target/arm: Support multiple EL change hooks
[qemu/ar7.git] / target / arm / translate-a64.c
blobc91329249d13864ae8004d41cdcc072714906f8b
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
40 static TCGv_i64 cpu_X[32];
41 static TCGv_i64 cpu_pc;
43 /* Load/store exclusive handling */
44 static TCGv_i64 cpu_exclusive_high;
45 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* Function prototype for gen_ functions for calling Neon helpers */
73 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
74 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
77 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
78 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
79 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
80 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
81 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
82 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
83 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
84 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
85 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
86 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 /* Note that the gvec expanders operate on offsets + sizes. */
89 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
90 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
91 uint32_t, uint32_t);
92 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
93 uint32_t, uint32_t, uint32_t);
95 /* initialize TCG globals. */
96 void a64_translate_init(void)
98 int i;
100 cpu_pc = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, pc),
102 "pc");
103 for (i = 0; i < 32; i++) {
104 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, xregs[i]),
106 regnames[i]);
109 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
110 offsetof(CPUARMState, exclusive_high), "exclusive_high");
113 static inline int get_a64_user_mem_index(DisasContext *s)
115 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
116 * if EL1, access as if EL0; otherwise access at current EL
118 ARMMMUIdx useridx;
120 switch (s->mmu_idx) {
121 case ARMMMUIdx_S12NSE1:
122 useridx = ARMMMUIdx_S12NSE0;
123 break;
124 case ARMMMUIdx_S1SE1:
125 useridx = ARMMMUIdx_S1SE0;
126 break;
127 case ARMMMUIdx_S2NS:
128 g_assert_not_reached();
129 default:
130 useridx = s->mmu_idx;
131 break;
133 return arm_to_core_mmu_idx(useridx);
136 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
137 fprintf_function cpu_fprintf, int flags)
139 ARMCPU *cpu = ARM_CPU(cs);
140 CPUARMState *env = &cpu->env;
141 uint32_t psr = pstate_read(env);
142 int i;
143 int el = arm_current_el(env);
144 const char *ns_status;
146 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
147 env->pc, env->xregs[31]);
148 for (i = 0; i < 31; i++) {
149 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
150 if ((i % 4) == 3) {
151 cpu_fprintf(f, "\n");
152 } else {
153 cpu_fprintf(f, " ");
157 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
158 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
159 } else {
160 ns_status = "";
163 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
164 psr,
165 psr & PSTATE_N ? 'N' : '-',
166 psr & PSTATE_Z ? 'Z' : '-',
167 psr & PSTATE_C ? 'C' : '-',
168 psr & PSTATE_V ? 'V' : '-',
169 ns_status,
171 psr & PSTATE_SP ? 'h' : 't');
173 if (flags & CPU_DUMP_FPU) {
174 int numvfpregs = 32;
175 for (i = 0; i < numvfpregs; i++) {
176 uint64_t *q = aa64_vfp_qreg(env, i);
177 uint64_t vlo = q[0];
178 uint64_t vhi = q[1];
179 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "%c",
180 i, vhi, vlo, (i & 1 ? '\n' : ' '));
182 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
183 vfp_get_fpcr(env), vfp_get_fpsr(env));
187 void gen_a64_set_pc_im(uint64_t val)
189 tcg_gen_movi_i64(cpu_pc, val);
192 /* Load the PC from a generic TCG variable.
194 * If address tagging is enabled via the TCR TBI bits, then loading
195 * an address into the PC will clear out any tag in the it:
196 * + for EL2 and EL3 there is only one TBI bit, and if it is set
197 * then the address is zero-extended, clearing bits [63:56]
198 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
199 * and TBI1 controls addressses with bit 55 == 1.
200 * If the appropriate TBI bit is set for the address then
201 * the address is sign-extended from bit 55 into bits [63:56]
203 * We can avoid doing this for relative-branches, because the
204 * PC + offset can never overflow into the tag bits (assuming
205 * that virtual addresses are less than 56 bits wide, as they
206 * are currently), but we must handle it for branch-to-register.
208 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
211 if (s->current_el <= 1) {
212 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
213 * examine bit 55 of address, can just generate code.
214 * If mixed, then test via generated code
216 if (s->tbi0 && s->tbi1) {
217 TCGv_i64 tmp_reg = tcg_temp_new_i64();
218 /* Both bits set, sign extension from bit 55 into [63:56] will
219 * cover both cases
221 tcg_gen_shli_i64(tmp_reg, src, 8);
222 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
223 tcg_temp_free_i64(tmp_reg);
224 } else if (!s->tbi0 && !s->tbi1) {
225 /* Neither bit set, just load it as-is */
226 tcg_gen_mov_i64(cpu_pc, src);
227 } else {
228 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
229 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
230 TCGv_i64 tcg_zero = tcg_const_i64(0);
232 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
234 if (s->tbi0) {
235 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
236 tcg_gen_andi_i64(tcg_tmpval, src,
237 0x00FFFFFFFFFFFFFFull);
238 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
239 tcg_tmpval, src);
240 } else {
241 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
242 tcg_gen_ori_i64(tcg_tmpval, src,
243 0xFF00000000000000ull);
244 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
245 tcg_tmpval, src);
247 tcg_temp_free_i64(tcg_zero);
248 tcg_temp_free_i64(tcg_bit55);
249 tcg_temp_free_i64(tcg_tmpval);
251 } else { /* EL > 1 */
252 if (s->tbi0) {
253 /* Force tag byte to all zero */
254 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
255 } else {
256 /* Load unmodified address */
257 tcg_gen_mov_i64(cpu_pc, src);
262 typedef struct DisasCompare64 {
263 TCGCond cond;
264 TCGv_i64 value;
265 } DisasCompare64;
267 static void a64_test_cc(DisasCompare64 *c64, int cc)
269 DisasCompare c32;
271 arm_test_cc(&c32, cc);
273 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
274 * properly. The NE/EQ comparisons are also fine with this choice. */
275 c64->cond = c32.cond;
276 c64->value = tcg_temp_new_i64();
277 tcg_gen_ext_i32_i64(c64->value, c32.value);
279 arm_free_cc(&c32);
282 static void a64_free_cc(DisasCompare64 *c64)
284 tcg_temp_free_i64(c64->value);
287 static void gen_exception_internal(int excp)
289 TCGv_i32 tcg_excp = tcg_const_i32(excp);
291 assert(excp_is_internal(excp));
292 gen_helper_exception_internal(cpu_env, tcg_excp);
293 tcg_temp_free_i32(tcg_excp);
296 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
298 TCGv_i32 tcg_excp = tcg_const_i32(excp);
299 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
300 TCGv_i32 tcg_el = tcg_const_i32(target_el);
302 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
303 tcg_syn, tcg_el);
304 tcg_temp_free_i32(tcg_el);
305 tcg_temp_free_i32(tcg_syn);
306 tcg_temp_free_i32(tcg_excp);
309 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
311 gen_a64_set_pc_im(s->pc - offset);
312 gen_exception_internal(excp);
313 s->base.is_jmp = DISAS_NORETURN;
316 static void gen_exception_insn(DisasContext *s, int offset, int excp,
317 uint32_t syndrome, uint32_t target_el)
319 gen_a64_set_pc_im(s->pc - offset);
320 gen_exception(excp, syndrome, target_el);
321 s->base.is_jmp = DISAS_NORETURN;
324 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
325 uint32_t syndrome)
327 TCGv_i32 tcg_syn;
329 gen_a64_set_pc_im(s->pc - offset);
330 tcg_syn = tcg_const_i32(syndrome);
331 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
332 tcg_temp_free_i32(tcg_syn);
333 s->base.is_jmp = DISAS_NORETURN;
336 static void gen_ss_advance(DisasContext *s)
338 /* If the singlestep state is Active-not-pending, advance to
339 * Active-pending.
341 if (s->ss_active) {
342 s->pstate_ss = 0;
343 gen_helper_clear_pstate_ss(cpu_env);
347 static void gen_step_complete_exception(DisasContext *s)
349 /* We just completed step of an insn. Move from Active-not-pending
350 * to Active-pending, and then also take the swstep exception.
351 * This corresponds to making the (IMPDEF) choice to prioritize
352 * swstep exceptions over asynchronous exceptions taken to an exception
353 * level where debug is disabled. This choice has the advantage that
354 * we do not need to maintain internal state corresponding to the
355 * ISV/EX syndrome bits between completion of the step and generation
356 * of the exception, and our syndrome information is always correct.
358 gen_ss_advance(s);
359 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
360 default_exception_el(s));
361 s->base.is_jmp = DISAS_NORETURN;
364 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
366 /* No direct tb linking with singlestep (either QEMU's or the ARM
367 * debug architecture kind) or deterministic io
369 if (s->base.singlestep_enabled || s->ss_active ||
370 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
371 return false;
374 #ifndef CONFIG_USER_ONLY
375 /* Only link tbs from inside the same guest page */
376 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
377 return false;
379 #endif
381 return true;
384 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
386 TranslationBlock *tb;
388 tb = s->base.tb;
389 if (use_goto_tb(s, n, dest)) {
390 tcg_gen_goto_tb(n);
391 gen_a64_set_pc_im(dest);
392 tcg_gen_exit_tb((intptr_t)tb + n);
393 s->base.is_jmp = DISAS_NORETURN;
394 } else {
395 gen_a64_set_pc_im(dest);
396 if (s->ss_active) {
397 gen_step_complete_exception(s);
398 } else if (s->base.singlestep_enabled) {
399 gen_exception_internal(EXCP_DEBUG);
400 } else {
401 tcg_gen_lookup_and_goto_ptr();
402 s->base.is_jmp = DISAS_NORETURN;
407 static void unallocated_encoding(DisasContext *s)
409 /* Unallocated and reserved encodings are uncategorized */
410 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
411 default_exception_el(s));
414 #define unsupported_encoding(s, insn) \
415 do { \
416 qemu_log_mask(LOG_UNIMP, \
417 "%s:%d: unsupported instruction encoding 0x%08x " \
418 "at pc=%016" PRIx64 "\n", \
419 __FILE__, __LINE__, insn, s->pc - 4); \
420 unallocated_encoding(s); \
421 } while (0)
423 static void init_tmp_a64_array(DisasContext *s)
425 #ifdef CONFIG_DEBUG_TCG
426 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
427 #endif
428 s->tmp_a64_count = 0;
431 static void free_tmp_a64(DisasContext *s)
433 int i;
434 for (i = 0; i < s->tmp_a64_count; i++) {
435 tcg_temp_free_i64(s->tmp_a64[i]);
437 init_tmp_a64_array(s);
440 static TCGv_i64 new_tmp_a64(DisasContext *s)
442 assert(s->tmp_a64_count < TMP_A64_MAX);
443 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
446 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
448 TCGv_i64 t = new_tmp_a64(s);
449 tcg_gen_movi_i64(t, 0);
450 return t;
454 * Register access functions
456 * These functions are used for directly accessing a register in where
457 * changes to the final register value are likely to be made. If you
458 * need to use a register for temporary calculation (e.g. index type
459 * operations) use the read_* form.
461 * B1.2.1 Register mappings
463 * In instruction register encoding 31 can refer to ZR (zero register) or
464 * the SP (stack pointer) depending on context. In QEMU's case we map SP
465 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
466 * This is the point of the _sp forms.
468 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
470 if (reg == 31) {
471 return new_tmp_a64_zero(s);
472 } else {
473 return cpu_X[reg];
477 /* register access for when 31 == SP */
478 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
480 return cpu_X[reg];
483 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
484 * representing the register contents. This TCGv is an auto-freed
485 * temporary so it need not be explicitly freed, and may be modified.
487 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
489 TCGv_i64 v = new_tmp_a64(s);
490 if (reg != 31) {
491 if (sf) {
492 tcg_gen_mov_i64(v, cpu_X[reg]);
493 } else {
494 tcg_gen_ext32u_i64(v, cpu_X[reg]);
496 } else {
497 tcg_gen_movi_i64(v, 0);
499 return v;
502 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
504 TCGv_i64 v = new_tmp_a64(s);
505 if (sf) {
506 tcg_gen_mov_i64(v, cpu_X[reg]);
507 } else {
508 tcg_gen_ext32u_i64(v, cpu_X[reg]);
510 return v;
513 /* We should have at some point before trying to access an FP register
514 * done the necessary access check, so assert that
515 * (a) we did the check and
516 * (b) we didn't then just plough ahead anyway if it failed.
517 * Print the instruction pattern in the abort message so we can figure
518 * out what we need to fix if a user encounters this problem in the wild.
520 static inline void assert_fp_access_checked(DisasContext *s)
522 #ifdef CONFIG_DEBUG_TCG
523 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
524 fprintf(stderr, "target-arm: FP access check missing for "
525 "instruction 0x%08x\n", s->insn);
526 abort();
528 #endif
531 /* Return the offset into CPUARMState of an element of specified
532 * size, 'element' places in from the least significant end of
533 * the FP/vector register Qn.
535 static inline int vec_reg_offset(DisasContext *s, int regno,
536 int element, TCGMemOp size)
538 int offs = 0;
539 #ifdef HOST_WORDS_BIGENDIAN
540 /* This is complicated slightly because vfp.zregs[n].d[0] is
541 * still the low half and vfp.zregs[n].d[1] the high half
542 * of the 128 bit vector, even on big endian systems.
543 * Calculate the offset assuming a fully bigendian 128 bits,
544 * then XOR to account for the order of the two 64 bit halves.
546 offs += (16 - ((element + 1) * (1 << size)));
547 offs ^= 8;
548 #else
549 offs += element * (1 << size);
550 #endif
551 offs += offsetof(CPUARMState, vfp.zregs[regno]);
552 assert_fp_access_checked(s);
553 return offs;
556 /* Return the offset info CPUARMState of the "whole" vector register Qn. */
557 static inline int vec_full_reg_offset(DisasContext *s, int regno)
559 assert_fp_access_checked(s);
560 return offsetof(CPUARMState, vfp.zregs[regno]);
563 /* Return a newly allocated pointer to the vector register. */
564 static TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno)
566 TCGv_ptr ret = tcg_temp_new_ptr();
567 tcg_gen_addi_ptr(ret, cpu_env, vec_full_reg_offset(s, regno));
568 return ret;
571 /* Return the byte size of the "whole" vector register, VL / 8. */
572 static inline int vec_full_reg_size(DisasContext *s)
574 /* FIXME SVE: We should put the composite ZCR_EL* value into tb->flags.
575 In the meantime this is just the AdvSIMD length of 128. */
576 return 128 / 8;
579 /* Return the offset into CPUARMState of a slice (from
580 * the least significant end) of FP register Qn (ie
581 * Dn, Sn, Hn or Bn).
582 * (Note that this is not the same mapping as for A32; see cpu.h)
584 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
586 return vec_reg_offset(s, regno, 0, size);
589 /* Offset of the high half of the 128 bit vector Qn */
590 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
592 return vec_reg_offset(s, regno, 1, MO_64);
595 /* Convenience accessors for reading and writing single and double
596 * FP registers. Writing clears the upper parts of the associated
597 * 128 bit vector register, as required by the architecture.
598 * Note that unlike the GP register accessors, the values returned
599 * by the read functions must be manually freed.
601 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
603 TCGv_i64 v = tcg_temp_new_i64();
605 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
606 return v;
609 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
611 TCGv_i32 v = tcg_temp_new_i32();
613 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
614 return v;
617 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
618 * If SVE is not enabled, then there are only 128 bits in the vector.
620 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
622 unsigned ofs = fp_reg_offset(s, rd, MO_64);
623 unsigned vsz = vec_full_reg_size(s);
625 if (!is_q) {
626 TCGv_i64 tcg_zero = tcg_const_i64(0);
627 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
628 tcg_temp_free_i64(tcg_zero);
630 if (vsz > 16) {
631 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
635 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
637 unsigned ofs = fp_reg_offset(s, reg, MO_64);
639 tcg_gen_st_i64(v, cpu_env, ofs);
640 clear_vec_high(s, false, reg);
643 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
645 TCGv_i64 tmp = tcg_temp_new_i64();
647 tcg_gen_extu_i32_i64(tmp, v);
648 write_fp_dreg(s, reg, tmp);
649 tcg_temp_free_i64(tmp);
652 static TCGv_ptr get_fpstatus_ptr(bool is_f16)
654 TCGv_ptr statusptr = tcg_temp_new_ptr();
655 int offset;
657 /* In A64 all instructions (both FP and Neon) use the FPCR; there
658 * is no equivalent of the A32 Neon "standard FPSCR value".
659 * However half-precision operations operate under a different
660 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
662 if (is_f16) {
663 offset = offsetof(CPUARMState, vfp.fp_status_f16);
664 } else {
665 offset = offsetof(CPUARMState, vfp.fp_status);
667 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
668 return statusptr;
671 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
672 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
673 GVecGen2Fn *gvec_fn, int vece)
675 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
676 is_q ? 16 : 8, vec_full_reg_size(s));
679 /* Expand a 2-operand + immediate AdvSIMD vector operation using
680 * an expander function.
682 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
683 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
685 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
686 imm, is_q ? 16 : 8, vec_full_reg_size(s));
689 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
690 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
691 GVecGen3Fn *gvec_fn, int vece)
693 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
694 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
697 /* Expand a 2-operand + immediate AdvSIMD vector operation using
698 * an op descriptor.
700 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
701 int rn, int64_t imm, const GVecGen2i *gvec_op)
703 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
704 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
707 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
708 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
709 int rn, int rm, const GVecGen3 *gvec_op)
711 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
712 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
713 vec_full_reg_size(s), gvec_op);
716 /* Expand a 3-operand + env pointer operation using
717 * an out-of-line helper.
719 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
720 int rn, int rm, gen_helper_gvec_3_ptr *fn)
722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
723 vec_full_reg_offset(s, rn),
724 vec_full_reg_offset(s, rm), cpu_env,
725 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
728 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
729 * an out-of-line helper.
731 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
732 int rm, bool is_fp16, int data,
733 gen_helper_gvec_3_ptr *fn)
735 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
736 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
737 vec_full_reg_offset(s, rn),
738 vec_full_reg_offset(s, rm), fpst,
739 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
740 tcg_temp_free_ptr(fpst);
743 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
744 * than the 32 bit equivalent.
746 static inline void gen_set_NZ64(TCGv_i64 result)
748 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
749 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
752 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
753 static inline void gen_logic_CC(int sf, TCGv_i64 result)
755 if (sf) {
756 gen_set_NZ64(result);
757 } else {
758 tcg_gen_extrl_i64_i32(cpu_ZF, result);
759 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
761 tcg_gen_movi_i32(cpu_CF, 0);
762 tcg_gen_movi_i32(cpu_VF, 0);
765 /* dest = T0 + T1; compute C, N, V and Z flags */
766 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
768 if (sf) {
769 TCGv_i64 result, flag, tmp;
770 result = tcg_temp_new_i64();
771 flag = tcg_temp_new_i64();
772 tmp = tcg_temp_new_i64();
774 tcg_gen_movi_i64(tmp, 0);
775 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
777 tcg_gen_extrl_i64_i32(cpu_CF, flag);
779 gen_set_NZ64(result);
781 tcg_gen_xor_i64(flag, result, t0);
782 tcg_gen_xor_i64(tmp, t0, t1);
783 tcg_gen_andc_i64(flag, flag, tmp);
784 tcg_temp_free_i64(tmp);
785 tcg_gen_extrh_i64_i32(cpu_VF, flag);
787 tcg_gen_mov_i64(dest, result);
788 tcg_temp_free_i64(result);
789 tcg_temp_free_i64(flag);
790 } else {
791 /* 32 bit arithmetic */
792 TCGv_i32 t0_32 = tcg_temp_new_i32();
793 TCGv_i32 t1_32 = tcg_temp_new_i32();
794 TCGv_i32 tmp = tcg_temp_new_i32();
796 tcg_gen_movi_i32(tmp, 0);
797 tcg_gen_extrl_i64_i32(t0_32, t0);
798 tcg_gen_extrl_i64_i32(t1_32, t1);
799 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
800 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
801 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
802 tcg_gen_xor_i32(tmp, t0_32, t1_32);
803 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
804 tcg_gen_extu_i32_i64(dest, cpu_NF);
806 tcg_temp_free_i32(tmp);
807 tcg_temp_free_i32(t0_32);
808 tcg_temp_free_i32(t1_32);
812 /* dest = T0 - T1; compute C, N, V and Z flags */
813 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
815 if (sf) {
816 /* 64 bit arithmetic */
817 TCGv_i64 result, flag, tmp;
819 result = tcg_temp_new_i64();
820 flag = tcg_temp_new_i64();
821 tcg_gen_sub_i64(result, t0, t1);
823 gen_set_NZ64(result);
825 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
826 tcg_gen_extrl_i64_i32(cpu_CF, flag);
828 tcg_gen_xor_i64(flag, result, t0);
829 tmp = tcg_temp_new_i64();
830 tcg_gen_xor_i64(tmp, t0, t1);
831 tcg_gen_and_i64(flag, flag, tmp);
832 tcg_temp_free_i64(tmp);
833 tcg_gen_extrh_i64_i32(cpu_VF, flag);
834 tcg_gen_mov_i64(dest, result);
835 tcg_temp_free_i64(flag);
836 tcg_temp_free_i64(result);
837 } else {
838 /* 32 bit arithmetic */
839 TCGv_i32 t0_32 = tcg_temp_new_i32();
840 TCGv_i32 t1_32 = tcg_temp_new_i32();
841 TCGv_i32 tmp;
843 tcg_gen_extrl_i64_i32(t0_32, t0);
844 tcg_gen_extrl_i64_i32(t1_32, t1);
845 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
846 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
847 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
848 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
849 tmp = tcg_temp_new_i32();
850 tcg_gen_xor_i32(tmp, t0_32, t1_32);
851 tcg_temp_free_i32(t0_32);
852 tcg_temp_free_i32(t1_32);
853 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
854 tcg_temp_free_i32(tmp);
855 tcg_gen_extu_i32_i64(dest, cpu_NF);
859 /* dest = T0 + T1 + CF; do not compute flags. */
860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 TCGv_i64 flag = tcg_temp_new_i64();
863 tcg_gen_extu_i32_i64(flag, cpu_CF);
864 tcg_gen_add_i64(dest, t0, t1);
865 tcg_gen_add_i64(dest, dest, flag);
866 tcg_temp_free_i64(flag);
868 if (!sf) {
869 tcg_gen_ext32u_i64(dest, dest);
873 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
874 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
876 if (sf) {
877 TCGv_i64 result, cf_64, vf_64, tmp;
878 result = tcg_temp_new_i64();
879 cf_64 = tcg_temp_new_i64();
880 vf_64 = tcg_temp_new_i64();
881 tmp = tcg_const_i64(0);
883 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
884 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
885 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
886 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
887 gen_set_NZ64(result);
889 tcg_gen_xor_i64(vf_64, result, t0);
890 tcg_gen_xor_i64(tmp, t0, t1);
891 tcg_gen_andc_i64(vf_64, vf_64, tmp);
892 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
894 tcg_gen_mov_i64(dest, result);
896 tcg_temp_free_i64(tmp);
897 tcg_temp_free_i64(vf_64);
898 tcg_temp_free_i64(cf_64);
899 tcg_temp_free_i64(result);
900 } else {
901 TCGv_i32 t0_32, t1_32, tmp;
902 t0_32 = tcg_temp_new_i32();
903 t1_32 = tcg_temp_new_i32();
904 tmp = tcg_const_i32(0);
906 tcg_gen_extrl_i64_i32(t0_32, t0);
907 tcg_gen_extrl_i64_i32(t1_32, t1);
908 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
909 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
911 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
912 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
913 tcg_gen_xor_i32(tmp, t0_32, t1_32);
914 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
915 tcg_gen_extu_i32_i64(dest, cpu_NF);
917 tcg_temp_free_i32(tmp);
918 tcg_temp_free_i32(t1_32);
919 tcg_temp_free_i32(t0_32);
924 * Load/Store generators
928 * Store from GPR register to memory.
930 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
931 TCGv_i64 tcg_addr, int size, int memidx,
932 bool iss_valid,
933 unsigned int iss_srt,
934 bool iss_sf, bool iss_ar)
936 g_assert(size <= 3);
937 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
939 if (iss_valid) {
940 uint32_t syn;
942 syn = syn_data_abort_with_iss(0,
943 size,
944 false,
945 iss_srt,
946 iss_sf,
947 iss_ar,
948 0, 0, 0, 0, 0, false);
949 disas_set_insn_syndrome(s, syn);
953 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
954 TCGv_i64 tcg_addr, int size,
955 bool iss_valid,
956 unsigned int iss_srt,
957 bool iss_sf, bool iss_ar)
959 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
960 iss_valid, iss_srt, iss_sf, iss_ar);
964 * Load from memory to GPR register
966 static void do_gpr_ld_memidx(DisasContext *s,
967 TCGv_i64 dest, TCGv_i64 tcg_addr,
968 int size, bool is_signed,
969 bool extend, int memidx,
970 bool iss_valid, unsigned int iss_srt,
971 bool iss_sf, bool iss_ar)
973 TCGMemOp memop = s->be_data + size;
975 g_assert(size <= 3);
977 if (is_signed) {
978 memop += MO_SIGN;
981 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
983 if (extend && is_signed) {
984 g_assert(size < 3);
985 tcg_gen_ext32u_i64(dest, dest);
988 if (iss_valid) {
989 uint32_t syn;
991 syn = syn_data_abort_with_iss(0,
992 size,
993 is_signed,
994 iss_srt,
995 iss_sf,
996 iss_ar,
997 0, 0, 0, 0, 0, false);
998 disas_set_insn_syndrome(s, syn);
1002 static void do_gpr_ld(DisasContext *s,
1003 TCGv_i64 dest, TCGv_i64 tcg_addr,
1004 int size, bool is_signed, bool extend,
1005 bool iss_valid, unsigned int iss_srt,
1006 bool iss_sf, bool iss_ar)
1008 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1009 get_mem_index(s),
1010 iss_valid, iss_srt, iss_sf, iss_ar);
1014 * Store from FP register to memory
1016 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1018 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1019 TCGv_i64 tmp = tcg_temp_new_i64();
1020 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1021 if (size < 4) {
1022 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1023 s->be_data + size);
1024 } else {
1025 bool be = s->be_data == MO_BE;
1026 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1028 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1029 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1030 s->be_data | MO_Q);
1031 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1032 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1033 s->be_data | MO_Q);
1034 tcg_temp_free_i64(tcg_hiaddr);
1037 tcg_temp_free_i64(tmp);
1041 * Load from memory to FP register
1043 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1045 /* This always zero-extends and writes to a full 128 bit wide vector */
1046 TCGv_i64 tmplo = tcg_temp_new_i64();
1047 TCGv_i64 tmphi;
1049 if (size < 4) {
1050 TCGMemOp memop = s->be_data + size;
1051 tmphi = tcg_const_i64(0);
1052 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1053 } else {
1054 bool be = s->be_data == MO_BE;
1055 TCGv_i64 tcg_hiaddr;
1057 tmphi = tcg_temp_new_i64();
1058 tcg_hiaddr = tcg_temp_new_i64();
1060 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1061 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1062 s->be_data | MO_Q);
1063 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1064 s->be_data | MO_Q);
1065 tcg_temp_free_i64(tcg_hiaddr);
1068 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1069 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1071 tcg_temp_free_i64(tmplo);
1072 tcg_temp_free_i64(tmphi);
1074 clear_vec_high(s, true, destidx);
1078 * Vector load/store helpers.
1080 * The principal difference between this and a FP load is that we don't
1081 * zero extend as we are filling a partial chunk of the vector register.
1082 * These functions don't support 128 bit loads/stores, which would be
1083 * normal load/store operations.
1085 * The _i32 versions are useful when operating on 32 bit quantities
1086 * (eg for floating point single or using Neon helper functions).
1089 /* Get value of an element within a vector register */
1090 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1091 int element, TCGMemOp memop)
1093 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1094 switch (memop) {
1095 case MO_8:
1096 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1097 break;
1098 case MO_16:
1099 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1100 break;
1101 case MO_32:
1102 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1103 break;
1104 case MO_8|MO_SIGN:
1105 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1106 break;
1107 case MO_16|MO_SIGN:
1108 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1109 break;
1110 case MO_32|MO_SIGN:
1111 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1112 break;
1113 case MO_64:
1114 case MO_64|MO_SIGN:
1115 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1116 break;
1117 default:
1118 g_assert_not_reached();
1122 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1123 int element, TCGMemOp memop)
1125 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1126 switch (memop) {
1127 case MO_8:
1128 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1129 break;
1130 case MO_16:
1131 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1132 break;
1133 case MO_8|MO_SIGN:
1134 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1135 break;
1136 case MO_16|MO_SIGN:
1137 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1138 break;
1139 case MO_32:
1140 case MO_32|MO_SIGN:
1141 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1142 break;
1143 default:
1144 g_assert_not_reached();
1148 /* Set value of an element within a vector register */
1149 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1150 int element, TCGMemOp memop)
1152 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1153 switch (memop) {
1154 case MO_8:
1155 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1156 break;
1157 case MO_16:
1158 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1159 break;
1160 case MO_32:
1161 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1162 break;
1163 case MO_64:
1164 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1165 break;
1166 default:
1167 g_assert_not_reached();
1171 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1172 int destidx, int element, TCGMemOp memop)
1174 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1175 switch (memop) {
1176 case MO_8:
1177 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1178 break;
1179 case MO_16:
1180 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1181 break;
1182 case MO_32:
1183 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1184 break;
1185 default:
1186 g_assert_not_reached();
1190 /* Store from vector register to memory */
1191 static void do_vec_st(DisasContext *s, int srcidx, int element,
1192 TCGv_i64 tcg_addr, int size)
1194 TCGMemOp memop = s->be_data + size;
1195 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1197 read_vec_element(s, tcg_tmp, srcidx, element, size);
1198 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1200 tcg_temp_free_i64(tcg_tmp);
1203 /* Load from memory to vector register */
1204 static void do_vec_ld(DisasContext *s, int destidx, int element,
1205 TCGv_i64 tcg_addr, int size)
1207 TCGMemOp memop = s->be_data + size;
1208 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1210 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1211 write_vec_element(s, tcg_tmp, destidx, element, size);
1213 tcg_temp_free_i64(tcg_tmp);
1216 /* Check that FP/Neon access is enabled. If it is, return
1217 * true. If not, emit code to generate an appropriate exception,
1218 * and return false; the caller should not emit any code for
1219 * the instruction. Note that this check must happen after all
1220 * unallocated-encoding checks (otherwise the syndrome information
1221 * for the resulting exception will be incorrect).
1223 static inline bool fp_access_check(DisasContext *s)
1225 assert(!s->fp_access_checked);
1226 s->fp_access_checked = true;
1228 if (!s->fp_excp_el) {
1229 return true;
1232 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1233 s->fp_excp_el);
1234 return false;
1237 /* Check that SVE access is enabled. If it is, return true.
1238 * If not, emit code to generate an appropriate exception and return false.
1240 static inline bool sve_access_check(DisasContext *s)
1242 if (s->sve_excp_el) {
1243 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1244 s->sve_excp_el);
1245 return false;
1247 return true;
1251 * This utility function is for doing register extension with an
1252 * optional shift. You will likely want to pass a temporary for the
1253 * destination register. See DecodeRegExtend() in the ARM ARM.
1255 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1256 int option, unsigned int shift)
1258 int extsize = extract32(option, 0, 2);
1259 bool is_signed = extract32(option, 2, 1);
1261 if (is_signed) {
1262 switch (extsize) {
1263 case 0:
1264 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1265 break;
1266 case 1:
1267 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1268 break;
1269 case 2:
1270 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1271 break;
1272 case 3:
1273 tcg_gen_mov_i64(tcg_out, tcg_in);
1274 break;
1276 } else {
1277 switch (extsize) {
1278 case 0:
1279 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1280 break;
1281 case 1:
1282 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1283 break;
1284 case 2:
1285 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1286 break;
1287 case 3:
1288 tcg_gen_mov_i64(tcg_out, tcg_in);
1289 break;
1293 if (shift) {
1294 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1298 static inline void gen_check_sp_alignment(DisasContext *s)
1300 /* The AArch64 architecture mandates that (if enabled via PSTATE
1301 * or SCTLR bits) there is a check that SP is 16-aligned on every
1302 * SP-relative load or store (with an exception generated if it is not).
1303 * In line with general QEMU practice regarding misaligned accesses,
1304 * we omit these checks for the sake of guest program performance.
1305 * This function is provided as a hook so we can more easily add these
1306 * checks in future (possibly as a "favour catching guest program bugs
1307 * over speed" user selectable option).
1312 * This provides a simple table based table lookup decoder. It is
1313 * intended to be used when the relevant bits for decode are too
1314 * awkwardly placed and switch/if based logic would be confusing and
1315 * deeply nested. Since it's a linear search through the table, tables
1316 * should be kept small.
1318 * It returns the first handler where insn & mask == pattern, or
1319 * NULL if there is no match.
1320 * The table is terminated by an empty mask (i.e. 0)
1322 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1323 uint32_t insn)
1325 const AArch64DecodeTable *tptr = table;
1327 while (tptr->mask) {
1328 if ((insn & tptr->mask) == tptr->pattern) {
1329 return tptr->disas_fn;
1331 tptr++;
1333 return NULL;
1337 * The instruction disassembly implemented here matches
1338 * the instruction encoding classifications in chapter C4
1339 * of the ARM Architecture Reference Manual (DDI0487B_a);
1340 * classification names and decode diagrams here should generally
1341 * match up with those in the manual.
1344 /* Unconditional branch (immediate)
1345 * 31 30 26 25 0
1346 * +----+-----------+-------------------------------------+
1347 * | op | 0 0 1 0 1 | imm26 |
1348 * +----+-----------+-------------------------------------+
1350 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1352 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1354 if (insn & (1U << 31)) {
1355 /* BL Branch with link */
1356 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1359 /* B Branch / BL Branch with link */
1360 gen_goto_tb(s, 0, addr);
1363 /* Compare and branch (immediate)
1364 * 31 30 25 24 23 5 4 0
1365 * +----+-------------+----+---------------------+--------+
1366 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1367 * +----+-------------+----+---------------------+--------+
1369 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1371 unsigned int sf, op, rt;
1372 uint64_t addr;
1373 TCGLabel *label_match;
1374 TCGv_i64 tcg_cmp;
1376 sf = extract32(insn, 31, 1);
1377 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1378 rt = extract32(insn, 0, 5);
1379 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1381 tcg_cmp = read_cpu_reg(s, rt, sf);
1382 label_match = gen_new_label();
1384 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1385 tcg_cmp, 0, label_match);
1387 gen_goto_tb(s, 0, s->pc);
1388 gen_set_label(label_match);
1389 gen_goto_tb(s, 1, addr);
1392 /* Test and branch (immediate)
1393 * 31 30 25 24 23 19 18 5 4 0
1394 * +----+-------------+----+-------+-------------+------+
1395 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1396 * +----+-------------+----+-------+-------------+------+
1398 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1400 unsigned int bit_pos, op, rt;
1401 uint64_t addr;
1402 TCGLabel *label_match;
1403 TCGv_i64 tcg_cmp;
1405 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1406 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1407 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1408 rt = extract32(insn, 0, 5);
1410 tcg_cmp = tcg_temp_new_i64();
1411 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1412 label_match = gen_new_label();
1413 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1414 tcg_cmp, 0, label_match);
1415 tcg_temp_free_i64(tcg_cmp);
1416 gen_goto_tb(s, 0, s->pc);
1417 gen_set_label(label_match);
1418 gen_goto_tb(s, 1, addr);
1421 /* Conditional branch (immediate)
1422 * 31 25 24 23 5 4 3 0
1423 * +---------------+----+---------------------+----+------+
1424 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1425 * +---------------+----+---------------------+----+------+
1427 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1429 unsigned int cond;
1430 uint64_t addr;
1432 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1433 unallocated_encoding(s);
1434 return;
1436 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1437 cond = extract32(insn, 0, 4);
1439 if (cond < 0x0e) {
1440 /* genuinely conditional branches */
1441 TCGLabel *label_match = gen_new_label();
1442 arm_gen_test_cc(cond, label_match);
1443 gen_goto_tb(s, 0, s->pc);
1444 gen_set_label(label_match);
1445 gen_goto_tb(s, 1, addr);
1446 } else {
1447 /* 0xe and 0xf are both "always" conditions */
1448 gen_goto_tb(s, 0, addr);
1452 /* HINT instruction group, including various allocated HINTs */
1453 static void handle_hint(DisasContext *s, uint32_t insn,
1454 unsigned int op1, unsigned int op2, unsigned int crm)
1456 unsigned int selector = crm << 3 | op2;
1458 if (op1 != 3) {
1459 unallocated_encoding(s);
1460 return;
1463 switch (selector) {
1464 case 0: /* NOP */
1465 return;
1466 case 3: /* WFI */
1467 s->base.is_jmp = DISAS_WFI;
1468 return;
1469 /* When running in MTTCG we don't generate jumps to the yield and
1470 * WFE helpers as it won't affect the scheduling of other vCPUs.
1471 * If we wanted to more completely model WFE/SEV so we don't busy
1472 * spin unnecessarily we would need to do something more involved.
1474 case 1: /* YIELD */
1475 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1476 s->base.is_jmp = DISAS_YIELD;
1478 return;
1479 case 2: /* WFE */
1480 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1481 s->base.is_jmp = DISAS_WFE;
1483 return;
1484 case 4: /* SEV */
1485 case 5: /* SEVL */
1486 /* we treat all as NOP at least for now */
1487 return;
1488 default:
1489 /* default specified as NOP equivalent */
1490 return;
1494 static void gen_clrex(DisasContext *s, uint32_t insn)
1496 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1499 /* CLREX, DSB, DMB, ISB */
1500 static void handle_sync(DisasContext *s, uint32_t insn,
1501 unsigned int op1, unsigned int op2, unsigned int crm)
1503 TCGBar bar;
1505 if (op1 != 3) {
1506 unallocated_encoding(s);
1507 return;
1510 switch (op2) {
1511 case 2: /* CLREX */
1512 gen_clrex(s, insn);
1513 return;
1514 case 4: /* DSB */
1515 case 5: /* DMB */
1516 switch (crm & 3) {
1517 case 1: /* MBReqTypes_Reads */
1518 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1519 break;
1520 case 2: /* MBReqTypes_Writes */
1521 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1522 break;
1523 default: /* MBReqTypes_All */
1524 bar = TCG_BAR_SC | TCG_MO_ALL;
1525 break;
1527 tcg_gen_mb(bar);
1528 return;
1529 case 6: /* ISB */
1530 /* We need to break the TB after this insn to execute
1531 * a self-modified code correctly and also to take
1532 * any pending interrupts immediately.
1534 gen_goto_tb(s, 0, s->pc);
1535 return;
1536 default:
1537 unallocated_encoding(s);
1538 return;
1542 /* MSR (immediate) - move immediate to processor state field */
1543 static void handle_msr_i(DisasContext *s, uint32_t insn,
1544 unsigned int op1, unsigned int op2, unsigned int crm)
1546 int op = op1 << 3 | op2;
1547 switch (op) {
1548 case 0x05: /* SPSel */
1549 if (s->current_el == 0) {
1550 unallocated_encoding(s);
1551 return;
1553 /* fall through */
1554 case 0x1e: /* DAIFSet */
1555 case 0x1f: /* DAIFClear */
1557 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1558 TCGv_i32 tcg_op = tcg_const_i32(op);
1559 gen_a64_set_pc_im(s->pc - 4);
1560 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1561 tcg_temp_free_i32(tcg_imm);
1562 tcg_temp_free_i32(tcg_op);
1563 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1564 gen_a64_set_pc_im(s->pc);
1565 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1566 break;
1568 default:
1569 unallocated_encoding(s);
1570 return;
1574 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1576 TCGv_i32 tmp = tcg_temp_new_i32();
1577 TCGv_i32 nzcv = tcg_temp_new_i32();
1579 /* build bit 31, N */
1580 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1581 /* build bit 30, Z */
1582 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1583 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1584 /* build bit 29, C */
1585 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1586 /* build bit 28, V */
1587 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1588 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1589 /* generate result */
1590 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1592 tcg_temp_free_i32(nzcv);
1593 tcg_temp_free_i32(tmp);
1596 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1599 TCGv_i32 nzcv = tcg_temp_new_i32();
1601 /* take NZCV from R[t] */
1602 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1604 /* bit 31, N */
1605 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1606 /* bit 30, Z */
1607 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1608 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1609 /* bit 29, C */
1610 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1611 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1612 /* bit 28, V */
1613 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1614 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1615 tcg_temp_free_i32(nzcv);
1618 /* MRS - move from system register
1619 * MSR (register) - move to system register
1620 * SYS
1621 * SYSL
1622 * These are all essentially the same insn in 'read' and 'write'
1623 * versions, with varying op0 fields.
1625 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1626 unsigned int op0, unsigned int op1, unsigned int op2,
1627 unsigned int crn, unsigned int crm, unsigned int rt)
1629 const ARMCPRegInfo *ri;
1630 TCGv_i64 tcg_rt;
1632 ri = get_arm_cp_reginfo(s->cp_regs,
1633 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1634 crn, crm, op0, op1, op2));
1636 if (!ri) {
1637 /* Unknown register; this might be a guest error or a QEMU
1638 * unimplemented feature.
