2284 * for M profile" cases.
2286 switch (cs->exception_index) {
2287 case EXCP_PREFETCH_ABORT:
2288 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2289 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
2290 break;
2291 case EXCP_DATA_ABORT:
2292 env->v7m.cfsr[env->v7m.secure] |=
2293 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
2294 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
2295 qemu_log_mask(CPU_LOG_INT,
2296 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2297 env->v7m.mmfar[env->v7m.secure]);
2298 break;
2300 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
2301 env->v7m.secure);
2302 break;
2304 break;
2305 case EXCP_SEMIHOST:
2306 qemu_log_mask(CPU_LOG_INT,
2307 "...handling as semihosting call 0x%x\n",
2308 env->regs[0]);
2309 env->regs[0] = do_arm_semihosting(env);
2310 env->regs[15] += env->thumb ? 2 : 4;
2311 return;
2312 case EXCP_BKPT:
2313 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
2314 break;
2315 case EXCP_IRQ:
2316 break;
2317 case EXCP_EXCEPTION_EXIT:
2318 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
2319 /* Must be v8M security extension function return */
2320 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
2321 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2322 if (do_v7m_function_return(cpu)) {
2323 return;
2325 } else {
2326 do_v7m_exception_exit(cpu);
2327 return;
2329 break;
2330 case EXCP_LAZYFP:
2332 * We already pended the specific exception in the NVIC in the
2333 * v7m_preserve_fp_state() helper function.
2335 break;
2336 default:
2337 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2338 return; /* Never happens. Keep compiler happy. */
2341 if (arm_feature(env, ARM_FEATURE_V8)) {
2342 lr = R_V7M_EXCRET_RES1_MASK |
2343 R_V7M_EXCRET_DCRS_MASK;
2345 * The S bit indicates whether we should return to Secure
2346 * or NonSecure (ie our current state).
2347 * The ES bit indicates whether we're taking this exception
2348 * to Secure or NonSecure (ie our target state). We set it
2349 * later, in v7m_exception_taken().
2350 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2351 * This corresponds to the ARM ARM pseudocode for v8M setting
2352 * some LR bits in PushStack() and some in ExceptionTaken();
2353 * the distinction matters for the tailchain cases where we
2354 * can take an exception without pushing the stack.
2356 if (env->v7m.secure) {
2357 lr |= R_V7M_EXCRET_S_MASK;
2359 } else {
2360 lr = R_V7M_EXCRET_RES1_MASK |
2361 R_V7M_EXCRET_S_MASK |
2362 R_V7M_EXCRET_DCRS_MASK |
2363 R_V7M_EXCRET_ES_MASK;
2364 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
2365 lr |= R_V7M_EXCRET_SPSEL_MASK;
2368 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
2369 lr |= R_V7M_EXCRET_FTYPE_MASK;
2371 if (!arm_v7m_is_handler_mode(env)) {
2372 lr |= R_V7M_EXCRET_MODE_MASK;
2375 ignore_stackfaults = v7m_push_stack(cpu);
2376 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
2379 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2381 unsigned el = arm_current_el(env);
2383 /* First handle registers which unprivileged can read */
2384 switch (reg) {
2385 case 0 ... 7: /* xPSR sub-fields */
2386 return v7m_mrs_xpsr(env, reg, el);
2387 case 20: /* CONTROL */
2388 return v7m_mrs_control(env, env->v7m.secure);
2389 case 0x94: /* CONTROL_NS */
2391 * We have to handle this here because unprivileged Secure code
2392 * can read the NS CONTROL register.