1640 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1641 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1642 isread ? "read" : "write", op0, op1, crn, crm, op2);
1643 unallocated_encoding(s);
1644 return;
1647 /* Check access permissions */
1648 if (!cp_access_ok(s->current_el, ri, isread)) {
1649 unallocated_encoding(s);
1650 return;
1653 if (ri->accessfn) {
1654 /* Emit code to perform further access permissions checks at
1655 * runtime; this may result in an exception.
1657 TCGv_ptr tmpptr;
1658 TCGv_i32 tcg_syn, tcg_isread;
1659 uint32_t syndrome;
1661 gen_a64_set_pc_im(s->pc - 4);
1662 tmpptr = tcg_const_ptr(ri);
1663 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1664 tcg_syn = tcg_const_i32(syndrome);
1665 tcg_isread = tcg_const_i32(isread);
1666 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1667 tcg_temp_free_ptr(tmpptr);
1668 tcg_temp_free_i32(tcg_syn);
1669 tcg_temp_free_i32(tcg_isread);
1672 /* Handle special cases first */
1673 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1674 case ARM_CP_NOP:
1675 return;
1676 case ARM_CP_NZCV:
1677 tcg_rt = cpu_reg(s, rt);
1678 if (isread) {
1679 gen_get_nzcv(tcg_rt);
1680 } else {
1681 gen_set_nzcv(tcg_rt);
1683 return;
1684 case ARM_CP_CURRENTEL:
1685 /* Reads as current EL value from pstate, which is
1686 * guaranteed to be constant by the tb flags.
1688 tcg_rt = cpu_reg(s, rt);
1689 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1690 return;
1691 case ARM_CP_DC_ZVA:
1692 /* Writes clear the aligned block of memory which rt points into. */
1693 tcg_rt = cpu_reg(s, rt);
1694 gen_helper_dc_zva(cpu_env, tcg_rt);
1695 return;
1696 default:
1697 break;
1699 if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1700 return;
1702 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1703 return;
1706 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1707 gen_io_start();
1710 tcg_rt = cpu_reg(s, rt);
1712 if (isread) {
1713 if (ri->type & ARM_CP_CONST) {
1714 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1715 } else if (ri->readfn) {
1716 TCGv_ptr tmpptr;
1717 tmpptr = tcg_const_ptr(ri);
1718 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1719 tcg_temp_free_ptr(tmpptr);
1720 } else {
1721 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1723 } else {
1724 if (ri->type & ARM_CP_CONST) {
1725 /* If not forbidden by access permissions, treat as WI */
1726 return;
1727 } else if (ri->writefn) {
1728 TCGv_ptr tmpptr;
1729 tmpptr = tcg_const_ptr(ri);
1730 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1731 tcg_temp_free_ptr(tmpptr);
1732 } else {
1733 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1737 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1738 /* I/O operations must end the TB here (whether read or write) */
1739 gen_io_end();
1740 s->base.is_jmp = DISAS_UPDATE;
1741 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1742 /* We default to ending the TB on a coprocessor register write,
1743 * but allow this to be suppressed by the register definition
1744 * (usually only necessary to work around guest bugs).
1746 s->base.is_jmp = DISAS_UPDATE;
1750 /* System
1751 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1752 * +---------------------+---+-----+-----+-------+-------+-----+------+
1753 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1754 * +---------------------+---+-----+-----+-------+-------+-----+------+
1756 static void disas_system(DisasContext *s, uint32_t insn)
1758 unsigned int l, op0, op1, crn, crm, op2, rt;
1759 l = extract32(insn, 21, 1);
1760 op0 = extract32(insn, 19, 2);
1761 op1 = extract32(insn, 16, 3);
1762 crn = extract32(insn, 12, 4);
1763 crm = extract32(insn, 8, 4);
1764 op2 = extract32(insn, 5, 3);
1765 rt = extract32(insn, 0, 5);
1767 if (op0 == 0) {
1768 if (l || rt != 31) {
1769 unallocated_encoding(s);
1770 return;
1772 switch (crn) {
1773 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1774 handle_hint(s, insn, op1, op2, crm);
1775 break;
1776 case 3: /* CLREX, DSB, DMB, ISB */
1777 handle_sync(s, insn, op1, op2, crm);
1778 break;
1779 case 4: /* MSR (immediate) */
1780 handle_msr_i(s, insn, op1, op2, crm);
1781 break;
1782 default:
1783 unallocated_encoding(s);
1784 break;
1786 return;
1788 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1791 /* Exception generation
1793 * 31 24 23 21 20 5 4 2 1 0
1794 * +-----------------+-----+------------------------+-----+----+
1795 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1796 * +-----------------------+------------------------+----------+
1798 static void disas_exc(DisasContext *s, uint32_t insn)
1800 int opc = extract32(insn, 21, 3);
1801 int op2_ll = extract32(insn, 0, 5);
1802 int imm16 = extract32(insn, 5, 16);
1803 TCGv_i32 tmp;
1805 switch (opc) {
1806 case 0:
1807 /* For SVC, HVC and SMC we advance the single-step state
1808 * machine before taking the exception. This is architecturally
1809 * mandated, to ensure that single-stepping a system call
1810 * instruction works properly.
1812 switch (op2_ll) {
1813 case 1: /* SVC */
1814 gen_ss_advance(s);
1815 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1816 default_exception_el(s));
1817 break;
1818 case 2: /* HVC */
1819 if (s->current_el == 0) {
1820 unallocated_encoding(s);
1821 break;
1823 /* The pre HVC helper handles cases when HVC gets trapped
1824 * as an undefined insn by runtime configuration.
1826 gen_a64_set_pc_im(s->pc - 4);
1827 gen_helper_pre_hvc(cpu_env);
1828 gen_ss_advance(s);
1829 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1830 break;
1831 case 3: /* SMC */
1832 if (s->current_el == 0) {
1833 unallocated_encoding(s);
1834 break;
1836 gen_a64_set_pc_im(s->pc - 4);
1837 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1838 gen_helper_pre_smc(cpu_env, tmp);
1839 tcg_temp_free_i32(tmp);
1840 gen_ss_advance(s);
1841 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1842 break;
1843 default:
1844 unallocated_encoding(s);
1845 break;
1847 break;
1848 case 1:
1849 if (op2_ll != 0) {
1850 unallocated_encoding(s);
1851 break;
1853 /* BRK */
1854 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1855 break;
1856 case 2:
1857 if (op2_ll != 0) {
1858 unallocated_encoding(s);
1859 break;
1861 /* HLT. This has two purposes.
1862 * Architecturally, it is an external halting debug instruction.
1863 * Since QEMU doesn't implement external debug, we treat this as
1864 * it is required for halting debug disabled: it will UNDEF.
1865 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1867 if (semihosting_enabled() && imm16 == 0xf000) {
1868 #ifndef CONFIG_USER_ONLY
1869 /* In system mode, don't allow userspace access to semihosting,
1870 * to provide some semblance of security (and for consistency
1871 * with our 32-bit semihosting).
1873 if (s->current_el == 0) {
1874 unsupported_encoding(s, insn);
1875 break;
1877 #endif
1878 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1879 } else {
1880 unsupported_encoding(s, insn);
1882 break;
1883 case 5:
1884 if (op2_ll < 1 || op2_ll > 3) {
1885 unallocated_encoding(s);
1886 break;
1888 /* DCPS1, DCPS2, DCPS3 */
1889 unsupported_encoding(s, insn);
1890 break;
1891 default:
1892 unallocated_encoding(s);
1893 break;
1897 /* Unconditional branch (register)
1898 * 31 25 24 21 20 16 15 10 9 5 4 0
1899 * +---------------+-------+-------+-------+------+-------+
1900 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1901 * +---------------+-------+-------+-------+------+-------+
1903 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1905 unsigned int opc, op2, op3, rn, op4;
1907 opc = extract32(insn, 21, 4);
1908 op2 = extract32(insn, 16, 5);
1909 op3 = extract32(insn, 10, 6);
1910 rn = extract32(insn, 5, 5);
1911 op4 = extract32(insn, 0, 5);
1913 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1914 unallocated_encoding(s);
1915 return;
1918 switch (opc) {
1919 case 0: /* BR */
1920 case 1: /* BLR */
1921 case 2: /* RET */
1922 gen_a64_set_pc(s, cpu_reg(s, rn));
1923 /* BLR also needs to load return address */
1924 if (opc == 1) {
1925 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1927 break;
1928 case 4: /* ERET */
1929 if (s->current_el == 0) {
1930 unallocated_encoding(s);
1931 return;
1933 gen_helper_exception_return(cpu_env);
1934 /* Must exit loop to check un-masked IRQs */
1935 s->base.is_jmp = DISAS_EXIT;
1936 return;
1937 case 5: /* DRPS */
1938 if (rn != 0x1f) {
1939 unallocated_encoding(s);
1940 } else {
1941 unsupported_encoding(s, insn);
1943 return;
1944 default:
1945 unallocated_encoding(s);
1946 return;
1949 s->base.is_jmp = DISAS_JUMP;
1952 /* Branches, exception generating and system instructions */
1953 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1955 switch (extract32(insn, 25, 7)) {
1956 case 0x0a: case 0x0b:
1957 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1958 disas_uncond_b_imm(s, insn);
1959 break;
1960 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1961 disas_comp_b_imm(s, insn);
1962 break;
1963 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1964 disas_test_b_imm(s, insn);
1965 break;
1966 case 0x2a: /* Conditional branch (immediate) */
1967 disas_cond_b_imm(s, insn);
1968 break;
1969 case 0x6a: /* Exception generation / System */
1970 if (insn & (1 << 24)) {
1971 disas_system(s, insn);
1972 } else {
1973 disas_exc(s, insn);
1975 break;
1976 case 0x6b: /* Unconditional branch (register) */
1977 disas_uncond_b_reg(s, insn);
1978 break;
1979 default:
1980 unallocated_encoding(s);
1981 break;
1986 * Load/Store exclusive instructions are implemented by remembering
1987 * the value/address loaded, and seeing if these are the same
1988 * when the store is performed. This is not actually the architecturally
1989 * mandated semantics, but it works for typical guest code sequences
1990 * and avoids having to monitor regular stores.
1992 * The store exclusive uses the atomic cmpxchg primitives to avoid
1993 * races in multi-threaded linux-user and when MTTCG softmmu is
1994 * enabled.
1996 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1997 TCGv_i64 addr, int size, bool is_pair)
1999 int idx = get_mem_index(s);
2000 TCGMemOp memop = s->be_data;
2002 g_assert(size <= 3);
2003 if (is_pair) {
2004 g_assert(size >= 2);
2005 if (size == 2) {
2006 /* The pair must be single-copy atomic for the doubleword. */
2007 memop |= MO_64 | MO_ALIGN;
2008 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2009 if (s->be_data == MO_LE) {
2010 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2011 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2012 } else {
2013 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2014 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2016 } else {
2017 /* The pair must be single-copy atomic for *each* doubleword, not
2018 the entire quadword, however it must be quadword aligned. */
2019 memop |= MO_64;
2020 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2021 memop | MO_ALIGN_16);
2023 TCGv_i64 addr2 = tcg_temp_new_i64();
2024 tcg_gen_addi_i64(addr2, addr, 8);
2025 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2026 tcg_temp_free_i64(addr2);
2028 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2029 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2031 } else {
2032 memop |= size | MO_ALIGN;
2033 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2034 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2036 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2039 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2040 TCGv_i64 addr, int size, int is_pair)
2042 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2043 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2044 * [addr] = {Rt};
2045 * if (is_pair) {
2046 * [addr + datasize] = {Rt2};
2048 * {Rd} = 0;
2049 * } else {
2050 * {Rd} = 1;
2052 * env->exclusive_addr = -1;
2054 TCGLabel *fail_label = gen_new_label();
2055 TCGLabel *done_label = gen_new_label();
2056 TCGv_i64 tmp;
2058 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2060 tmp = tcg_temp_new_i64();
2061 if (is_pair) {
2062 if (size == 2) {
2063 if (s->be_data == MO_LE) {
2064 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2065 } else {
2066 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2068 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2069 cpu_exclusive_val, tmp,
2070 get_mem_index(s),
2071 MO_64 | MO_ALIGN | s->be_data);
2072 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2073 } else if (s->be_data == MO_LE) {
2074 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2075 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2076 cpu_exclusive_addr,
2077 cpu_reg(s, rt),
2078 cpu_reg(s, rt2));
2079 } else {
2080 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2081 cpu_reg(s, rt), cpu_reg(s, rt2));
2083 } else {
2084 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2085 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2086 cpu_exclusive_addr,
2087 cpu_reg(s, rt),
2088 cpu_reg(s, rt2));
2089 } else {
2090 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2091 cpu_reg(s, rt), cpu_reg(s, rt2));
2094 } else {
2095 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2096 cpu_reg(s, rt), get_mem_index(s),
2097 size | MO_ALIGN | s->be_data);
2098 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2100 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2101 tcg_temp_free_i64(tmp);
2102 tcg_gen_br(done_label);
2104 gen_set_label(fail_label);
2105 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2106 gen_set_label(done_label);
2107 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2110 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2111 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2113 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2115 int opc0 = extract32(opc, 0, 1);
2116 int regsize;
2118 if (is_signed) {
2119 regsize = opc0 ? 32 : 64;
2120 } else {
2121 regsize = size == 3 ? 64 : 32;
2123 return regsize == 64;
2126 /* Load/store exclusive
2128 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2129 * +-----+-------------+----+---+----+------+----+-------+------+------+
2130 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2131 * +-----+-------------+----+---+----+------+----+-------+------+------+
2133 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2134 * L: 0 -> store, 1 -> load
2135 * o2: 0 -> exclusive, 1 -> not
2136 * o1: 0 -> single register, 1 -> register pair
2137 * o0: 1 -> load-acquire/store-release, 0 -> not
2139 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2141 int rt = extract32(insn, 0, 5);
2142 int rn = extract32(insn, 5, 5);
2143 int rt2 = extract32(insn, 10, 5);
2144 int is_lasr = extract32(insn, 15, 1);
2145 int rs = extract32(insn, 16, 5);
2146 int is_pair = extract32(insn, 21, 1);
2147 int is_store = !extract32(insn, 22, 1);
2148 int is_excl = !extract32(insn, 23, 1);
2149 int size = extract32(insn, 30, 2);
2150 TCGv_i64 tcg_addr;
2152 if ((!is_excl && !is_pair && !is_lasr) ||
2153 (!is_excl && is_pair) ||
2154 (is_pair && size < 2)) {
2155 unallocated_encoding(s);
2156 return;
2159 if (rn == 31) {
2160 gen_check_sp_alignment(s);
2162 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2164 /* Note that since TCG is single threaded load-acquire/store-release
2165 * semantics require no extra if (is_lasr) { ... } handling.
2168 if (is_excl) {
2169 if (!is_store) {
2170 s->is_ldex = true;
2171 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
2172 if (is_lasr) {
2173 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2175 } else {
2176 if (is_lasr) {
2177 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2179 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
2181 } else {
2182 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2183 bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
2185 /* Generate ISS for non-exclusive accesses including LASR. */
2186 if (is_store) {
2187 if (is_lasr) {
2188 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2190 do_gpr_st(s, tcg_rt, tcg_addr, size,
2191 true, rt, iss_sf, is_lasr);
2192 } else {
2193 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
2194 true, rt, iss_sf, is_lasr);
2195 if (is_lasr) {
2196 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2203 * Load register (literal)
2205 * 31 30 29 27 26 25 24 23 5 4 0
2206 * +-----+-------+---+-----+-------------------+-------+
2207 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2208 * +-----+-------+---+-----+-------------------+-------+
2210 * V: 1 -> vector (simd/fp)
2211 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2212 * 10-> 32 bit signed, 11 -> prefetch
2213 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2215 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2217 int rt = extract32(insn, 0, 5);
2218 int64_t imm = sextract32(insn, 5, 19) << 2;
2219 bool is_vector = extract32(insn, 26, 1);
2220 int opc = extract32(insn, 30, 2);
2221 bool is_signed = false;
2222 int size = 2;
2223 TCGv_i64 tcg_rt, tcg_addr;
2225 if (is_vector) {
2226 if (opc == 3) {
2227 unallocated_encoding(s);
2228 return;
2230 size = 2 + opc;
2231 if (!fp_access_check(s)) {
2232 return;
2234 } else {
2235 if (opc == 3) {
2236 /* PRFM (literal) : prefetch */
2237 return;
2239 size = 2 + extract32(opc, 0, 1);
2240 is_signed = extract32(opc, 1, 1);
2243 tcg_rt = cpu_reg(s, rt);
2245 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2246 if (is_vector) {
2247 do_fp_ld(s, rt, tcg_addr, size);
2248 } else {
2249 /* Only unsigned 32bit loads target 32bit registers. */
2250 bool iss_sf = opc != 0;
2252 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2253 true, rt, iss_sf, false);
2255 tcg_temp_free_i64(tcg_addr);
2259 * LDNP (Load Pair - non-temporal hint)
2260 * LDP (Load Pair - non vector)
2261 * LDPSW (Load Pair Signed Word - non vector)
2262 * STNP (Store Pair - non-temporal hint)
2263 * STP (Store Pair - non vector)
2264 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2265 * LDP (Load Pair of SIMD&FP)
2266 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2267 * STP (Store Pair of SIMD&FP)
2269 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2270 * +-----+-------+---+---+-------+---+-----------------------------+
2271 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2272 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2274 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2275 * LDPSW 01
2276 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2277 * V: 0 -> GPR, 1 -> Vector
2278 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2279 * 10 -> signed offset, 11 -> pre-index
2280 * L: 0 -> Store 1 -> Load
2282 * Rt, Rt2 = GPR or SIMD registers to be stored
2283 * Rn = general purpose register containing address
2284 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2286 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2288 int rt = extract32(insn, 0, 5);
2289 int rn = extract32(insn, 5, 5);
2290 int rt2 = extract32(insn, 10, 5);
2291 uint64_t offset = sextract64(insn, 15, 7);
2292 int index = extract32(insn, 23, 2);
2293 bool is_vector = extract32(insn, 26, 1);
2294 bool is_load = extract32(insn, 22, 1);
2295 int opc = extract32(insn, 30, 2);
2297 bool is_signed = false;
2298 bool postindex = false;
2299 bool wback = false;
2301 TCGv_i64 tcg_addr; /* calculated address */
2302 int size;
2304 if (opc == 3) {
2305 unallocated_encoding(s);
2306 return;
2309 if (is_vector) {
2310 size = 2 + opc;
2311 } else {
2312 size = 2 + extract32(opc, 1, 1);
2313 is_signed = extract32(opc, 0, 1);
2314 if (!is_load && is_signed) {
2315 unallocated_encoding(s);
2316 return;
2320 switch (index) {
2321 case 1: /* post-index */
2322 postindex = true;
2323 wback = true;
2324 break;
2325 case 0:
2326 /* signed offset with "non-temporal" hint. Since we don't emulate
2327 * caches we don't care about hints to the cache system about
2328 * data access patterns, and handle this identically to plain
2329 * signed offset.
2331 if (is_signed) {
2332 /* There is no non-temporal-hint version of LDPSW */
2333 unallocated_encoding(s);
2334 return;
2336 postindex = false;
2337 break;
2338 case 2: /* signed offset, rn not updated */
2339 postindex = false;
2340 break;
2341 case 3: /* pre-index */
2342 postindex = false;
2343 wback = true;
2344 break;
2347 if (is_vector && !fp_access_check(s)) {
2348 return;
2351 offset <<= size;
2353 if (rn == 31) {
2354 gen_check_sp_alignment(s);
2357 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2359 if (!postindex) {
2360 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2363 if (is_vector) {
2364 if (is_load) {
2365 do_fp_ld(s, rt, tcg_addr, size);
2366 } else {
2367 do_fp_st(s, rt, tcg_addr, size);
2369 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2370 if (is_load) {
2371 do_fp_ld(s, rt2, tcg_addr, size);
2372 } else {
2373 do_fp_st(s, rt2, tcg_addr, size);
2375 } else {
2376 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2377 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2379 if (is_load) {
2380 TCGv_i64 tmp = tcg_temp_new_i64();
2382 /* Do not modify tcg_rt before recognizing any exception
2383 * from the second load.
2385 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2386 false, 0, false, false);
2387 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2388 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2389 false, 0, false, false);
2391 tcg_gen_mov_i64(tcg_rt, tmp);
2392 tcg_temp_free_i64(tmp);
2393 } else {
2394 do_gpr_st(s, tcg_rt, tcg_addr, size,
2395 false, 0, false, false);
2396 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2397 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2398 false, 0, false, false);
2402 if (wback) {
2403 if (postindex) {
2404 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2405 } else {
2406 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2408 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2413 * Load/store (immediate post-indexed)
2414 * Load/store (immediate pre-indexed)
2415 * Load/store (unscaled immediate)
2417 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2418 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2419 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2420 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2422 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2423 10 -> unprivileged
2424 * V = 0 -> non-vector
2425 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2426 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2428 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2429 int opc,
2430 int size,
2431 int rt,
2432 bool is_vector)
2434 int rn = extract32(insn, 5, 5);
2435 int imm9 = sextract32(insn, 12, 9);
2436 int idx = extract32(insn, 10, 2);
2437 bool is_signed = false;
2438 bool is_store = false;
2439 bool is_extended = false;
2440 bool is_unpriv = (idx == 2);
2441 bool iss_valid = !is_vector;
2442 bool post_index;
2443 bool writeback;
2445 TCGv_i64 tcg_addr;
2447 if (is_vector) {
2448 size |= (opc & 2) << 1;
2449 if (size > 4 || is_unpriv) {
2450 unallocated_encoding(s);
2451 return;
2453 is_store = ((opc & 1) == 0);
2454 if (!fp_access_check(s)) {
2455 return;
2457 } else {
2458 if (size == 3 && opc == 2) {
2459 /* PRFM - prefetch */
2460 if (is_unpriv) {
2461 unallocated_encoding(s);
2462 return;
2464 return;
2466 if (opc == 3 && size > 1) {
2467 unallocated_encoding(s);
2468 return;
2470 is_store = (opc == 0);
2471 is_signed = extract32(opc, 1, 1);
2472 is_extended = (size < 3) && extract32(opc, 0, 1);
2475 switch (idx) {
2476 case 0:
2477 case 2:
2478 post_index = false;
2479 writeback = false;
2480 break;
2481 case 1:
2482 post_index = true;
2483 writeback = true;
2484 break;
2485 case 3:
2486 post_index = false;
2487 writeback = true;
2488 break;
2489 default:
2490 g_assert_not_reached();
2493 if (rn == 31) {
2494 gen_check_sp_alignment(s);
2496 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2498 if (!post_index) {
2499 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2502 if (is_vector) {
2503 if (is_store) {
2504 do_fp_st(s, rt, tcg_addr, size);
2505 } else {
2506 do_fp_ld(s, rt, tcg_addr, size);
2508 } else {
2509 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2510 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2511 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2513 if (is_store) {
2514 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2515 iss_valid, rt, iss_sf, false);
2516 } else {
2517 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2518 is_signed, is_extended, memidx,
2519 iss_valid, rt, iss_sf, false);
2523 if (writeback) {
2524 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2525 if (post_index) {
2526 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2528 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2533 * Load/store (register offset)
2535 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2536 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2537 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2538 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2540 * For non-vector:
2541 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2542 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2543 * For vector:
2544 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2545 * opc<0>: 0 -> store, 1 -> load
2546 * V: 1 -> vector/simd
2547 * opt: extend encoding (see DecodeRegExtend)
2548 * S: if S=1 then scale (essentially index by sizeof(size))
2549 * Rt: register to transfer into/out of
2550 * Rn: address register or SP for base
2551 * Rm: offset register or ZR for offset
2553 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2554 int opc,
2555 int size,
2556 int rt,
2557 bool is_vector)
2559 int rn = extract32(insn, 5, 5);
2560 int shift = extract32(insn, 12, 1);
2561 int rm = extract32(insn, 16, 5);
2562 int opt = extract32(insn, 13, 3);
2563 bool is_signed = false;
2564 bool is_store = false;
2565 bool is_extended = false;
2567 TCGv_i64 tcg_rm;
2568 TCGv_i64 tcg_addr;
2570 if (extract32(opt, 1, 1) == 0) {
2571 unallocated_encoding(s);
2572 return;
2575 if (is_vector) {
2576 size |= (opc & 2) << 1;
2577 if (size > 4) {
2578 unallocated_encoding(s);
2579 return;
2581 is_store = !extract32(opc, 0, 1);
2582 if (!fp_access_check(s)) {
2583 return;
2585 } else {
2586 if (size == 3 && opc == 2) {
2587 /* PRFM - prefetch */
2588 return;
2590 if (opc == 3 && size > 1) {
2591 unallocated_encoding(s);
2592 return;
2594 is_store = (opc == 0);
2595 is_signed = extract32(opc, 1, 1);
2596 is_extended = (size < 3) && extract32(opc, 0, 1);
2599 if (rn == 31) {
2600 gen_check_sp_alignment(s);
2602 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2604 tcg_rm = read_cpu_reg(s, rm, 1);
2605 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2607 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2609 if (is_vector) {
2610 if (is_store) {
2611 do_fp_st(s, rt, tcg_addr, size);
2612 } else {
2613 do_fp_ld(s, rt, tcg_addr, size);
2615 } else {
2616 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2617 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2618 if (is_store) {
2619 do_gpr_st(s, tcg_rt, tcg_addr, size,
2620 true, rt, iss_sf, false);
2621 } else {
2622 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2623 is_signed, is_extended,
2624 true, rt, iss_sf, false);
2630 * Load/store (unsigned immediate)
2632 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2633 * +----+-------+---+-----+-----+------------+-------+------+
2634 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2635 * +----+-------+---+-----+-----+------------+-------+------+
2637 * For non-vector:
2638 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2639 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2640 * For vector:
2641 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2642 * opc<0>: 0 -> store, 1 -> load
2643 * Rn: base address register (inc SP)
2644 * Rt: target register
2646 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2647 int opc,
2648 int size,
2649 int rt,
2650 bool is_vector)
2652 int rn = extract32(insn, 5, 5);
2653 unsigned int imm12 = extract32(insn, 10, 12);
2654 unsigned int offset;
2656 TCGv_i64 tcg_addr;
2658 bool is_store;
2659 bool is_signed = false;
2660 bool is_extended = false;
2662 if (is_vector) {
2663 size |= (opc & 2) << 1;
2664 if (size > 4) {
2665 unallocated_encoding(s);
2666 return;
2668 is_store = !extract32(opc, 0, 1);
2669 if (!fp_access_check(s)) {
2670 return;
2672 } else {
2673 if (size == 3 && opc == 2) {
2674 /* PRFM - prefetch */
2675 return;
2677 if (opc == 3 && size > 1) {
2678 unallocated_encoding(s);
2679 return;
2681 is_store = (opc == 0);
2682 is_signed = extract32(opc, 1, 1);
2683 is_extended = (size < 3) && extract32(opc, 0, 1);
2686 if (rn == 31) {
2687 gen_check_sp_alignment(s);
2689 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2690 offset = imm12 << size;
2691 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2693 if (is_vector) {
2694 if (is_store) {
2695 do_fp_st(s, rt, tcg_addr, size);
2696 } else {
2697 do_fp_ld(s, rt, tcg_addr, size);
2699 } else {
2700 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2701 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2702 if (is_store) {
2703 do_gpr_st(s, tcg_rt, tcg_addr, size,
2704 true, rt, iss_sf, false);
2705 } else {
2706 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2707 true, rt, iss_sf, false);
2712 /* Load/store register (all forms) */
2713 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2715 int rt = extract32(insn, 0, 5);
2716 int opc = extract32(insn, 22, 2);
2717 bool is_vector = extract32(insn, 26, 1);
2718 int size = extract32(insn, 30, 2);
2720 switch (extract32(insn, 24, 2)) {
2721 case 0:
2722 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2723 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2724 } else {
2725 /* Load/store register (unscaled immediate)
2726 * Load/store immediate pre/post-indexed
2727 * Load/store register unprivileged
2729 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2731 break;
2732 case 1:
2733 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2734 break;
2735 default:
2736 unallocated_encoding(s);
2737 break;
2741 /* AdvSIMD load/store multiple structures
2743 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2744 * +---+---+---------------+---+-------------+--------+------+------+------+
2745 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2746 * +---+---+---------------+---+-------------+--------+------+------+------+
2748 * AdvSIMD load/store multiple structures (post-indexed)
2750 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2751 * +---+---+---------------+---+---+---------+--------+------+------+------+
2752 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2753 * +---+---+---------------+---+---+---------+--------+------+------+------+
2755 * Rt: first (or only) SIMD&FP register to be transferred
2756 * Rn: base address or SP
2757 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2759 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2761 int rt = extract32(insn, 0, 5);
2762 int rn = extract32(insn, 5, 5);
2763 int size = extract32(insn, 10, 2);
2764 int opcode = extract32(insn, 12, 4);
2765 bool is_store = !extract32(insn, 22, 1);
2766 bool is_postidx = extract32(insn, 23, 1);
2767 bool is_q = extract32(insn, 30, 1);
2768 TCGv_i64 tcg_addr, tcg_rn;
2770 int ebytes = 1 << size;
2771 int elements = (is_q ? 128 : 64) / (8 << size);
2772 int rpt; /* num iterations */
2773 int selem; /* structure elements */
2774 int r;
2776 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2777 unallocated_encoding(s);
2778 return;
2781 /* From the shared decode logic */
2782 switch (opcode) {
2783 case 0x0:
2784 rpt = 1;
2785 selem = 4;
2786 break;
2787 case 0x2:
2788 rpt = 4;
2789 selem = 1;
2790 break;
2791 case 0x4:
2792 rpt = 1;
2793 selem = 3;
2794 break;
2795 case 0x6:
2796 rpt = 3;
2797 selem = 1;
2798 break;
2799 case 0x7:
2800 rpt = 1;
2801 selem = 1;
2802 break;
2803 case 0x8:
2804 rpt = 1;
2805 selem = 2;
2806 break;
2807 case 0xa:
2808 rpt = 2;
2809 selem = 1;
2810 break;
2811 default:
2812 unallocated_encoding(s);
2813 return;
2816 if (size == 3 && !is_q && selem != 1) {
2817 /* reserved */
2818 unallocated_encoding(s);
2819 return;
2822 if (!fp_access_check(s)) {
2823 return;
2826 if (rn == 31) {
2827 gen_check_sp_alignment(s);
2830 tcg_rn = cpu_reg_sp(s, rn);
2831 tcg_addr = tcg_temp_new_i64();
2832 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2834 for (r = 0; r < rpt; r++) {
2835 int e;
2836 for (e = 0; e < elements; e++) {
2837 int tt = (rt + r) % 32;
2838 int xs;
2839 for (xs = 0; xs < selem; xs++) {
2840 if (is_store) {
2841 do_vec_st(s, tt, e, tcg_addr, size);
2842 } else {
2843 do_vec_ld(s, tt, e, tcg_addr, size);
2845 /* For non-quad operations, setting a slice of the low
2846 * 64 bits of the register clears the high 64 bits (in
2847 * the ARM ARM pseudocode this is implicit in the fact
2848 * that 'rval' is a 64 bit wide variable).
2849 * For quad operations, we might still need to zero the
2850 * high bits of SVE. We optimize by noticing that we only
2851 * need to do this the first time we touch a register.
2853 if (e == 0 && (r == 0 || xs == selem - 1)) {
2854 clear_vec_high(s, is_q, tt);
2857 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2858 tt = (tt + 1) % 32;
2863 if (is_postidx) {
2864 int rm = extract32(insn, 16, 5);
2865 if (rm == 31) {
2866 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2867 } else {
2868 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2871 tcg_temp_free_i64(tcg_addr);
2874 /* AdvSIMD load/store single structure
2876 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2877 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2878 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2879 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2881 * AdvSIMD load/store single structure (post-indexed)
2883 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2884 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2885 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2886 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2888 * Rt: first (or only) SIMD&FP register to be transferred
2889 * Rn: base address or SP
2890 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2891 * index = encoded in Q:S:size dependent on size
2893 * lane_size = encoded in R, opc
2894 * transfer width = encoded in opc, S, size
2896 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2898 int rt = extract32(insn, 0, 5);
2899 int rn = extract32(insn, 5, 5);
2900 int size = extract32(insn, 10, 2);
2901 int S = extract32(insn, 12, 1);
2902 int opc = extract32(insn, 13, 3);
2903 int R = extract32(insn, 21, 1);
2904 int is_load = extract32(insn, 22, 1);
2905 int is_postidx = extract32(insn, 23, 1);
2906 int is_q = extract32(insn, 30, 1);
2908 int scale = extract32(opc, 1, 2);
2909 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2910 bool replicate = false;
2911 int index = is_q << 3 | S << 2 | size;
2912 int ebytes, xs;
2913 TCGv_i64 tcg_addr, tcg_rn;
2915 switch (scale) {
2916 case 3:
2917 if (!is_load || S) {
2918 unallocated_encoding(s);
2919 return;
2921 scale = size;
2922 replicate = true;
2923 break;
2924 case 0:
2925 break;
2926 case 1:
2927 if (extract32(size, 0, 1)) {
2928 unallocated_encoding(s);
2929 return;
2931 index >>= 1;
2932 break;
2933 case 2:
2934 if (extract32(size, 1, 1)) {
2935 unallocated_encoding(s);
2936 return;
2938 if (!extract32(size, 0, 1)) {
2939 index >>= 2;
2940 } else {
2941 if (S) {
2942 unallocated_encoding(s);
2943 return;
2945 index >>= 3;
2946 scale = 3;
2948 break;
2949 default:
2950 g_assert_not_reached();
2953 if (!fp_access_check(s)) {
2954 return;
2957 ebytes = 1 << scale;
2959 if (rn == 31) {
2960 gen_check_sp_alignment(s);
2963 tcg_rn = cpu_reg_sp(s, rn);
2964 tcg_addr = tcg_temp_new_i64();
2965 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2967 for (xs = 0; xs < selem; xs++) {
2968 if (replicate) {
2969 /* Load and replicate to all elements */
2970 uint64_t mulconst;
2971 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2973 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2974 get_mem_index(s), s->be_data + scale);
2975 switch (scale) {
2976 case 0:
2977 mulconst = 0x0101010101010101ULL;
2978 break;
2979 case 1:
2980 mulconst = 0x0001000100010001ULL;
2981 break;
2982 case 2:
2983 mulconst = 0x0000000100000001ULL;
2984 break;
2985 case 3:
2986 mulconst = 0;
2987 break;
2988 default:
2989 g_assert_not_reached();
2991 if (mulconst) {
2992 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2994 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2995 if (is_q) {
2996 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2998 tcg_temp_free_i64(tcg_tmp);
2999 clear_vec_high(s, is_q, rt);
3000 } else {
3001 /* Load/store one element per register */
3002 if (is_load) {
3003 do_vec_ld(s, rt, index, tcg_addr, scale);
3004 } else {
3005 do_vec_st(s, rt, index, tcg_addr, scale);
3008 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
3009 rt = (rt + 1) % 32;
3012 if (is_postidx) {
3013 int rm = extract32(insn, 16, 5);
3014 if (rm == 31) {
3015 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3016 } else {
3017 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3020 tcg_temp_free_i64(tcg_addr);
3023 /* Loads and stores */
3024 static void disas_ldst(DisasContext *s, uint32_t insn)
3026 switch (extract32(insn, 24, 6)) {
3027 case 0x08: /* Load/store exclusive */
3028 disas_ldst_excl(s, insn);
3029 break;
3030 case 0x18: case 0x1c: /* Load register (literal) */
3031 disas_ld_lit(s, insn);
3032 break;
3033 case 0x28: case 0x29:
3034 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3035 disas_ldst_pair(s, insn);
3036 break;
3037 case 0x38: case 0x39:
3038 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3039 disas_ldst_reg(s, insn);
3040 break;
3041 case 0x0c: /* AdvSIMD load/store multiple structures */
3042 disas_ldst_multiple_struct(s, insn);
3043 break;
3044 case 0x0d: /* AdvSIMD load/store single structure */
3045 disas_ldst_single_struct(s, insn);
3046 break;
3047 default:
3048 unallocated_encoding(s);
3049 break;
3053 /* PC-rel. addressing
3054 * 31 30 29 28 24 23 5 4 0
3055 * +----+-------+-----------+-------------------+------+
3056 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3057 * +----+-------+-----------+-------------------+------+
3059 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3061 unsigned int page, rd;
3062 uint64_t base;
3063 uint64_t offset;
3065 page = extract32(insn, 31, 1);
3066 /* SignExtend(immhi:immlo) -> offset */
3067 offset = sextract64(insn, 5, 19);
3068 offset = offset << 2 | extract32(insn, 29, 2);
3069 rd = extract32(insn, 0, 5);
3070 base = s->pc - 4;
3072 if (page) {
3073 /* ADRP (page based) */
3074 base &= ~0xfff;
3075 offset <<= 12;
3078 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3082 * Add/subtract (immediate)
3084 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3085 * +--+--+--+-----------+-----+-------------+-----+-----+
3086 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3087 * +--+--+--+-----------+-----+-------------+-----+-----+
3089 * sf: 0 -> 32bit, 1 -> 64bit
3090 * op: 0 -> add , 1 -> sub
3091 * S: 1 -> set flags
3092 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3094 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3096 int rd = extract32(insn, 0, 5);
3097 int rn = extract32(insn, 5, 5);
3098 uint64_t imm = extract32(insn, 10, 12);
3099 int shift = extract32(insn, 22, 2);
3100 bool setflags = extract32(insn, 29, 1);
3101 bool sub_op = extract32(insn, 30, 1);
3102 bool is_64bit = extract32(insn, 31, 1);
3104 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3105 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3106 TCGv_i64 tcg_result;
3108 switch (shift) {
3109 case 0x0:
3110 break;
3111 case 0x1:
3112 imm <<= 12;
3113 break;
3114 default:
3115 unallocated_encoding(s);
3116 return;
3119 tcg_result = tcg_temp_new_i64();
3120 if (!setflags) {
3121 if (sub_op) {
3122 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3123 } else {
3124 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3126 } else {
3127 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3128 if (sub_op) {
3129 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3130 } else {
3131 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3133 tcg_temp_free_i64(tcg_imm);
3136 if (is_64bit) {
3137 tcg_gen_mov_i64(tcg_rd, tcg_result);
3138 } else {
3139 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3142 tcg_temp_free_i64(tcg_result);
3145 /* The input should be a value in the bottom e bits (with higher
3146 * bits zero); returns that value replicated into every element
3147 * of size e in a 64 bit integer.
3149 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3151 assert(e != 0);
3152 while (e < 64) {
3153 mask |= mask << e;
3154 e *= 2;
3156 return mask;
3159 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3160 static inline uint64_t bitmask64(unsigned int length)
3162 assert(length > 0 && length <= 64);
3163 return ~0ULL >> (64 - length);
3166 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3167 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3168 * value (ie should cause a guest UNDEF exception), and true if they are
3169 * valid, in which case the decoded bit pattern is written to result.
3171 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3172 unsigned int imms, unsigned int immr)
3174 uint64_t mask;
3175 unsigned e, levels, s, r;
3176 int len;
3178 assert(immn < 2 && imms < 64 && immr < 64);
3180 /* The bit patterns we create here are 64 bit patterns which
3181 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3182 * 64 bits each. Each element contains the same value: a run
3183 * of between 1 and e-1 non-zero bits, rotated within the
3184 * element by between 0 and e-1 bits.
3186 * The element size and run length are encoded into immn (1 bit)
3187 * and imms (6 bits) as follows:
3188 * 64 bit elements: immn = 1, imms = <length of run - 1>
3189 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3190 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3191 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3192 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3193 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3194 * Notice that immn = 0, imms = 11111x is the only combination
3195 * not covered by one of the above options; this is reserved.
3196 * Further, <length of run - 1> all-ones is a reserved pattern.
3198 * In all cases the rotation is by immr % e (and immr is 6 bits).
3201 /* First determine the element size */
3202 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3203 if (len < 1) {
3204 /* This is the immn == 0, imms == 0x11111x case */
3205 return false;
3207 e = 1 << len;
3209 levels = e - 1;
3210 s = imms & levels;
3211 r = immr & levels;
3213 if (s == levels) {
3214 /* <length of run - 1> mustn't be all-ones. */
3215 return false;
3218 /* Create the value of one element: s+1 set bits rotated
3219 * by r within the element (which is e bits wide)...
3221 mask = bitmask64(s + 1);
3222 if (r) {
3223 mask = (mask >> r) | (mask << (e - r));
3224 mask &= bitmask64(e);
3226 /* ...then replicate the element over the whole 64 bit value */
3227 mask = bitfield_replicate(mask, e);
3228 *result = mask;
3229 return true;
3232 /* Logical (immediate)
3233 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3234 * +----+-----+-------------+---+------+------+------+------+
3235 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3236 * +----+-----+-------------+---+------+------+------+------+
3238 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3240 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3241 TCGv_i64 tcg_rd, tcg_rn;
3242 uint64_t wmask;
3243 bool is_and = false;
3245 sf = extract32(insn, 31, 1);
3246 opc = extract32(insn, 29, 2);
3247 is_n = extract32(insn, 22, 1);
3248 immr = extract32(insn, 16, 6);
3249 imms = extract32(insn, 10, 6);
3250 rn = extract32(insn, 5, 5);
3251 rd = extract32(insn, 0, 5);
3253 if (!sf && is_n) {
3254 unallocated_encoding(s);
3255 return;
3258 if (opc == 0x3) { /* ANDS */
3259 tcg_rd = cpu_reg(s, rd);
3260 } else {
3261 tcg_rd = cpu_reg_sp(s, rd);
3263 tcg_rn = cpu_reg(s, rn);
3265 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3266 /* some immediate field values are reserved */
3267 unallocated_encoding(s);
3268 return;
3271 if (!sf) {
3272 wmask &= 0xffffffff;
3275 switch (opc) {
3276 case 0x3: /* ANDS */
3277 case 0x0: /* AND */
3278 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3279 is_and = true;
3280 break;
3281 case 0x1: /* ORR */
3282 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3283 break;
3284 case 0x2: /* EOR */
3285 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3286 break;
3287 default:
3288 assert(FALSE); /* must handle all above */
3289 break;
3292 if (!sf && !is_and) {
3293 /* zero extend final result; we know we can skip this for AND
3294 * since the immediate had the high 32 bits clear.
3296 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3299 if (opc == 3) { /* ANDS */
3300 gen_logic_CC(sf, tcg_rd);
3305 * Move wide (immediate)
3307 * 31 30 29 28 23 22 21 20 5 4 0
3308 * +--+-----+-------------+-----+----------------+------+
3309 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3310 * +--+-----+-------------+-----+----------------+------+
3312 * sf: 0 -> 32 bit, 1 -> 64 bit
3313 * opc: 00 -> N, 10 -> Z, 11 -> K
3314 * hw: shift/16 (0,16, and sf only 32, 48)
3316 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3318 int rd = extract32(insn, 0, 5);
3319 uint64_t imm = extract32(insn, 5, 16);
3320 int sf = extract32(insn, 31, 1);
3321 int opc = extract32(insn, 29, 2);
3322 int pos = extract32(insn, 21, 2) << 4;
3323 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3324 TCGv_i64 tcg_imm;
3326 if (!sf && (pos >= 32)) {
3327 unallocated_encoding(s);
3328 return;
3331 switch (opc) {
3332 case 0: /* MOVN */
3333 case 2: /* MOVZ */
3334 imm <<= pos;
3335 if (opc == 0) {
3336 imm = ~imm;
3338 if (!sf) {
3339 imm &= 0xffffffffu;
3341 tcg_gen_movi_i64(tcg_rd, imm);
3342 break;
3343 case 3: /* MOVK */
3344 tcg_imm = tcg_const_i64(imm);
3345 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3346 tcg_temp_free_i64(tcg_imm);
3347 if (!sf) {
3348 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3350 break;
3351 default:
3352 unallocated_encoding(s);
3353 break;
3357 /* Bitfield
3358 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3359 * +----+-----+-------------+---+------+------+------+------+
3360 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3361 * +----+-----+-------------+---+------+------+------+------+
3363 static void disas_bitfield(DisasContext *s, uint32_t insn)
3365 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3366 TCGv_i64 tcg_rd, tcg_tmp;
3368 sf = extract32(insn, 31, 1);
3369 opc = extract32(insn, 29, 2);
3370 n = extract32(insn, 22, 1);
3371 ri = extract32(insn, 16, 6);
3372 si = extract32(insn, 10, 6);
3373 rn = extract32(insn, 5, 5);
3374 rd = extract32(insn, 0, 5);
3375 bitsize = sf ? 64 : 32;
3377 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3378 unallocated_encoding(s);
3379 return;
3382 tcg_rd = cpu_reg(s, rd);
3384 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3385 to be smaller than bitsize, we'll never reference data outside the
3386 low 32-bits anyway. */
3387 tcg_tmp = read_cpu_reg(s, rn, 1);
3389 /* Recognize simple(r) extractions. */
3390 if (si >= ri) {
3391 /* Wd<s-r:0> = Wn<s:r> */
3392 len = (si - ri) + 1;
3393 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3394 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3395 goto done;
3396 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3397 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3398 return;
3400 /* opc == 1, BXFIL fall through to deposit */
3401 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3402 pos = 0;
3403 } else {
3404 /* Handle the ri > si case with a deposit
3405 * Wd<32+s-r,32-r> = Wn<s:0>
3407 len = si + 1;
3408 pos = (bitsize - ri) & (bitsize - 1);
3411 if (opc == 0 && len < ri) {
3412 /* SBFM: sign extend the destination field from len to fill
3413 the balance of the word. Let the deposit below insert all
3414 of those sign bits. */
3415 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3416 len = ri;
3419 if (opc == 1) { /* BFM, BXFIL */
3420 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3421 } else {
3422 /* SBFM or UBFM: We start with zero, and we haven't modified
3423 any bits outside bitsize, therefore the zero-extension
3424 below is unneeded. */
3425 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3426 return;
3429 done:
3430 if (!sf) { /* zero extend final result */
3431 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3435 /* Extract
3436 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3437 * +----+------+-------------+---+----+------+--------+------+------+
3438 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3439 * +----+------+-------------+---+----+------+--------+------+------+
3441 static void disas_extract(DisasContext *s, uint32_t insn)
3443 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3445 sf = extract32(insn, 31, 1);
3446 n = extract32(insn, 22, 1);
3447 rm = extract32(insn, 16, 5);
3448 imm = extract32(insn, 10, 6);
3449 rn = extract32(insn, 5, 5);
3450 rd = extract32(insn, 0, 5);
3451 op21 = extract32(insn, 29, 2);
3452 op0 = extract32(insn, 21, 1);
3453 bitsize = sf ? 64 : 32;
3455 if (sf != n || op21 || op0 || imm >= bitsize) {
3456 unallocated_encoding(s);
3457 } else {
3458 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3460 tcg_rd = cpu_reg(s, rd);
3462 if (unlikely(imm == 0)) {
3463 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3464 * so an extract from bit 0 is a special case.
3466 if (sf) {
3467 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3468 } else {
3469 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3471 } else if (rm == rn) { /* ROR */
3472 tcg_rm = cpu_reg(s, rm);
3473 if (sf) {
3474 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3475 } else {
3476 TCGv_i32 tmp = tcg_temp_new_i32();
3477 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3478 tcg_gen_rotri_i32(tmp, tmp, imm);
3479 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3480 tcg_temp_free_i32(tmp);
3482 } else {
3483 tcg_rm = read_cpu_reg(s, rm, sf);
3484 tcg_rn = read_cpu_reg(s, rn, sf);
3485 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3486 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3487 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3488 if (!sf) {
3489 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3495 /* Data processing - immediate */
3496 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3498 switch (extract32(insn, 23, 6)) {
3499 case 0x20: case 0x21: /* PC-rel. addressing */
3500 disas_pc_rel_adr(s, insn);
3501 break;
3502 case 0x22: case 0x23: /* Add/subtract (immediate) */
3503 disas_add_sub_imm(s, insn);
3504 break;
3505 case 0x24: /* Logical (immediate) */
3506 disas_logic_imm(s, insn);
3507 break;
3508 case 0x25: /* Move wide (immediate) */
3509 disas_movw_imm(s, insn);
3510 break;
3511 case 0x26: /* Bitfield */
3512 disas_bitfield(s, insn);
3513 break;
3514 case 0x27: /* Extract */
3515 disas_extract(s, insn);
3516 break;
3517 default:
3518 unallocated_encoding(s);
3519 break;
3523 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3524 * Note that it is the caller's responsibility to ensure that the
3525 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3526 * mandated semantics for out of range shifts.
3528 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3529 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3531 switch (shift_type) {
3532 case A64_SHIFT_TYPE_LSL:
3533 tcg_gen_shl_i64(dst, src, shift_amount);
3534 break;
3535 case A64_SHIFT_TYPE_LSR:
3536 tcg_gen_shr_i64(dst, src, shift_amount);
3537 break;
3538 case A64_SHIFT_TYPE_ASR:
3539 if (!sf) {
3540 tcg_gen_ext32s_i64(dst, src);
3542 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3543 break;
3544 case A64_SHIFT_TYPE_ROR:
3545 if (sf) {
3546 tcg_gen_rotr_i64(dst, src, shift_amount);
3547 } else {
3548 TCGv_i32 t0, t1;
3549 t0 = tcg_temp_new_i32();
3550 t1 = tcg_temp_new_i32();
3551 tcg_gen_extrl_i64_i32(t0, src);
3552 tcg_gen_extrl_i64_i32(t1, shift_amount);
3553 tcg_gen_rotr_i32(t0, t0, t1);
3554 tcg_gen_extu_i32_i64(dst, t0);
3555 tcg_temp_free_i32(t0);
3556 tcg_temp_free_i32(t1);
3558 break;
3559 default:
3560 assert(FALSE); /* all shift types should be handled */
3561 break;
3564 if (!sf) { /* zero extend final result */
3565 tcg_gen_ext32u_i64(dst, dst);
3569 /* Shift a TCGv src by immediate, put result in dst.
3570 * The shift amount must be in range (this should always be true as the
3571 * relevant instructions will UNDEF on bad shift immediates).
3573 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3574 enum a64_shift_type shift_type, unsigned int shift_i)
3576 assert(shift_i < (sf ? 64 : 32));
3578 if (shift_i == 0) {
3579 tcg_gen_mov_i64(dst, src);
3580 } else {
3581 TCGv_i64 shift_const;
3583 shift_const = tcg_const_i64(shift_i);
3584 shift_reg(dst, src, sf, shift_type, shift_const);
3585 tcg_temp_free_i64(shift_const);
3589 /* Logical (shifted register)
3590 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3591 * +----+-----+-----------+-------+---+------+--------+------+------+
3592 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3593 * +----+-----+-----------+-------+---+------+--------+------+------+
3595 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3597 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3598 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3600 sf = extract32(insn, 31, 1);
3601 opc = extract32(insn, 29, 2);
3602 shift_type = extract32(insn, 22, 2);
3603 invert = extract32(insn, 21, 1);
3604 rm = extract32(insn, 16, 5);
3605 shift_amount = extract32(insn, 10, 6);
3606 rn = extract32(insn, 5, 5);
3607 rd = extract32(insn, 0, 5);
3609 if (!sf && (shift_amount & (1 << 5))) {
3610 unallocated_encoding(s);
3611 return;
3614 tcg_rd = cpu_reg(s, rd);
3616 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3617 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3618 * register-register MOV and MVN, so it is worth special casing.
3620 tcg_rm = cpu_reg(s, rm);
3621 if (invert) {
3622 tcg_gen_not_i64(tcg_rd, tcg_rm);
3623 if (!sf) {
3624 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3626 } else {
3627 if (sf) {
3628 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3629 } else {
3630 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3633 return;
3636 tcg_rm = read_cpu_reg(s, rm, sf);
3638 if (shift_amount) {
3639 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3642 tcg_rn = cpu_reg(s, rn);
3644 switch (opc | (invert << 2)) {
3645 case 0: /* AND */
3646 case 3: /* ANDS */
3647 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3648 break;
3649 case 1: /* ORR */
3650 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3651 break;
3652 case 2: /* EOR */
3653 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3654 break;
3655 case 4: /* BIC */
3656 case 7: /* BICS */
3657 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3658 break;
3659 case 5: /* ORN */
3660 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3661 break;
3662 case 6: /* EON */
3663 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3664 break;
3665 default:
3666 assert(FALSE);
3667 break;
3670 if (!sf) {
3671 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3674 if (opc == 3) {
3675 gen_logic_CC(sf, tcg_rd);
3680 * Add/subtract (extended register)
3682 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3683 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3684 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3685 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3687 * sf: 0 -> 32bit, 1 -> 64bit
3688 * op: 0 -> add , 1 -> sub
3689 * S: 1 -> set flags
3690 * opt: 00
3691 * option: extension type (see DecodeRegExtend)
3692 * imm3: optional shift to Rm
3694 * Rd = Rn + LSL(extend(Rm), amount)
3696 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3698 int rd = extract32(insn, 0, 5);
3699 int rn = extract32(insn, 5, 5);
3700 int imm3 = extract32(insn, 10, 3);
3701 int option = extract32(insn, 13, 3);
3702 int rm = extract32(insn, 16, 5);
3703 bool setflags = extract32(insn, 29, 1);
3704 bool sub_op = extract32(insn, 30, 1);
3705 bool sf = extract32(insn, 31, 1);
3707 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3708 TCGv_i64 tcg_rd;
3709 TCGv_i64 tcg_result;
3711 if (imm3 > 4) {
3712 unallocated_encoding(s);
3713 return;
3716 /* non-flag setting ops may use SP */
3717 if (!setflags) {
3718 tcg_rd = cpu_reg_sp(s, rd);
3719 } else {
3720 tcg_rd = cpu_reg(s, rd);
3722 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3724 tcg_rm = read_cpu_reg(s, rm, sf);
3725 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3727 tcg_result = tcg_temp_new_i64();
3729 if (!setflags) {
3730 if (sub_op) {
3731 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3732 } else {
3733 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3735 } else {
3736 if (sub_op) {
3737 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3738 } else {
3739 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3743 if (sf) {
3744 tcg_gen_mov_i64(tcg_rd, tcg_result);
3745 } else {
3746 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3749 tcg_temp_free_i64(tcg_result);
3753 * Add/subtract (shifted register)
3755 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3756 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3757 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3758 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3760 * sf: 0 -> 32bit, 1 -> 64bit
3761 * op: 0 -> add , 1 -> sub
3762 * S: 1 -> set flags
3763 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3764 * imm6: Shift amount to apply to Rm before the add/sub
3766 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3768 int rd = extract32(insn, 0, 5);
3769 int rn = extract32(insn, 5, 5);
3770 int imm6 = extract32(insn, 10, 6);
3771 int rm = extract32(insn, 16, 5);
3772 int shift_type = extract32(insn, 22, 2);
3773 bool setflags = extract32(insn, 29, 1);
3774 bool sub_op = extract32(insn, 30, 1);
3775 bool sf = extract32(insn, 31, 1);
3777 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3778 TCGv_i64 tcg_rn, tcg_rm;
3779 TCGv_i64 tcg_result;
3781 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3782 unallocated_encoding(s);
3783 return;
3786 tcg_rn = read_cpu_reg(s, rn, sf);
3787 tcg_rm = read_cpu_reg(s, rm, sf);
3789 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3791 tcg_result = tcg_temp_new_i64();
3793 if (!setflags) {
3794 if (sub_op) {
3795 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3796 } else {
3797 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3799 } else {
3800 if (sub_op) {
3801 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3802 } else {
3803 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3807 if (sf) {
3808 tcg_gen_mov_i64(tcg_rd, tcg_result);
3809 } else {
3810 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3813 tcg_temp_free_i64(tcg_result);
3816 /* Data-processing (3 source)
3818 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3819 * +--+------+-----------+------+------+----+------+------+------+
3820 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3821 * +--+------+-----------+------+------+----+------+------+------+
3823 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3825 int rd = extract32(insn, 0, 5);
3826 int rn = extract32(insn, 5, 5);
3827 int ra = extract32(insn, 10, 5);
3828 int rm = extract32(insn, 16, 5);
3829 int op_id = (extract32(insn, 29, 3) << 4) |
3830 (extract32(insn, 21, 3) << 1) |
3831 extract32(insn, 15, 1);
3832 bool sf = extract32(insn, 31, 1);
3833 bool is_sub = extract32(op_id, 0, 1);
3834 bool is_high = extract32(op_id, 2, 1);
3835 bool is_signed = false;
3836 TCGv_i64 tcg_op1;
3837 TCGv_i64 tcg_op2;
3838 TCGv_i64 tcg_tmp;
3840 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3841 switch (op_id) {
3842 case 0x42: /* SMADDL */
3843 case 0x43: /* SMSUBL */
3844 case 0x44: /* SMULH */
3845 is_signed = true;
3846 break;
3847 case 0x0: /* MADD (32bit) */
3848 case 0x1: /* MSUB (32bit) */
3849 case 0x40: /* MADD (64bit) */
3850 case 0x41: /* MSUB (64bit) */
3851 case 0x4a: /* UMADDL */
3852 case 0x4b: /* UMSUBL */
3853 case 0x4c: /* UMULH */
3854 break;
3855 default:
3856 unallocated_encoding(s);
3857 return;
3860 if (is_high) {
3861 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3862 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3863 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3864 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3866 if (is_signed) {
3867 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3868 } else {
3869 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3872 tcg_temp_free_i64(low_bits);
3873 return;
3876 tcg_op1 = tcg_temp_new_i64();
3877 tcg_op2 = tcg_temp_new_i64();
3878 tcg_tmp = tcg_temp_new_i64();
3880 if (op_id < 0x42) {
3881 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3882 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3883 } else {
3884 if (is_signed) {
3885 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3886 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3887 } else {
3888 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3889 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3893 if (ra == 31 && !is_sub) {
3894 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3895 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3896 } else {
3897 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3898 if (is_sub) {
3899 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3900 } else {
3901 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3905 if (!sf) {
3906 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3909 tcg_temp_free_i64(tcg_op1);
3910 tcg_temp_free_i64(tcg_op2);
3911 tcg_temp_free_i64(tcg_tmp);
3914 /* Add/subtract (with carry)
3915 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3916 * +--+--+--+------------------------+------+---------+------+-----+
3917 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3918 * +--+--+--+------------------------+------+---------+------+-----+
3919 * [000000]
3922 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3924 unsigned int sf, op, setflags, rm, rn, rd;
3925 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3927 if (extract32(insn, 10, 6) != 0) {
3928 unallocated_encoding(s);
3929 return;
3932 sf = extract32(insn, 31, 1);
3933 op = extract32(insn, 30, 1);
3934 setflags = extract32(insn, 29, 1);
3935 rm = extract32(insn, 16, 5);
3936 rn = extract32(insn, 5, 5);
3937 rd = extract32(insn, 0, 5);
3939 tcg_rd = cpu_reg(s, rd);
3940 tcg_rn = cpu_reg(s, rn);
3942 if (op) {
3943 tcg_y = new_tmp_a64(s);
3944 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3945 } else {
3946 tcg_y = cpu_reg(s, rm);
3949 if (setflags) {
3950 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3951 } else {
3952 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3956 /* Conditional compare (immediate / register)
3957 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3958 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3959 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3960 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3961 * [1] y [0] [0]
3963 static void disas_cc(DisasContext *s, uint32_t insn)
3965 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3966 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3967 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3968 DisasCompare c;
3970 if (!extract32(insn, 29, 1)) {
3971 unallocated_encoding(s);
3972 return;
3974 if (insn & (1 << 10 | 1 << 4)) {
3975 unallocated_encoding(s);
3976 return;
3978 sf = extract32(insn, 31, 1);
3979 op = extract32(insn, 30, 1);
3980 is_imm = extract32(insn, 11, 1);
3981 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3982 cond = extract32(insn, 12, 4);
3983 rn = extract32(insn, 5, 5);
3984 nzcv = extract32(insn, 0, 4);
3986 /* Set T0 = !COND. */
3987 tcg_t0 = tcg_temp_new_i32();
3988 arm_test_cc(&c, cond);
3989 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3990 arm_free_cc(&c);
3992 /* Load the arguments for the new comparison. */
3993 if (is_imm) {
3994 tcg_y = new_tmp_a64(s);
3995 tcg_gen_movi_i64(tcg_y, y);
3996 } else {
3997 tcg_y = cpu_reg(s, y);
3999 tcg_rn = cpu_reg(s, rn);
4001 /* Set the flags for the new comparison. */
4002 tcg_tmp = tcg_temp_new_i64();
4003 if (op) {
4004 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4005 } else {
4006 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4008 tcg_temp_free_i64(tcg_tmp);
4010 /* If COND was false, force the flags to #nzcv. Compute two masks
4011 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4012 * For tcg hosts that support ANDC, we can make do with just T1.
4013 * In either case, allow the tcg optimizer to delete any unused mask.
4015 tcg_t1 = tcg_temp_new_i32();
4016 tcg_t2 = tcg_temp_new_i32();
4017 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4018 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4020 if (nzcv & 8) { /* N */
4021 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4022 } else {
4023 if (TCG_TARGET_HAS_andc_i32) {
4024 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4025 } else {
4026 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4029 if (nzcv & 4) { /* Z */
4030 if (TCG_TARGET_HAS_andc_i32) {
4031 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4032 } else {
4033 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4035 } else {
4036 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4038 if (nzcv & 2) { /* C */
4039 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4040 } else {
4041 if (TCG_TARGET_HAS_andc_i32) {
4042 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4043 } else {
4044 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4047 if (nzcv & 1) { /* V */
4048 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4049 } else {
4050 if (TCG_TARGET_HAS_andc_i32) {
4051 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4052 } else {
4053 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4056 tcg_temp_free_i32(tcg_t0);
4057 tcg_temp_free_i32(tcg_t1);
4058 tcg_temp_free_i32(tcg_t2);
4061 /* Conditional select
4062 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4063 * +----+----+---+-----------------+------+------+-----+------+------+
4064 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4065 * +----+----+---+-----------------+------+------+-----+------+------+
4067 static void disas_cond_select(DisasContext *s, uint32_t insn)
4069 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4070 TCGv_i64 tcg_rd, zero;
4071 DisasCompare64 c;
4073 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4074 /* S == 1 or op2<1> == 1 */
4075 unallocated_encoding(s);
4076 return;
4078 sf = extract32(insn, 31, 1);
4079 else_inv = extract32(insn, 30, 1);
4080 rm = extract32(insn, 16, 5);
4081 cond = extract32(insn, 12, 4);
4082 else_inc = extract32(insn, 10, 1);
4083 rn = extract32(insn, 5, 5);
4084 rd = extract32(insn, 0, 5);
4086 tcg_rd = cpu_reg(s, rd);
4088 a64_test_cc(&c, cond);
4089 zero = tcg_const_i64(0);
4091 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4092 /* CSET & CSETM. */
4093 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4094 if (else_inv) {
4095 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4097 } else {
4098 TCGv_i64 t_true = cpu_reg(s, rn);
4099 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4100 if (else_inv && else_inc) {
4101 tcg_gen_neg_i64(t_false, t_false);
4102 } else if (else_inv) {
4103 tcg_gen_not_i64(t_false, t_false);
4104 } else if (else_inc) {
4105 tcg_gen_addi_i64(t_false, t_false, 1);
4107 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4110 tcg_temp_free_i64(zero);
4111 a64_free_cc(&c);
4113 if (!sf) {
4114 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4118 static void handle_clz(DisasContext *s, unsigned int sf,
4119 unsigned int rn, unsigned int rd)
4121 TCGv_i64 tcg_rd, tcg_rn;
4122 tcg_rd = cpu_reg(s, rd);
4123 tcg_rn = cpu_reg(s, rn);
4125 if (sf) {
4126 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4127 } else {
4128 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4129 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4130 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4131 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4132 tcg_temp_free_i32(tcg_tmp32);
4136 static void handle_cls(DisasContext *s, unsigned int sf,
4137 unsigned int rn, unsigned int rd)
4139 TCGv_i64 tcg_rd, tcg_rn;
4140 tcg_rd = cpu_reg(s, rd);
4141 tcg_rn = cpu_reg(s, rn);
4143 if (sf) {
4144 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4145 } else {
4146 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4147 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4148 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4149 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4150 tcg_temp_free_i32(tcg_tmp32);
4154 static void handle_rbit(DisasContext *s, unsigned int sf,
4155 unsigned int rn, unsigned int rd)
4157 TCGv_i64 tcg_rd, tcg_rn;
4158 tcg_rd = cpu_reg(s, rd);
4159 tcg_rn = cpu_reg(s, rn);
4161 if (sf) {
4162 gen_helper_rbit64(tcg_rd, tcg_rn);
4163 } else {
4164 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4165 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4166 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4167 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4168 tcg_temp_free_i32(tcg_tmp32);
4172 /* REV with sf==1, opcode==3 ("REV64") */
4173 static void handle_rev64(DisasContext *s, unsigned int sf,
4174 unsigned int rn, unsigned int rd)
4176 if (!sf) {
4177 unallocated_encoding(s);
4178 return;
4180 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4183 /* REV with sf==0, opcode==2
4184 * REV32 (sf==1, opcode==2)
4186 static void handle_rev32(DisasContext *s, unsigned int sf,
4187 unsigned int rn, unsigned int rd)
4189 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4191 if (sf) {
4192 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4193 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4195 /* bswap32_i64 requires zero high word */
4196 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4197 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4198 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4199 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4200 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4202 tcg_temp_free_i64(tcg_tmp);
4203 } else {
4204 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4205 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4209 /* REV16 (opcode==1) */
4210 static void handle_rev16(DisasContext *s, unsigned int sf,
4211 unsigned int rn, unsigned int rd)
4213 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4214 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4215 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4216 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4218 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4219 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4220 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4221 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4222 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4224 tcg_temp_free_i64(mask);
4225 tcg_temp_free_i64(tcg_tmp);
4228 /* Data-processing (1 source)
4229 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4230 * +----+---+---+-----------------+---------+--------+------+------+
4231 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4232 * +----+---+---+-----------------+---------+--------+------+------+
4234 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4236 unsigned int sf, opcode, rn, rd;
4238 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4239 unallocated_encoding(s);
4240 return;
4243 sf = extract32(insn, 31, 1);
4244 opcode = extract32(insn, 10, 6);
4245 rn = extract32(insn, 5, 5);
4246 rd = extract32(insn, 0, 5);
4248 switch (opcode) {
4249 case 0: /* RBIT */
4250 handle_rbit(s, sf, rn, rd);
4251 break;
4252 case 1: /* REV16 */
4253 handle_rev16(s, sf, rn, rd);
4254 break;
4255 case 2: /* REV32 */
4256 handle_rev32(s, sf, rn, rd);
4257 break;
4258 case 3: /* REV64 */
4259 handle_rev64(s, sf, rn, rd);
4260 break;
4261 case 4: /* CLZ */
4262 handle_clz(s, sf, rn, rd);
4263 break;
4264 case 5: /* CLS */
4265 handle_cls(s, sf, rn, rd);
4266 break;
4270 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4271 unsigned int rm, unsigned int rn, unsigned int rd)
4273 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4274 tcg_rd = cpu_reg(s, rd);
4276 if (!sf && is_signed) {
4277 tcg_n = new_tmp_a64(s);
4278 tcg_m = new_tmp_a64(s);
4279 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4280 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4281 } else {
4282 tcg_n = read_cpu_reg(s, rn, sf);
4283 tcg_m = read_cpu_reg(s, rm, sf);
4286 if (is_signed) {
4287 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4288 } else {
4289 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4292 if (!sf) { /* zero extend final result */
4293 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4297 /* LSLV, LSRV, ASRV, RORV */
4298 static void handle_shift_reg(DisasContext *s,
4299 enum a64_shift_type shift_type, unsigned int sf,
4300 unsigned int rm, unsigned int rn, unsigned int rd)
4302 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4303 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4304 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4306 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4307 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4308 tcg_temp_free_i64(tcg_shift);
4311 /* CRC32[BHWX], CRC32C[BHWX] */
4312 static void handle_crc32(DisasContext *s,
4313 unsigned int sf, unsigned int sz, bool crc32c,
4314 unsigned int rm, unsigned int rn, unsigned int rd)
4316 TCGv_i64 tcg_acc, tcg_val;
4317 TCGv_i32 tcg_bytes;
4319 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4320 || (sf == 1 && sz != 3)
4321 || (sf == 0 && sz == 3)) {
4322 unallocated_encoding(s);
4323 return;
4326 if (sz == 3) {
4327 tcg_val = cpu_reg(s, rm);
4328 } else {
4329 uint64_t mask;
4330 switch (sz) {
4331 case 0:
4332 mask = 0xFF;
4333 break;
4334 case 1:
4335 mask = 0xFFFF;
4336 break;
4337 case 2:
4338 mask = 0xFFFFFFFF;
4339 break;
4340 default:
4341 g_assert_not_reached();
4343 tcg_val = new_tmp_a64(s);
4344 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4347 tcg_acc = cpu_reg(s, rn);
4348 tcg_bytes = tcg_const_i32(1 << sz);
4350 if (crc32c) {
4351 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4352 } else {
4353 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4356 tcg_temp_free_i32(tcg_bytes);
4359 /* Data-processing (2 source)
4360 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4361 * +----+---+---+-----------------+------+--------+------+------+
4362 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4363 * +----+---+---+-----------------+------+--------+------+------+
4365 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4367 unsigned int sf, rm, opcode, rn, rd;
4368 sf = extract32(insn, 31, 1);
4369 rm = extract32(insn, 16, 5);
4370 opcode = extract32(insn, 10, 6);
4371 rn = extract32(insn, 5, 5);
4372 rd = extract32(insn, 0, 5);
4374 if (extract32(insn, 29, 1)) {
4375 unallocated_encoding(s);
4376 return;
4379 switch (opcode) {
4380 case 2: /* UDIV */
4381 handle_div(s, false, sf, rm, rn, rd);
4382 break;
4383 case 3: /* SDIV */
4384 handle_div(s, true, sf, rm, rn, rd);
4385 break;
4386 case 8: /* LSLV */
4387 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4388 break;
4389 case 9: /* LSRV */
4390 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4391 break;
4392 case 10: /* ASRV */
4393 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4394 break;
4395 case 11: /* RORV */
4396 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4397 break;
4398 case 16:
4399 case 17:
4400 case 18:
4401 case 19:
4402 case 20:
4403 case 21:
4404 case 22:
4405 case 23: /* CRC32 */
4407 int sz = extract32(opcode, 0, 2);
4408 bool crc32c = extract32(opcode, 2, 1);
4409 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4410 break;
4412 default:
4413 unallocated_encoding(s);
4414 break;
4418 /* Data processing - register */
4419 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4421 switch (extract32(insn, 24, 5)) {
4422 case 0x0a: /* Logical (shifted register) */
4423 disas_logic_reg(s, insn);
4424 break;
4425 case 0x0b: /* Add/subtract */
4426 if (insn & (1 << 21)) { /* (extended register) */
4427 disas_add_sub_ext_reg(s, insn);
4428 } else {
4429 disas_add_sub_reg(s, insn);
4431 break;
4432 case 0x1b: /* Data-processing (3 source) */
4433 disas_data_proc_3src(s, insn);
4434 break;
4435 case 0x1a:
4436 switch (extract32(insn, 21, 3)) {
4437 case 0x0: /* Add/subtract (with carry) */
4438 disas_adc_sbc(s, insn);
4439 break;
4440 case 0x2: /* Conditional compare */
4441 disas_cc(s, insn); /* both imm and reg forms */
4442 break;
4443 case 0x4: /* Conditional select */
4444 disas_cond_select(s, insn);
4445 break;
4446 case 0x6: /* Data-processing */
4447 if (insn & (1 << 30)) { /* (1 source) */
4448 disas_data_proc_1src(s, insn);
4449 } else { /* (2 source) */
4450 disas_data_proc_2src(s, insn);
4452 break;
4453 default:
4454 unallocated_encoding(s);
4455 break;
4457 break;
4458 default:
4459 unallocated_encoding(s);
4460 break;
4464 static void handle_fp_compare(DisasContext *s, bool is_double,
4465 unsigned int rn, unsigned int rm,
4466 bool cmp_with_zero, bool signal_all_nans)
4468 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4469 TCGv_ptr fpst = get_fpstatus_ptr(false);
4471 if (is_double) {
4472 TCGv_i64 tcg_vn, tcg_vm;
4474 tcg_vn = read_fp_dreg(s, rn);
4475 if (cmp_with_zero) {
4476 tcg_vm = tcg_const_i64(0);
4477 } else {
4478 tcg_vm = read_fp_dreg(s, rm);
4480 if (signal_all_nans) {
4481 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4482 } else {
4483 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4485 tcg_temp_free_i64(tcg_vn);
4486 tcg_temp_free_i64(tcg_vm);
4487 } else {
4488 TCGv_i32 tcg_vn, tcg_vm;
4490 tcg_vn = read_fp_sreg(s, rn);
4491 if (cmp_with_zero) {
4492 tcg_vm = tcg_const_i32(0);
4493 } else {
4494 tcg_vm = read_fp_sreg(s, rm);
4496 if (signal_all_nans) {
4497 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4498 } else {
4499 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4501 tcg_temp_free_i32(tcg_vn);
4502 tcg_temp_free_i32(tcg_vm);
4505 tcg_temp_free_ptr(fpst);
4507 gen_set_nzcv(tcg_flags);
4509 tcg_temp_free_i64(tcg_flags);
4512 /* Floating point compare
4513 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4514 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4515 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4516 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4518 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4520 unsigned int mos, type, rm, op, rn, opc, op2r;
4522 mos = extract32(insn, 29, 3);
4523 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4524 rm = extract32(insn, 16, 5);
4525 op = extract32(insn, 14, 2);
4526 rn = extract32(insn, 5, 5);
4527 opc = extract32(insn, 3, 2);
4528 op2r = extract32(insn, 0, 3);
4530 if (mos || op || op2r || type > 1) {
4531 unallocated_encoding(s);
4532 return;
4535 if (!fp_access_check(s)) {
4536 return;
4539 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4542 /* Floating point conditional compare
4543 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4544 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4545 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4546 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4548 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4550 unsigned int mos, type, rm, cond, rn, op, nzcv;
4551 TCGv_i64 tcg_flags;
4552 TCGLabel *label_continue = NULL;
4554 mos = extract32(insn, 29, 3);
4555 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4556 rm = extract32(insn, 16, 5);
4557 cond = extract32(insn, 12, 4);
4558 rn = extract32(insn, 5, 5);
4559 op = extract32(insn, 4, 1);
4560 nzcv = extract32(insn, 0, 4);
4562 if (mos || type > 1) {
4563 unallocated_encoding(s);
4564 return;
4567 if (!fp_access_check(s)) {
4568 return;
4571 if (cond < 0x0e) { /* not always */
4572 TCGLabel *label_match = gen_new_label();
4573 label_continue = gen_new_label();
4574 arm_gen_test_cc(cond, label_match);
4575 /* nomatch: */
4576 tcg_flags = tcg_const_i64(nzcv << 28);
4577 gen_set_nzcv(tcg_flags);
4578 tcg_temp_free_i64(tcg_flags);
4579 tcg_gen_br(label_continue);
4580 gen_set_label(label_match);
4583 handle_fp_compare(s, type, rn, rm, false, op);
4585 if (cond < 0x0e) {
4586 gen_set_label(label_continue);
4590 /* Floating point conditional select
4591 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4592 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4593 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4594 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4596 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4598 unsigned int mos, type, rm, cond, rn, rd;
4599 TCGv_i64 t_true, t_false, t_zero;
4600 DisasCompare64 c;
4602 mos = extract32(insn, 29, 3);
4603 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4604 rm = extract32(insn, 16, 5);
4605 cond = extract32(insn, 12, 4);
4606 rn = extract32(insn, 5, 5);
4607 rd = extract32(insn, 0, 5);
4609 if (mos || type > 1) {
4610 unallocated_encoding(s);
4611 return;
4614 if (!fp_access_check(s)) {
4615 return;
4618 /* Zero extend sreg inputs to 64 bits now. */
4619 t_true = tcg_temp_new_i64();
4620 t_false = tcg_temp_new_i64();
4621 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4622 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4624 a64_test_cc(&c, cond);
4625 t_zero = tcg_const_i64(0);
4626 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4627 tcg_temp_free_i64(t_zero);
4628 tcg_temp_free_i64(t_false);
4629 a64_free_cc(&c);
4631 /* Note that sregs write back zeros to the high bits,
4632 and we've already done the zero-extension. */
4633 write_fp_dreg(s, rd, t_true);
4634 tcg_temp_free_i64(t_true);
4637 /* Floating-point data-processing (1 source) - half precision */
4638 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
4640 TCGv_ptr fpst = NULL;
4641 TCGv_i32 tcg_op = tcg_temp_new_i32();
4642 TCGv_i32 tcg_res = tcg_temp_new_i32();
4644 read_vec_element_i32(s, tcg_op, rn, 0, MO_16);
4646 switch (opcode) {
4647 case 0x0: /* FMOV */
4648 tcg_gen_mov_i32(tcg_res, tcg_op);
4649 break;
4650 case 0x1: /* FABS */
4651 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
4652 break;
4653 case 0x2: /* FNEG */
4654 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
4655 break;
4656 case 0x3: /* FSQRT */
4657 gen_helper_sqrt_f16(tcg_res, tcg_op, cpu_env);
4658 break;
4659 case 0x8: /* FRINTN */
4660 case 0x9: /* FRINTP */
4661 case 0xa: /* FRINTM */
4662 case 0xb: /* FRINTZ */
4663 case 0xc: /* FRINTA */
4665 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4666 fpst = get_fpstatus_ptr(true);
4668 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4669 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4671 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4672 tcg_temp_free_i32(tcg_rmode);
4673 break;
4675 case 0xe: /* FRINTX */
4676 fpst = get_fpstatus_ptr(true);
4677 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
4678 break;
4679 case 0xf: /* FRINTI */
4680 fpst = get_fpstatus_ptr(true);
4681 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4682 break;
4683 default:
4684 abort();
4687 write_fp_sreg(s, rd, tcg_res);
4689 if (fpst) {
4690 tcg_temp_free_ptr(fpst);
4692 tcg_temp_free_i32(tcg_op);
4693 tcg_temp_free_i32(tcg_res);
4696 /* Floating-point data-processing (1 source) - single precision */
4697 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4699 TCGv_ptr fpst;
4700 TCGv_i32 tcg_op;
4701 TCGv_i32 tcg_res;
4703 fpst = get_fpstatus_ptr(false);
4704 tcg_op = read_fp_sreg(s, rn);
4705 tcg_res = tcg_temp_new_i32();
4707 switch (opcode) {
4708 case 0x0: /* FMOV */
4709 tcg_gen_mov_i32(tcg_res, tcg_op);
4710 break;
4711 case 0x1: /* FABS */
4712 gen_helper_vfp_abss(tcg_res, tcg_op);
4713 break;
4714 case 0x2: /* FNEG */
4715 gen_helper_vfp_negs(tcg_res, tcg_op);
4716 break;
4717 case 0x3: /* FSQRT */
4718 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4719 break;
4720 case 0x8: /* FRINTN */
4721 case 0x9: /* FRINTP */
4722 case 0xa: /* FRINTM */
4723 case 0xb: /* FRINTZ */
4724 case 0xc: /* FRINTA */
4726 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4728 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4729 gen_helper_rints(tcg_res, tcg_op, fpst);
4731 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4732 tcg_temp_free_i32(tcg_rmode);
4733 break;
4735 case 0xe: /* FRINTX */
4736 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4737 break;
4738 case 0xf: /* FRINTI */
4739 gen_helper_rints(tcg_res, tcg_op, fpst);
4740 break;
4741 default:
4742 abort();
4745 write_fp_sreg(s, rd, tcg_res);
4747 tcg_temp_free_ptr(fpst);
4748 tcg_temp_free_i32(tcg_op);
4749 tcg_temp_free_i32(tcg_res);
4752 /* Floating-point data-processing (1 source) - double precision */
4753 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4755 TCGv_ptr fpst;
4756 TCGv_i64 tcg_op;
4757 TCGv_i64 tcg_res;
4759 switch (opcode) {
4760 case 0x0: /* FMOV */
4761 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
4762 return;
4765 fpst = get_fpstatus_ptr(false);
4766 tcg_op = read_fp_dreg(s, rn);
4767 tcg_res = tcg_temp_new_i64();
4769 switch (opcode) {
4770 case 0x1: /* FABS */
4771 gen_helper_vfp_absd(tcg_res, tcg_op);
4772 break;
4773 case 0x2: /* FNEG */
4774 gen_helper_vfp_negd(tcg_res, tcg_op);
4775 break;
4776 case 0x3: /* FSQRT */
4777 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4778 break;
4779 case 0x8: /* FRINTN */
4780 case 0x9: /* FRINTP */
4781 case 0xa: /* FRINTM */
4782 case 0xb: /* FRINTZ */
4783 case 0xc: /* FRINTA */
4785 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4787 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4788 gen_helper_rintd(tcg_res, tcg_op, fpst);
4790 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4791 tcg_temp_free_i32(tcg_rmode);
4792 break;
4794 case 0xe: /* FRINTX */
4795 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4796 break;
4797 case 0xf: /* FRINTI */
4798 gen_helper_rintd(tcg_res, tcg_op, fpst);
4799 break;
4800 default:
4801 abort();
4804 write_fp_dreg(s, rd, tcg_res);
4806 tcg_temp_free_ptr(fpst);
4807 tcg_temp_free_i64(tcg_op);
4808 tcg_temp_free_i64(tcg_res);
4811 static void handle_fp_fcvt(DisasContext *s, int opcode,
4812 int rd, int rn, int dtype, int ntype)
4814 switch (ntype) {
4815 case 0x0:
4817 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4818 if (dtype == 1) {
4819 /* Single to double */
4820 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4821 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4822 write_fp_dreg(s, rd, tcg_rd);
4823 tcg_temp_free_i64(tcg_rd);
4824 } else {
4825 /* Single to half */
4826 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4827 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4828 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4829 write_fp_sreg(s, rd, tcg_rd);
4830 tcg_temp_free_i32(tcg_rd);
4832 tcg_temp_free_i32(tcg_rn);
4833 break;
4835 case 0x1:
4837 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4838 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4839 if (dtype == 0) {
4840 /* Double to single */
4841 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4842 } else {
4843 /* Double to half */
4844 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4845 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4847 write_fp_sreg(s, rd, tcg_rd);
4848 tcg_temp_free_i32(tcg_rd);
4849 tcg_temp_free_i64(tcg_rn);
4850 break;
4852 case 0x3:
4854 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4855 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4856 if (dtype == 0) {
4857 /* Half to single */
4858 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4859 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4860 write_fp_sreg(s, rd, tcg_rd);
4861 tcg_temp_free_i32(tcg_rd);
4862 } else {
4863 /* Half to double */
4864 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4865 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4866 write_fp_dreg(s, rd, tcg_rd);
4867 tcg_temp_free_i64(tcg_rd);
4869 tcg_temp_free_i32(tcg_rn);
4870 break;
4872 default:
4873 abort();
4877 /* Floating point data-processing (1 source)
4878 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4879 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4880 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4881 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4883 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4885 int type = extract32(insn, 22, 2);
4886 int opcode = extract32(insn, 15, 6);
4887 int rn = extract32(insn, 5, 5);
4888 int rd = extract32(insn, 0, 5);
4890 switch (opcode) {
4891 case 0x4: case 0x5: case 0x7:
4893 /* FCVT between half, single and double precision */
4894 int dtype = extract32(opcode, 0, 2);
4895 if (type == 2 || dtype == type) {
4896 unallocated_encoding(s);
4897 return;
4899 if (!fp_access_check(s)) {
4900 return;
4903 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4904 break;
4906 case 0x0 ... 0x3:
4907 case 0x8 ... 0xc:
4908 case 0xe ... 0xf:
4909 /* 32-to-32 and 64-to-64 ops */
4910 switch (type) {
4911 case 0:
4912 if (!fp_access_check(s)) {
4913 return;
4916 handle_fp_1src_single(s, opcode, rd, rn);
4917 break;
4918 case 1:
4919 if (!fp_access_check(s)) {
4920 return;
4923 handle_fp_1src_double(s, opcode, rd, rn);
4924 break;
4925 case 3:
4926 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4927 unallocated_encoding(s);
4928 return;
4931 if (!fp_access_check(s)) {
4932 return;
4935 handle_fp_1src_half(s, opcode, rd, rn);
4936 break;
4937 default:
4938 unallocated_encoding(s);
4940 break;
4941 default:
4942 unallocated_encoding(s);
4943 break;
4947 /* Floating-point data-processing (2 source) - single precision */
4948 static void handle_fp_2src_single(DisasContext *s, int opcode,
4949 int rd, int rn, int rm)
4951 TCGv_i32 tcg_op1;
4952 TCGv_i32 tcg_op2;
4953 TCGv_i32 tcg_res;
4954 TCGv_ptr fpst;
4956 tcg_res = tcg_temp_new_i32();
4957 fpst = get_fpstatus_ptr(false);
4958 tcg_op1 = read_fp_sreg(s, rn);
4959 tcg_op2 = read_fp_sreg(s, rm);
4961 switch (opcode) {
4962 case 0x0: /* FMUL */
4963 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4964 break;
4965 case 0x1: /* FDIV */
4966 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4967 break;
4968 case 0x2: /* FADD */
4969 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4970 break;
4971 case 0x3: /* FSUB */
4972 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4973 break;
4974 case 0x4: /* FMAX */
4975 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4976 break;
4977 case 0x5: /* FMIN */
4978 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4979 break;
4980 case 0x6: /* FMAXNM */
4981 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4982 break;
4983 case 0x7: /* FMINNM */
4984 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4985 break;
4986 case 0x8: /* FNMUL */
4987 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4988 gen_helper_vfp_negs(tcg_res, tcg_res);
4989 break;
4992 write_fp_sreg(s, rd, tcg_res);
4994 tcg_temp_free_ptr(fpst);
4995 tcg_temp_free_i32(tcg_op1);
4996 tcg_temp_free_i32(tcg_op2);
4997 tcg_temp_free_i32(tcg_res);
5000 /* Floating-point data-processing (2 source) - double precision */
5001 static void handle_fp_2src_double(DisasContext *s, int opcode,
5002 int rd, int rn, int rm)
5004 TCGv_i64 tcg_op1;
5005 TCGv_i64 tcg_op2;
5006 TCGv_i64 tcg_res;
5007 TCGv_ptr fpst;
5009 tcg_res = tcg_temp_new_i64();
5010 fpst = get_fpstatus_ptr(false);
5011 tcg_op1 = read_fp_dreg(s, rn);
5012 tcg_op2 = read_fp_dreg(s, rm);
5014 switch (opcode) {
5015 case 0x0: /* FMUL */
5016 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5017 break;
5018 case 0x1: /* FDIV */
5019 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5020 break;
5021 case 0x2: /* FADD */
5022 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5023 break;
5024 case 0x3: /* FSUB */
5025 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5026 break;
5027 case 0x4: /* FMAX */
5028 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5029 break;
5030 case 0x5: /* FMIN */
5031 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5032 break;
5033 case 0x6: /* FMAXNM */
5034 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5035 break;
5036 case 0x7: /* FMINNM */
5037 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5038 break;
5039 case 0x8: /* FNMUL */
5040 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5041 gen_helper_vfp_negd(tcg_res, tcg_res);
5042 break;
5045 write_fp_dreg(s, rd, tcg_res);
5047 tcg_temp_free_ptr(fpst);
5048 tcg_temp_free_i64(tcg_op1);
5049 tcg_temp_free_i64(tcg_op2);
5050 tcg_temp_free_i64(tcg_res);
5053 /* Floating point data-processing (2 source)
5054 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5055 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5056 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5057 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5059 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5061 int type = extract32(insn, 22, 2);
5062 int rd = extract32(insn, 0, 5);
5063 int rn = extract32(insn, 5, 5);
5064 int rm = extract32(insn, 16, 5);
5065 int opcode = extract32(insn, 12, 4);
5067 if (opcode > 8) {
5068 unallocated_encoding(s);
5069 return;
5072 switch (type) {
5073 case 0:
5074 if (!fp_access_check(s)) {
5075 return;
5077 handle_fp_2src_single(s, opcode, rd, rn, rm);
5078 break;
5079 case 1:
5080 if (!fp_access_check(s)) {
5081 return;
5083 handle_fp_2src_double(s, opcode, rd, rn, rm);
5084 break;
5085 default:
5086 unallocated_encoding(s);
5090 /* Floating-point data-processing (3 source) - single precision */
5091 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5092 int rd, int rn, int rm, int ra)
5094 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5095 TCGv_i32 tcg_res = tcg_temp_new_i32();
5096 TCGv_ptr fpst = get_fpstatus_ptr(false);
5098 tcg_op1 = read_fp_sreg(s, rn);
5099 tcg_op2 = read_fp_sreg(s, rm);
5100 tcg_op3 = read_fp_sreg(s, ra);
5102 /* These are fused multiply-add, and must be done as one
5103 * floating point operation with no rounding between the
5104 * multiplication and addition steps.