2394 if (!env->v7m.secure) {
2395 return 0;
2397 return env->v7m.control[M_REG_NS] |
2398 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
2401 if (el == 0) {
2402 return 0; /* unprivileged reads others as zero */
2405 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2406 switch (reg) {
2407 case 0x88: /* MSP_NS */
2408 if (!env->v7m.secure) {
2409 return 0;
2411 return env->v7m.other_ss_msp;
2412 case 0x89: /* PSP_NS */
2413 if (!env->v7m.secure) {
2414 return 0;
2416 return env->v7m.other_ss_psp;
2417 case 0x8a: /* MSPLIM_NS */
2418 if (!env->v7m.secure) {
2419 return 0;
2421 return env->v7m.msplim[M_REG_NS];
2422 case 0x8b: /* PSPLIM_NS */
2423 if (!env->v7m.secure) {
2424 return 0;
2426 return env->v7m.psplim[M_REG_NS];
2427 case 0x90: /* PRIMASK_NS */
2428 if (!env->v7m.secure) {
2429 return 0;
2431 return env->v7m.primask[M_REG_NS];
2432 case 0x91: /* BASEPRI_NS */
2433 if (!env->v7m.secure) {
2434 return 0;
2436 return env->v7m.basepri[M_REG_NS];
2437 case 0x93: /* FAULTMASK_NS */
2438 if (!env->v7m.secure) {
2439 return 0;
2441 return env->v7m.faultmask[M_REG_NS];
2442 case 0x98: /* SP_NS */
2445 * This gives the non-secure SP selected based on whether we're
2446 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2448 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2450 if (!env->v7m.secure) {
2451 return 0;
2453 if (!arm_v7m_is_handler_mode(env) && spsel) {
2454 return env->v7m.other_ss_psp;
2455 } else {
2456 return env->v7m.other_ss_msp;
2459 default:
2460 break;
2464 switch (reg) {
2465 case 8: /* MSP */
2466 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
2467 case 9: /* PSP */
2468 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
2469 case 10: /* MSPLIM */
2470 if (!arm_feature(env, ARM_FEATURE_V8)) {
2471 goto bad_reg;
2473 return env->v7m.msplim[env->v7m.secure];
2474 case 11: /* PSPLIM */
2475 if (!arm_feature(env, ARM_FEATURE_V8)) {
2476 goto bad_reg;
2478 return env->v7m.psplim[env->v7m.secure];
2479 case 16: /* PRIMASK */
2480 return env->v7m.primask[env->v7m.secure];
2481 case 17: /* BASEPRI */
2482 case 18: /* BASEPRI_MAX */
2483 return env->v7m.basepri[env->v7m.secure];
2484 case 19: /* FAULTMASK */
2485 return env->v7m.faultmask[env->v7m.secure];
2486 default:
2487 bad_reg:
2488 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
2489 " register %d\n", reg);
2490 return 0;
2494 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
2497 * We're passed bits [11..0] of the instruction; extract
2498 * SYSm and the mask bits.
2499 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2500 * we choose to treat them as if the mask bits were valid.
2501 * NB that the pseudocode 'mask' variable is bits [11..10],
2502 * whereas ours is [11..8].