5105 * NB that doing the negations here as separate steps is
5106 * correct : an input NaN should come out with its sign bit
5107 * flipped if it is a negated-input.
5109 if (o1 == true) {
5110 gen_helper_vfp_negs(tcg_op3, tcg_op3);
5113 if (o0 != o1) {
5114 gen_helper_vfp_negs(tcg_op1, tcg_op1);
5117 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5119 write_fp_sreg(s, rd, tcg_res);
5121 tcg_temp_free_ptr(fpst);
5122 tcg_temp_free_i32(tcg_op1);
5123 tcg_temp_free_i32(tcg_op2);
5124 tcg_temp_free_i32(tcg_op3);
5125 tcg_temp_free_i32(tcg_res);
5128 /* Floating-point data-processing (3 source) - double precision */
5129 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
5130 int rd, int rn, int rm, int ra)
5132 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
5133 TCGv_i64 tcg_res = tcg_temp_new_i64();
5134 TCGv_ptr fpst = get_fpstatus_ptr(false);
5136 tcg_op1 = read_fp_dreg(s, rn);
5137 tcg_op2 = read_fp_dreg(s, rm);
5138 tcg_op3 = read_fp_dreg(s, ra);
5140 /* These are fused multiply-add, and must be done as one
5141 * floating point operation with no rounding between the
5142 * multiplication and addition steps.
5143 * NB that doing the negations here as separate steps is
5144 * correct : an input NaN should come out with its sign bit
5145 * flipped if it is a negated-input.
5147 if (o1 == true) {
5148 gen_helper_vfp_negd(tcg_op3, tcg_op3);
5151 if (o0 != o1) {
5152 gen_helper_vfp_negd(tcg_op1, tcg_op1);
5155 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5157 write_fp_dreg(s, rd, tcg_res);
5159 tcg_temp_free_ptr(fpst);
5160 tcg_temp_free_i64(tcg_op1);
5161 tcg_temp_free_i64(tcg_op2);
5162 tcg_temp_free_i64(tcg_op3);
5163 tcg_temp_free_i64(tcg_res);
5166 /* Floating point data-processing (3 source)
5167 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
5168 * +---+---+---+-----------+------+----+------+----+------+------+------+
5169 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
5170 * +---+---+---+-----------+------+----+------+----+------+------+------+
5172 static void disas_fp_3src(DisasContext *s, uint32_t insn)
5174 int type = extract32(insn, 22, 2);
5175 int rd = extract32(insn, 0, 5);
5176 int rn = extract32(insn, 5, 5);
5177 int ra = extract32(insn, 10, 5);
5178 int rm = extract32(insn, 16, 5);
5179 bool o0 = extract32(insn, 15, 1);
5180 bool o1 = extract32(insn, 21, 1);
5182 switch (type) {
5183 case 0:
5184 if (!fp_access_check(s)) {
5185 return;
5187 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
5188 break;
5189 case 1:
5190 if (!fp_access_check(s)) {
5191 return;
5193 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
5194 break;
5195 default:
5196 unallocated_encoding(s);
5200 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
5201 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
5202 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
5204 static uint64_t vfp_expand_imm(int size, uint8_t imm8)
5206 uint64_t imm;
5208 switch (size) {
5209 case MO_64:
5210 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5211 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5212 extract32(imm8, 0, 6);
5213 imm <<= 48;
5214 break;
5215 case MO_32:
5216 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5217 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5218 (extract32(imm8, 0, 6) << 3);
5219 imm <<= 16;
5220 break;
5221 case MO_16:
5222 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5223 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
5224 (extract32(imm8, 0, 6) << 6);
5225 break;
5226 default:
5227 g_assert_not_reached();
5229 return imm;
5232 /* Floating point immediate
5233 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
5234 * +---+---+---+-----------+------+---+------------+-------+------+------+
5235 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
5236 * +---+---+---+-----------+------+---+------------+-------+------+------+
5238 static void disas_fp_imm(DisasContext *s, uint32_t insn)
5240 int rd = extract32(insn, 0, 5);
5241 int imm8 = extract32(insn, 13, 8);
5242 int is_double = extract32(insn, 22, 2);
5243 uint64_t imm;
5244 TCGv_i64 tcg_res;
5246 if (is_double > 1) {
5247 unallocated_encoding(s);
5248 return;
5251 if (!fp_access_check(s)) {
5252 return;
5255 imm = vfp_expand_imm(MO_32 + is_double, imm8);
5257 tcg_res = tcg_const_i64(imm);
5258 write_fp_dreg(s, rd, tcg_res);
5259 tcg_temp_free_i64(tcg_res);
5262 /* Handle floating point <=> fixed point conversions. Note that we can
5263 * also deal with fp <=> integer conversions as a special case (scale == 64)
5264 * OPTME: consider handling that special case specially or at least skipping
5265 * the call to scalbn in the helpers for zero shifts.
5267 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5268 bool itof, int rmode, int scale, int sf, int type)
5270 bool is_signed = !(opcode & 1);
5271 bool is_double = type;
5272 TCGv_ptr tcg_fpstatus;
5273 TCGv_i32 tcg_shift;
5275 tcg_fpstatus = get_fpstatus_ptr(false);
5277 tcg_shift = tcg_const_i32(64 - scale);
5279 if (itof) {
5280 TCGv_i64 tcg_int = cpu_reg(s, rn);
5281 if (!sf) {
5282 TCGv_i64 tcg_extend = new_tmp_a64(s);
5284 if (is_signed) {
5285 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5286 } else {
5287 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5290 tcg_int = tcg_extend;
5293 if (is_double) {
5294 TCGv_i64 tcg_double = tcg_temp_new_i64();
5295 if (is_signed) {
5296 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5297 tcg_shift, tcg_fpstatus);
5298 } else {
5299 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5300 tcg_shift, tcg_fpstatus);
5302 write_fp_dreg(s, rd, tcg_double);
5303 tcg_temp_free_i64(tcg_double);
5304 } else {
5305 TCGv_i32 tcg_single = tcg_temp_new_i32();
5306 if (is_signed) {
5307 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5308 tcg_shift, tcg_fpstatus);
5309 } else {
5310 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5311 tcg_shift, tcg_fpstatus);
5313 write_fp_sreg(s, rd, tcg_single);
5314 tcg_temp_free_i32(tcg_single);
5316 } else {
5317 TCGv_i64 tcg_int = cpu_reg(s, rd);
5318 TCGv_i32 tcg_rmode;
5320 if (extract32(opcode, 2, 1)) {
5321 /* There are too many rounding modes to all fit into rmode,
5322 * so FCVTA[US] is a special case.
5324 rmode = FPROUNDING_TIEAWAY;
5327 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5329 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5331 if (is_double) {
5332 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
5333 if (is_signed) {
5334 if (!sf) {
5335 gen_helper_vfp_tosld(tcg_int, tcg_double,
5336 tcg_shift, tcg_fpstatus);
5337 } else {
5338 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5339 tcg_shift, tcg_fpstatus);
5341 } else {
5342 if (!sf) {
5343 gen_helper_vfp_tould(tcg_int, tcg_double,
5344 tcg_shift, tcg_fpstatus);
5345 } else {
5346 gen_helper_vfp_touqd(tcg_int, tcg_double,
5347 tcg_shift, tcg_fpstatus);
5350 tcg_temp_free_i64(tcg_double);
5351 } else {
5352 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
5353 if (sf) {
5354 if (is_signed) {
5355 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5356 tcg_shift, tcg_fpstatus);
5357 } else {
5358 gen_helper_vfp_touqs(tcg_int, tcg_single,
5359 tcg_shift, tcg_fpstatus);
5361 } else {
5362 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5363 if (is_signed) {
5364 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5365 tcg_shift, tcg_fpstatus);
5366 } else {
5367 gen_helper_vfp_touls(tcg_dest, tcg_single,
5368 tcg_shift, tcg_fpstatus);
5370 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5371 tcg_temp_free_i32(tcg_dest);
5373 tcg_temp_free_i32(tcg_single);
5376 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5377 tcg_temp_free_i32(tcg_rmode);
5379 if (!sf) {
5380 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5384 tcg_temp_free_ptr(tcg_fpstatus);
5385 tcg_temp_free_i32(tcg_shift);
5388 /* Floating point <-> fixed point conversions
5389 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5390 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5391 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5392 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5394 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5396 int rd = extract32(insn, 0, 5);
5397 int rn = extract32(insn, 5, 5);
5398 int scale = extract32(insn, 10, 6);
5399 int opcode = extract32(insn, 16, 3);
5400 int rmode = extract32(insn, 19, 2);
5401 int type = extract32(insn, 22, 2);
5402 bool sbit = extract32(insn, 29, 1);
5403 bool sf = extract32(insn, 31, 1);
5404 bool itof;
5406 if (sbit || (type > 1)
5407 || (!sf && scale < 32)) {
5408 unallocated_encoding(s);
5409 return;
5412 switch ((rmode << 3) | opcode) {
5413 case 0x2: /* SCVTF */
5414 case 0x3: /* UCVTF */
5415 itof = true;
5416 break;
5417 case 0x18: /* FCVTZS */
5418 case 0x19: /* FCVTZU */
5419 itof = false;
5420 break;
5421 default:
5422 unallocated_encoding(s);
5423 return;
5426 if (!fp_access_check(s)) {
5427 return;
5430 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5433 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5435 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5436 * without conversion.
5439 if (itof) {
5440 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5442 switch (type) {
5443 case 0:
5445 /* 32 bit */
5446 TCGv_i64 tmp = tcg_temp_new_i64();
5447 tcg_gen_ext32u_i64(tmp, tcg_rn);
5448 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5449 tcg_gen_movi_i64(tmp, 0);
5450 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5451 tcg_temp_free_i64(tmp);
5452 break;
5454 case 1:
5456 /* 64 bit */
5457 TCGv_i64 tmp = tcg_const_i64(0);
5458 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5459 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5460 tcg_temp_free_i64(tmp);
5461 break;
5463 case 2:
5464 /* 64 bit to top half. */
5465 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5466 break;
5468 } else {
5469 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5471 switch (type) {
5472 case 0:
5473 /* 32 bit */
5474 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5475 break;
5476 case 1:
5477 /* 64 bit */
5478 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5479 break;
5480 case 2:
5481 /* 64 bits from top half */
5482 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5483 break;
5488 /* Floating point <-> integer conversions
5489 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5490 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5491 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5492 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5494 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5496 int rd = extract32(insn, 0, 5);
5497 int rn = extract32(insn, 5, 5);
5498 int opcode = extract32(insn, 16, 3);
5499 int rmode = extract32(insn, 19, 2);
5500 int type = extract32(insn, 22, 2);
5501 bool sbit = extract32(insn, 29, 1);
5502 bool sf = extract32(insn, 31, 1);
5504 if (sbit) {
5505 unallocated_encoding(s);
5506 return;
5509 if (opcode > 5) {
5510 /* FMOV */
5511 bool itof = opcode & 1;
5513 if (rmode >= 2) {
5514 unallocated_encoding(s);
5515 return;
5518 switch (sf << 3 | type << 1 | rmode) {
5519 case 0x0: /* 32 bit */
5520 case 0xa: /* 64 bit */
5521 case 0xd: /* 64 bit to top half of quad */
5522 break;
5523 default:
5524 /* all other sf/type/rmode combinations are invalid */
5525 unallocated_encoding(s);
5526 break;
5529 if (!fp_access_check(s)) {
5530 return;
5532 handle_fmov(s, rd, rn, type, itof);
5533 } else {
5534 /* actual FP conversions */
5535 bool itof = extract32(opcode, 1, 1);
5537 if (type > 1 || (rmode != 0 && opcode > 1)) {
5538 unallocated_encoding(s);
5539 return;
5542 if (!fp_access_check(s)) {
5543 return;
5545 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5549 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5550 * 31 30 29 28 25 24 0
5551 * +---+---+---+---------+-----------------------------+
5552 * | | 0 | | 1 1 1 1 | |
5553 * +---+---+---+---------+-----------------------------+
5555 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5557 if (extract32(insn, 24, 1)) {
5558 /* Floating point data-processing (3 source) */
5559 disas_fp_3src(s, insn);
5560 } else if (extract32(insn, 21, 1) == 0) {
5561 /* Floating point to fixed point conversions */
5562 disas_fp_fixed_conv(s, insn);
5563 } else {
5564 switch (extract32(insn, 10, 2)) {
5565 case 1:
5566 /* Floating point conditional compare */
5567 disas_fp_ccomp(s, insn);
5568 break;
5569 case 2:
5570 /* Floating point data-processing (2 source) */
5571 disas_fp_2src(s, insn);
5572 break;
5573 case 3:
5574 /* Floating point conditional select */
5575 disas_fp_csel(s, insn);
5576 break;
5577 case 0:
5578 switch (ctz32(extract32(insn, 12, 4))) {
5579 case 0: /* [15:12] == xxx1 */
5580 /* Floating point immediate */
5581 disas_fp_imm(s, insn);
5582 break;
5583 case 1: /* [15:12] == xx10 */
5584 /* Floating point compare */
5585 disas_fp_compare(s, insn);
5586 break;
5587 case 2: /* [15:12] == x100 */
5588 /* Floating point data-processing (1 source) */
5589 disas_fp_1src(s, insn);
5590 break;
5591 case 3: /* [15:12] == 1000 */
5592 unallocated_encoding(s);
5593 break;
5594 default: /* [15:12] == 0000 */
5595 /* Floating point <-> integer conversions */
5596 disas_fp_int_conv(s, insn);
5597 break;
5599 break;
5604 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5605 int pos)
5607 /* Extract 64 bits from the middle of two concatenated 64 bit
5608 * vector register slices left:right. The extracted bits start
5609 * at 'pos' bits into the right (least significant) side.
5610 * We return the result in tcg_right, and guarantee not to
5611 * trash tcg_left.
5613 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5614 assert(pos > 0 && pos < 64);
5616 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5617 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5618 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5620 tcg_temp_free_i64(tcg_tmp);
5623 /* EXT
5624 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5625 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5626 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5627 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5629 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5631 int is_q = extract32(insn, 30, 1);
5632 int op2 = extract32(insn, 22, 2);
5633 int imm4 = extract32(insn, 11, 4);
5634 int rm = extract32(insn, 16, 5);
5635 int rn = extract32(insn, 5, 5);
5636 int rd = extract32(insn, 0, 5);
5637 int pos = imm4 << 3;
5638 TCGv_i64 tcg_resl, tcg_resh;
5640 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5641 unallocated_encoding(s);
5642 return;
5645 if (!fp_access_check(s)) {
5646 return;
5649 tcg_resh = tcg_temp_new_i64();
5650 tcg_resl = tcg_temp_new_i64();
5652 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5653 * either extracting 128 bits from a 128:128 concatenation, or
5654 * extracting 64 bits from a 64:64 concatenation.
5656 if (!is_q) {
5657 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5658 if (pos != 0) {
5659 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5660 do_ext64(s, tcg_resh, tcg_resl, pos);
5662 tcg_gen_movi_i64(tcg_resh, 0);
5663 } else {
5664 TCGv_i64 tcg_hh;
5665 typedef struct {
5666 int reg;
5667 int elt;
5668 } EltPosns;
5669 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5670 EltPosns *elt = eltposns;
5672 if (pos >= 64) {
5673 elt++;
5674 pos -= 64;
5677 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5678 elt++;
5679 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5680 elt++;
5681 if (pos != 0) {
5682 do_ext64(s, tcg_resh, tcg_resl, pos);
5683 tcg_hh = tcg_temp_new_i64();
5684 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5685 do_ext64(s, tcg_hh, tcg_resh, pos);
5686 tcg_temp_free_i64(tcg_hh);
5690 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5691 tcg_temp_free_i64(tcg_resl);
5692 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5693 tcg_temp_free_i64(tcg_resh);
5696 /* TBL/TBX
5697 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5698 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5699 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5700 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5702 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5704 int op2 = extract32(insn, 22, 2);
5705 int is_q = extract32(insn, 30, 1);
5706 int rm = extract32(insn, 16, 5);
5707 int rn = extract32(insn, 5, 5);
5708 int rd = extract32(insn, 0, 5);
5709 int is_tblx = extract32(insn, 12, 1);
5710 int len = extract32(insn, 13, 2);
5711 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5712 TCGv_i32 tcg_regno, tcg_numregs;
5714 if (op2 != 0) {
5715 unallocated_encoding(s);
5716 return;
5719 if (!fp_access_check(s)) {
5720 return;
5723 /* This does a table lookup: for every byte element in the input
5724 * we index into a table formed from up to four vector registers,
5725 * and then the output is the result of the lookups. Our helper
5726 * function does the lookup operation for a single 64 bit part of
5727 * the input.
5729 tcg_resl = tcg_temp_new_i64();
5730 tcg_resh = tcg_temp_new_i64();
5732 if (is_tblx) {
5733 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5734 } else {
5735 tcg_gen_movi_i64(tcg_resl, 0);
5737 if (is_tblx && is_q) {
5738 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5739 } else {
5740 tcg_gen_movi_i64(tcg_resh, 0);
5743 tcg_idx = tcg_temp_new_i64();
5744 tcg_regno = tcg_const_i32(rn);
5745 tcg_numregs = tcg_const_i32(len + 1);
5746 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5747 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5748 tcg_regno, tcg_numregs);
5749 if (is_q) {
5750 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5751 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5752 tcg_regno, tcg_numregs);
5754 tcg_temp_free_i64(tcg_idx);
5755 tcg_temp_free_i32(tcg_regno);
5756 tcg_temp_free_i32(tcg_numregs);
5758 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5759 tcg_temp_free_i64(tcg_resl);
5760 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5761 tcg_temp_free_i64(tcg_resh);
5764 /* ZIP/UZP/TRN
5765 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5766 * +---+---+-------------+------+---+------+---+------------------+------+
5767 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5768 * +---+---+-------------+------+---+------+---+------------------+------+
5770 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5772 int rd = extract32(insn, 0, 5);
5773 int rn = extract32(insn, 5, 5);
5774 int rm = extract32(insn, 16, 5);
5775 int size = extract32(insn, 22, 2);
5776 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5777 * bit 2 indicates 1 vs 2 variant of the insn.
5779 int opcode = extract32(insn, 12, 2);
5780 bool part = extract32(insn, 14, 1);
5781 bool is_q = extract32(insn, 30, 1);
5782 int esize = 8 << size;
5783 int i, ofs;
5784 int datasize = is_q ? 128 : 64;
5785 int elements = datasize / esize;
5786 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5788 if (opcode == 0 || (size == 3 && !is_q)) {
5789 unallocated_encoding(s);
5790 return;
5793 if (!fp_access_check(s)) {
5794 return;
5797 tcg_resl = tcg_const_i64(0);
5798 tcg_resh = tcg_const_i64(0);
5799 tcg_res = tcg_temp_new_i64();
5801 for (i = 0; i < elements; i++) {
5802 switch (opcode) {
5803 case 1: /* UZP1/2 */
5805 int midpoint = elements / 2;
5806 if (i < midpoint) {
5807 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5808 } else {
5809 read_vec_element(s, tcg_res, rm,
5810 2 * (i - midpoint) + part, size);
5812 break;
5814 case 2: /* TRN1/2 */
5815 if (i & 1) {
5816 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5817 } else {
5818 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5820 break;
5821 case 3: /* ZIP1/2 */
5823 int base = part * elements / 2;
5824 if (i & 1) {
5825 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5826 } else {
5827 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5829 break;
5831 default:
5832 g_assert_not_reached();
5835 ofs = i * esize;
5836 if (ofs < 64) {
5837 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5838 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5839 } else {
5840 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5841 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5845 tcg_temp_free_i64(tcg_res);
5847 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5848 tcg_temp_free_i64(tcg_resl);
5849 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5850 tcg_temp_free_i64(tcg_resh);
5854 * do_reduction_op helper
5856 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
5857 * important for correct NaN propagation that we do these
5858 * operations in exactly the order specified by the pseudocode.
5860 * This is a recursive function, TCG temps should be freed by the
5861 * calling function once it is done with the values.
5863 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
5864 int esize, int size, int vmap, TCGv_ptr fpst)
5866 if (esize == size) {
5867 int element;
5868 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
5869 TCGv_i32 tcg_elem;
5871 /* We should have one register left here */
5872 assert(ctpop8(vmap) == 1);
5873 element = ctz32(vmap);
5874 assert(element < 8);
5876 tcg_elem = tcg_temp_new_i32();
5877 read_vec_element_i32(s, tcg_elem, rn, element, msize);
5878 return tcg_elem;
5879 } else {
5880 int bits = size / 2;
5881 int shift = ctpop8(vmap) / 2;
5882 int vmap_lo = (vmap >> shift) & vmap;
5883 int vmap_hi = (vmap & ~vmap_lo);
5884 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
5886 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
5887 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
5888 tcg_res = tcg_temp_new_i32();
5890 switch (fpopcode) {
5891 case 0x0c: /* fmaxnmv half-precision */
5892 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
5893 break;
5894 case 0x0f: /* fmaxv half-precision */
5895 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
5896 break;
5897 case 0x1c: /* fminnmv half-precision */
5898 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
5899 break;
5900 case 0x1f: /* fminv half-precision */
5901 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
5902 break;
5903 case 0x2c: /* fmaxnmv */
5904 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
5905 break;
5906 case 0x2f: /* fmaxv */
5907 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
5908 break;
5909 case 0x3c: /* fminnmv */
5910 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
5911 break;
5912 case 0x3f: /* fminv */
5913 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
5914 break;
5915 default:
5916 g_assert_not_reached();
5919 tcg_temp_free_i32(tcg_hi);
5920 tcg_temp_free_i32(tcg_lo);
5921 return tcg_res;
5925 /* AdvSIMD across lanes
5926 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5927 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5928 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5929 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5931 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5933 int rd = extract32(insn, 0, 5);
5934 int rn = extract32(insn, 5, 5);
5935 int size = extract32(insn, 22, 2);
5936 int opcode = extract32(insn, 12, 5);
5937 bool is_q = extract32(insn, 30, 1);
5938 bool is_u = extract32(insn, 29, 1);
5939 bool is_fp = false;
5940 bool is_min = false;
5941 int esize;
5942 int elements;
5943 int i;
5944 TCGv_i64 tcg_res, tcg_elt;
5946 switch (opcode) {
5947 case 0x1b: /* ADDV */
5948 if (is_u) {
5949 unallocated_encoding(s);
5950 return;
5952 /* fall through */
5953 case 0x3: /* SADDLV, UADDLV */
5954 case 0xa: /* SMAXV, UMAXV */
5955 case 0x1a: /* SMINV, UMINV */
5956 if (size == 3 || (size == 2 && !is_q)) {
5957 unallocated_encoding(s);
5958 return;
5960 break;
5961 case 0xc: /* FMAXNMV, FMINNMV */
5962 case 0xf: /* FMAXV, FMINV */
5963 /* Bit 1 of size field encodes min vs max and the actual size
5964 * depends on the encoding of the U bit. If not set (and FP16
5965 * enabled) then we do half-precision float instead of single
5966 * precision.
5968 is_min = extract32(size, 1, 1);
5969 is_fp = true;
5970 if (!is_u && arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5971 size = 1;
5972 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
5973 unallocated_encoding(s);
5974 return;
5975 } else {
5976 size = 2;
5978 break;
5979 default:
5980 unallocated_encoding(s);
5981 return;
5984 if (!fp_access_check(s)) {
5985 return;
5988 esize = 8 << size;
5989 elements = (is_q ? 128 : 64) / esize;
5991 tcg_res = tcg_temp_new_i64();
5992 tcg_elt = tcg_temp_new_i64();
5994 /* These instructions operate across all lanes of a vector
5995 * to produce a single result. We can guarantee that a 64
5996 * bit intermediate is sufficient:
5997 * + for [US]ADDLV the maximum element size is 32 bits, and
5998 * the result type is 64 bits
5999 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
6000 * same as the element size, which is 32 bits at most
6001 * For the integer operations we can choose to work at 64
6002 * or 32 bits and truncate at the end; for simplicity
6003 * we use 64 bits always. The floating point
6004 * ops do require 32 bit intermediates, though.
6006 if (!is_fp) {
6007 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
6009 for (i = 1; i < elements; i++) {
6010 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
6012 switch (opcode) {
6013 case 0x03: /* SADDLV / UADDLV */
6014 case 0x1b: /* ADDV */
6015 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
6016 break;
6017 case 0x0a: /* SMAXV / UMAXV */
6018 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
6019 tcg_res,
6020 tcg_res, tcg_elt, tcg_res, tcg_elt);
6021 break;
6022 case 0x1a: /* SMINV / UMINV */
6023 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
6024 tcg_res,
6025 tcg_res, tcg_elt, tcg_res, tcg_elt);
6026 break;
6027 break;
6028 default:
6029 g_assert_not_reached();
6033 } else {
6034 /* Floating point vector reduction ops which work across 32
6035 * bit (single) or 16 bit (half-precision) intermediates.
6036 * Note that correct NaN propagation requires that we do these
6037 * operations in exactly the order specified by the pseudocode.
6039 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
6040 int fpopcode = opcode | is_min << 4 | is_u << 5;
6041 int vmap = (1 << elements) - 1;
6042 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
6043 (is_q ? 128 : 64), vmap, fpst);
6044 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
6045 tcg_temp_free_i32(tcg_res32);
6046 tcg_temp_free_ptr(fpst);
6049 tcg_temp_free_i64(tcg_elt);
6051 /* Now truncate the result to the width required for the final output */
6052 if (opcode == 0x03) {
6053 /* SADDLV, UADDLV: result is 2*esize */
6054 size++;
6057 switch (size) {
6058 case 0:
6059 tcg_gen_ext8u_i64(tcg_res, tcg_res);
6060 break;
6061 case 1:
6062 tcg_gen_ext16u_i64(tcg_res, tcg_res);
6063 break;
6064 case 2:
6065 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6066 break;
6067 case 3:
6068 break;
6069 default:
6070 g_assert_not_reached();
6073 write_fp_dreg(s, rd, tcg_res);
6074 tcg_temp_free_i64(tcg_res);
6077 /* DUP (Element, Vector)
6079 * 31 30 29 21 20 16 15 10 9 5 4 0
6080 * +---+---+-------------------+--------+-------------+------+------+
6081 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6082 * +---+---+-------------------+--------+-------------+------+------+
6084 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6086 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
6087 int imm5)
6089 int size = ctz32(imm5);
6090 int index = imm5 >> (size + 1);
6092 if (size > 3 || (size == 3 && !is_q)) {
6093 unallocated_encoding(s);
6094 return;
6097 if (!fp_access_check(s)) {
6098 return;
6101 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
6102 vec_reg_offset(s, rn, index, size),
6103 is_q ? 16 : 8, vec_full_reg_size(s));
6106 /* DUP (element, scalar)
6107 * 31 21 20 16 15 10 9 5 4 0
6108 * +-----------------------+--------+-------------+------+------+
6109 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6110 * +-----------------------+--------+-------------+------+------+
6112 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
6113 int imm5)
6115 int size = ctz32(imm5);
6116 int index;
6117 TCGv_i64 tmp;
6119 if (size > 3) {
6120 unallocated_encoding(s);
6121 return;
6124 if (!fp_access_check(s)) {
6125 return;
6128 index = imm5 >> (size + 1);
6130 /* This instruction just extracts the specified element and
6131 * zero-extends it into the bottom of the destination register.
6133 tmp = tcg_temp_new_i64();
6134 read_vec_element(s, tmp, rn, index, size);
6135 write_fp_dreg(s, rd, tmp);
6136 tcg_temp_free_i64(tmp);
6139 /* DUP (General)
6141 * 31 30 29 21 20 16 15 10 9 5 4 0
6142 * +---+---+-------------------+--------+-------------+------+------+
6143 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
6144 * +---+---+-------------------+--------+-------------+------+------+
6146 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6148 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
6149 int imm5)
6151 int size = ctz32(imm5);
6152 uint32_t dofs, oprsz, maxsz;
6154 if (size > 3 || ((size == 3) && !is_q)) {
6155 unallocated_encoding(s);
6156 return;
6159 if (!fp_access_check(s)) {
6160 return;
6163 dofs = vec_full_reg_offset(s, rd);
6164 oprsz = is_q ? 16 : 8;
6165 maxsz = vec_full_reg_size(s);
6167 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
6170 /* INS (Element)
6172 * 31 21 20 16 15 14 11 10 9 5 4 0
6173 * +-----------------------+--------+------------+---+------+------+
6174 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6175 * +-----------------------+--------+------------+---+------+------+
6177 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6178 * index: encoded in imm5<4:size+1>
6180 static void handle_simd_inse(DisasContext *s, int rd, int rn,
6181 int imm4, int imm5)
6183 int size = ctz32(imm5);
6184 int src_index, dst_index;
6185 TCGv_i64 tmp;
6187 if (size > 3) {
6188 unallocated_encoding(s);
6189 return;
6192 if (!fp_access_check(s)) {
6193 return;
6196 dst_index = extract32(imm5, 1+size, 5);
6197 src_index = extract32(imm4, size, 4);
6199 tmp = tcg_temp_new_i64();
6201 read_vec_element(s, tmp, rn, src_index, size);
6202 write_vec_element(s, tmp, rd, dst_index, size);
6204 tcg_temp_free_i64(tmp);
6208 /* INS (General)
6210 * 31 21 20 16 15 10 9 5 4 0
6211 * +-----------------------+--------+-------------+------+------+
6212 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
6213 * +-----------------------+--------+-------------+------+------+
6215 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6216 * index: encoded in imm5<4:size+1>
6218 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
6220 int size = ctz32(imm5);
6221 int idx;
6223 if (size > 3) {
6224 unallocated_encoding(s);
6225 return;
6228 if (!fp_access_check(s)) {
6229 return;
6232 idx = extract32(imm5, 1 + size, 4 - size);
6233 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
6237 * UMOV (General)
6238 * SMOV (General)
6240 * 31 30 29 21 20 16 15 12 10 9 5 4 0
6241 * +---+---+-------------------+--------+-------------+------+------+
6242 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
6243 * +---+---+-------------------+--------+-------------+------+------+
6245 * U: unsigned when set
6246 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6248 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
6249 int rn, int rd, int imm5)
6251 int size = ctz32(imm5);
6252 int element;
6253 TCGv_i64 tcg_rd;
6255 /* Check for UnallocatedEncodings */
6256 if (is_signed) {
6257 if (size > 2 || (size == 2 && !is_q)) {
6258 unallocated_encoding(s);
6259 return;
6261 } else {
6262 if (size > 3
6263 || (size < 3 && is_q)
6264 || (size == 3 && !is_q)) {
6265 unallocated_encoding(s);
6266 return;
6270 if (!fp_access_check(s)) {
6271 return;
6274 element = extract32(imm5, 1+size, 4);
6276 tcg_rd = cpu_reg(s, rd);
6277 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6278 if (is_signed && !is_q) {
6279 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6283 /* AdvSIMD copy
6284 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6285 * +---+---+----+-----------------+------+---+------+---+------+------+
6286 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6287 * +---+---+----+-----------------+------+---+------+---+------+------+
6289 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6291 int rd = extract32(insn, 0, 5);
6292 int rn = extract32(insn, 5, 5);
6293 int imm4 = extract32(insn, 11, 4);
6294 int op = extract32(insn, 29, 1);
6295 int is_q = extract32(insn, 30, 1);
6296 int imm5 = extract32(insn, 16, 5);
6298 if (op) {
6299 if (is_q) {
6300 /* INS (element) */
6301 handle_simd_inse(s, rd, rn, imm4, imm5);
6302 } else {
6303 unallocated_encoding(s);
6305 } else {
6306 switch (imm4) {
6307 case 0:
6308 /* DUP (element - vector) */
6309 handle_simd_dupe(s, is_q, rd, rn, imm5);
6310 break;
6311 case 1:
6312 /* DUP (general) */
6313 handle_simd_dupg(s, is_q, rd, rn, imm5);
6314 break;
6315 case 3:
6316 if (is_q) {
6317 /* INS (general) */
6318 handle_simd_insg(s, rd, rn, imm5);
6319 } else {
6320 unallocated_encoding(s);
6322 break;
6323 case 5:
6324 case 7:
6325 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6326 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6327 break;
6328 default:
6329 unallocated_encoding(s);
6330 break;
6335 /* AdvSIMD modified immediate
6336 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6337 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6338 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6339 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6341 * There are a number of operations that can be carried out here:
6342 * MOVI - move (shifted) imm into register
6343 * MVNI - move inverted (shifted) imm into register
6344 * ORR - bitwise OR of (shifted) imm with register
6345 * BIC - bitwise clear of (shifted) imm with register
6346 * With ARMv8.2 we also have:
6347 * FMOV half-precision
6349 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6351 int rd = extract32(insn, 0, 5);
6352 int cmode = extract32(insn, 12, 4);
6353 int cmode_3_1 = extract32(cmode, 1, 3);
6354 int cmode_0 = extract32(cmode, 0, 1);
6355 int o2 = extract32(insn, 11, 1);
6356 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6357 bool is_neg = extract32(insn, 29, 1);
6358 bool is_q = extract32(insn, 30, 1);
6359 uint64_t imm = 0;
6361 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6362 /* Check for FMOV (vector, immediate) - half-precision */
6363 if (!(arm_dc_feature(s, ARM_FEATURE_V8_FP16) && o2 && cmode == 0xf)) {
6364 unallocated_encoding(s);
6365 return;
6369 if (!fp_access_check(s)) {
6370 return;
6373 /* See AdvSIMDExpandImm() in ARM ARM */
6374 switch (cmode_3_1) {
6375 case 0: /* Replicate(Zeros(24):imm8, 2) */
6376 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6377 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6378 case 3: /* Replicate(imm8:Zeros(24), 2) */
6380 int shift = cmode_3_1 * 8;
6381 imm = bitfield_replicate(abcdefgh << shift, 32);
6382 break;
6384 case 4: /* Replicate(Zeros(8):imm8, 4) */
6385 case 5: /* Replicate(imm8:Zeros(8), 4) */
6387 int shift = (cmode_3_1 & 0x1) * 8;
6388 imm = bitfield_replicate(abcdefgh << shift, 16);
6389 break;
6391 case 6:
6392 if (cmode_0) {
6393 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6394 imm = (abcdefgh << 16) | 0xffff;
6395 } else {
6396 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6397 imm = (abcdefgh << 8) | 0xff;
6399 imm = bitfield_replicate(imm, 32);
6400 break;
6401 case 7:
6402 if (!cmode_0 && !is_neg) {
6403 imm = bitfield_replicate(abcdefgh, 8);
6404 } else if (!cmode_0 && is_neg) {
6405 int i;
6406 imm = 0;
6407 for (i = 0; i < 8; i++) {
6408 if ((abcdefgh) & (1 << i)) {
6409 imm |= 0xffULL << (i * 8);
6412 } else if (cmode_0) {
6413 if (is_neg) {
6414 imm = (abcdefgh & 0x3f) << 48;
6415 if (abcdefgh & 0x80) {
6416 imm |= 0x8000000000000000ULL;
6418 if (abcdefgh & 0x40) {
6419 imm |= 0x3fc0000000000000ULL;
6420 } else {
6421 imm |= 0x4000000000000000ULL;
6423 } else {
6424 if (o2) {
6425 /* FMOV (vector, immediate) - half-precision */
6426 imm = vfp_expand_imm(MO_16, abcdefgh);
6427 /* now duplicate across the lanes */
6428 imm = bitfield_replicate(imm, 16);
6429 } else {
6430 imm = (abcdefgh & 0x3f) << 19;
6431 if (abcdefgh & 0x80) {
6432 imm |= 0x80000000;
6434 if (abcdefgh & 0x40) {
6435 imm |= 0x3e000000;
6436 } else {
6437 imm |= 0x40000000;
6439 imm |= (imm << 32);
6443 break;
6444 default:
6445 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
6446 g_assert_not_reached();
6449 if (cmode_3_1 != 7 && is_neg) {
6450 imm = ~imm;
6453 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
6454 /* MOVI or MVNI, with MVNI negation handled above. */
6455 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
6456 vec_full_reg_size(s), imm);
6457 } else {
6458 /* ORR or BIC, with BIC negation to AND handled above. */
6459 if (is_neg) {
6460 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
6461 } else {
6462 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
6467 /* AdvSIMD scalar copy
6468 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6469 * +-----+----+-----------------+------+---+------+---+------+------+
6470 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6471 * +-----+----+-----------------+------+---+------+---+------+------+
6473 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6475 int rd = extract32(insn, 0, 5);
6476 int rn = extract32(insn, 5, 5);
6477 int imm4 = extract32(insn, 11, 4);
6478 int imm5 = extract32(insn, 16, 5);
6479 int op = extract32(insn, 29, 1);
6481 if (op != 0 || imm4 != 0) {
6482 unallocated_encoding(s);
6483 return;
6486 /* DUP (element, scalar) */
6487 handle_simd_dupes(s, rd, rn, imm5);
6490 /* AdvSIMD scalar pairwise
6491 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6492 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6493 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6494 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6496 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6498 int u = extract32(insn, 29, 1);
6499 int size = extract32(insn, 22, 2);
6500 int opcode = extract32(insn, 12, 5);
6501 int rn = extract32(insn, 5, 5);
6502 int rd = extract32(insn, 0, 5);
6503 TCGv_ptr fpst;
6505 /* For some ops (the FP ones), size[1] is part of the encoding.
6506 * For ADDP strictly it is not but size[1] is always 1 for valid
6507 * encodings.
6509 opcode |= (extract32(size, 1, 1) << 5);
6511 switch (opcode) {
6512 case 0x3b: /* ADDP */
6513 if (u || size != 3) {
6514 unallocated_encoding(s);
6515 return;
6517 if (!fp_access_check(s)) {
6518 return;
6521 fpst = NULL;
6522 break;
6523 case 0xc: /* FMAXNMP */
6524 case 0xd: /* FADDP */
6525 case 0xf: /* FMAXP */
6526 case 0x2c: /* FMINNMP */
6527 case 0x2f: /* FMINP */
6528 /* FP op, size[0] is 32 or 64 bit*/
6529 if (!u) {
6530 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
6531 unallocated_encoding(s);
6532 return;
6533 } else {
6534 size = MO_16;
6536 } else {
6537 size = extract32(size, 0, 1) ? MO_64 : MO_32;
6540 if (!fp_access_check(s)) {
6541 return;
6544 fpst = get_fpstatus_ptr(size == MO_16);
6545 break;
6546 default:
6547 unallocated_encoding(s);
6548 return;
6551 if (size == MO_64) {
6552 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6553 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6554 TCGv_i64 tcg_res = tcg_temp_new_i64();
6556 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6557 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6559 switch (opcode) {
6560 case 0x3b: /* ADDP */
6561 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6562 break;
6563 case 0xc: /* FMAXNMP */
6564 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6565 break;
6566 case 0xd: /* FADDP */
6567 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6568 break;
6569 case 0xf: /* FMAXP */
6570 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6571 break;
6572 case 0x2c: /* FMINNMP */
6573 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6574 break;
6575 case 0x2f: /* FMINP */
6576 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6577 break;
6578 default:
6579 g_assert_not_reached();
6582 write_fp_dreg(s, rd, tcg_res);
6584 tcg_temp_free_i64(tcg_op1);
6585 tcg_temp_free_i64(tcg_op2);
6586 tcg_temp_free_i64(tcg_res);
6587 } else {
6588 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6589 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6590 TCGv_i32 tcg_res = tcg_temp_new_i32();
6592 read_vec_element_i32(s, tcg_op1, rn, 0, size);
6593 read_vec_element_i32(s, tcg_op2, rn, 1, size);
6595 if (size == MO_16) {
6596 switch (opcode) {
6597 case 0xc: /* FMAXNMP */
6598 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6599 break;
6600 case 0xd: /* FADDP */
6601 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6602 break;
6603 case 0xf: /* FMAXP */
6604 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6605 break;
6606 case 0x2c: /* FMINNMP */
6607 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6608 break;
6609 case 0x2f: /* FMINP */
6610 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6611 break;
6612 default:
6613 g_assert_not_reached();
6615 } else {
6616 switch (opcode) {
6617 case 0xc: /* FMAXNMP */
6618 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6619 break;
6620 case 0xd: /* FADDP */
6621 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6622 break;
6623 case 0xf: /* FMAXP */
6624 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6625 break;
6626 case 0x2c: /* FMINNMP */
6627 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6628 break;
6629 case 0x2f: /* FMINP */
6630 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6631 break;
6632 default:
6633 g_assert_not_reached();
6637 write_fp_sreg(s, rd, tcg_res);
6639 tcg_temp_free_i32(tcg_op1);
6640 tcg_temp_free_i32(tcg_op2);
6641 tcg_temp_free_i32(tcg_res);
6644 if (fpst) {
6645 tcg_temp_free_ptr(fpst);
6650 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6652 * This code is handles the common shifting code and is used by both
6653 * the vector and scalar code.
6655 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6656 TCGv_i64 tcg_rnd, bool accumulate,
6657 bool is_u, int size, int shift)
6659 bool extended_result = false;
6660 bool round = tcg_rnd != NULL;
6661 int ext_lshift = 0;
6662 TCGv_i64 tcg_src_hi;
6664 if (round && size == 3) {
6665 extended_result = true;
6666 ext_lshift = 64 - shift;
6667 tcg_src_hi = tcg_temp_new_i64();
6668 } else if (shift == 64) {
6669 if (!accumulate && is_u) {
6670 /* result is zero */
6671 tcg_gen_movi_i64(tcg_res, 0);
6672 return;
6676 /* Deal with the rounding step */
6677 if (round) {
6678 if (extended_result) {
6679 TCGv_i64 tcg_zero = tcg_const_i64(0);
6680 if (!is_u) {
6681 /* take care of sign extending tcg_res */
6682 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6683 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6684 tcg_src, tcg_src_hi,
6685 tcg_rnd, tcg_zero);
6686 } else {
6687 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6688 tcg_src, tcg_zero,
6689 tcg_rnd, tcg_zero);
6691 tcg_temp_free_i64(tcg_zero);
6692 } else {
6693 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6697 /* Now do the shift right */
6698 if (round && extended_result) {
6699 /* extended case, >64 bit precision required */
6700 if (ext_lshift == 0) {
6701 /* special case, only high bits matter */
6702 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6703 } else {
6704 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6705 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6706 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6708 } else {
6709 if (is_u) {
6710 if (shift == 64) {
6711 /* essentially shifting in 64 zeros */
6712 tcg_gen_movi_i64(tcg_src, 0);
6713 } else {
6714 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6716 } else {
6717 if (shift == 64) {
6718 /* effectively extending the sign-bit */
6719 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6720 } else {
6721 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6726 if (accumulate) {
6727 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6728 } else {
6729 tcg_gen_mov_i64(tcg_res, tcg_src);
6732 if (extended_result) {
6733 tcg_temp_free_i64(tcg_src_hi);
6737 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6738 static void handle_scalar_simd_shri(DisasContext *s,
6739 bool is_u, int immh, int immb,
6740 int opcode, int rn, int rd)
6742 const int size = 3;
6743 int immhb = immh << 3 | immb;
6744 int shift = 2 * (8 << size) - immhb;
6745 bool accumulate = false;
6746 bool round = false;
6747 bool insert = false;
6748 TCGv_i64 tcg_rn;
6749 TCGv_i64 tcg_rd;
6750 TCGv_i64 tcg_round;
6752 if (!extract32(immh, 3, 1)) {
6753 unallocated_encoding(s);
6754 return;
6757 if (!fp_access_check(s)) {
6758 return;
6761 switch (opcode) {
6762 case 0x02: /* SSRA / USRA (accumulate) */
6763 accumulate = true;
6764 break;
6765 case 0x04: /* SRSHR / URSHR (rounding) */
6766 round = true;
6767 break;
6768 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6769 accumulate = round = true;
6770 break;
6771 case 0x08: /* SRI */
6772 insert = true;
6773 break;
6776 if (round) {
6777 uint64_t round_const = 1ULL << (shift - 1);
6778 tcg_round = tcg_const_i64(round_const);
6779 } else {
6780 tcg_round = NULL;
6783 tcg_rn = read_fp_dreg(s, rn);
6784 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6786 if (insert) {
6787 /* shift count same as element size is valid but does nothing;
6788 * special case to avoid potential shift by 64.
6790 int esize = 8 << size;
6791 if (shift != esize) {
6792 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
6793 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
6795 } else {
6796 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6797 accumulate, is_u, size, shift);
6800 write_fp_dreg(s, rd, tcg_rd);
6802 tcg_temp_free_i64(tcg_rn);
6803 tcg_temp_free_i64(tcg_rd);
6804 if (round) {
6805 tcg_temp_free_i64(tcg_round);
6809 /* SHL/SLI - Scalar shift left */
6810 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6811 int immh, int immb, int opcode,
6812 int rn, int rd)
6814 int size = 32 - clz32(immh) - 1;
6815 int immhb = immh << 3 | immb;
6816 int shift = immhb - (8 << size);
6817 TCGv_i64 tcg_rn = new_tmp_a64(s);
6818 TCGv_i64 tcg_rd = new_tmp_a64(s);
6820 if (!extract32(immh, 3, 1)) {
6821 unallocated_encoding(s);
6822 return;
6825 if (!fp_access_check(s)) {
6826 return;
6829 tcg_rn = read_fp_dreg(s, rn);
6830 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6832 if (insert) {
6833 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
6834 } else {
6835 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
6838 write_fp_dreg(s, rd, tcg_rd);
6840 tcg_temp_free_i64(tcg_rn);
6841 tcg_temp_free_i64(tcg_rd);
6844 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6845 * (signed/unsigned) narrowing */
6846 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6847 bool is_u_shift, bool is_u_narrow,
6848 int immh, int immb, int opcode,
6849 int rn, int rd)
6851 int immhb = immh << 3 | immb;
6852 int size = 32 - clz32(immh) - 1;
6853 int esize = 8 << size;
6854 int shift = (2 * esize) - immhb;
6855 int elements = is_scalar ? 1 : (64 / esize);
6856 bool round = extract32(opcode, 0, 1);
6857 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6858 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6859 TCGv_i32 tcg_rd_narrowed;
6860 TCGv_i64 tcg_final;
6862 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6863 { gen_helper_neon_narrow_sat_s8,
6864 gen_helper_neon_unarrow_sat8 },
6865 { gen_helper_neon_narrow_sat_s16,
6866 gen_helper_neon_unarrow_sat16 },
6867 { gen_helper_neon_narrow_sat_s32,
6868 gen_helper_neon_unarrow_sat32 },
6869 { NULL, NULL },
6871 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6872 gen_helper_neon_narrow_sat_u8,
6873 gen_helper_neon_narrow_sat_u16,
6874 gen_helper_neon_narrow_sat_u32,
6875 NULL
6877 NeonGenNarrowEnvFn *narrowfn;
6879 int i;
6881 assert(size < 4);
6883 if (extract32(immh, 3, 1)) {
6884 unallocated_encoding(s);
6885 return;
6888 if (!fp_access_check(s)) {
6889 return;
6892 if (is_u_shift) {
6893 narrowfn = unsigned_narrow_fns[size];
6894 } else {
6895 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6898 tcg_rn = tcg_temp_new_i64();
6899 tcg_rd = tcg_temp_new_i64();
6900 tcg_rd_narrowed = tcg_temp_new_i32();
6901 tcg_final = tcg_const_i64(0);
6903 if (round) {
6904 uint64_t round_const = 1ULL << (shift - 1);
6905 tcg_round = tcg_const_i64(round_const);
6906 } else {
6907 tcg_round = NULL;
6910 for (i = 0; i < elements; i++) {
6911 read_vec_element(s, tcg_rn, rn, i, ldop);
6912 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6913 false, is_u_shift, size+1, shift);
6914 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6915 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6916 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6919 if (!is_q) {
6920 write_vec_element(s, tcg_final, rd, 0, MO_64);
6921 } else {
6922 write_vec_element(s, tcg_final, rd, 1, MO_64);
6925 if (round) {
6926 tcg_temp_free_i64(tcg_round);
6928 tcg_temp_free_i64(tcg_rn);
6929 tcg_temp_free_i64(tcg_rd);
6930 tcg_temp_free_i32(tcg_rd_narrowed);
6931 tcg_temp_free_i64(tcg_final);
6933 clear_vec_high(s, is_q, rd);
6936 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6937 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6938 bool src_unsigned, bool dst_unsigned,
6939 int immh, int immb, int rn, int rd)
6941 int immhb = immh << 3 | immb;
6942 int size = 32 - clz32(immh) - 1;
6943 int shift = immhb - (8 << size);
6944 int pass;
6946 assert(immh != 0);
6947 assert(!(scalar && is_q));
6949 if (!scalar) {
6950 if (!is_q && extract32(immh, 3, 1)) {
6951 unallocated_encoding(s);
6952 return;
6955 /* Since we use the variable-shift helpers we must
6956 * replicate the shift count into each element of
6957 * the tcg_shift value.
6959 switch (size) {
6960 case 0:
6961 shift |= shift << 8;
6962 /* fall through */
6963 case 1:
6964 shift |= shift << 16;
6965 break;
6966 case 2:
6967 case 3:
6968 break;
6969 default:
6970 g_assert_not_reached();
6974 if (!fp_access_check(s)) {
6975 return;
6978 if (size == 3) {
6979 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6980 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6981 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6982 { NULL, gen_helper_neon_qshl_u64 },
6984 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6985 int maxpass = is_q ? 2 : 1;
6987 for (pass = 0; pass < maxpass; pass++) {
6988 TCGv_i64 tcg_op = tcg_temp_new_i64();
6990 read_vec_element(s, tcg_op, rn, pass, MO_64);
6991 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6992 write_vec_element(s, tcg_op, rd, pass, MO_64);
6994 tcg_temp_free_i64(tcg_op);
6996 tcg_temp_free_i64(tcg_shift);
6997 clear_vec_high(s, is_q, rd);
6998 } else {
6999 TCGv_i32 tcg_shift = tcg_const_i32(shift);
7000 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
7002 { gen_helper_neon_qshl_s8,
7003 gen_helper_neon_qshl_s16,
7004 gen_helper_neon_qshl_s32 },
7005 { gen_helper_neon_qshlu_s8,
7006 gen_helper_neon_qshlu_s16,
7007 gen_helper_neon_qshlu_s32 }
7008 }, {
7009 { NULL, NULL, NULL },
7010 { gen_helper_neon_qshl_u8,
7011 gen_helper_neon_qshl_u16,
7012 gen_helper_neon_qshl_u32 }
7015 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
7016 TCGMemOp memop = scalar ? size : MO_32;
7017 int maxpass = scalar ? 1 : is_q ? 4 : 2;
7019 for (pass = 0; pass < maxpass; pass++) {
7020 TCGv_i32 tcg_op = tcg_temp_new_i32();
7022 read_vec_element_i32(s, tcg_op, rn, pass, memop);
7023 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7024 if (scalar) {
7025 switch (size) {
7026 case 0:
7027 tcg_gen_ext8u_i32(tcg_op, tcg_op);
7028 break;
7029 case 1:
7030 tcg_gen_ext16u_i32(tcg_op, tcg_op);
7031 break;
7032 case 2:
7033 break;
7034 default:
7035 g_assert_not_reached();
7037 write_fp_sreg(s, rd, tcg_op);
7038 } else {
7039 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7042 tcg_temp_free_i32(tcg_op);
7044 tcg_temp_free_i32(tcg_shift);
7046 if (!scalar) {
7047 clear_vec_high(s, is_q, rd);
7052 /* Common vector code for handling integer to FP conversion */
7053 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
7054 int elements, int is_signed,
7055 int fracbits, int size)
7057 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
7058 TCGv_i32 tcg_shift = NULL;
7060 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
7061 int pass;
7063 if (fracbits || size == MO_64) {
7064 tcg_shift = tcg_const_i32(fracbits);
7067 if (size == MO_64) {
7068 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
7069 TCGv_i64 tcg_double = tcg_temp_new_i64();
7071 for (pass = 0; pass < elements; pass++) {
7072 read_vec_element(s, tcg_int64, rn, pass, mop);
7074 if (is_signed) {
7075 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
7076 tcg_shift, tcg_fpst);
7077 } else {
7078 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
7079 tcg_shift, tcg_fpst);
7081 if (elements == 1) {
7082 write_fp_dreg(s, rd, tcg_double);
7083 } else {
7084 write_vec_element(s, tcg_double, rd, pass, MO_64);
7088 tcg_temp_free_i64(tcg_int64);
7089 tcg_temp_free_i64(tcg_double);
7091 } else {
7092 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
7093 TCGv_i32 tcg_float = tcg_temp_new_i32();
7095 for (pass = 0; pass < elements; pass++) {
7096 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
7098 switch (size) {
7099 case MO_32:
7100 if (fracbits) {
7101 if (is_signed) {
7102 gen_helper_vfp_sltos(tcg_float, tcg_int32,
7103 tcg_shift, tcg_fpst);
7104 } else {
7105 gen_helper_vfp_ultos(tcg_float, tcg_int32,
7106 tcg_shift, tcg_fpst);
7108 } else {
7109 if (is_signed) {
7110 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
7111 } else {
7112 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
7115 break;
7116 case MO_16:
7117 if (fracbits) {
7118 if (is_signed) {
7119 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
7120 tcg_shift, tcg_fpst);
7121 } else {
7122 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
7123 tcg_shift, tcg_fpst);
7125 } else {
7126 if (is_signed) {
7127 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
7128 } else {
7129 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
7132 break;
7133 default:
7134 g_assert_not_reached();
7137 if (elements == 1) {
7138 write_fp_sreg(s, rd, tcg_float);
7139 } else {
7140 write_vec_element_i32(s, tcg_float, rd, pass, size);
7144 tcg_temp_free_i32(tcg_int32);
7145 tcg_temp_free_i32(tcg_float);
7148 tcg_temp_free_ptr(tcg_fpst);
7149 if (tcg_shift) {
7150 tcg_temp_free_i32(tcg_shift);
7153 clear_vec_high(s, elements << size == 16, rd);
7156 /* UCVTF/SCVTF - Integer to FP conversion */
7157 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
7158 bool is_q, bool is_u,
7159 int immh, int immb, int opcode,
7160 int rn, int rd)
7162 bool is_double = extract32(immh, 3, 1);
7163 int size = is_double ? MO_64 : MO_32;
7164 int elements;
7165 int immhb = immh << 3 | immb;
7166 int fracbits = (is_double ? 128 : 64) - immhb;
7168 if (!extract32(immh, 2, 2)) {
7169 unallocated_encoding(s);
7170 return;
7173 if (is_scalar) {
7174 elements = 1;
7175 } else {
7176 elements = is_double ? 2 : is_q ? 4 : 2;
7177 if (is_double && !is_q) {
7178 unallocated_encoding(s);
7179 return;
7183 if (!fp_access_check(s)) {
7184 return;
7187 /* immh == 0 would be a failure of the decode logic */
7188 g_assert(immh);
7190 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
7193 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
7194 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
7195 bool is_q, bool is_u,
7196 int immh, int immb, int rn, int rd)
7198 bool is_double = extract32(immh, 3, 1);
7199 int immhb = immh << 3 | immb;
7200 int fracbits = (is_double ? 128 : 64) - immhb;
7201 int pass;
7202 TCGv_ptr tcg_fpstatus;
7203 TCGv_i32 tcg_rmode, tcg_shift;
7205 if (!extract32(immh, 2, 2)) {
7206 unallocated_encoding(s);
7207 return;
7210 if (!is_scalar && !is_q && is_double) {
7211 unallocated_encoding(s);
7212 return;
7215 if (!fp_access_check(s)) {
7216 return;
7219 assert(!(is_scalar && is_q));
7221 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
7222 tcg_fpstatus = get_fpstatus_ptr(false);
7223 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7224 tcg_shift = tcg_const_i32(fracbits);
7226 if (is_double) {
7227 int maxpass = is_scalar ? 1 : 2;
7229 for (pass = 0; pass < maxpass; pass++) {
7230 TCGv_i64 tcg_op = tcg_temp_new_i64();
7232 read_vec_element(s, tcg_op, rn, pass, MO_64);
7233 if (is_u) {
7234 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7235 } else {
7236 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7238 write_vec_element(s, tcg_op, rd, pass, MO_64);
7239 tcg_temp_free_i64(tcg_op);
7241 clear_vec_high(s, is_q, rd);
7242 } else {
7243 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
7244 for (pass = 0; pass < maxpass; pass++) {
7245 TCGv_i32 tcg_op = tcg_temp_new_i32();
7247 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7248 if (is_u) {
7249 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7250 } else {
7251 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7253 if (is_scalar) {
7254 write_fp_sreg(s, rd, tcg_op);
7255 } else {
7256 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7258 tcg_temp_free_i32(tcg_op);
7260 if (!is_scalar) {
7261 clear_vec_high(s, is_q, rd);
7265 tcg_temp_free_ptr(tcg_fpstatus);
7266 tcg_temp_free_i32(tcg_shift);
7267 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7268 tcg_temp_free_i32(tcg_rmode);
7271 /* AdvSIMD scalar shift by immediate
7272 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
7273 * +-----+---+-------------+------+------+--------+---+------+------+
7274 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
7275 * +-----+---+-------------+------+------+--------+---+------+------+
7277 * This is the scalar version so it works on a fixed sized registers
7279 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
7281 int rd = extract32(insn, 0, 5);
7282 int rn = extract32(insn, 5, 5);
7283 int opcode = extract32(insn, 11, 5);
7284 int immb = extract32(insn, 16, 3);
7285 int immh = extract32(insn, 19, 4);
7286 bool is_u = extract32(insn, 29, 1);
7288 if (immh == 0) {
7289 unallocated_encoding(s);
7290 return;
7293 switch (opcode) {
7294 case 0x08: /* SRI */
7295 if (!is_u) {
7296 unallocated_encoding(s);
7297 return;
7299 /* fall through */
7300 case 0x00: /* SSHR / USHR */
7301 case 0x02: /* SSRA / USRA */
7302 case 0x04: /* SRSHR / URSHR */
7303 case 0x06: /* SRSRA / URSRA */
7304 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
7305 break;
7306 case 0x0a: /* SHL / SLI */
7307 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
7308 break;
7309 case 0x1c: /* SCVTF, UCVTF */
7310 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
7311 opcode, rn, rd);
7312 break;
7313 case 0x10: /* SQSHRUN, SQSHRUN2 */
7314 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7315 if (!is_u) {
7316 unallocated_encoding(s);
7317 return;
7319 handle_vec_simd_sqshrn(s, true, false, false, true,
7320 immh, immb, opcode, rn, rd);
7321 break;
7322 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7323 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7324 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7325 immh, immb, opcode, rn, rd);
7326 break;
7327 case 0xc: /* SQSHLU */
7328 if (!is_u) {
7329 unallocated_encoding(s);
7330 return;
7332 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7333 break;
7334 case 0xe: /* SQSHL, UQSHL */
7335 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7336 break;
7337 case 0x1f: /* FCVTZS, FCVTZU */
7338 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7339 break;
7340 default:
7341 unallocated_encoding(s);
7342 break;
7346 /* AdvSIMD scalar three different
7347 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7348 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7349 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7350 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7352 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7354 bool is_u = extract32(insn, 29, 1);
7355 int size = extract32(insn, 22, 2);
7356 int opcode = extract32(insn, 12, 4);
7357 int rm = extract32(insn, 16, 5);
7358 int rn = extract32(insn, 5, 5);
7359 int rd = extract32(insn, 0, 5);
7361 if (is_u) {
7362 unallocated_encoding(s);
7363 return;
7366 switch (opcode) {
7367 case 0x9: /* SQDMLAL, SQDMLAL2 */
7368 case 0xb: /* SQDMLSL, SQDMLSL2 */
7369 case 0xd: /* SQDMULL, SQDMULL2 */
7370 if (size == 0 || size == 3) {
7371 unallocated_encoding(s);
7372 return;
7374 break;
7375 default:
7376 unallocated_encoding(s);
7377 return;
7380 if (!fp_access_check(s)) {
7381 return;
7384 if (size == 2) {
7385 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7386 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7387 TCGv_i64 tcg_res = tcg_temp_new_i64();
7389 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7390 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7392 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7393 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7395 switch (opcode) {
7396 case 0xd: /* SQDMULL, SQDMULL2 */
7397 break;
7398 case 0xb: /* SQDMLSL, SQDMLSL2 */
7399 tcg_gen_neg_i64(tcg_res, tcg_res);
7400 /* fall through */
7401 case 0x9: /* SQDMLAL, SQDMLAL2 */
7402 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7403 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7404 tcg_res, tcg_op1);
7405 break;
7406 default:
7407 g_assert_not_reached();
7410 write_fp_dreg(s, rd, tcg_res);
7412 tcg_temp_free_i64(tcg_op1);
7413 tcg_temp_free_i64(tcg_op2);
7414 tcg_temp_free_i64(tcg_res);
7415 } else {
7416 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7417 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7418 TCGv_i64 tcg_res = tcg_temp_new_i64();
7420 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7421 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7423 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7424 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7426 switch (opcode) {
7427 case 0xd: /* SQDMULL, SQDMULL2 */
7428 break;
7429 case 0xb: /* SQDMLSL, SQDMLSL2 */
7430 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7431 /* fall through */
7432 case 0x9: /* SQDMLAL, SQDMLAL2 */
7434 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7435 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7436 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7437 tcg_res, tcg_op3);
7438 tcg_temp_free_i64(tcg_op3);
7439 break;
7441 default:
7442 g_assert_not_reached();
7445 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7446 write_fp_dreg(s, rd, tcg_res);
7448 tcg_temp_free_i32(tcg_op1);
7449 tcg_temp_free_i32(tcg_op2);
7450 tcg_temp_free_i64(tcg_res);
7454 /* CMTST : test is "if (X & Y != 0)". */
7455 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
7457 tcg_gen_and_i32(d, a, b);
7458 tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0);
7459 tcg_gen_neg_i32(d, d);
7462 static void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
7464 tcg_gen_and_i64(d, a, b);
7465 tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0);
7466 tcg_gen_neg_i64(d, d);
7469 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
7471 tcg_gen_and_vec(vece, d, a, b);
7472 tcg_gen_dupi_vec(vece, a, 0);
7473 tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
7476 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7477 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7479 /* Handle 64x64->64 opcodes which are shared between the scalar
7480 * and vector 3-same groups. We cover every opcode where size == 3
7481 * is valid in either the three-reg-same (integer, not pairwise)
7482 * or scalar-three-reg-same groups.
7484 TCGCond cond;
7486 switch (opcode) {
7487 case 0x1: /* SQADD */
7488 if (u) {
7489 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7490 } else {
7491 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7493 break;
7494 case 0x5: /* SQSUB */
7495 if (u) {
7496 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7497 } else {
7498 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7500 break;
7501 case 0x6: /* CMGT, CMHI */
7502 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
7503 * We implement this using setcond (test) and then negating.
7505 cond = u ? TCG_COND_GTU : TCG_COND_GT;
7506 do_cmop:
7507 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
7508 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7509 break;
7510 case 0x7: /* CMGE, CMHS */
7511 cond = u ? TCG_COND_GEU : TCG_COND_GE;
7512 goto do_cmop;
7513 case 0x11: /* CMTST, CMEQ */
7514 if (u) {
7515 cond = TCG_COND_EQ;
7516 goto do_cmop;
7518 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
7519 break;
7520 case 0x8: /* SSHL, USHL */
7521 if (u) {
7522 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7523 } else {
7524 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7526 break;
7527 case 0x9: /* SQSHL, UQSHL */
7528 if (u) {
7529 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7530 } else {
7531 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7533 break;
7534 case 0xa: /* SRSHL, URSHL */
7535 if (u) {
7536 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7537 } else {
7538 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7540 break;
7541 case 0xb: /* SQRSHL, UQRSHL */
7542 if (u) {
7543 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7544 } else {
7545 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7547 break;
7548 case 0x10: /* ADD, SUB */
7549 if (u) {
7550 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7551 } else {
7552 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7554 break;
7555 default:
7556 g_assert_not_reached();
7560 /* Handle the 3-same-operands float operations; shared by the scalar
7561 * and vector encodings. The caller must filter out any encodings
7562 * not allocated for the encoding it is dealing with.
7564 static void handle_3same_float(DisasContext *s, int size, int elements,
7565 int fpopcode, int rd, int rn, int rm)
7567 int pass;
7568 TCGv_ptr fpst = get_fpstatus_ptr(false);
7570 for (pass = 0; pass < elements; pass++) {
7571 if (size) {
7572 /* Double */
7573 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7574 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7575 TCGv_i64 tcg_res = tcg_temp_new_i64();
7577 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7578 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7580 switch (fpopcode) {
7581 case 0x39: /* FMLS */
7582 /* As usual for ARM, separate negation for fused multiply-add */
7583 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7584 /* fall through */
7585 case 0x19: /* FMLA */
7586 read_vec_element(s, tcg_res, rd, pass, MO_64);
7587 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7588 tcg_res, fpst);
7589 break;
7590 case 0x18: /* FMAXNM */
7591 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7592 break;
7593 case 0x1a: /* FADD */
7594 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7595 break;
7596 case 0x1b: /* FMULX */
7597 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7598 break;
7599 case 0x1c: /* FCMEQ */
7600 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7601 break;
7602 case 0x1e: /* FMAX */
7603 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7604 break;
7605 case 0x1f: /* FRECPS */
7606 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7607 break;
7608 case 0x38: /* FMINNM */
7609 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7610 break;
7611 case 0x3a: /* FSUB */
7612 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7613 break;
7614 case 0x3e: /* FMIN */
7615 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7616 break;
7617 case 0x3f: /* FRSQRTS */
7618 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7619 break;
7620 case 0x5b: /* FMUL */
7621 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7622 break;
7623 case 0x5c: /* FCMGE */
7624 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7625 break;
7626 case 0x5d: /* FACGE */
7627 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7628 break;
7629 case 0x5f: /* FDIV */
7630 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7631 break;
7632 case 0x7a: /* FABD */
7633 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7634 gen_helper_vfp_absd(tcg_res, tcg_res);
7635 break;
7636 case 0x7c: /* FCMGT */
7637 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7638 break;
7639 case 0x7d: /* FACGT */
7640 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7641 break;
7642 default:
7643 g_assert_not_reached();
7646 write_vec_element(s, tcg_res, rd, pass, MO_64);
7648 tcg_temp_free_i64(tcg_res);
7649 tcg_temp_free_i64(tcg_op1);
7650 tcg_temp_free_i64(tcg_op2);
7651 } else {
7652 /* Single */
7653 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7654 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7655 TCGv_i32 tcg_res = tcg_temp_new_i32();
7657 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7658 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7660 switch (fpopcode) {
7661 case 0x39: /* FMLS */
7662 /* As usual for ARM, separate negation for fused multiply-add */
7663 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7664 /* fall through */
7665 case 0x19: /* FMLA */
7666 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7667 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7668 tcg_res, fpst);
7669 break;
7670 case 0x1a: /* FADD */
7671 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7672 break;
7673 case 0x1b: /* FMULX */
7674 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7675 break;
7676 case 0x1c: /* FCMEQ */
7677 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7678 break;
7679 case 0x1e: /* FMAX */
7680 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7681 break;
7682 case 0x1f: /* FRECPS */
7683 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7684 break;
7685 case 0x18: /* FMAXNM */
7686 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7687 break;
7688 case 0x38: /* FMINNM */
7689 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7690 break;
7691 case 0x3a: /* FSUB */
7692 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7693 break;
7694 case 0x3e: /* FMIN */
7695 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7696 break;
7697 case 0x3f: /* FRSQRTS */
7698 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7699 break;
7700 case 0x5b: /* FMUL */
7701 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7702 break;
7703 case 0x5c: /* FCMGE */
7704 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7705 break;
7706 case 0x5d: /* FACGE */
7707 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7708 break;
7709 case 0x5f: /* FDIV */
7710 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7711 break;
7712 case 0x7a: /* FABD */
7713 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7714 gen_helper_vfp_abss(tcg_res, tcg_res);
7715 break;
7716 case 0x7c: /* FCMGT */
7717 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7718 break;
7719 case 0x7d: /* FACGT */
7720 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7721 break;
7722 default:
7723 g_assert_not_reached();
7726 if (elements == 1) {
7727 /* scalar single so clear high part */
7728 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7730 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7731 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7732 tcg_temp_free_i64(tcg_tmp);
7733 } else {
7734 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7737 tcg_temp_free_i32(tcg_res);
7738 tcg_temp_free_i32(tcg_op1);
7739 tcg_temp_free_i32(tcg_op2);
7743 tcg_temp_free_ptr(fpst);
7745 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
7748 /* AdvSIMD scalar three same
7749 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7750 * +-----+---+-----------+------+---+------+--------+---+------+------+
7751 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7752 * +-----+---+-----------+------+---+------+--------+---+------+------+
7754 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7756 int rd = extract32(insn, 0, 5);
7757 int rn = extract32(insn, 5, 5);
7758 int opcode = extract32(insn, 11, 5);
7759 int rm = extract32(insn, 16, 5);
7760 int size = extract32(insn, 22, 2);
7761 bool u = extract32(insn, 29, 1);
7762 TCGv_i64 tcg_rd;
7764 if (opcode >= 0x18) {
7765 /* Floating point: U, size[1] and opcode indicate operation */
7766 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7767 switch (fpopcode) {
7768 case 0x1b: /* FMULX */
7769 case 0x1f: /* FRECPS */
7770 case 0x3f: /* FRSQRTS */
7771 case 0x5d: /* FACGE */
7772 case 0x7d: /* FACGT */
7773 case 0x1c: /* FCMEQ */
7774 case 0x5c: /* FCMGE */
7775 case 0x7c: /* FCMGT */
7776 case 0x7a: /* FABD */
7777 break;
7778 default:
7779 unallocated_encoding(s);
7780 return;
7783 if (!fp_access_check(s)) {
7784 return;
7787 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7788 return;
7791 switch (opcode) {
7792 case 0x1: /* SQADD, UQADD */
7793 case 0x5: /* SQSUB, UQSUB */
7794 case 0x9: /* SQSHL, UQSHL */
7795 case 0xb: /* SQRSHL, UQRSHL */
7796 break;
7797 case 0x8: /* SSHL, USHL */
7798 case 0xa: /* SRSHL, URSHL */
7799 case 0x6: /* CMGT, CMHI */
7800 case 0x7: /* CMGE, CMHS */
7801 case 0x11: /* CMTST, CMEQ */
7802 case 0x10: /* ADD, SUB (vector) */
7803 if (size != 3) {
7804 unallocated_encoding(s);
7805 return;
7807 break;
7808 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7809 if (size != 1 && size != 2) {
7810 unallocated_encoding(s);
7811 return;
7813 break;
7814 default:
7815 unallocated_encoding(s);
7816 return;
7819 if (!fp_access_check(s)) {
7820 return;
7823 tcg_rd = tcg_temp_new_i64();
7825 if (size == 3) {
7826 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7827 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7829 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7830 tcg_temp_free_i64(tcg_rn);
7831 tcg_temp_free_i64(tcg_rm);
7832 } else {
7833 /* Do a single operation on the lowest element in the vector.
7834 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7835 * no side effects for all these operations.
7836 * OPTME: special-purpose helpers would avoid doing some
7837 * unnecessary work in the helper for the 8 and 16 bit cases.
7839 NeonGenTwoOpEnvFn *genenvfn;
7840 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7841 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7842 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7844 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7845 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7847 switch (opcode) {
7848 case 0x1: /* SQADD, UQADD */
7850 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7851 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7852 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7853 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7855 genenvfn = fns[size][u];
7856 break;
7858 case 0x5: /* SQSUB, UQSUB */
7860 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7861 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7862 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7863 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7865 genenvfn = fns[size][u];
7866 break;
7868 case 0x9: /* SQSHL, UQSHL */
7870 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7871 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7872 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7873 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7875 genenvfn = fns[size][u];
7876 break;
7878 case 0xb: /* SQRSHL, UQRSHL */
7880 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7881 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7882 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7883 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7885 genenvfn = fns[size][u];
7886 break;
7888 case 0x16: /* SQDMULH, SQRDMULH */
7890 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7891 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7892 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7894 assert(size == 1 || size == 2);
7895 genenvfn = fns[size - 1][u];
7896 break;
7898 default:
7899 g_assert_not_reached();
7902 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7903 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7904 tcg_temp_free_i32(tcg_rd32);
7905 tcg_temp_free_i32(tcg_rn);
7906 tcg_temp_free_i32(tcg_rm);
7909 write_fp_dreg(s, rd, tcg_rd);
7911 tcg_temp_free_i64(tcg_rd);
7914 /* AdvSIMD scalar three same FP16
7915 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
7916 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
7917 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
7918 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
7919 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
7920 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
7922 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
7923 uint32_t insn)
7925 int rd = extract32(insn, 0, 5);
7926 int rn = extract32(insn, 5, 5);
7927 int opcode = extract32(insn, 11, 3);
7928 int rm = extract32(insn, 16, 5);
7929 bool u = extract32(insn, 29, 1);
7930 bool a = extract32(insn, 23, 1);
7931 int fpopcode = opcode | (a << 3) | (u << 4);
7932 TCGv_ptr fpst;
7933 TCGv_i32 tcg_op1;
7934 TCGv_i32 tcg_op2;
7935 TCGv_i32 tcg_res;
7937 switch (fpopcode) {
7938 case 0x03: /* FMULX */
7939 case 0x04: /* FCMEQ (reg) */
7940 case 0x07: /* FRECPS */
7941 case 0x0f: /* FRSQRTS */
7942 case 0x14: /* FCMGE (reg) */
7943 case 0x15: /* FACGE */
7944 case 0x1a: /* FABD */
7945 case 0x1c: /* FCMGT (reg) */
7946 case 0x1d: /* FACGT */
7947 break;
7948 default:
7949 unallocated_encoding(s);
7950 return;
7953 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7954 unallocated_encoding(s);
7957 if (!fp_access_check(s)) {
7958 return;
7961 fpst = get_fpstatus_ptr(true);
7963 tcg_op1 = tcg_temp_new_i32();
7964 tcg_op2 = tcg_temp_new_i32();
7965 tcg_res = tcg_temp_new_i32();
7967 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7968 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7970 switch (fpopcode) {
7971 case 0x03: /* FMULX */
7972 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
7973 break;
7974 case 0x04: /* FCMEQ (reg) */
7975 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7976 break;
7977 case 0x07: /* FRECPS */
7978 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7979 break;
7980 case 0x0f: /* FRSQRTS */
7981 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7982 break;
7983 case 0x14: /* FCMGE (reg) */
7984 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7985 break;
7986 case 0x15: /* FACGE */
7987 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7988 break;
7989 case 0x1a: /* FABD */
7990 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
7991 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
7992 break;
7993 case 0x1c: /* FCMGT (reg) */
7994 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7995 break;
7996 case 0x1d: /* FACGT */
7997 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7998 break;
7999 default:
8000 g_assert_not_reached();
8003 write_fp_sreg(s, rd, tcg_res);
8006 tcg_temp_free_i32(tcg_res);
8007 tcg_temp_free_i32(tcg_op1);
8008 tcg_temp_free_i32(tcg_op2);
8009 tcg_temp_free_ptr(fpst);
8012 /* AdvSIMD scalar three same extra
8013 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8014 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8015 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
8016 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8018 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
8019 uint32_t insn)
8021 int rd = extract32(insn, 0, 5);
8022 int rn = extract32(insn, 5, 5);
8023 int opcode = extract32(insn, 11, 4);
8024 int rm = extract32(insn, 16, 5);
8025 int size = extract32(insn, 22, 2);
8026 bool u = extract32(insn, 29, 1);
8027 TCGv_i32 ele1, ele2, ele3;
8028 TCGv_i64 res;
8029 int feature;
8031 switch (u * 16 + opcode) {
8032 case 0x10: /* SQRDMLAH (vector) */
8033 case 0x11: /* SQRDMLSH (vector) */
8034 if (size != 1 && size != 2) {
8035 unallocated_encoding(s);
8036 return;
8038 feature = ARM_FEATURE_V8_RDM;
8039 break;
8040 default:
8041 unallocated_encoding(s);
8042 return;
8044 if (!arm_dc_feature(s, feature)) {
8045 unallocated_encoding(s);
8046 return;
8048 if (!fp_access_check(s)) {
8049 return;
8052 /* Do a single operation on the lowest element in the vector.