2504 uint32_t mask = extract32(maskreg, 8, 4);
2505 uint32_t reg = extract32(maskreg, 0, 8);
2506 int cur_el = arm_current_el(env);
2508 if (cur_el == 0 && reg > 7 && reg != 20) {
2510 * only xPSR sub-fields and CONTROL.SFPA may be written by
2511 * unprivileged code
2513 return;
2516 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2517 switch (reg) {
2518 case 0x88: /* MSP_NS */
2519 if (!env->v7m.secure) {
2520 return;
2522 env->v7m.other_ss_msp = val;
2523 return;
2524 case 0x89: /* PSP_NS */
2525 if (!env->v7m.secure) {
2526 return;
2528 env->v7m.other_ss_psp = val;
2529 return;
2530 case 0x8a: /* MSPLIM_NS */
2531 if (!env->v7m.secure) {
2532 return;
2534 env->v7m.msplim[M_REG_NS] = val & ~7;
2535 return;
2536 case 0x8b: /* PSPLIM_NS */
2537 if (!env->v7m.secure) {
2538 return;
2540 env->v7m.psplim[M_REG_NS] = val & ~7;
2541 return;
2542 case 0x90: /* PRIMASK_NS */
2543 if (!env->v7m.secure) {
2544 return;
2546 env->v7m.primask[M_REG_NS] = val & 1;
2547 return;
2548 case 0x91: /* BASEPRI_NS */
2549 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2550 return;
2552 env->v7m.basepri[M_REG_NS] = val & 0xff;
2553 return;
2554 case 0x93: /* FAULTMASK_NS */
2555 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2556 return;
2558 env->v7m.faultmask[M_REG_NS] = val & 1;
2559 return;
2560 case 0x94: /* CONTROL_NS */
2561 if (!env->v7m.secure) {
2562 return;
2564 write_v7m_control_spsel_for_secstate(env,
2565 val & R_V7M_CONTROL_SPSEL_MASK,
2566 M_REG_NS);
2567 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
2568 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
2569 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
2572 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2573 * RES0 if the FPU is not present, and is stored in the S bank
2575 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env)) &&
2576 extract32(env->v7m.nsacr, 10, 1)) {
2577 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2578 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2580 return;
2581 case 0x98: /* SP_NS */
2584 * This gives the non-secure SP selected based on whether we're
2585 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2587 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2588 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
2589 uint32_t limit;
2591 if (!env->v7m.secure) {
2592 return;
2595 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
2597 if (val < limit) {
2598 CPUState *cs = env_cpu(env);
2600 cpu_restore_state(cs, GETPC(), true);
2601 raise_exception(env, EXCP_STKOF, 0, 1);
2604 if (is_psp) {
2605 env->v7m.other_ss_psp = val;
2606 } else {
2607 env->v7m.other_ss_msp = val;
2609 return;
2611 default:
2612 break;
2616 switch (reg) {
2617 case 0 ... 7: /* xPSR sub-fields */
2618 v7m_msr_xpsr(env, mask, reg, val);
2619 break;
2620 case 8: /* MSP */
2621 if (v7m_using_psp(env)) {
2622 env->v7m.other_sp = val;
2623 } else {
2624 env->regs[13] = val;
2626 break;
2627 case 9: /* PSP */
2628 if (v7m_using_psp(env)) {
2629 env->regs[13] = val;
2630 } else {
2631 env->v7m.other_sp = val;
2633 break;
2634 case 10: /* MSPLIM */
2635 if (!arm_feature(env, ARM_FEATURE_V8)) {
2636 goto bad_reg;
2638 env->v7m.msplim[env->v7m.secure] = val & ~7;
2639 break;
2640 case 11: /* PSPLIM */
2641 if (!arm_feature(env, ARM_FEATURE_V8)) {
2642 goto bad_reg;
2644 env->v7m.psplim[env->v7m.secure] = val & ~7;
2645 break;
2646 case 16: /* PRIMASK */
2647 env->v7m.primask[env->v7m.secure] = val & 1;
2648 break;
2649 case 17: /* BASEPRI */
2650 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2651 goto bad_reg;
2653 env->v7m.basepri[env->v7m.secure] = val & 0xff;
2654 break;
2655 case 18: /* BASEPRI_MAX */
2656 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2657 goto bad_reg;
2659 val &= 0xff;
2660 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
2661 || env->v7m.basepri[env->v7m.secure] == 0)) {
2662 env->v7m.basepri[env->v7m.secure] = val;
2664 break;
2665 case 19: /* FAULTMASK */
2666 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2667 goto bad_reg;
2669 env->v7m.faultmask[env->v7m.secure] = val & 1;
2670 break;
2671 case 20: /* CONTROL */
2673 * Writing to the SPSEL bit only has an effect if we are in
2674 * thread mode; other bits can be updated by any privileged code.
2675 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2676 * env->v7m.control, so we only need update the others.
2677 * For v7M, we must just ignore explicit writes to SPSEL in handler
2678 * mode; for v8M the write is permitted but will have no effect.