8053 * We use the standard Neon helpers and rely on 0 OP 0 == 0
8054 * with no side effects for all these operations.
8055 * OPTME: special-purpose helpers would avoid doing some
8056 * unnecessary work in the helper for the 16 bit cases.
8058 ele1 = tcg_temp_new_i32();
8059 ele2 = tcg_temp_new_i32();
8060 ele3 = tcg_temp_new_i32();
8062 read_vec_element_i32(s, ele1, rn, 0, size);
8063 read_vec_element_i32(s, ele2, rm, 0, size);
8064 read_vec_element_i32(s, ele3, rd, 0, size);
8066 switch (opcode) {
8067 case 0x0: /* SQRDMLAH */
8068 if (size == 1) {
8069 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
8070 } else {
8071 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
8073 break;
8074 case 0x1: /* SQRDMLSH */
8075 if (size == 1) {
8076 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
8077 } else {
8078 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
8080 break;
8081 default:
8082 g_assert_not_reached();
8084 tcg_temp_free_i32(ele1);
8085 tcg_temp_free_i32(ele2);
8087 res = tcg_temp_new_i64();
8088 tcg_gen_extu_i32_i64(res, ele3);
8089 tcg_temp_free_i32(ele3);
8091 write_fp_dreg(s, rd, res);
8092 tcg_temp_free_i64(res);
8095 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
8096 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
8097 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
8099 /* Handle 64->64 opcodes which are shared between the scalar and
8100 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
8101 * is valid in either group and also the double-precision fp ops.
8102 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
8103 * requires them.
8105 TCGCond cond;
8107 switch (opcode) {
8108 case 0x4: /* CLS, CLZ */
8109 if (u) {
8110 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8111 } else {
8112 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
8114 break;
8115 case 0x5: /* NOT */
8116 /* This opcode is shared with CNT and RBIT but we have earlier
8117 * enforced that size == 3 if and only if this is the NOT insn.
8119 tcg_gen_not_i64(tcg_rd, tcg_rn);
8120 break;
8121 case 0x7: /* SQABS, SQNEG */
8122 if (u) {
8123 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
8124 } else {
8125 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
8127 break;
8128 case 0xa: /* CMLT */
8129 /* 64 bit integer comparison against zero, result is
8130 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
8131 * subtracting 1.
8133 cond = TCG_COND_LT;
8134 do_cmop:
8135 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
8136 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8137 break;
8138 case 0x8: /* CMGT, CMGE */
8139 cond = u ? TCG_COND_GE : TCG_COND_GT;
8140 goto do_cmop;
8141 case 0x9: /* CMEQ, CMLE */
8142 cond = u ? TCG_COND_LE : TCG_COND_EQ;
8143 goto do_cmop;
8144 case 0xb: /* ABS, NEG */
8145 if (u) {
8146 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8147 } else {
8148 TCGv_i64 tcg_zero = tcg_const_i64(0);
8149 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8150 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
8151 tcg_rn, tcg_rd);
8152 tcg_temp_free_i64(tcg_zero);
8154 break;
8155 case 0x2f: /* FABS */
8156 gen_helper_vfp_absd(tcg_rd, tcg_rn);
8157 break;
8158 case 0x6f: /* FNEG */
8159 gen_helper_vfp_negd(tcg_rd, tcg_rn);
8160 break;
8161 case 0x7f: /* FSQRT */
8162 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
8163 break;
8164 case 0x1a: /* FCVTNS */
8165 case 0x1b: /* FCVTMS */
8166 case 0x1c: /* FCVTAS */
8167 case 0x3a: /* FCVTPS */
8168 case 0x3b: /* FCVTZS */
8170 TCGv_i32 tcg_shift = tcg_const_i32(0);
8171 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8172 tcg_temp_free_i32(tcg_shift);
8173 break;
8175 case 0x5a: /* FCVTNU */
8176 case 0x5b: /* FCVTMU */
8177 case 0x5c: /* FCVTAU */
8178 case 0x7a: /* FCVTPU */
8179 case 0x7b: /* FCVTZU */
8181 TCGv_i32 tcg_shift = tcg_const_i32(0);
8182 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8183 tcg_temp_free_i32(tcg_shift);
8184 break;
8186 case 0x18: /* FRINTN */
8187 case 0x19: /* FRINTM */
8188 case 0x38: /* FRINTP */
8189 case 0x39: /* FRINTZ */
8190 case 0x58: /* FRINTA */
8191 case 0x79: /* FRINTI */
8192 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
8193 break;
8194 case 0x59: /* FRINTX */
8195 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
8196 break;
8197 default:
8198 g_assert_not_reached();
8202 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
8203 bool is_scalar, bool is_u, bool is_q,
8204 int size, int rn, int rd)
8206 bool is_double = (size == MO_64);
8207 TCGv_ptr fpst;
8209 if (!fp_access_check(s)) {
8210 return;
8213 fpst = get_fpstatus_ptr(size == MO_16);
8215 if (is_double) {
8216 TCGv_i64 tcg_op = tcg_temp_new_i64();
8217 TCGv_i64 tcg_zero = tcg_const_i64(0);
8218 TCGv_i64 tcg_res = tcg_temp_new_i64();
8219 NeonGenTwoDoubleOPFn *genfn;
8220 bool swap = false;
8221 int pass;
8223 switch (opcode) {
8224 case 0x2e: /* FCMLT (zero) */
8225 swap = true;
8226 /* fallthrough */
8227 case 0x2c: /* FCMGT (zero) */
8228 genfn = gen_helper_neon_cgt_f64;
8229 break;
8230 case 0x2d: /* FCMEQ (zero) */
8231 genfn = gen_helper_neon_ceq_f64;
8232 break;
8233 case 0x6d: /* FCMLE (zero) */
8234 swap = true;
8235 /* fall through */
8236 case 0x6c: /* FCMGE (zero) */
8237 genfn = gen_helper_neon_cge_f64;
8238 break;
8239 default:
8240 g_assert_not_reached();
8243 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8244 read_vec_element(s, tcg_op, rn, pass, MO_64);
8245 if (swap) {
8246 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8247 } else {
8248 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8250 write_vec_element(s, tcg_res, rd, pass, MO_64);
8252 tcg_temp_free_i64(tcg_res);
8253 tcg_temp_free_i64(tcg_zero);
8254 tcg_temp_free_i64(tcg_op);
8256 clear_vec_high(s, !is_scalar, rd);
8257 } else {
8258 TCGv_i32 tcg_op = tcg_temp_new_i32();
8259 TCGv_i32 tcg_zero = tcg_const_i32(0);
8260 TCGv_i32 tcg_res = tcg_temp_new_i32();
8261 NeonGenTwoSingleOPFn *genfn;
8262 bool swap = false;
8263 int pass, maxpasses;
8265 if (size == MO_16) {
8266 switch (opcode) {
8267 case 0x2e: /* FCMLT (zero) */
8268 swap = true;
8269 /* fall through */
8270 case 0x2c: /* FCMGT (zero) */
8271 genfn = gen_helper_advsimd_cgt_f16;
8272 break;
8273 case 0x2d: /* FCMEQ (zero) */
8274 genfn = gen_helper_advsimd_ceq_f16;
8275 break;
8276 case 0x6d: /* FCMLE (zero) */
8277 swap = true;
8278 /* fall through */
8279 case 0x6c: /* FCMGE (zero) */
8280 genfn = gen_helper_advsimd_cge_f16;
8281 break;
8282 default:
8283 g_assert_not_reached();
8285 } else {
8286 switch (opcode) {
8287 case 0x2e: /* FCMLT (zero) */
8288 swap = true;
8289 /* fall through */
8290 case 0x2c: /* FCMGT (zero) */
8291 genfn = gen_helper_neon_cgt_f32;
8292 break;
8293 case 0x2d: /* FCMEQ (zero) */
8294 genfn = gen_helper_neon_ceq_f32;
8295 break;
8296 case 0x6d: /* FCMLE (zero) */
8297 swap = true;
8298 /* fall through */
8299 case 0x6c: /* FCMGE (zero) */
8300 genfn = gen_helper_neon_cge_f32;
8301 break;
8302 default:
8303 g_assert_not_reached();
8307 if (is_scalar) {
8308 maxpasses = 1;
8309 } else {
8310 int vector_size = 8 << is_q;
8311 maxpasses = vector_size >> size;
8314 for (pass = 0; pass < maxpasses; pass++) {
8315 read_vec_element_i32(s, tcg_op, rn, pass, size);
8316 if (swap) {
8317 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8318 } else {
8319 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8321 if (is_scalar) {
8322 write_fp_sreg(s, rd, tcg_res);
8323 } else {
8324 write_vec_element_i32(s, tcg_res, rd, pass, size);
8327 tcg_temp_free_i32(tcg_res);
8328 tcg_temp_free_i32(tcg_zero);
8329 tcg_temp_free_i32(tcg_op);
8330 if (!is_scalar) {
8331 clear_vec_high(s, is_q, rd);
8335 tcg_temp_free_ptr(fpst);
8338 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
8339 bool is_scalar, bool is_u, bool is_q,
8340 int size, int rn, int rd)
8342 bool is_double = (size == 3);
8343 TCGv_ptr fpst = get_fpstatus_ptr(false);
8345 if (is_double) {
8346 TCGv_i64 tcg_op = tcg_temp_new_i64();
8347 TCGv_i64 tcg_res = tcg_temp_new_i64();
8348 int pass;
8350 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8351 read_vec_element(s, tcg_op, rn, pass, MO_64);
8352 switch (opcode) {
8353 case 0x3d: /* FRECPE */
8354 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
8355 break;
8356 case 0x3f: /* FRECPX */
8357 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
8358 break;
8359 case 0x7d: /* FRSQRTE */
8360 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
8361 break;
8362 default:
8363 g_assert_not_reached();
8365 write_vec_element(s, tcg_res, rd, pass, MO_64);
8367 tcg_temp_free_i64(tcg_res);
8368 tcg_temp_free_i64(tcg_op);
8369 clear_vec_high(s, !is_scalar, rd);
8370 } else {
8371 TCGv_i32 tcg_op = tcg_temp_new_i32();
8372 TCGv_i32 tcg_res = tcg_temp_new_i32();
8373 int pass, maxpasses;
8375 if (is_scalar) {
8376 maxpasses = 1;
8377 } else {
8378 maxpasses = is_q ? 4 : 2;
8381 for (pass = 0; pass < maxpasses; pass++) {
8382 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
8384 switch (opcode) {
8385 case 0x3c: /* URECPE */
8386 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
8387 break;
8388 case 0x3d: /* FRECPE */
8389 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
8390 break;
8391 case 0x3f: /* FRECPX */
8392 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
8393 break;
8394 case 0x7d: /* FRSQRTE */
8395 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
8396 break;
8397 default:
8398 g_assert_not_reached();
8401 if (is_scalar) {
8402 write_fp_sreg(s, rd, tcg_res);
8403 } else {
8404 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8407 tcg_temp_free_i32(tcg_res);
8408 tcg_temp_free_i32(tcg_op);
8409 if (!is_scalar) {
8410 clear_vec_high(s, is_q, rd);
8413 tcg_temp_free_ptr(fpst);
8416 static void handle_2misc_narrow(DisasContext *s, bool scalar,
8417 int opcode, bool u, bool is_q,
8418 int size, int rn, int rd)
8420 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
8421 * in the source becomes a size element in the destination).
8423 int pass;
8424 TCGv_i32 tcg_res[2];
8425 int destelt = is_q ? 2 : 0;
8426 int passes = scalar ? 1 : 2;
8428 if (scalar) {
8429 tcg_res[1] = tcg_const_i32(0);
8432 for (pass = 0; pass < passes; pass++) {
8433 TCGv_i64 tcg_op = tcg_temp_new_i64();
8434 NeonGenNarrowFn *genfn = NULL;
8435 NeonGenNarrowEnvFn *genenvfn = NULL;
8437 if (scalar) {
8438 read_vec_element(s, tcg_op, rn, pass, size + 1);
8439 } else {
8440 read_vec_element(s, tcg_op, rn, pass, MO_64);
8442 tcg_res[pass] = tcg_temp_new_i32();
8444 switch (opcode) {
8445 case 0x12: /* XTN, SQXTUN */
8447 static NeonGenNarrowFn * const xtnfns[3] = {
8448 gen_helper_neon_narrow_u8,
8449 gen_helper_neon_narrow_u16,
8450 tcg_gen_extrl_i64_i32,
8452 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
8453 gen_helper_neon_unarrow_sat8,
8454 gen_helper_neon_unarrow_sat16,
8455 gen_helper_neon_unarrow_sat32,
8457 if (u) {
8458 genenvfn = sqxtunfns[size];
8459 } else {
8460 genfn = xtnfns[size];
8462 break;
8464 case 0x14: /* SQXTN, UQXTN */
8466 static NeonGenNarrowEnvFn * const fns[3][2] = {
8467 { gen_helper_neon_narrow_sat_s8,
8468 gen_helper_neon_narrow_sat_u8 },
8469 { gen_helper_neon_narrow_sat_s16,
8470 gen_helper_neon_narrow_sat_u16 },
8471 { gen_helper_neon_narrow_sat_s32,
8472 gen_helper_neon_narrow_sat_u32 },
8474 genenvfn = fns[size][u];
8475 break;
8477 case 0x16: /* FCVTN, FCVTN2 */
8478 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
8479 if (size == 2) {
8480 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
8481 } else {
8482 TCGv_i32 tcg_lo = tcg_temp_new_i32();
8483 TCGv_i32 tcg_hi = tcg_temp_new_i32();
8484 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
8485 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
8486 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
8487 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
8488 tcg_temp_free_i32(tcg_lo);
8489 tcg_temp_free_i32(tcg_hi);
8491 break;
8492 case 0x56: /* FCVTXN, FCVTXN2 */
8493 /* 64 bit to 32 bit float conversion
8494 * with von Neumann rounding (round to odd)
8496 assert(size == 2);
8497 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
8498 break;
8499 default:
8500 g_assert_not_reached();
8503 if (genfn) {
8504 genfn(tcg_res[pass], tcg_op);
8505 } else if (genenvfn) {
8506 genenvfn(tcg_res[pass], cpu_env, tcg_op);
8509 tcg_temp_free_i64(tcg_op);
8512 for (pass = 0; pass < 2; pass++) {
8513 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
8514 tcg_temp_free_i32(tcg_res[pass]);
8516 clear_vec_high(s, is_q, rd);
8519 /* Remaining saturating accumulating ops */
8520 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
8521 bool is_q, int size, int rn, int rd)
8523 bool is_double = (size == 3);
8525 if (is_double) {
8526 TCGv_i64 tcg_rn = tcg_temp_new_i64();
8527 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8528 int pass;
8530 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8531 read_vec_element(s, tcg_rn, rn, pass, MO_64);
8532 read_vec_element(s, tcg_rd, rd, pass, MO_64);
8534 if (is_u) { /* USQADD */
8535 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8536 } else { /* SUQADD */
8537 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8539 write_vec_element(s, tcg_rd, rd, pass, MO_64);
8541 tcg_temp_free_i64(tcg_rd);
8542 tcg_temp_free_i64(tcg_rn);
8543 clear_vec_high(s, !is_scalar, rd);
8544 } else {
8545 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8546 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8547 int pass, maxpasses;
8549 if (is_scalar) {
8550 maxpasses = 1;
8551 } else {
8552 maxpasses = is_q ? 4 : 2;
8555 for (pass = 0; pass < maxpasses; pass++) {
8556 if (is_scalar) {
8557 read_vec_element_i32(s, tcg_rn, rn, pass, size);
8558 read_vec_element_i32(s, tcg_rd, rd, pass, size);
8559 } else {
8560 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
8561 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8564 if (is_u) { /* USQADD */
8565 switch (size) {
8566 case 0:
8567 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8568 break;
8569 case 1:
8570 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8571 break;
8572 case 2:
8573 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8574 break;
8575 default:
8576 g_assert_not_reached();
8578 } else { /* SUQADD */
8579 switch (size) {
8580 case 0:
8581 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8582 break;
8583 case 1:
8584 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8585 break;
8586 case 2:
8587 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8588 break;
8589 default:
8590 g_assert_not_reached();
8594 if (is_scalar) {
8595 TCGv_i64 tcg_zero = tcg_const_i64(0);
8596 write_vec_element(s, tcg_zero, rd, 0, MO_64);
8597 tcg_temp_free_i64(tcg_zero);
8599 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8601 tcg_temp_free_i32(tcg_rd);
8602 tcg_temp_free_i32(tcg_rn);
8603 clear_vec_high(s, is_q, rd);
8607 /* AdvSIMD scalar two reg misc
8608 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8609 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8610 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
8611 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8613 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
8615 int rd = extract32(insn, 0, 5);
8616 int rn = extract32(insn, 5, 5);
8617 int opcode = extract32(insn, 12, 5);
8618 int size = extract32(insn, 22, 2);
8619 bool u = extract32(insn, 29, 1);
8620 bool is_fcvt = false;
8621 int rmode;
8622 TCGv_i32 tcg_rmode;
8623 TCGv_ptr tcg_fpstatus;
8625 switch (opcode) {
8626 case 0x3: /* USQADD / SUQADD*/
8627 if (!fp_access_check(s)) {
8628 return;
8630 handle_2misc_satacc(s, true, u, false, size, rn, rd);
8631 return;
8632 case 0x7: /* SQABS / SQNEG */
8633 break;
8634 case 0xa: /* CMLT */
8635 if (u) {
8636 unallocated_encoding(s);
8637 return;
8639 /* fall through */
8640 case 0x8: /* CMGT, CMGE */
8641 case 0x9: /* CMEQ, CMLE */
8642 case 0xb: /* ABS, NEG */
8643 if (size != 3) {
8644 unallocated_encoding(s);
8645 return;
8647 break;
8648 case 0x12: /* SQXTUN */
8649 if (!u) {
8650 unallocated_encoding(s);
8651 return;
8653 /* fall through */
8654 case 0x14: /* SQXTN, UQXTN */
8655 if (size == 3) {
8656 unallocated_encoding(s);
8657 return;
8659 if (!fp_access_check(s)) {
8660 return;
8662 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
8663 return;
8664 case 0xc ... 0xf:
8665 case 0x16 ... 0x1d:
8666 case 0x1f:
8667 /* Floating point: U, size[1] and opcode indicate operation;
8668 * size[0] indicates single or double precision.
8670 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
8671 size = extract32(size, 0, 1) ? 3 : 2;
8672 switch (opcode) {
8673 case 0x2c: /* FCMGT (zero) */
8674 case 0x2d: /* FCMEQ (zero) */
8675 case 0x2e: /* FCMLT (zero) */
8676 case 0x6c: /* FCMGE (zero) */
8677 case 0x6d: /* FCMLE (zero) */
8678 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
8679 return;
8680 case 0x1d: /* SCVTF */
8681 case 0x5d: /* UCVTF */
8683 bool is_signed = (opcode == 0x1d);
8684 if (!fp_access_check(s)) {
8685 return;
8687 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
8688 return;
8690 case 0x3d: /* FRECPE */
8691 case 0x3f: /* FRECPX */
8692 case 0x7d: /* FRSQRTE */
8693 if (!fp_access_check(s)) {
8694 return;
8696 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
8697 return;
8698 case 0x1a: /* FCVTNS */
8699 case 0x1b: /* FCVTMS */
8700 case 0x3a: /* FCVTPS */
8701 case 0x3b: /* FCVTZS */
8702 case 0x5a: /* FCVTNU */
8703 case 0x5b: /* FCVTMU */
8704 case 0x7a: /* FCVTPU */
8705 case 0x7b: /* FCVTZU */
8706 is_fcvt = true;
8707 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8708 break;
8709 case 0x1c: /* FCVTAS */
8710 case 0x5c: /* FCVTAU */
8711 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8712 is_fcvt = true;
8713 rmode = FPROUNDING_TIEAWAY;
8714 break;
8715 case 0x56: /* FCVTXN, FCVTXN2 */
8716 if (size == 2) {
8717 unallocated_encoding(s);
8718 return;
8720 if (!fp_access_check(s)) {
8721 return;
8723 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8724 return;
8725 default:
8726 unallocated_encoding(s);
8727 return;
8729 break;
8730 default:
8731 unallocated_encoding(s);
8732 return;
8735 if (!fp_access_check(s)) {
8736 return;
8739 if (is_fcvt) {
8740 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8741 tcg_fpstatus = get_fpstatus_ptr(false);
8742 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8743 } else {
8744 tcg_rmode = NULL;
8745 tcg_fpstatus = NULL;
8748 if (size == 3) {
8749 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8750 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8752 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8753 write_fp_dreg(s, rd, tcg_rd);
8754 tcg_temp_free_i64(tcg_rd);
8755 tcg_temp_free_i64(tcg_rn);
8756 } else {
8757 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8758 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8760 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8762 switch (opcode) {
8763 case 0x7: /* SQABS, SQNEG */
8765 NeonGenOneOpEnvFn *genfn;
8766 static NeonGenOneOpEnvFn * const fns[3][2] = {
8767 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8768 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8769 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8771 genfn = fns[size][u];
8772 genfn(tcg_rd, cpu_env, tcg_rn);
8773 break;
8775 case 0x1a: /* FCVTNS */
8776 case 0x1b: /* FCVTMS */
8777 case 0x1c: /* FCVTAS */
8778 case 0x3a: /* FCVTPS */
8779 case 0x3b: /* FCVTZS */
8781 TCGv_i32 tcg_shift = tcg_const_i32(0);
8782 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8783 tcg_temp_free_i32(tcg_shift);
8784 break;
8786 case 0x5a: /* FCVTNU */
8787 case 0x5b: /* FCVTMU */
8788 case 0x5c: /* FCVTAU */
8789 case 0x7a: /* FCVTPU */
8790 case 0x7b: /* FCVTZU */
8792 TCGv_i32 tcg_shift = tcg_const_i32(0);
8793 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8794 tcg_temp_free_i32(tcg_shift);
8795 break;
8797 default:
8798 g_assert_not_reached();
8801 write_fp_sreg(s, rd, tcg_rd);
8802 tcg_temp_free_i32(tcg_rd);
8803 tcg_temp_free_i32(tcg_rn);
8806 if (is_fcvt) {
8807 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8808 tcg_temp_free_i32(tcg_rmode);
8809 tcg_temp_free_ptr(tcg_fpstatus);
8813 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8815 tcg_gen_vec_sar8i_i64(a, a, shift);
8816 tcg_gen_vec_add8_i64(d, d, a);
8819 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8821 tcg_gen_vec_sar16i_i64(a, a, shift);
8822 tcg_gen_vec_add16_i64(d, d, a);
8825 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8827 tcg_gen_sari_i32(a, a, shift);
8828 tcg_gen_add_i32(d, d, a);
8831 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8833 tcg_gen_sari_i64(a, a, shift);
8834 tcg_gen_add_i64(d, d, a);
8837 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8839 tcg_gen_sari_vec(vece, a, a, sh);
8840 tcg_gen_add_vec(vece, d, d, a);
8843 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8845 tcg_gen_vec_shr8i_i64(a, a, shift);
8846 tcg_gen_vec_add8_i64(d, d, a);
8849 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8851 tcg_gen_vec_shr16i_i64(a, a, shift);
8852 tcg_gen_vec_add16_i64(d, d, a);
8855 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8857 tcg_gen_shri_i32(a, a, shift);
8858 tcg_gen_add_i32(d, d, a);
8861 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8863 tcg_gen_shri_i64(a, a, shift);
8864 tcg_gen_add_i64(d, d, a);
8867 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8869 tcg_gen_shri_vec(vece, a, a, sh);
8870 tcg_gen_add_vec(vece, d, d, a);
8873 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8875 uint64_t mask = dup_const(MO_8, 0xff >> shift);
8876 TCGv_i64 t = tcg_temp_new_i64();
8878 tcg_gen_shri_i64(t, a, shift);
8879 tcg_gen_andi_i64(t, t, mask);
8880 tcg_gen_andi_i64(d, d, ~mask);
8881 tcg_gen_or_i64(d, d, t);
8882 tcg_temp_free_i64(t);
8885 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8887 uint64_t mask = dup_const(MO_16, 0xffff >> shift);
8888 TCGv_i64 t = tcg_temp_new_i64();
8890 tcg_gen_shri_i64(t, a, shift);
8891 tcg_gen_andi_i64(t, t, mask);
8892 tcg_gen_andi_i64(d, d, ~mask);
8893 tcg_gen_or_i64(d, d, t);
8894 tcg_temp_free_i64(t);
8897 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8899 tcg_gen_shri_i32(a, a, shift);
8900 tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
8903 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8905 tcg_gen_shri_i64(a, a, shift);
8906 tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
8909 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8911 uint64_t mask = (2ull << ((8 << vece) - 1)) - 1;
8912 TCGv_vec t = tcg_temp_new_vec_matching(d);
8913 TCGv_vec m = tcg_temp_new_vec_matching(d);
8915 tcg_gen_dupi_vec(vece, m, mask ^ (mask >> sh));
8916 tcg_gen_shri_vec(vece, t, a, sh);
8917 tcg_gen_and_vec(vece, d, d, m);
8918 tcg_gen_or_vec(vece, d, d, t);
8920 tcg_temp_free_vec(t);
8921 tcg_temp_free_vec(m);
8924 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8925 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8926 int immh, int immb, int opcode, int rn, int rd)
8928 static const GVecGen2i ssra_op[4] = {
8929 { .fni8 = gen_ssra8_i64,
8930 .fniv = gen_ssra_vec,
8931 .load_dest = true,
8932 .opc = INDEX_op_sari_vec,
8933 .vece = MO_8 },
8934 { .fni8 = gen_ssra16_i64,
8935 .fniv = gen_ssra_vec,
8936 .load_dest = true,
8937 .opc = INDEX_op_sari_vec,
8938 .vece = MO_16 },
8939 { .fni4 = gen_ssra32_i32,
8940 .fniv = gen_ssra_vec,
8941 .load_dest = true,
8942 .opc = INDEX_op_sari_vec,
8943 .vece = MO_32 },
8944 { .fni8 = gen_ssra64_i64,
8945 .fniv = gen_ssra_vec,
8946 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8947 .load_dest = true,
8948 .opc = INDEX_op_sari_vec,
8949 .vece = MO_64 },
8951 static const GVecGen2i usra_op[4] = {
8952 { .fni8 = gen_usra8_i64,
8953 .fniv = gen_usra_vec,
8954 .load_dest = true,
8955 .opc = INDEX_op_shri_vec,
8956 .vece = MO_8, },
8957 { .fni8 = gen_usra16_i64,
8958 .fniv = gen_usra_vec,
8959 .load_dest = true,
8960 .opc = INDEX_op_shri_vec,
8961 .vece = MO_16, },
8962 { .fni4 = gen_usra32_i32,
8963 .fniv = gen_usra_vec,
8964 .load_dest = true,
8965 .opc = INDEX_op_shri_vec,
8966 .vece = MO_32, },
8967 { .fni8 = gen_usra64_i64,
8968 .fniv = gen_usra_vec,
8969 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8970 .load_dest = true,
8971 .opc = INDEX_op_shri_vec,
8972 .vece = MO_64, },
8974 static const GVecGen2i sri_op[4] = {
8975 { .fni8 = gen_shr8_ins_i64,
8976 .fniv = gen_shr_ins_vec,
8977 .load_dest = true,
8978 .opc = INDEX_op_shri_vec,
8979 .vece = MO_8 },
8980 { .fni8 = gen_shr16_ins_i64,
8981 .fniv = gen_shr_ins_vec,
8982 .load_dest = true,
8983 .opc = INDEX_op_shri_vec,
8984 .vece = MO_16 },
8985 { .fni4 = gen_shr32_ins_i32,
8986 .fniv = gen_shr_ins_vec,
8987 .load_dest = true,
8988 .opc = INDEX_op_shri_vec,
8989 .vece = MO_32 },
8990 { .fni8 = gen_shr64_ins_i64,
8991 .fniv = gen_shr_ins_vec,
8992 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8993 .load_dest = true,
8994 .opc = INDEX_op_shri_vec,
8995 .vece = MO_64 },
8998 int size = 32 - clz32(immh) - 1;
8999 int immhb = immh << 3 | immb;
9000 int shift = 2 * (8 << size) - immhb;
9001 bool accumulate = false;
9002 int dsize = is_q ? 128 : 64;
9003 int esize = 8 << size;
9004 int elements = dsize/esize;
9005 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9006 TCGv_i64 tcg_rn = new_tmp_a64(s);
9007 TCGv_i64 tcg_rd = new_tmp_a64(s);
9008 TCGv_i64 tcg_round;
9009 uint64_t round_const;
9010 int i;
9012 if (extract32(immh, 3, 1) && !is_q) {
9013 unallocated_encoding(s);
9014 return;
9017 if (size > 3 && !is_q) {
9018 unallocated_encoding(s);
9019 return;
9022 if (!fp_access_check(s)) {
9023 return;
9026 switch (opcode) {
9027 case 0x02: /* SSRA / USRA (accumulate) */
9028 if (is_u) {
9029 /* Shift count same as element size produces zero to add. */
9030 if (shift == 8 << size) {
9031 goto done;
9033 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9034 } else {
9035 /* Shift count same as element size produces all sign to add. */
9036 if (shift == 8 << size) {
9037 shift -= 1;
9039 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9041 return;
9042 case 0x08: /* SRI */
9043 /* Shift count same as element size is valid but does nothing. */
9044 if (shift == 8 << size) {
9045 goto done;
9047 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9048 return;
9050 case 0x00: /* SSHR / USHR */
9051 if (is_u) {
9052 if (shift == 8 << size) {
9053 /* Shift count the same size as element size produces zero. */
9054 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9055 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9056 } else {
9057 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9059 } else {
9060 /* Shift count the same size as element size produces all sign. */
9061 if (shift == 8 << size) {
9062 shift -= 1;
9064 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9066 return;
9068 case 0x04: /* SRSHR / URSHR (rounding) */
9069 break;
9070 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9071 accumulate = true;
9072 break;
9073 default:
9074 g_assert_not_reached();
9077 round_const = 1ULL << (shift - 1);
9078 tcg_round = tcg_const_i64(round_const);
9080 for (i = 0; i < elements; i++) {
9081 read_vec_element(s, tcg_rn, rn, i, memop);
9082 if (accumulate) {
9083 read_vec_element(s, tcg_rd, rd, i, memop);
9086 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9087 accumulate, is_u, size, shift);
9089 write_vec_element(s, tcg_rd, rd, i, size);
9091 tcg_temp_free_i64(tcg_round);
9093 done:
9094 clear_vec_high(s, is_q, rd);
9097 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9099 uint64_t mask = dup_const(MO_8, 0xff << shift);
9100 TCGv_i64 t = tcg_temp_new_i64();
9102 tcg_gen_shli_i64(t, a, shift);
9103 tcg_gen_andi_i64(t, t, mask);
9104 tcg_gen_andi_i64(d, d, ~mask);
9105 tcg_gen_or_i64(d, d, t);
9106 tcg_temp_free_i64(t);
9109 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9111 uint64_t mask = dup_const(MO_16, 0xffff << shift);
9112 TCGv_i64 t = tcg_temp_new_i64();
9114 tcg_gen_shli_i64(t, a, shift);
9115 tcg_gen_andi_i64(t, t, mask);
9116 tcg_gen_andi_i64(d, d, ~mask);
9117 tcg_gen_or_i64(d, d, t);
9118 tcg_temp_free_i64(t);
9121 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9123 tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
9126 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9128 tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
9131 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9133 uint64_t mask = (1ull << sh) - 1;
9134 TCGv_vec t = tcg_temp_new_vec_matching(d);
9135 TCGv_vec m = tcg_temp_new_vec_matching(d);
9137 tcg_gen_dupi_vec(vece, m, mask);
9138 tcg_gen_shli_vec(vece, t, a, sh);
9139 tcg_gen_and_vec(vece, d, d, m);
9140 tcg_gen_or_vec(vece, d, d, t);
9142 tcg_temp_free_vec(t);
9143 tcg_temp_free_vec(m);
9146 /* SHL/SLI - Vector shift left */
9147 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9148 int immh, int immb, int opcode, int rn, int rd)
9150 static const GVecGen2i shi_op[4] = {
9151 { .fni8 = gen_shl8_ins_i64,
9152 .fniv = gen_shl_ins_vec,
9153 .opc = INDEX_op_shli_vec,
9154 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9155 .load_dest = true,
9156 .vece = MO_8 },
9157 { .fni8 = gen_shl16_ins_i64,
9158 .fniv = gen_shl_ins_vec,
9159 .opc = INDEX_op_shli_vec,
9160 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9161 .load_dest = true,
9162 .vece = MO_16 },
9163 { .fni4 = gen_shl32_ins_i32,
9164 .fniv = gen_shl_ins_vec,
9165 .opc = INDEX_op_shli_vec,
9166 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9167 .load_dest = true,
9168 .vece = MO_32 },
9169 { .fni8 = gen_shl64_ins_i64,
9170 .fniv = gen_shl_ins_vec,
9171 .opc = INDEX_op_shli_vec,
9172 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9173 .load_dest = true,
9174 .vece = MO_64 },
9176 int size = 32 - clz32(immh) - 1;
9177 int immhb = immh << 3 | immb;
9178 int shift = immhb - (8 << size);
9180 if (extract32(immh, 3, 1) && !is_q) {
9181 unallocated_encoding(s);
9182 return;
9185 if (size > 3 && !is_q) {
9186 unallocated_encoding(s);
9187 return;
9190 if (!fp_access_check(s)) {
9191 return;
9194 if (insert) {
9195 gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]);
9196 } else {
9197 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
9201 /* USHLL/SHLL - Vector shift left with widening */
9202 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
9203 int immh, int immb, int opcode, int rn, int rd)
9205 int size = 32 - clz32(immh) - 1;
9206 int immhb = immh << 3 | immb;
9207 int shift = immhb - (8 << size);
9208 int dsize = 64;
9209 int esize = 8 << size;
9210 int elements = dsize/esize;
9211 TCGv_i64 tcg_rn = new_tmp_a64(s);
9212 TCGv_i64 tcg_rd = new_tmp_a64(s);
9213 int i;
9215 if (size >= 3) {
9216 unallocated_encoding(s);
9217 return;
9220 if (!fp_access_check(s)) {
9221 return;
9224 /* For the LL variants the store is larger than the load,
9225 * so if rd == rn we would overwrite parts of our input.
9226 * So load everything right now and use shifts in the main loop.
9228 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
9230 for (i = 0; i < elements; i++) {
9231 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
9232 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
9233 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
9234 write_vec_element(s, tcg_rd, rd, i, size + 1);
9238 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
9239 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
9240 int immh, int immb, int opcode, int rn, int rd)
9242 int immhb = immh << 3 | immb;
9243 int size = 32 - clz32(immh) - 1;
9244 int dsize = 64;
9245 int esize = 8 << size;
9246 int elements = dsize/esize;
9247 int shift = (2 * esize) - immhb;
9248 bool round = extract32(opcode, 0, 1);
9249 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
9250 TCGv_i64 tcg_round;
9251 int i;
9253 if (extract32(immh, 3, 1)) {
9254 unallocated_encoding(s);
9255 return;
9258 if (!fp_access_check(s)) {
9259 return;
9262 tcg_rn = tcg_temp_new_i64();
9263 tcg_rd = tcg_temp_new_i64();
9264 tcg_final = tcg_temp_new_i64();
9265 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
9267 if (round) {
9268 uint64_t round_const = 1ULL << (shift - 1);
9269 tcg_round = tcg_const_i64(round_const);
9270 } else {
9271 tcg_round = NULL;
9274 for (i = 0; i < elements; i++) {
9275 read_vec_element(s, tcg_rn, rn, i, size+1);
9276 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9277 false, true, size+1, shift);
9279 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9282 if (!is_q) {
9283 write_vec_element(s, tcg_final, rd, 0, MO_64);
9284 } else {
9285 write_vec_element(s, tcg_final, rd, 1, MO_64);
9287 if (round) {
9288 tcg_temp_free_i64(tcg_round);
9290 tcg_temp_free_i64(tcg_rn);
9291 tcg_temp_free_i64(tcg_rd);
9292 tcg_temp_free_i64(tcg_final);
9294 clear_vec_high(s, is_q, rd);
9298 /* AdvSIMD shift by immediate
9299 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9300 * +---+---+---+-------------+------+------+--------+---+------+------+
9301 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9302 * +---+---+---+-------------+------+------+--------+---+------+------+
9304 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
9306 int rd = extract32(insn, 0, 5);
9307 int rn = extract32(insn, 5, 5);
9308 int opcode = extract32(insn, 11, 5);
9309 int immb = extract32(insn, 16, 3);
9310 int immh = extract32(insn, 19, 4);
9311 bool is_u = extract32(insn, 29, 1);
9312 bool is_q = extract32(insn, 30, 1);
9314 switch (opcode) {
9315 case 0x08: /* SRI */
9316 if (!is_u) {
9317 unallocated_encoding(s);
9318 return;
9320 /* fall through */
9321 case 0x00: /* SSHR / USHR */
9322 case 0x02: /* SSRA / USRA (accumulate) */
9323 case 0x04: /* SRSHR / URSHR (rounding) */
9324 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9325 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
9326 break;
9327 case 0x0a: /* SHL / SLI */
9328 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9329 break;
9330 case 0x10: /* SHRN */
9331 case 0x11: /* RSHRN / SQRSHRUN */
9332 if (is_u) {
9333 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
9334 opcode, rn, rd);
9335 } else {
9336 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
9338 break;
9339 case 0x12: /* SQSHRN / UQSHRN */
9340 case 0x13: /* SQRSHRN / UQRSHRN */
9341 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
9342 opcode, rn, rd);
9343 break;
9344 case 0x14: /* SSHLL / USHLL */
9345 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9346 break;
9347 case 0x1c: /* SCVTF / UCVTF */
9348 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
9349 opcode, rn, rd);
9350 break;
9351 case 0xc: /* SQSHLU */
9352 if (!is_u) {
9353 unallocated_encoding(s);
9354 return;
9356 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
9357 break;
9358 case 0xe: /* SQSHL, UQSHL */
9359 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
9360 break;
9361 case 0x1f: /* FCVTZS/ FCVTZU */
9362 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
9363 return;
9364 default:
9365 unallocated_encoding(s);
9366 return;
9370 /* Generate code to do a "long" addition or subtraction, ie one done in
9371 * TCGv_i64 on vector lanes twice the width specified by size.
9373 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
9374 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
9376 static NeonGenTwo64OpFn * const fns[3][2] = {
9377 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
9378 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
9379 { tcg_gen_add_i64, tcg_gen_sub_i64 },
9381 NeonGenTwo64OpFn *genfn;
9382 assert(size < 3);
9384 genfn = fns[size][is_sub];
9385 genfn(tcg_res, tcg_op1, tcg_op2);
9388 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
9389 int opcode, int rd, int rn, int rm)
9391 /* 3-reg-different widening insns: 64 x 64 -> 128 */
9392 TCGv_i64 tcg_res[2];
9393 int pass, accop;
9395 tcg_res[0] = tcg_temp_new_i64();
9396 tcg_res[1] = tcg_temp_new_i64();
9398 /* Does this op do an adding accumulate, a subtracting accumulate,
9399 * or no accumulate at all?
9401 switch (opcode) {
9402 case 5:
9403 case 8:
9404 case 9:
9405 accop = 1;
9406 break;
9407 case 10:
9408 case 11:
9409 accop = -1;
9410 break;
9411 default:
9412 accop = 0;
9413 break;
9416 if (accop != 0) {
9417 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
9418 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
9421 /* size == 2 means two 32x32->64 operations; this is worth special
9422 * casing because we can generally handle it inline.