2679 * All these bits are writes-ignored from non-privileged code,
2680 * except for SFPA.
2682 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
2683 !arm_v7m_is_handler_mode(env))) {
2684 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
2686 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
2687 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
2688 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
2690 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
2692 * SFPA is RAZ/WI from NS or if no FPU.
2693 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2694 * Both are stored in the S bank.
2696 if (env->v7m.secure) {
2697 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2698 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
2700 if (cur_el > 0 &&
2701 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
2702 extract32(env->v7m.nsacr, 10, 1))) {
2703 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2704 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2707 break;
2708 default:
2709 bad_reg:
2710 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
2711 " register %d\n", reg);
2712 return;
2716 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
2718 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2719 bool forceunpriv = op & 1;
2720 bool alt = op & 2;
2721 V8M_SAttributes sattrs = {};
2722 uint32_t tt_resp;
2723 bool r, rw, nsr, nsrw, mrvalid;
2724 int prot;
2725 ARMMMUFaultInfo fi = {};
2726 MemTxAttrs attrs = {};
2727 hwaddr phys_addr;
2728 ARMMMUIdx mmu_idx;
2729 uint32_t mregion;
2730 bool targetpriv;
2731 bool targetsec = env->v7m.secure;
2732 bool is_subpage;
2735 * Work out what the security state and privilege level we're
2736 * interested in is...
2738 if (alt) {
2739 targetsec = !targetsec;
2742 if (forceunpriv) {
2743 targetpriv = false;
2744 } else {
2745 targetpriv = arm_v7m_is_handler_mode(env) ||
2746 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
2749 /* ...and then figure out which MMU index this is */
2750 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
2753 * We know that the MPU and SAU don't care about the access type
2754 * for our purposes beyond that we don't want to claim to be
2755 * an insn fetch, so we arbitrarily call this a read.
2759 * MPU region info only available for privileged or if
2760 * inspecting the other MPU state.
2762 if (arm_current_el(env) != 0 || alt) {
2763 /* We can ignore the return value as prot is always set */
2764 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
2765 &phys_addr, &attrs, &prot, &is_subpage,
2766 &fi, &mregion);
2767 if (mregion == -1) {
2768 mrvalid = false;
2769 mregion = 0;
2770 } else {
2771 mrvalid = true;
2773 r = prot & PAGE_READ;
2774 rw = prot & PAGE_WRITE;
2775 } else {
2776 r = false;
2777 rw = false;
2778 mrvalid = false;
2779 mregion = 0;
2782 if (env->v7m.secure) {
2783 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
2784 nsr = sattrs.ns && r;
2785 nsrw = sattrs.ns && rw;
2786 } else {
2787 sattrs.ns = true;
2788 nsr = false;
2789 nsrw = false;
2792 tt_resp = (sattrs.iregion << 24) |
2793 (sattrs.irvalid << 23) |
2794 ((!sattrs.ns) << 22) |
2795 (nsrw << 21) |
2796 (nsr << 20) |
2797 (rw << 19) |
2798 (r << 18) |
2799 (sattrs.srvalid << 17) |
2800 (mrvalid << 16) |
2801 (sattrs.sregion << 8) |
2802 mregion;
2804 return tt_resp;
2807 #endif /* !CONFIG_USER_ONLY */
2809 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2810 bool secstate, bool priv, bool negpri)
2812 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2814 if (priv) {
2815 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2818 if (negpri) {
2819 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2822 if (secstate) {
2823 mmu_idx |= ARM_MMU_IDX_M_S;
2826 return mmu_idx;
2829 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2830 bool secstate, bool priv)
2832 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
2834 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
2837 /* Return the MMU index for a v7M CPU in the specified security state */
2838 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
2840 bool priv = arm_v7m_is_handler_mode(env) ||
2841 !(env->v7m.control[secstate] & 1);
2843 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);