9424 if (size == 2) {
9425 for (pass = 0; pass < 2; pass++) {
9426 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9427 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9428 TCGv_i64 tcg_passres;
9429 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
9431 int elt = pass + is_q * 2;
9433 read_vec_element(s, tcg_op1, rn, elt, memop);
9434 read_vec_element(s, tcg_op2, rm, elt, memop);
9436 if (accop == 0) {
9437 tcg_passres = tcg_res[pass];
9438 } else {
9439 tcg_passres = tcg_temp_new_i64();
9442 switch (opcode) {
9443 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9444 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
9445 break;
9446 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9447 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
9448 break;
9449 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9450 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9452 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
9453 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
9455 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
9456 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
9457 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
9458 tcg_passres,
9459 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
9460 tcg_temp_free_i64(tcg_tmp1);
9461 tcg_temp_free_i64(tcg_tmp2);
9462 break;
9464 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9465 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9466 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
9467 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
9468 break;
9469 case 9: /* SQDMLAL, SQDMLAL2 */
9470 case 11: /* SQDMLSL, SQDMLSL2 */
9471 case 13: /* SQDMULL, SQDMULL2 */
9472 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
9473 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
9474 tcg_passres, tcg_passres);
9475 break;
9476 default:
9477 g_assert_not_reached();
9480 if (opcode == 9 || opcode == 11) {
9481 /* saturating accumulate ops */
9482 if (accop < 0) {
9483 tcg_gen_neg_i64(tcg_passres, tcg_passres);
9485 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
9486 tcg_res[pass], tcg_passres);
9487 } else if (accop > 0) {
9488 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
9489 } else if (accop < 0) {
9490 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
9493 if (accop != 0) {
9494 tcg_temp_free_i64(tcg_passres);
9497 tcg_temp_free_i64(tcg_op1);
9498 tcg_temp_free_i64(tcg_op2);
9500 } else {
9501 /* size 0 or 1, generally helper functions */
9502 for (pass = 0; pass < 2; pass++) {
9503 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9504 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9505 TCGv_i64 tcg_passres;
9506 int elt = pass + is_q * 2;
9508 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
9509 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
9511 if (accop == 0) {
9512 tcg_passres = tcg_res[pass];
9513 } else {
9514 tcg_passres = tcg_temp_new_i64();
9517 switch (opcode) {
9518 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9519 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9521 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
9522 static NeonGenWidenFn * const widenfns[2][2] = {
9523 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
9524 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
9526 NeonGenWidenFn *widenfn = widenfns[size][is_u];
9528 widenfn(tcg_op2_64, tcg_op2);
9529 widenfn(tcg_passres, tcg_op1);
9530 gen_neon_addl(size, (opcode == 2), tcg_passres,
9531 tcg_passres, tcg_op2_64);
9532 tcg_temp_free_i64(tcg_op2_64);
9533 break;
9535 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9536 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9537 if (size == 0) {
9538 if (is_u) {
9539 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
9540 } else {
9541 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
9543 } else {
9544 if (is_u) {
9545 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
9546 } else {
9547 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
9550 break;
9551 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9552 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9553 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
9554 if (size == 0) {
9555 if (is_u) {
9556 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
9557 } else {
9558 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
9560 } else {
9561 if (is_u) {
9562 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
9563 } else {
9564 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
9567 break;
9568 case 9: /* SQDMLAL, SQDMLAL2 */
9569 case 11: /* SQDMLSL, SQDMLSL2 */
9570 case 13: /* SQDMULL, SQDMULL2 */
9571 assert(size == 1);
9572 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
9573 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
9574 tcg_passres, tcg_passres);
9575 break;
9576 case 14: /* PMULL */
9577 assert(size == 0);
9578 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
9579 break;
9580 default:
9581 g_assert_not_reached();
9583 tcg_temp_free_i32(tcg_op1);
9584 tcg_temp_free_i32(tcg_op2);
9586 if (accop != 0) {
9587 if (opcode == 9 || opcode == 11) {
9588 /* saturating accumulate ops */
9589 if (accop < 0) {
9590 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
9592 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
9593 tcg_res[pass],
9594 tcg_passres);
9595 } else {
9596 gen_neon_addl(size, (accop < 0), tcg_res[pass],
9597 tcg_res[pass], tcg_passres);
9599 tcg_temp_free_i64(tcg_passres);
9604 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
9605 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
9606 tcg_temp_free_i64(tcg_res[0]);
9607 tcg_temp_free_i64(tcg_res[1]);
9610 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
9611 int opcode, int rd, int rn, int rm)
9613 TCGv_i64 tcg_res[2];
9614 int part = is_q ? 2 : 0;
9615 int pass;
9617 for (pass = 0; pass < 2; pass++) {
9618 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9619 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9620 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
9621 static NeonGenWidenFn * const widenfns[3][2] = {
9622 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
9623 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
9624 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
9626 NeonGenWidenFn *widenfn = widenfns[size][is_u];
9628 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9629 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
9630 widenfn(tcg_op2_wide, tcg_op2);
9631 tcg_temp_free_i32(tcg_op2);
9632 tcg_res[pass] = tcg_temp_new_i64();
9633 gen_neon_addl(size, (opcode == 3),
9634 tcg_res[pass], tcg_op1, tcg_op2_wide);
9635 tcg_temp_free_i64(tcg_op1);
9636 tcg_temp_free_i64(tcg_op2_wide);
9639 for (pass = 0; pass < 2; pass++) {
9640 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9641 tcg_temp_free_i64(tcg_res[pass]);
9645 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
9647 tcg_gen_addi_i64(in, in, 1U << 31);
9648 tcg_gen_extrh_i64_i32(res, in);
9651 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
9652 int opcode, int rd, int rn, int rm)
9654 TCGv_i32 tcg_res[2];
9655 int part = is_q ? 2 : 0;
9656 int pass;
9658 for (pass = 0; pass < 2; pass++) {
9659 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9660 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9661 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
9662 static NeonGenNarrowFn * const narrowfns[3][2] = {
9663 { gen_helper_neon_narrow_high_u8,
9664 gen_helper_neon_narrow_round_high_u8 },
9665 { gen_helper_neon_narrow_high_u16,
9666 gen_helper_neon_narrow_round_high_u16 },
9667 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
9669 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
9671 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9672 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9674 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
9676 tcg_temp_free_i64(tcg_op1);
9677 tcg_temp_free_i64(tcg_op2);
9679 tcg_res[pass] = tcg_temp_new_i32();
9680 gennarrow(tcg_res[pass], tcg_wideres);
9681 tcg_temp_free_i64(tcg_wideres);
9684 for (pass = 0; pass < 2; pass++) {
9685 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
9686 tcg_temp_free_i32(tcg_res[pass]);
9688 clear_vec_high(s, is_q, rd);
9691 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
9693 /* PMULL of 64 x 64 -> 128 is an odd special case because it
9694 * is the only three-reg-diff instruction which produces a
9695 * 128-bit wide result from a single operation. However since
9696 * it's possible to calculate the two halves more or less
9697 * separately we just use two helper calls.
9699 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9700 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9701 TCGv_i64 tcg_res = tcg_temp_new_i64();
9703 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
9704 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
9705 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
9706 write_vec_element(s, tcg_res, rd, 0, MO_64);
9707 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
9708 write_vec_element(s, tcg_res, rd, 1, MO_64);
9710 tcg_temp_free_i64(tcg_op1);
9711 tcg_temp_free_i64(tcg_op2);
9712 tcg_temp_free_i64(tcg_res);
9715 /* AdvSIMD three different
9716 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9717 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
9718 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9719 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
9721 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
9723 /* Instructions in this group fall into three basic classes
9724 * (in each case with the operation working on each element in
9725 * the input vectors):
9726 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
9727 * 128 bit input)
9728 * (2) wide 64 x 128 -> 128
9729 * (3) narrowing 128 x 128 -> 64
9730 * Here we do initial decode, catch unallocated cases and
9731 * dispatch to separate functions for each class.
9733 int is_q = extract32(insn, 30, 1);
9734 int is_u = extract32(insn, 29, 1);
9735 int size = extract32(insn, 22, 2);
9736 int opcode = extract32(insn, 12, 4);
9737 int rm = extract32(insn, 16, 5);
9738 int rn = extract32(insn, 5, 5);
9739 int rd = extract32(insn, 0, 5);
9741 switch (opcode) {
9742 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
9743 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
9744 /* 64 x 128 -> 128 */
9745 if (size == 3) {
9746 unallocated_encoding(s);
9747 return;
9749 if (!fp_access_check(s)) {
9750 return;
9752 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
9753 break;
9754 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
9755 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
9756 /* 128 x 128 -> 64 */
9757 if (size == 3) {
9758 unallocated_encoding(s);
9759 return;
9761 if (!fp_access_check(s)) {
9762 return;
9764 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
9765 break;
9766 case 14: /* PMULL, PMULL2 */
9767 if (is_u || size == 1 || size == 2) {
9768 unallocated_encoding(s);
9769 return;
9771 if (size == 3) {
9772 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
9773 unallocated_encoding(s);
9774 return;
9776 if (!fp_access_check(s)) {
9777 return;
9779 handle_pmull_64(s, is_q, rd, rn, rm);
9780 return;
9782 goto is_widening;
9783 case 9: /* SQDMLAL, SQDMLAL2 */
9784 case 11: /* SQDMLSL, SQDMLSL2 */
9785 case 13: /* SQDMULL, SQDMULL2 */
9786 if (is_u || size == 0) {
9787 unallocated_encoding(s);
9788 return;
9790 /* fall through */
9791 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9792 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9793 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9794 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9795 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9796 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9797 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
9798 /* 64 x 64 -> 128 */
9799 if (size == 3) {
9800 unallocated_encoding(s);
9801 return;
9803 is_widening:
9804 if (!fp_access_check(s)) {
9805 return;
9808 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
9809 break;
9810 default:
9811 /* opcode 15 not allocated */
9812 unallocated_encoding(s);
9813 break;
9817 static void gen_bsl_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9819 tcg_gen_xor_i64(rn, rn, rm);
9820 tcg_gen_and_i64(rn, rn, rd);
9821 tcg_gen_xor_i64(rd, rm, rn);
9824 static void gen_bit_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9826 tcg_gen_xor_i64(rn, rn, rd);
9827 tcg_gen_and_i64(rn, rn, rm);
9828 tcg_gen_xor_i64(rd, rd, rn);
9831 static void gen_bif_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9833 tcg_gen_xor_i64(rn, rn, rd);
9834 tcg_gen_andc_i64(rn, rn, rm);
9835 tcg_gen_xor_i64(rd, rd, rn);
9838 static void gen_bsl_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9840 tcg_gen_xor_vec(vece, rn, rn, rm);
9841 tcg_gen_and_vec(vece, rn, rn, rd);
9842 tcg_gen_xor_vec(vece, rd, rm, rn);
9845 static void gen_bit_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9847 tcg_gen_xor_vec(vece, rn, rn, rd);
9848 tcg_gen_and_vec(vece, rn, rn, rm);
9849 tcg_gen_xor_vec(vece, rd, rd, rn);
9852 static void gen_bif_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9854 tcg_gen_xor_vec(vece, rn, rn, rd);
9855 tcg_gen_andc_vec(vece, rn, rn, rm);
9856 tcg_gen_xor_vec(vece, rd, rd, rn);
9859 /* Logic op (opcode == 3) subgroup of C3.6.16. */
9860 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
9862 static const GVecGen3 bsl_op = {
9863 .fni8 = gen_bsl_i64,
9864 .fniv = gen_bsl_vec,
9865 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9866 .load_dest = true
9868 static const GVecGen3 bit_op = {
9869 .fni8 = gen_bit_i64,
9870 .fniv = gen_bit_vec,
9871 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9872 .load_dest = true
9874 static const GVecGen3 bif_op = {
9875 .fni8 = gen_bif_i64,
9876 .fniv = gen_bif_vec,
9877 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9878 .load_dest = true
9881 int rd = extract32(insn, 0, 5);
9882 int rn = extract32(insn, 5, 5);
9883 int rm = extract32(insn, 16, 5);
9884 int size = extract32(insn, 22, 2);
9885 bool is_u = extract32(insn, 29, 1);
9886 bool is_q = extract32(insn, 30, 1);
9888 if (!fp_access_check(s)) {
9889 return;
9892 switch (size + 4 * is_u) {
9893 case 0: /* AND */
9894 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
9895 return;
9896 case 1: /* BIC */
9897 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
9898 return;
9899 case 2: /* ORR */
9900 if (rn == rm) { /* MOV */
9901 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
9902 } else {
9903 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
9905 return;
9906 case 3: /* ORN */
9907 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
9908 return;
9909 case 4: /* EOR */
9910 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
9911 return;
9913 case 5: /* BSL bitwise select */
9914 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
9915 return;
9916 case 6: /* BIT, bitwise insert if true */
9917 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
9918 return;
9919 case 7: /* BIF, bitwise insert if false */
9920 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
9921 return;
9923 default:
9924 g_assert_not_reached();
9928 /* Helper functions for 32 bit comparisons */
9929 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9931 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
9934 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9936 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
9939 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9941 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
9944 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9946 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
9949 /* Pairwise op subgroup of C3.6.16.
9951 * This is called directly or via the handle_3same_float for float pairwise
9952 * operations where the opcode and size are calculated differently.
9954 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
9955 int size, int rn, int rm, int rd)
9957 TCGv_ptr fpst;
9958 int pass;
9960 /* Floating point operations need fpst */
9961 if (opcode >= 0x58) {
9962 fpst = get_fpstatus_ptr(false);
9963 } else {
9964 fpst = NULL;
9967 if (!fp_access_check(s)) {
9968 return;
9971 /* These operations work on the concatenated rm:rn, with each pair of
9972 * adjacent elements being operated on to produce an element in the result.
9974 if (size == 3) {
9975 TCGv_i64 tcg_res[2];
9977 for (pass = 0; pass < 2; pass++) {
9978 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9979 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9980 int passreg = (pass == 0) ? rn : rm;
9982 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
9983 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
9984 tcg_res[pass] = tcg_temp_new_i64();
9986 switch (opcode) {
9987 case 0x17: /* ADDP */
9988 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9989 break;
9990 case 0x58: /* FMAXNMP */
9991 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9992 break;
9993 case 0x5a: /* FADDP */
9994 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9995 break;
9996 case 0x5e: /* FMAXP */
9997 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9998 break;
9999 case 0x78: /* FMINNMP */
10000 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10001 break;
10002 case 0x7e: /* FMINP */
10003 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10004 break;
10005 default:
10006 g_assert_not_reached();
10009 tcg_temp_free_i64(tcg_op1);
10010 tcg_temp_free_i64(tcg_op2);
10013 for (pass = 0; pass < 2; pass++) {
10014 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10015 tcg_temp_free_i64(tcg_res[pass]);
10017 } else {
10018 int maxpass = is_q ? 4 : 2;
10019 TCGv_i32 tcg_res[4];
10021 for (pass = 0; pass < maxpass; pass++) {
10022 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10023 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10024 NeonGenTwoOpFn *genfn = NULL;
10025 int passreg = pass < (maxpass / 2) ? rn : rm;
10026 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10028 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10029 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10030 tcg_res[pass] = tcg_temp_new_i32();
10032 switch (opcode) {
10033 case 0x17: /* ADDP */
10035 static NeonGenTwoOpFn * const fns[3] = {
10036 gen_helper_neon_padd_u8,
10037 gen_helper_neon_padd_u16,
10038 tcg_gen_add_i32,
10040 genfn = fns[size];
10041 break;
10043 case 0x14: /* SMAXP, UMAXP */
10045 static NeonGenTwoOpFn * const fns[3][2] = {
10046 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10047 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10048 { gen_max_s32, gen_max_u32 },
10050 genfn = fns[size][u];
10051 break;
10053 case 0x15: /* SMINP, UMINP */
10055 static NeonGenTwoOpFn * const fns[3][2] = {
10056 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10057 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10058 { gen_min_s32, gen_min_u32 },
10060 genfn = fns[size][u];
10061 break;
10063 /* The FP operations are all on single floats (32 bit) */
10064 case 0x58: /* FMAXNMP */
10065 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10066 break;
10067 case 0x5a: /* FADDP */
10068 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10069 break;
10070 case 0x5e: /* FMAXP */
10071 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10072 break;
10073 case 0x78: /* FMINNMP */
10074 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10075 break;
10076 case 0x7e: /* FMINP */
10077 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10078 break;
10079 default:
10080 g_assert_not_reached();
10083 /* FP ops called directly, otherwise call now */
10084 if (genfn) {
10085 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10088 tcg_temp_free_i32(tcg_op1);
10089 tcg_temp_free_i32(tcg_op2);
10092 for (pass = 0; pass < maxpass; pass++) {
10093 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10094 tcg_temp_free_i32(tcg_res[pass]);
10096 clear_vec_high(s, is_q, rd);
10099 if (fpst) {
10100 tcg_temp_free_ptr(fpst);
10104 /* Floating point op subgroup of C3.6.16. */
10105 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10107 /* For floating point ops, the U, size[1] and opcode bits
10108 * together indicate the operation. size[0] indicates single
10109 * or double.
10111 int fpopcode = extract32(insn, 11, 5)
10112 | (extract32(insn, 23, 1) << 5)
10113 | (extract32(insn, 29, 1) << 6);
10114 int is_q = extract32(insn, 30, 1);
10115 int size = extract32(insn, 22, 1);
10116 int rm = extract32(insn, 16, 5);
10117 int rn = extract32(insn, 5, 5);
10118 int rd = extract32(insn, 0, 5);
10120 int datasize = is_q ? 128 : 64;
10121 int esize = 32 << size;
10122 int elements = datasize / esize;
10124 if (size == 1 && !is_q) {
10125 unallocated_encoding(s);
10126 return;
10129 switch (fpopcode) {
10130 case 0x58: /* FMAXNMP */
10131 case 0x5a: /* FADDP */
10132 case 0x5e: /* FMAXP */
10133 case 0x78: /* FMINNMP */
10134 case 0x7e: /* FMINP */
10135 if (size && !is_q) {
10136 unallocated_encoding(s);
10137 return;
10139 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10140 rn, rm, rd);
10141 return;
10142 case 0x1b: /* FMULX */
10143 case 0x1f: /* FRECPS */
10144 case 0x3f: /* FRSQRTS */
10145 case 0x5d: /* FACGE */
10146 case 0x7d: /* FACGT */
10147 case 0x19: /* FMLA */
10148 case 0x39: /* FMLS */
10149 case 0x18: /* FMAXNM */
10150 case 0x1a: /* FADD */
10151 case 0x1c: /* FCMEQ */
10152 case 0x1e: /* FMAX */
10153 case 0x38: /* FMINNM */
10154 case 0x3a: /* FSUB */
10155 case 0x3e: /* FMIN */
10156 case 0x5b: /* FMUL */
10157 case 0x5c: /* FCMGE */
10158 case 0x5f: /* FDIV */
10159 case 0x7a: /* FABD */
10160 case 0x7c: /* FCMGT */
10161 if (!fp_access_check(s)) {
10162 return;
10165 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10166 return;
10167 default:
10168 unallocated_encoding(s);
10169 return;
10173 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10175 gen_helper_neon_mul_u8(a, a, b);
10176 gen_helper_neon_add_u8(d, d, a);
10179 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10181 gen_helper_neon_mul_u16(a, a, b);
10182 gen_helper_neon_add_u16(d, d, a);
10185 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10187 tcg_gen_mul_i32(a, a, b);
10188 tcg_gen_add_i32(d, d, a);
10191 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10193 tcg_gen_mul_i64(a, a, b);
10194 tcg_gen_add_i64(d, d, a);
10197 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10199 tcg_gen_mul_vec(vece, a, a, b);
10200 tcg_gen_add_vec(vece, d, d, a);
10203 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10205 gen_helper_neon_mul_u8(a, a, b);
10206 gen_helper_neon_sub_u8(d, d, a);
10209 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10211 gen_helper_neon_mul_u16(a, a, b);
10212 gen_helper_neon_sub_u16(d, d, a);
10215 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10217 tcg_gen_mul_i32(a, a, b);
10218 tcg_gen_sub_i32(d, d, a);
10221 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10223 tcg_gen_mul_i64(a, a, b);
10224 tcg_gen_sub_i64(d, d, a);
10227 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10229 tcg_gen_mul_vec(vece, a, a, b);
10230 tcg_gen_sub_vec(vece, d, d, a);
10233 /* Integer op subgroup of C3.6.16. */
10234 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10236 static const GVecGen3 cmtst_op[4] = {
10237 { .fni4 = gen_helper_neon_tst_u8,
10238 .fniv = gen_cmtst_vec,
10239 .vece = MO_8 },
10240 { .fni4 = gen_helper_neon_tst_u16,
10241 .fniv = gen_cmtst_vec,
10242 .vece = MO_16 },
10243 { .fni4 = gen_cmtst_i32,
10244 .fniv = gen_cmtst_vec,
10245 .vece = MO_32 },
10246 { .fni8 = gen_cmtst_i64,
10247 .fniv = gen_cmtst_vec,
10248 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10249 .vece = MO_64 },
10251 static const GVecGen3 mla_op[4] = {
10252 { .fni4 = gen_mla8_i32,
10253 .fniv = gen_mla_vec,
10254 .opc = INDEX_op_mul_vec,
10255 .load_dest = true,
10256 .vece = MO_8 },
10257 { .fni4 = gen_mla16_i32,
10258 .fniv = gen_mla_vec,
10259 .opc = INDEX_op_mul_vec,
10260 .load_dest = true,
10261 .vece = MO_16 },
10262 { .fni4 = gen_mla32_i32,
10263 .fniv = gen_mla_vec,
10264 .opc = INDEX_op_mul_vec,
10265 .load_dest = true,
10266 .vece = MO_32 },
10267 { .fni8 = gen_mla64_i64,
10268 .fniv = gen_mla_vec,
10269 .opc = INDEX_op_mul_vec,
10270 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10271 .load_dest = true,
10272 .vece = MO_64 },
10274 static const GVecGen3 mls_op[4] = {
10275 { .fni4 = gen_mls8_i32,
10276 .fniv = gen_mls_vec,
10277 .opc = INDEX_op_mul_vec,
10278 .load_dest = true,
10279 .vece = MO_8 },
10280 { .fni4 = gen_mls16_i32,
10281 .fniv = gen_mls_vec,
10282 .opc = INDEX_op_mul_vec,
10283 .load_dest = true,
10284 .vece = MO_16 },
10285 { .fni4 = gen_mls32_i32,
10286 .fniv = gen_mls_vec,
10287 .opc = INDEX_op_mul_vec,
10288 .load_dest = true,
10289 .vece = MO_32 },
10290 { .fni8 = gen_mls64_i64,
10291 .fniv = gen_mls_vec,
10292 .opc = INDEX_op_mul_vec,
10293 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10294 .load_dest = true,
10295 .vece = MO_64 },
10298 int is_q = extract32(insn, 30, 1);
10299 int u = extract32(insn, 29, 1);
10300 int size = extract32(insn, 22, 2);
10301 int opcode = extract32(insn, 11, 5);
10302 int rm = extract32(insn, 16, 5);
10303 int rn = extract32(insn, 5, 5);
10304 int rd = extract32(insn, 0, 5);
10305 int pass;
10306 TCGCond cond;
10308 switch (opcode) {
10309 case 0x13: /* MUL, PMUL */
10310 if (u && size != 0) {
10311 unallocated_encoding(s);
10312 return;
10314 /* fall through */
10315 case 0x0: /* SHADD, UHADD */
10316 case 0x2: /* SRHADD, URHADD */
10317 case 0x4: /* SHSUB, UHSUB */
10318 case 0xc: /* SMAX, UMAX */
10319 case 0xd: /* SMIN, UMIN */
10320 case 0xe: /* SABD, UABD */
10321 case 0xf: /* SABA, UABA */
10322 case 0x12: /* MLA, MLS */
10323 if (size == 3) {
10324 unallocated_encoding(s);
10325 return;
10327 break;
10328 case 0x16: /* SQDMULH, SQRDMULH */
10329 if (size == 0 || size == 3) {
10330 unallocated_encoding(s);
10331 return;
10333 break;
10334 default:
10335 if (size == 3 && !is_q) {
10336 unallocated_encoding(s);
10337 return;
10339 break;
10342 if (!fp_access_check(s)) {
10343 return;
10346 switch (opcode) {
10347 case 0x10: /* ADD, SUB */
10348 if (u) {
10349 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10350 } else {
10351 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10353 return;
10354 case 0x13: /* MUL, PMUL */
10355 if (!u) { /* MUL */
10356 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10357 return;
10359 break;
10360 case 0x12: /* MLA, MLS */
10361 if (u) {
10362 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10363 } else {
10364 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10366 return;
10367 case 0x11:
10368 if (!u) { /* CMTST */
10369 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
10370 return;
10372 /* else CMEQ */
10373 cond = TCG_COND_EQ;
10374 goto do_gvec_cmp;
10375 case 0x06: /* CMGT, CMHI */
10376 cond = u ? TCG_COND_GTU : TCG_COND_GT;
10377 goto do_gvec_cmp;
10378 case 0x07: /* CMGE, CMHS */
10379 cond = u ? TCG_COND_GEU : TCG_COND_GE;
10380 do_gvec_cmp:
10381 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
10382 vec_full_reg_offset(s, rn),
10383 vec_full_reg_offset(s, rm),
10384 is_q ? 16 : 8, vec_full_reg_size(s));
10385 return;
10388 if (size == 3) {
10389 assert(is_q);
10390 for (pass = 0; pass < 2; pass++) {
10391 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10392 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10393 TCGv_i64 tcg_res = tcg_temp_new_i64();
10395 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10396 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10398 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
10400 write_vec_element(s, tcg_res, rd, pass, MO_64);
10402 tcg_temp_free_i64(tcg_res);
10403 tcg_temp_free_i64(tcg_op1);
10404 tcg_temp_free_i64(tcg_op2);
10406 } else {
10407 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10408 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10409 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10410 TCGv_i32 tcg_res = tcg_temp_new_i32();
10411 NeonGenTwoOpFn *genfn = NULL;
10412 NeonGenTwoOpEnvFn *genenvfn = NULL;
10414 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
10415 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
10417 switch (opcode) {
10418 case 0x0: /* SHADD, UHADD */
10420 static NeonGenTwoOpFn * const fns[3][2] = {
10421 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
10422 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
10423 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
10425 genfn = fns[size][u];
10426 break;
10428 case 0x1: /* SQADD, UQADD */
10430 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10431 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
10432 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
10433 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
10435 genenvfn = fns[size][u];
10436 break;
10438 case 0x2: /* SRHADD, URHADD */
10440 static NeonGenTwoOpFn * const fns[3][2] = {
10441 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
10442 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
10443 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
10445 genfn = fns[size][u];
10446 break;
10448 case 0x4: /* SHSUB, UHSUB */
10450 static NeonGenTwoOpFn * const fns[3][2] = {
10451 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
10452 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
10453 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
10455 genfn = fns[size][u];
10456 break;
10458 case 0x5: /* SQSUB, UQSUB */
10460 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10461 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
10462 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
10463 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
10465 genenvfn = fns[size][u];
10466 break;
10468 case 0x8: /* SSHL, USHL */
10470 static NeonGenTwoOpFn * const fns[3][2] = {
10471 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
10472 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
10473 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
10475 genfn = fns[size][u];
10476 break;
10478 case 0x9: /* SQSHL, UQSHL */
10480 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10481 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
10482 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
10483 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
10485 genenvfn = fns[size][u];
10486 break;
10488 case 0xa: /* SRSHL, URSHL */
10490 static NeonGenTwoOpFn * const fns[3][2] = {
10491 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
10492 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
10493 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
10495 genfn = fns[size][u];
10496 break;
10498 case 0xb: /* SQRSHL, UQRSHL */
10500 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10501 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
10502 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
10503 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
10505 genenvfn = fns[size][u];
10506 break;
10508 case 0xc: /* SMAX, UMAX */
10510 static NeonGenTwoOpFn * const fns[3][2] = {
10511 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
10512 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
10513 { gen_max_s32, gen_max_u32 },
10515 genfn = fns[size][u];
10516 break;
10519 case 0xd: /* SMIN, UMIN */
10521 static NeonGenTwoOpFn * const fns[3][2] = {
10522 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
10523 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
10524 { gen_min_s32, gen_min_u32 },
10526 genfn = fns[size][u];
10527 break;
10529 case 0xe: /* SABD, UABD */
10530 case 0xf: /* SABA, UABA */
10532 static NeonGenTwoOpFn * const fns[3][2] = {
10533 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
10534 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
10535 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
10537 genfn = fns[size][u];
10538 break;
10540 case 0x13: /* MUL, PMUL */
10541 assert(u); /* PMUL */
10542 assert(size == 0);
10543 genfn = gen_helper_neon_mul_p8;
10544 break;
10545 case 0x16: /* SQDMULH, SQRDMULH */
10547 static NeonGenTwoOpEnvFn * const fns[2][2] = {
10548 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
10549 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
10551 assert(size == 1 || size == 2);
10552 genenvfn = fns[size - 1][u];
10553 break;
10555 default:
10556 g_assert_not_reached();
10559 if (genenvfn) {
10560 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
10561 } else {
10562 genfn(tcg_res, tcg_op1, tcg_op2);
10565 if (opcode == 0xf) {
10566 /* SABA, UABA: accumulating ops */
10567 static NeonGenTwoOpFn * const fns[3] = {
10568 gen_helper_neon_add_u8,
10569 gen_helper_neon_add_u16,
10570 tcg_gen_add_i32,
10573 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
10574 fns[size](tcg_res, tcg_op1, tcg_res);
10577 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10579 tcg_temp_free_i32(tcg_res);
10580 tcg_temp_free_i32(tcg_op1);
10581 tcg_temp_free_i32(tcg_op2);
10584 clear_vec_high(s, is_q, rd);
10587 /* AdvSIMD three same
10588 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
10589 * +---+---+---+-----------+------+---+------+--------+---+------+------+
10590 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
10591 * +---+---+---+-----------+------+---+------+--------+---+------+------+
10593 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
10595 int opcode = extract32(insn, 11, 5);
10597 switch (opcode) {
10598 case 0x3: /* logic ops */
10599 disas_simd_3same_logic(s, insn);
10600 break;
10601 case 0x17: /* ADDP */
10602 case 0x14: /* SMAXP, UMAXP */
10603 case 0x15: /* SMINP, UMINP */
10605 /* Pairwise operations */
10606 int is_q = extract32(insn, 30, 1);
10607 int u = extract32(insn, 29, 1);
10608 int size = extract32(insn, 22, 2);
10609 int rm = extract32(insn, 16, 5);
10610 int rn = extract32(insn, 5, 5);
10611 int rd = extract32(insn, 0, 5);
10612 if (opcode == 0x17) {
10613 if (u || (size == 3 && !is_q)) {
10614 unallocated_encoding(s);
10615 return;
10617 } else {
10618 if (size == 3) {
10619 unallocated_encoding(s);
10620 return;
10623 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
10624 break;
10626 case 0x18 ... 0x31:
10627 /* floating point ops, sz[1] and U are part of opcode */
10628 disas_simd_3same_float(s, insn);
10629 break;
10630 default:
10631 disas_simd_3same_int(s, insn);
10632 break;
10637 * Advanced SIMD three same (ARMv8.2 FP16 variants)
10639 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
10640 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
10641 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
10642 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
10644 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
10645 * (register), FACGE, FABD, FCMGT (register) and FACGT.
10648 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
10650 int opcode, fpopcode;
10651 int is_q, u, a, rm, rn, rd;
10652 int datasize, elements;
10653 int pass;
10654 TCGv_ptr fpst;
10655 bool pairwise = false;
10657 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
10658 unallocated_encoding(s);
10659 return;
10662 if (!fp_access_check(s)) {
10663 return;
10666 /* For these floating point ops, the U, a and opcode bits
10667 * together indicate the operation.
10669 opcode = extract32(insn, 11, 3);
10670 u = extract32(insn, 29, 1);
10671 a = extract32(insn, 23, 1);
10672 is_q = extract32(insn, 30, 1);
10673 rm = extract32(insn, 16, 5);
10674 rn = extract32(insn, 5, 5);
10675 rd = extract32(insn, 0, 5);
10677 fpopcode = opcode | (a << 3) | (u << 4);
10678 datasize = is_q ? 128 : 64;
10679 elements = datasize / 16;
10681 switch (fpopcode) {
10682 case 0x10: /* FMAXNMP */
10683 case 0x12: /* FADDP */
10684 case 0x16: /* FMAXP */
10685 case 0x18: /* FMINNMP */
10686 case 0x1e: /* FMINP */
10687 pairwise = true;
10688 break;
10691 fpst = get_fpstatus_ptr(true);
10693 if (pairwise) {
10694 int maxpass = is_q ? 8 : 4;
10695 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10696 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10697 TCGv_i32 tcg_res[8];
10699 for (pass = 0; pass < maxpass; pass++) {
10700 int passreg = pass < (maxpass / 2) ? rn : rm;
10701 int passelt = (pass << 1) & (maxpass - 1);
10703 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
10704 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
10705 tcg_res[pass] = tcg_temp_new_i32();
10707 switch (fpopcode) {
10708 case 0x10: /* FMAXNMP */
10709 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
10710 fpst);
10711 break;
10712 case 0x12: /* FADDP */
10713 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10714 break;
10715 case 0x16: /* FMAXP */
10716 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10717 break;
10718 case 0x18: /* FMINNMP */
10719 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
10720 fpst);
10721 break;
10722 case 0x1e: /* FMINP */
10723 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10724 break;
10725 default:
10726 g_assert_not_reached();
10730 for (pass = 0; pass < maxpass; pass++) {
10731 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
10732 tcg_temp_free_i32(tcg_res[pass]);
10735 tcg_temp_free_i32(tcg_op1);
10736 tcg_temp_free_i32(tcg_op2);
10738 } else {
10739 for (pass = 0; pass < elements; pass++) {
10740 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10741 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10742 TCGv_i32 tcg_res = tcg_temp_new_i32();
10744 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
10745 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
10747 switch (fpopcode) {
10748 case 0x0: /* FMAXNM */
10749 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
10750 break;
10751 case 0x1: /* FMLA */
10752 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10753 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
10754 fpst);
10755 break;
10756 case 0x2: /* FADD */
10757 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
10758 break;
10759 case 0x3: /* FMULX */
10760 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
10761 break;
10762 case 0x4: /* FCMEQ */
10763 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10764 break;
10765 case 0x6: /* FMAX */
10766 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
10767 break;
10768 case 0x7: /* FRECPS */
10769 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10770 break;
10771 case 0x8: /* FMINNM */
10772 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
10773 break;
10774 case 0x9: /* FMLS */
10775 /* As usual for ARM, separate negation for fused multiply-add */
10776 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
10777 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10778 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
10779 fpst);
10780 break;
10781 case 0xa: /* FSUB */
10782 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
10783 break;
10784 case 0xe: /* FMIN */
10785 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
10786 break;
10787 case 0xf: /* FRSQRTS */
10788 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10789 break;
10790 case 0x13: /* FMUL */
10791 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
10792 break;
10793 case 0x14: /* FCMGE */
10794 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10795 break;
10796 case 0x15: /* FACGE */
10797 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10798 break;
10799 case 0x17: /* FDIV */
10800 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
10801 break;
10802 case 0x1a: /* FABD */
10803 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
10804 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
10805 break;
10806 case 0x1c: /* FCMGT */
10807 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10808 break;
10809 case 0x1d: /* FACGT */
10810 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10811 break;
10812 default:
10813 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
10814 __func__, insn, fpopcode, s->pc);
10815 g_assert_not_reached();
10818 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10819 tcg_temp_free_i32(tcg_res);
10820 tcg_temp_free_i32(tcg_op1);
10821 tcg_temp_free_i32(tcg_op2);
10825 tcg_temp_free_ptr(fpst);
10827 clear_vec_high(s, is_q, rd);
10830 /* AdvSIMD three same extra
10831 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
10832 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10833 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
10834 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10836 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10838 int rd = extract32(insn, 0, 5);
10839 int rn = extract32(insn, 5, 5);
10840 int opcode = extract32(insn, 11, 4);
10841 int rm = extract32(insn, 16, 5);
10842 int size = extract32(insn, 22, 2);
10843 bool u = extract32(insn, 29, 1);
10844 bool is_q = extract32(insn, 30, 1);
10845 int feature, rot;
10847 switch (u * 16 + opcode) {
10848 case 0x10: /* SQRDMLAH (vector) */
10849 case 0x11: /* SQRDMLSH (vector) */
10850 if (size != 1 && size != 2) {
10851 unallocated_encoding(s);
10852 return;
10854 feature = ARM_FEATURE_V8_RDM;
10855 break;
10856 case 0x8: /* FCMLA, #0 */
10857 case 0x9: /* FCMLA, #90 */
10858 case 0xa: /* FCMLA, #180 */
10859 case 0xb: /* FCMLA, #270 */
10860 case 0xc: /* FCADD, #90 */
10861 case 0xe: /* FCADD, #270 */
10862 if (size == 0
10863 || (size == 1 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16))
10864 || (size == 3 && !is_q)) {
10865 unallocated_encoding(s);
10866 return;
10868 feature = ARM_FEATURE_V8_FCMA;
10869 break;
10870 default:
10871 unallocated_encoding(s);
10872 return;
10874 if (!arm_dc_feature(s, feature)) {
10875 unallocated_encoding(s);
10876 return;
10878 if (!fp_access_check(s)) {
10879 return;
10882 switch (opcode) {
10883 case 0x0: /* SQRDMLAH (vector) */
10884 switch (size) {
10885 case 1:
10886 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
10887 break;
10888 case 2:
10889 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
10890 break;
10891 default:
10892 g_assert_not_reached();
10894 return;
10896 case 0x1: /* SQRDMLSH (vector) */
10897 switch (size) {
10898 case 1:
10899 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
10900 break;
10901 case 2:
10902 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
10903 break;
10904 default:
10905 g_assert_not_reached();
10907 return;
10909 case 0x8: /* FCMLA, #0 */
10910 case 0x9: /* FCMLA, #90 */
10911 case 0xa: /* FCMLA, #180 */
10912 case 0xb: /* FCMLA, #270 */
10913 rot = extract32(opcode, 0, 2);
10914 switch (size) {
10915 case 1:
10916 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
10917 gen_helper_gvec_fcmlah);
10918 break;
10919 case 2:
10920 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
10921 gen_helper_gvec_fcmlas);
10922 break;
10923 case 3:
10924 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
10925 gen_helper_gvec_fcmlad);
10926 break;
10927 default:
10928 g_assert_not_reached();
10930 return;
10932 case 0xc: /* FCADD, #90 */
10933 case 0xe: /* FCADD, #270 */
10934 rot = extract32(opcode, 1, 1);
10935 switch (size) {
10936 case 1:
10937 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10938 gen_helper_gvec_fcaddh);
10939 break;
10940 case 2:
10941 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10942 gen_helper_gvec_fcadds);
10943 break;
10944 case 3:
10945 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10946 gen_helper_gvec_fcaddd);
10947 break;
10948 default:
10949 g_assert_not_reached();
10951 return;
10953 default:
10954 g_assert_not_reached();
10958 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
10959 int size, int rn, int rd)
10961 /* Handle 2-reg-misc ops which are widening (so each size element
10962 * in the source becomes a 2*size element in the destination.
10963 * The only instruction like this is FCVTL.
10965 int pass;
10967 if (size == 3) {
10968 /* 32 -> 64 bit fp conversion */
10969 TCGv_i64 tcg_res[2];
10970 int srcelt = is_q ? 2 : 0;
10972 for (pass = 0; pass < 2; pass++) {
10973 TCGv_i32 tcg_op = tcg_temp_new_i32();
10974 tcg_res[pass] = tcg_temp_new_i64();
10976 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
10977 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
10978 tcg_temp_free_i32(tcg_op);
10980 for (pass = 0; pass < 2; pass++) {
10981 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10982 tcg_temp_free_i64(tcg_res[pass]);
10984 } else {
10985 /* 16 -> 32 bit fp conversion */
10986 int srcelt = is_q ? 4 : 0;
10987 TCGv_i32 tcg_res[4];
10989 for (pass = 0; pass < 4; pass++) {
10990 tcg_res[pass] = tcg_temp_new_i32();
10992 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
10993 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10994 cpu_env);
10996 for (pass = 0; pass < 4; pass++) {
10997 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10998 tcg_temp_free_i32(tcg_res[pass]);
11003 static void handle_rev(DisasContext *s, int opcode, bool u,
11004 bool is_q, int size, int rn, int rd)
11006 int op = (opcode << 1) | u;
11007 int opsz = op + size;
11008 int grp_size = 3 - opsz;
11009 int dsize = is_q ? 128 : 64;
11010 int i;
11012 if (opsz >= 3) {
11013 unallocated_encoding(s);
11014 return;
11017 if (!fp_access_check(s)) {
11018 return;
11021 if (size == 0) {
11022 /* Special case bytes, use bswap op on each group of elements */
11023 int groups = dsize / (8 << grp_size);
11025 for (i = 0; i < groups; i++) {
11026 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11028 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11029 switch (grp_size) {
11030 case MO_16:
11031 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11032 break;
11033 case MO_32:
11034 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11035 break;
11036 case MO_64:
11037 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11038 break;
11039 default:
11040 g_assert_not_reached();
11042 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11043 tcg_temp_free_i64(tcg_tmp);
11045 clear_vec_high(s, is_q, rd);
11046 } else {
11047 int revmask = (1 << grp_size) - 1;
11048 int esize = 8 << size;
11049 int elements = dsize / esize;
11050 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11051 TCGv_i64 tcg_rd = tcg_const_i64(0);
11052 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11054 for (i = 0; i < elements; i++) {
11055 int e_rev = (i & 0xf) ^ revmask;
11056 int off = e_rev * esize;
11057 read_vec_element(s, tcg_rn, rn, i, size);
11058 if (off >= 64) {
11059 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11060 tcg_rn, off - 64, esize);
11061 } else {
11062 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11065 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11066 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11068 tcg_temp_free_i64(tcg_rd_hi);
11069 tcg_temp_free_i64(tcg_rd);
11070 tcg_temp_free_i64(tcg_rn);
11074 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11075 bool is_q, int size, int rn, int rd)
11077 /* Implement the pairwise operations from 2-misc:
11078 * SADDLP, UADDLP, SADALP, UADALP.
11079 * These all add pairs of elements in the input to produce a
11080 * double-width result element in the output (possibly accumulating).
11082 bool accum = (opcode == 0x6);
11083 int maxpass = is_q ? 2 : 1;
11084 int pass;
11085 TCGv_i64 tcg_res[2];
11087 if (size == 2) {
11088 /* 32 + 32 -> 64 op */
11089 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11091 for (pass = 0; pass < maxpass; pass++) {
11092 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11093 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11095 tcg_res[pass] = tcg_temp_new_i64();
11097 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11098 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11099 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11100 if (accum) {
11101 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11102 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11105 tcg_temp_free_i64(tcg_op1);
11106 tcg_temp_free_i64(tcg_op2);
11108 } else {
11109 for (pass = 0; pass < maxpass; pass++) {
11110 TCGv_i64 tcg_op = tcg_temp_new_i64();
11111 NeonGenOneOpFn *genfn;
11112 static NeonGenOneOpFn * const fns[2][2] = {
11113 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11114 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11117 genfn = fns[size][u];
11119 tcg_res[pass] = tcg_temp_new_i64();
11121 read_vec_element(s, tcg_op, rn, pass, MO_64);
11122 genfn(tcg_res[pass], tcg_op);
11124 if (accum) {
11125 read_vec_element(s, tcg_op, rd, pass, MO_64);
11126 if (size == 0) {
11127 gen_helper_neon_addl_u16(tcg_res[pass],
11128 tcg_res[pass], tcg_op);
11129 } else {
11130 gen_helper_neon_addl_u32(tcg_res[pass],
11131 tcg_res[pass], tcg_op);
11134 tcg_temp_free_i64(tcg_op);
11137 if (!is_q) {
11138 tcg_res[1] = tcg_const_i64(0);
11140 for (pass = 0; pass < 2; pass++) {
11141 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11142 tcg_temp_free_i64(tcg_res[pass]);
11146 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11148 /* Implement SHLL and SHLL2 */
11149 int pass;
11150 int part = is_q ? 2 : 0;
11151 TCGv_i64 tcg_res[2];
11153 for (pass = 0; pass < 2; pass++) {
11154 static NeonGenWidenFn * const widenfns[3] = {
11155 gen_helper_neon_widen_u8,
11156 gen_helper_neon_widen_u16,
11157 tcg_gen_extu_i32_i64,
11159 NeonGenWidenFn *widenfn = widenfns[size];
11160 TCGv_i32 tcg_op = tcg_temp_new_i32();
11162 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11163 tcg_res[pass] = tcg_temp_new_i64();
11164 widenfn(tcg_res[pass], tcg_op);
11165 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11167 tcg_temp_free_i32(tcg_op);
11170 for (pass = 0; pass < 2; pass++) {
11171 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11172 tcg_temp_free_i64(tcg_res[pass]);
11176 /* AdvSIMD two reg misc
11177 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11178 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11179 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11180 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11182 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11184 int size = extract32(insn, 22, 2);
11185 int opcode = extract32(insn, 12, 5);
11186 bool u = extract32(insn, 29, 1);
11187 bool is_q = extract32(insn, 30, 1);
11188 int rn = extract32(insn, 5, 5);
11189 int rd = extract32(insn, 0, 5);
11190 bool need_fpstatus = false;
11191 bool need_rmode = false;
11192 int rmode = -1;
11193 TCGv_i32 tcg_rmode;
11194 TCGv_ptr tcg_fpstatus;
11196 switch (opcode) {
11197 case 0x0: /* REV64, REV32 */
11198 case 0x1: /* REV16 */
11199 handle_rev(s, opcode, u, is_q, size, rn, rd);
11200 return;
11201 case 0x5: /* CNT, NOT, RBIT */
11202 if (u && size == 0) {
11203 /* NOT */
11204 break;
11205 } else if (u && size == 1) {
11206 /* RBIT */
11207 break;
11208 } else if (!u && size == 0) {
11209 /* CNT */
11210 break;
11212 unallocated_encoding(s);
11213 return;
11214 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11215 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11216 if (size == 3) {
11217 unallocated_encoding(s);
11218 return;
11220 if (!fp_access_check(s)) {
11221 return;
11224 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11225 return;
11226 case 0x4: /* CLS, CLZ */
11227 if (size == 3) {
11228 unallocated_encoding(s);
11229 return;
11231 break;
11232 case 0x2: /* SADDLP, UADDLP */
11233 case 0x6: /* SADALP, UADALP */
11234 if (size == 3) {
11235 unallocated_encoding(s);
11236 return;
11238 if (!fp_access_check(s)) {
11239 return;
11241 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11242 return;
11243 case 0x13: /* SHLL, SHLL2 */
11244 if (u == 0 || size == 3) {
11245 unallocated_encoding(s);
11246 return;
11248 if (!fp_access_check(s)) {
11249 return;
11251 handle_shll(s, is_q, size, rn, rd);
11252 return;
11253 case 0xa: /* CMLT */
11254 if (u == 1) {
11255 unallocated_encoding(s);
11256 return;
11258 /* fall through */
11259 case 0x8: /* CMGT, CMGE */
11260 case 0x9: /* CMEQ, CMLE */
11261 case 0xb: /* ABS, NEG */
11262 if (size == 3 && !is_q) {
11263 unallocated_encoding(s);
11264 return;
11266 break;
11267 case 0x3: /* SUQADD, USQADD */
11268 if (size == 3 && !is_q) {
11269 unallocated_encoding(s);
11270 return;
11272 if (!fp_access_check(s)) {
11273 return;
11275 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11276 return;
11277 case 0x7: /* SQABS, SQNEG */
11278 if (size == 3 && !is_q) {
11279 unallocated_encoding(s);
11280 return;
11282 break;
11283 case 0xc ... 0xf:
11284 case 0x16 ... 0x1d:
11285 case 0x1f:
11287 /* Floating point: U, size[1] and opcode indicate operation;
11288 * size[0] indicates single or double precision.
11290 int is_double = extract32(size, 0, 1);
11291 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11292 size = is_double ? 3 : 2;
11293 switch (opcode) {
11294 case 0x2f: /* FABS */
11295 case 0x6f: /* FNEG */
11296 if (size == 3 && !is_q) {
11297 unallocated_encoding(s);
11298 return;
11300 break;
11301 case 0x1d: /* SCVTF */
11302 case 0x5d: /* UCVTF */
11304 bool is_signed = (opcode == 0x1d) ? true : false;
11305 int elements = is_double ? 2 : is_q ? 4 : 2;
11306 if (is_double && !is_q) {
11307 unallocated_encoding(s);
11308 return;
11310 if (!fp_access_check(s)) {
11311 return;
11313 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11314 return;
11316 case 0x2c: /* FCMGT (zero) */
11317 case 0x2d: /* FCMEQ (zero) */
11318 case 0x2e: /* FCMLT (zero) */
11319 case 0x6c: /* FCMGE (zero) */
11320 case 0x6d: /* FCMLE (zero) */
11321 if (size == 3 && !is_q) {
11322 unallocated_encoding(s);
11323 return;
11325 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11326 return;
11327 case 0x7f: /* FSQRT */
11328 if (size == 3 && !is_q) {
11329 unallocated_encoding(s);
11330 return;
11332 break;
11333 case 0x1a: /* FCVTNS */
11334 case 0x1b: /* FCVTMS */
11335 case 0x3a: /* FCVTPS */
11336 case 0x3b: /* FCVTZS */
11337 case 0x5a: /* FCVTNU */
11338 case 0x5b: /* FCVTMU */
11339 case 0x7a: /* FCVTPU */
11340 case 0x7b: /* FCVTZU */
11341 need_fpstatus = true;
11342 need_rmode = true;
11343 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11344 if (size == 3 && !is_q) {
11345 unallocated_encoding(s);
11346 return;
11348 break;
11349 case 0x5c: /* FCVTAU */
11350 case 0x1c: /* FCVTAS */
11351 need_fpstatus = true;
11352 need_rmode = true;
11353 rmode = FPROUNDING_TIEAWAY;
11354 if (size == 3 && !is_q) {
11355 unallocated_encoding(s);
11356 return;
11358 break;
11359 case 0x3c: /* URECPE */
11360 if (size == 3) {
11361 unallocated_encoding(s);
11362 return;
11364 /* fall through */
11365 case 0x3d: /* FRECPE */
11366 case 0x7d: /* FRSQRTE */
11367 if (size == 3 && !is_q) {
11368 unallocated_encoding(s);
11369 return;
11371 if (!fp_access_check(s)) {
11372 return;
11374 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11375 return;
11376 case 0x56: /* FCVTXN, FCVTXN2 */
11377 if (size == 2) {
11378 unallocated_encoding(s);
11379 return;
11381 /* fall through */
11382 case 0x16: /* FCVTN, FCVTN2 */
11383 /* handle_2misc_narrow does a 2*size -> size operation, but these
11384 * instructions encode the source size rather than dest size.
11386 if (!fp_access_check(s)) {
11387 return;
11389 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11390 return;
11391 case 0x17: /* FCVTL, FCVTL2 */
11392 if (!fp_access_check(s)) {
11393 return;
11395 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11396 return;
11397 case 0x18: /* FRINTN */
11398 case 0x19: /* FRINTM */
11399 case 0x38: /* FRINTP */
11400 case 0x39: /* FRINTZ */
11401 need_rmode = true;
11402 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11403 /* fall through */
11404 case 0x59: /* FRINTX */
11405 case 0x79: /* FRINTI */
11406 need_fpstatus = true;
11407 if (size == 3 && !is_q) {
11408 unallocated_encoding(s);
11409 return;
11411 break;
11412 case 0x58: /* FRINTA */
11413 need_rmode = true;
11414 rmode = FPROUNDING_TIEAWAY;
11415 need_fpstatus = true;
11416 if (size == 3 && !is_q) {
11417 unallocated_encoding(s);
11418 return;
11420 break;
11421 case 0x7c: /* URSQRTE */
11422 if (size == 3) {
11423 unallocated_encoding(s);
11424 return;
11426 need_fpstatus = true;
11427 break;
11428 default:
11429 unallocated_encoding(s);
11430 return;
11432 break;
11434 default:
11435 unallocated_encoding(s);
11436 return;
11439 if (!fp_access_check(s)) {
11440 return;
11443 if (need_fpstatus || need_rmode) {
11444 tcg_fpstatus = get_fpstatus_ptr(false);
11445 } else {
11446 tcg_fpstatus = NULL;
11448 if (need_rmode) {
11449 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11450 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11451 } else {
11452 tcg_rmode = NULL;
11455 switch (opcode) {
11456 case 0x5:
11457 if (u && size == 0) { /* NOT */
11458 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11459 return;
11461 break;
11462 case 0xb:
11463 if (u) { /* NEG */
11464 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11465 return;
11467 break;
11470 if (size == 3) {
11471 /* All 64-bit element operations can be shared with scalar 2misc */
11472 int pass;
11474 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
11475 TCGv_i64 tcg_op = tcg_temp_new_i64();
11476 TCGv_i64 tcg_res = tcg_temp_new_i64();
11478 read_vec_element(s, tcg_op, rn, pass, MO_64);
11480 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11481 tcg_rmode, tcg_fpstatus);
11483 write_vec_element(s, tcg_res, rd, pass, MO_64);
11485 tcg_temp_free_i64(tcg_res);
11486 tcg_temp_free_i64(tcg_op);
11488 } else {
11489 int pass;
11491 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11492 TCGv_i32 tcg_op = tcg_temp_new_i32();
11493 TCGv_i32 tcg_res = tcg_temp_new_i32();
11494 TCGCond cond;
11496 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11498 if (size == 2) {
11499 /* Special cases for 32 bit elements */
11500 switch (opcode) {
11501 case 0xa: /* CMLT */
11502 /* 32 bit integer comparison against zero, result is
11503 * test ? (2^32 - 1) : 0. We implement via setcond(test)
11504 * and inverting.
11506 cond = TCG_COND_LT;
11507 do_cmop:
11508 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
11509 tcg_gen_neg_i32(tcg_res, tcg_res);
11510 break;
11511 case 0x8: /* CMGT, CMGE */
11512 cond = u ? TCG_COND_GE : TCG_COND_GT;
11513 goto do_cmop;
11514 case 0x9: /* CMEQ, CMLE */
11515 cond = u ? TCG_COND_LE : TCG_COND_EQ;
11516 goto do_cmop;
11517 case 0x4: /* CLS */
11518 if (u) {
11519 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11520 } else {
11521 tcg_gen_clrsb_i32(tcg_res, tcg_op);
11523 break;
11524 case 0x7: /* SQABS, SQNEG */
11525 if (u) {
11526 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
11527 } else {
11528 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
11530 break;
11531 case 0xb: /* ABS, NEG */
11532 if (u) {
11533 tcg_gen_neg_i32(tcg_res, tcg_op);
11534 } else {
11535 TCGv_i32 tcg_zero = tcg_const_i32(0);
11536 tcg_gen_neg_i32(tcg_res, tcg_op);
11537 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
11538 tcg_zero, tcg_op, tcg_res);
11539 tcg_temp_free_i32(tcg_zero);
11541 break;
11542 case 0x2f: /* FABS */
11543 gen_helper_vfp_abss(tcg_res, tcg_op);
11544 break;
11545 case 0x6f: /* FNEG */
11546 gen_helper_vfp_negs(tcg_res, tcg_op);
11547 break;
11548 case 0x7f: /* FSQRT */
11549 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
11550 break;
11551 case 0x1a: /* FCVTNS */
11552 case 0x1b: /* FCVTMS */
11553 case 0x1c: /* FCVTAS */
11554 case 0x3a: /* FCVTPS */
11555 case 0x3b: /* FCVTZS */
11557 TCGv_i32 tcg_shift = tcg_const_i32(0);
11558 gen_helper_vfp_tosls(tcg_res, tcg_op,
11559 tcg_shift, tcg_fpstatus);
11560 tcg_temp_free_i32(tcg_shift);
11561 break;
11563 case 0x5a: /* FCVTNU */
11564 case 0x5b: /* FCVTMU */
11565 case 0x5c: /* FCVTAU */
11566 case 0x7a: /* FCVTPU */
11567 case 0x7b: /* FCVTZU */
11569 TCGv_i32 tcg_shift = tcg_const_i32(0);
11570 gen_helper_vfp_touls(tcg_res, tcg_op,
11571 tcg_shift, tcg_fpstatus);
11572 tcg_temp_free_i32(tcg_shift);
11573 break;
11575 case 0x18: /* FRINTN */
11576 case 0x19: /* FRINTM */
11577 case 0x38: /* FRINTP */
11578 case 0x39: /* FRINTZ */
11579 case 0x58: /* FRINTA */
11580 case 0x79: /* FRINTI */
11581 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11582 break;
11583 case 0x59: /* FRINTX */
11584 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11585 break;
11586 case 0x7c: /* URSQRTE */
11587 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
11588 break;
11589 default:
11590 g_assert_not_reached();
11592 } else {
11593 /* Use helpers for 8 and 16 bit elements */
11594 switch (opcode) {
11595 case 0x5: /* CNT, RBIT */
11596 /* For these two insns size is part of the opcode specifier
11597 * (handled earlier); they always operate on byte elements.
11599 if (u) {
11600 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11601 } else {
11602 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11604 break;
11605 case 0x7: /* SQABS, SQNEG */
11607 NeonGenOneOpEnvFn *genfn;
11608 static NeonGenOneOpEnvFn * const fns[2][2] = {
11609 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11610 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11612 genfn = fns[size][u];
11613 genfn(tcg_res, cpu_env, tcg_op);
11614 break;
11616 case 0x8: /* CMGT, CMGE */
11617 case 0x9: /* CMEQ, CMLE */
11618 case 0xa: /* CMLT */
11620 static NeonGenTwoOpFn * const fns[3][2] = {
11621 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
11622 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
11623 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
11625 NeonGenTwoOpFn *genfn;
11626 int comp;
11627 bool reverse;
11628 TCGv_i32 tcg_zero = tcg_const_i32(0);
11630 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
11631 comp = (opcode - 0x8) * 2 + u;
11632 /* ...but LE, LT are implemented as reverse GE, GT */
11633 reverse = (comp > 2);
11634 if (reverse) {
11635 comp = 4 - comp;
11637 genfn = fns[comp][size];
11638 if (reverse) {
11639 genfn(tcg_res, tcg_zero, tcg_op);
11640 } else {
11641 genfn(tcg_res, tcg_op, tcg_zero);
11643 tcg_temp_free_i32(tcg_zero);
11644 break;
11646 case 0xb: /* ABS, NEG */
11647 if (u) {
11648 TCGv_i32 tcg_zero = tcg_const_i32(0);
11649 if (size) {
11650 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
11651 } else {
11652 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
11654 tcg_temp_free_i32(tcg_zero);
11655 } else {
11656 if (size) {
11657 gen_helper_neon_abs_s16(tcg_res, tcg_op);
11658 } else {
11659 gen_helper_neon_abs_s8(tcg_res, tcg_op);
11662 break;
11663 case 0x4: /* CLS, CLZ */
11664 if (u) {
11665 if (size == 0) {
11666 gen_helper_neon_clz_u8(tcg_res, tcg_op);
11667 } else {
11668 gen_helper_neon_clz_u16(tcg_res, tcg_op);
11670 } else {
11671 if (size == 0) {
11672 gen_helper_neon_cls_s8(tcg_res, tcg_op);
11673 } else {
11674 gen_helper_neon_cls_s16(tcg_res, tcg_op);
11677 break;
11678 default:
11679 g_assert_not_reached();
11683 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11685 tcg_temp_free_i32(tcg_res);
11686 tcg_temp_free_i32(tcg_op);
11689 clear_vec_high(s, is_q, rd);
11691 if (need_rmode) {
11692 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11693 tcg_temp_free_i32(tcg_rmode);
11695 if (need_fpstatus) {
11696 tcg_temp_free_ptr(tcg_fpstatus);
11700 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11702 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
11703 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11704 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
11705 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11706 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11707 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11709 * This actually covers two groups where scalar access is governed by
11710 * bit 28. A bunch of the instructions (float to integral) only exist
11711 * in the vector form and are un-allocated for the scalar decode. Also
11712 * in the scalar decode Q is always 1.
11714 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11716 int fpop, opcode, a, u;
11717 int rn, rd;
11718 bool is_q;
11719 bool is_scalar;
11720 bool only_in_vector = false;
11722 int pass;
11723 TCGv_i32 tcg_rmode = NULL;
11724 TCGv_ptr tcg_fpstatus = NULL;
11725 bool need_rmode = false;
11726 bool need_fpst = true;
11727 int rmode;
11729 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
11730 unallocated_encoding(s);
11731 return;
11734 rd = extract32(insn, 0, 5);
11735 rn = extract32(insn, 5, 5);
11737 a = extract32(insn, 23, 1);
11738 u = extract32(insn, 29, 1);
11739 is_scalar = extract32(insn, 28, 1);
11740 is_q = extract32(insn, 30, 1);
11742 opcode = extract32(insn, 12, 5);
11743 fpop = deposit32(opcode, 5, 1, a);
11744 fpop = deposit32(fpop, 6, 1, u);
11746 rd = extract32(insn, 0, 5);
11747 rn = extract32(insn, 5, 5);
11749 switch (fpop) {
11750 case 0x1d: /* SCVTF */
11751 case 0x5d: /* UCVTF */
11753 int elements;
11755 if (is_scalar) {
11756 elements = 1;
11757 } else {
11758 elements = (is_q ? 8 : 4);
11761 if (!fp_access_check(s)) {
11762 return;
11764 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11765 return;
11767 break;
11768 case 0x2c: /* FCMGT (zero) */
11769 case 0x2d: /* FCMEQ (zero) */
11770 case 0x2e: /* FCMLT (zero) */
11771 case 0x6c: /* FCMGE (zero) */
11772 case 0x6d: /* FCMLE (zero) */
11773 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11774 return;
11775 case 0x3d: /* FRECPE */
11776 case 0x3f: /* FRECPX */
11777 break;
11778 case 0x18: /* FRINTN */
11779 need_rmode = true;
11780 only_in_vector = true;
11781 rmode = FPROUNDING_TIEEVEN;
11782 break;
11783 case 0x19: /* FRINTM */
11784 need_rmode = true;
11785 only_in_vector = true;
11786 rmode = FPROUNDING_NEGINF;
11787 break;
11788 case 0x38: /* FRINTP */
11789 need_rmode = true;
11790 only_in_vector = true;
11791 rmode = FPROUNDING_POSINF;
11792 break;
11793 case 0x39: /* FRINTZ */
11794 need_rmode = true;
11795 only_in_vector = true;
11796 rmode = FPROUNDING_ZERO;
11797 break;
11798 case 0x58: /* FRINTA */
11799 need_rmode = true;
11800 only_in_vector = true;
11801 rmode = FPROUNDING_TIEAWAY;
11802 break;
11803 case 0x59: /* FRINTX */
11804 case 0x79: /* FRINTI */
11805 only_in_vector = true;
11806 /* current rounding mode */
11807 break;
11808 case 0x1a: /* FCVTNS */
11809 need_rmode = true;
11810 rmode = FPROUNDING_TIEEVEN;
11811 break;
11812 case 0x1b: /* FCVTMS */
11813 need_rmode = true;
11814 rmode = FPROUNDING_NEGINF;
11815 break;
11816 case 0x1c: /* FCVTAS */
11817 need_rmode = true;
11818 rmode = FPROUNDING_TIEAWAY;
11819 break;
11820 case 0x3a: /* FCVTPS */
11821 need_rmode = true;
11822 rmode = FPROUNDING_POSINF;
11823 break;
11824 case 0x3b: /* FCVTZS */
11825 need_rmode = true;
11826 rmode = FPROUNDING_ZERO;
11827 break;
11828 case 0x5a: /* FCVTNU */
11829 need_rmode = true;
11830 rmode = FPROUNDING_TIEEVEN;
11831 break;
11832 case 0x5b: /* FCVTMU */
11833 need_rmode = true;
11834 rmode = FPROUNDING_NEGINF;
11835 break;
11836 case 0x5c: /* FCVTAU */
11837 need_rmode = true;
11838 rmode = FPROUNDING_TIEAWAY;
11839 break;
11840 case 0x7a: /* FCVTPU */
11841 need_rmode = true;
11842 rmode = FPROUNDING_POSINF;
11843 break;
11844 case 0x7b: /* FCVTZU */
11845 need_rmode = true;
11846 rmode = FPROUNDING_ZERO;
11847 break;
11848 case 0x2f: /* FABS */
11849 case 0x6f: /* FNEG */
11850 need_fpst = false;
11851 break;
11852 case 0x7d: /* FRSQRTE */
11853 case 0x7f: /* FSQRT (vector) */
11854 break;
11855 default:
11856 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
11857 g_assert_not_reached();
11861 /* Check additional constraints for the scalar encoding */
11862 if (is_scalar) {
11863 if (!is_q) {
11864 unallocated_encoding(s);
11865 return;
11867 /* FRINTxx is only in the vector form */
11868 if (only_in_vector) {
11869 unallocated_encoding(s);
11870 return;
11874 if (!fp_access_check(s)) {
11875 return;
11878 if (need_rmode || need_fpst) {
11879 tcg_fpstatus = get_fpstatus_ptr(true);
11882 if (need_rmode) {
11883 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11884 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11887 if (is_scalar) {
11888 TCGv_i32 tcg_op = tcg_temp_new_i32();
11889 TCGv_i32 tcg_res = tcg_temp_new_i32();
11891 read_vec_element_i32(s, tcg_op, rn, 0, MO_16);
11893 switch (fpop) {
11894 case 0x1a: /* FCVTNS */
11895 case 0x1b: /* FCVTMS */
11896 case 0x1c: /* FCVTAS */
11897 case 0x3a: /* FCVTPS */
11898 case 0x3b: /* FCVTZS */
11899 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11900 break;
11901 case 0x3d: /* FRECPE */
11902 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11903 break;
11904 case 0x3f: /* FRECPX */
11905 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11906 break;
11907 case 0x5a: /* FCVTNU */
11908 case 0x5b: /* FCVTMU */
11909 case 0x5c: /* FCVTAU */
11910 case 0x7a: /* FCVTPU */
11911 case 0x7b: /* FCVTZU */
11912 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11913 break;
11914 case 0x6f: /* FNEG */
11915 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11916 break;
11917 case 0x7d: /* FRSQRTE */
11918 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11919 break;
11920 default:
11921 g_assert_not_reached();
11924 /* limit any sign extension going on */
11925 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11926 write_fp_sreg(s, rd, tcg_res);
11928 tcg_temp_free_i32(tcg_res);
11929 tcg_temp_free_i32(tcg_op);
11930 } else {
11931 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11932 TCGv_i32 tcg_op = tcg_temp_new_i32();
11933 TCGv_i32 tcg_res = tcg_temp_new_i32();
11935 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11937 switch (fpop) {
11938 case 0x1a: /* FCVTNS */
11939 case 0x1b: /* FCVTMS */
11940 case 0x1c: /* FCVTAS */
11941 case 0x3a: /* FCVTPS */
11942 case 0x3b: /* FCVTZS */
11943 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11944 break;
11945 case 0x3d: /* FRECPE */
11946 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11947 break;
11948 case 0x5a: /* FCVTNU */
11949 case 0x5b: /* FCVTMU */
11950 case 0x5c: /* FCVTAU */
11951 case 0x7a: /* FCVTPU */
11952 case 0x7b: /* FCVTZU */
11953 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11954 break;
11955 case 0x18: /* FRINTN */
11956 case 0x19: /* FRINTM */
11957 case 0x38: /* FRINTP */
11958 case 0x39: /* FRINTZ */
11959 case 0x58: /* FRINTA */
11960 case 0x79: /* FRINTI */
11961 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11962 break;
11963 case 0x59: /* FRINTX */
11964 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11965 break;
11966 case 0x2f: /* FABS */
11967 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11968 break;
11969 case 0x6f: /* FNEG */
11970 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11971 break;
11972 case 0x7d: /* FRSQRTE */
11973 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11974 break;
11975 case 0x7f: /* FSQRT */
11976 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11977 break;
11978 default:
11979 g_assert_not_reached();
11982 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11984 tcg_temp_free_i32(tcg_res);
11985 tcg_temp_free_i32(tcg_op);
11988 clear_vec_high(s, is_q, rd);
11991 if (tcg_rmode) {
11992 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11993 tcg_temp_free_i32(tcg_rmode);
11996 if (tcg_fpstatus) {
11997 tcg_temp_free_ptr(tcg_fpstatus);
12001 /* AdvSIMD scalar x indexed element
12002 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12003 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12004 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12005 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12006 * AdvSIMD vector x indexed element
12007 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12008 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12009 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12010 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12012 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12014 /* This encoding has two kinds of instruction:
12015 * normal, where we perform elt x idxelt => elt for each
12016 * element in the vector
12017 * long, where we perform elt x idxelt and generate a result of
12018 * double the width of the input element
12019 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12021 bool is_scalar = extract32(insn, 28, 1);
12022 bool is_q = extract32(insn, 30, 1);
12023 bool u = extract32(insn, 29, 1);
12024 int size = extract32(insn, 22, 2);
12025 int l = extract32(insn, 21, 1);
12026 int m = extract32(insn, 20, 1);
12027 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12028 int rm = extract32(insn, 16, 4);
12029 int opcode = extract32(insn, 12, 4);
12030 int h = extract32(insn, 11, 1);
12031 int rn = extract32(insn, 5, 5);
12032 int rd = extract32(insn, 0, 5);
12033 bool is_long = false;
12034 int is_fp = 0;
12035 bool is_fp16 = false;
12036 int index;
12037 TCGv_ptr fpst;
12039 switch (16 * u + opcode) {
12040 case 0x08: /* MUL */
12041 case 0x10: /* MLA */
12042 case 0x14: /* MLS */
12043 if (is_scalar) {
12044 unallocated_encoding(s);
12045 return;
12047 break;
12048 case 0x02: /* SMLAL, SMLAL2 */
12049 case 0x12: /* UMLAL, UMLAL2 */
12050 case 0x06: /* SMLSL, SMLSL2 */
12051 case 0x16: /* UMLSL, UMLSL2 */
12052 case 0x0a: /* SMULL, SMULL2 */
12053 case 0x1a: /* UMULL, UMULL2 */
12054 if (is_scalar) {
12055 unallocated_encoding(s);
12056 return;
12058 is_long = true;
12059 break;
12060 case 0x03: /* SQDMLAL, SQDMLAL2 */
12061 case 0x07: /* SQDMLSL, SQDMLSL2 */
12062 case 0x0b: /* SQDMULL, SQDMULL2 */
12063 is_long = true;
12064 break;
12065 case 0x0c: /* SQDMULH */
12066 case 0x0d: /* SQRDMULH */
12067 break;
12068 case 0x01: /* FMLA */
12069 case 0x05: /* FMLS */
12070 case 0x09: /* FMUL */
12071 case 0x19: /* FMULX */
12072 is_fp = 1;
12073 break;
12074 case 0x1d: /* SQRDMLAH */
12075 case 0x1f: /* SQRDMLSH */
12076 if (!arm_dc_feature(s, ARM_FEATURE_V8_RDM)) {
12077 unallocated_encoding(s);
12078 return;
12080 break;
12081 case 0x11: /* FCMLA #0 */
12082 case 0x13: /* FCMLA #90 */
12083 case 0x15: /* FCMLA #180 */
12084 case 0x17: /* FCMLA #270 */
12085 if (!arm_dc_feature(s, ARM_FEATURE_V8_FCMA)) {
12086 unallocated_encoding(s);
12087 return;
12089 is_fp = 2;
12090 break;
12091 default:
12092 unallocated_encoding(s);
12093 return;
12096 switch (is_fp) {
12097 case 1: /* normal fp */
12098 /* convert insn encoded size to TCGMemOp size */
12099 switch (size) {
12100 case 0: /* half-precision */
12101 size = MO_16;
12102 is_fp16 = true;
12103 break;
12104 case MO_32: /* single precision */
12105 case MO_64: /* double precision */
12106 break;
12107 default:
12108 unallocated_encoding(s);
12109 return;
12111 break;
12113 case 2: /* complex fp */
12114 /* Each indexable element is a complex pair. */
12115 size <<= 1;
12116 switch (size) {
12117 case MO_32:
12118 if (h && !is_q) {
12119 unallocated_encoding(s);
12120 return;
12122 is_fp16 = true;
12123 break;
12124 case MO_64:
12125 break;
12126 default:
12127 unallocated_encoding(s);
12128 return;
12130 break;
12132 default: /* integer */
12133 switch (size) {
12134 case MO_8:
12135 case MO_64:
12136 unallocated_encoding(s);
12137 return;
12139 break;
12141 if (is_fp16 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
12142 unallocated_encoding(s);
12143 return;
12146 /* Given TCGMemOp size, adjust register and indexing. */
12147 switch (size) {
12148 case MO_16:
12149 index = h << 2 | l << 1 | m;
12150 break;
12151 case MO_32:
12152 index = h << 1 | l;
12153 rm |= m << 4;
12154 break;
12155 case MO_64:
12156 if (l || !is_q) {
12157 unallocated_encoding(s);
12158 return;
12160 index = h;
12161 rm |= m << 4;
12162 break;
12163 default:
12164 g_assert_not_reached();
12167 if (!fp_access_check(s)) {
12168 return;
12171 if (is_fp) {
12172 fpst = get_fpstatus_ptr(is_fp16);
12173 } else {
12174 fpst = NULL;
12177 switch (16 * u + opcode) {
12178 case 0x11: /* FCMLA #0 */
12179 case 0x13: /* FCMLA #90 */
12180 case 0x15: /* FCMLA #180 */
12181 case 0x17: /* FCMLA #270 */
12182 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12183 vec_full_reg_offset(s, rn),
12184 vec_reg_offset(s, rm, index, size), fpst,
12185 is_q ? 16 : 8, vec_full_reg_size(s),
12186 extract32(insn, 13, 2), /* rot */
12187 size == MO_64
12188 ? gen_helper_gvec_fcmlas_idx
12189 : gen_helper_gvec_fcmlah_idx);
12190 tcg_temp_free_ptr(fpst);
12191 return;
12194 if (size == 3) {
12195 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12196 int pass;
12198 assert(is_fp && is_q && !is_long);
12200 read_vec_element(s, tcg_idx, rm, index, MO_64);
12202 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12203 TCGv_i64 tcg_op = tcg_temp_new_i64();
12204 TCGv_i64 tcg_res = tcg_temp_new_i64();
12206 read_vec_element(s, tcg_op, rn, pass, MO_64);
12208 switch (16 * u + opcode) {
12209 case 0x05: /* FMLS */
12210 /* As usual for ARM, separate negation for fused multiply-add */
12211 gen_helper_vfp_negd(tcg_op, tcg_op);
12212 /* fall through */
12213 case 0x01: /* FMLA */
12214 read_vec_element(s, tcg_res, rd, pass, MO_64);
12215 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12216 break;
12217 case 0x09: /* FMUL */
12218 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12219 break;
12220 case 0x19: /* FMULX */
12221 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12222 break;
12223 default:
12224 g_assert_not_reached();
12227 write_vec_element(s, tcg_res, rd, pass, MO_64);
12228 tcg_temp_free_i64(tcg_op);
12229 tcg_temp_free_i64(tcg_res);
12232 tcg_temp_free_i64(tcg_idx);
12233 clear_vec_high(s, !is_scalar, rd);
12234 } else if (!is_long) {
12235 /* 32 bit floating point, or 16 or 32 bit integer.
12236 * For the 16 bit scalar case we use the usual Neon helpers and
12237 * rely on the fact that 0 op 0 == 0 with no side effects.
12239 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12240 int pass, maxpasses;
12242 if (is_scalar) {
12243 maxpasses = 1;
12244 } else {
12245 maxpasses = is_q ? 4 : 2;
12248 read_vec_element_i32(s, tcg_idx, rm, index, size);
12250 if (size == 1 && !is_scalar) {
12251 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12252 * the index into both halves of the 32 bit tcg_idx and then use
12253 * the usual Neon helpers.
12255 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12258 for (pass = 0; pass < maxpasses; pass++) {
12259 TCGv_i32 tcg_op = tcg_temp_new_i32();
12260 TCGv_i32 tcg_res = tcg_temp_new_i32();
12262 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12264 switch (16 * u + opcode) {
12265 case 0x08: /* MUL */
12266 case 0x10: /* MLA */
12267 case 0x14: /* MLS */
12269 static NeonGenTwoOpFn * const fns[2][2] = {
12270 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12271 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12273 NeonGenTwoOpFn *genfn;
12274 bool is_sub = opcode == 0x4;
12276 if (size == 1) {
12277 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12278 } else {
12279 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12281 if (opcode == 0x8) {
12282 break;
12284 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12285 genfn = fns[size - 1][is_sub];
12286 genfn(tcg_res, tcg_op, tcg_res);
12287 break;
12289 case 0x05: /* FMLS */
12290 case 0x01: /* FMLA */
12291 read_vec_element_i32(s, tcg_res, rd, pass,
12292 is_scalar ? size : MO_32);
12293 switch (size) {
12294 case 1:
12295 if (opcode == 0x5) {
12296 /* As usual for ARM, separate negation for fused
12297 * multiply-add */
12298 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12300 if (is_scalar) {
12301 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12302 tcg_res, fpst);
12303 } else {
12304 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12305 tcg_res, fpst);
12307 break;
12308 case 2:
12309 if (opcode == 0x5) {
12310 /* As usual for ARM, separate negation for
12311 * fused multiply-add */
12312 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12314 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12315 tcg_res, fpst);
12316 break;
12317 default:
12318 g_assert_not_reached();
12320 break;
12321 case 0x09: /* FMUL */
12322 switch (size) {
12323 case 1:
12324 if (is_scalar) {
12325 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12326 tcg_idx, fpst);
12327 } else {
12328 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12329 tcg_idx, fpst);
12331 break;
12332 case 2:
12333 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12334 break;
12335 default:
12336 g_assert_not_reached();
12338 break;
12339 case 0x19: /* FMULX */
12340 switch (size) {
12341 case 1:
12342 if (is_scalar) {
12343 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12344 tcg_idx, fpst);
12345 } else {
12346 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12347 tcg_idx, fpst);
12349 break;
12350 case 2:
12351 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12352 break;
12353 default:
12354 g_assert_not_reached();
12356 break;
12357 case 0x0c: /* SQDMULH */
12358 if (size == 1) {
12359 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12360 tcg_op, tcg_idx);
12361 } else {
12362 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12363 tcg_op, tcg_idx);
12365 break;
12366 case 0x0d: /* SQRDMULH */
12367 if (size == 1) {
12368 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12369 tcg_op, tcg_idx);
12370 } else {
12371 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
12372 tcg_op, tcg_idx);
12374 break;
12375 case 0x1d: /* SQRDMLAH */
12376 read_vec_element_i32(s, tcg_res, rd, pass,
12377 is_scalar ? size : MO_32);
12378 if (size == 1) {
12379 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
12380 tcg_op, tcg_idx, tcg_res);
12381 } else {
12382 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
12383 tcg_op, tcg_idx, tcg_res);
12385 break;
12386 case 0x1f: /* SQRDMLSH */
12387 read_vec_element_i32(s, tcg_res, rd, pass,
12388 is_scalar ? size : MO_32);
12389 if (size == 1) {
12390 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
12391 tcg_op, tcg_idx, tcg_res);
12392 } else {
12393 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
12394 tcg_op, tcg_idx, tcg_res);
12396 break;
12397 default:
12398 g_assert_not_reached();
12401 if (is_scalar) {
12402 write_fp_sreg(s, rd, tcg_res);
12403 } else {
12404 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12407 tcg_temp_free_i32(tcg_op);
12408 tcg_temp_free_i32(tcg_res);
12411 tcg_temp_free_i32(tcg_idx);
12412 clear_vec_high(s, is_q, rd);
12413 } else {
12414 /* long ops: 16x16->32 or 32x32->64 */
12415 TCGv_i64 tcg_res[2];
12416 int pass;
12417 bool satop = extract32(opcode, 0, 1);
12418 TCGMemOp memop = MO_32;
12420 if (satop || !u) {
12421 memop |= MO_SIGN;
12424 if (size == 2) {
12425 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12427 read_vec_element(s, tcg_idx, rm, index, memop);
12429 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12430 TCGv_i64 tcg_op = tcg_temp_new_i64();
12431 TCGv_i64 tcg_passres;
12432 int passelt;
12434 if (is_scalar) {
12435 passelt = 0;
12436 } else {
12437 passelt = pass + (is_q * 2);
12440 read_vec_element(s, tcg_op, rn, passelt, memop);
12442 tcg_res[pass] = tcg_temp_new_i64();
12444 if (opcode == 0xa || opcode == 0xb) {
12445 /* Non-accumulating ops */
12446 tcg_passres = tcg_res[pass];
12447 } else {
12448 tcg_passres = tcg_temp_new_i64();
12451 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12452 tcg_temp_free_i64(tcg_op);
12454 if (satop) {
12455 /* saturating, doubling */
12456 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
12457 tcg_passres, tcg_passres);
12460 if (opcode == 0xa || opcode == 0xb) {
12461 continue;
12464 /* Accumulating op: handle accumulate step */
12465 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12467 switch (opcode) {
12468 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12469 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12470 break;
12471 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12472 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12473 break;
12474 case 0x7: /* SQDMLSL, SQDMLSL2 */
12475 tcg_gen_neg_i64(tcg_passres, tcg_passres);
12476 /* fall through */
12477 case 0x3: /* SQDMLAL, SQDMLAL2 */
12478 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
12479 tcg_res[pass],
12480 tcg_passres);
12481 break;
12482 default:
12483 g_assert_not_reached();
12485 tcg_temp_free_i64(tcg_passres);
12487 tcg_temp_free_i64(tcg_idx);
12489 clear_vec_high(s, !is_scalar, rd);
12490 } else {
12491 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12493 assert(size == 1);
12494 read_vec_element_i32(s, tcg_idx, rm, index, size);
12496 if (!is_scalar) {
12497 /* The simplest way to handle the 16x16 indexed ops is to
12498 * duplicate the index into both halves of the 32 bit tcg_idx
12499 * and then use the usual Neon helpers.
12501 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12504 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12505 TCGv_i32 tcg_op = tcg_temp_new_i32();
12506 TCGv_i64 tcg_passres;
12508 if (is_scalar) {
12509 read_vec_element_i32(s, tcg_op, rn, pass, size);
12510 } else {
12511 read_vec_element_i32(s, tcg_op, rn,
12512 pass + (is_q * 2), MO_32);
12515 tcg_res[pass] = tcg_temp_new_i64();
12517 if (opcode == 0xa || opcode == 0xb) {
12518 /* Non-accumulating ops */
12519 tcg_passres = tcg_res[pass];
12520 } else {
12521 tcg_passres = tcg_temp_new_i64();
12524 if (memop & MO_SIGN) {
12525 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12526 } else {
12527 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12529 if (satop) {
12530 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
12531 tcg_passres, tcg_passres);
12533 tcg_temp_free_i32(tcg_op);
12535 if (opcode == 0xa || opcode == 0xb) {
12536 continue;
12539 /* Accumulating op: handle accumulate step */
12540 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12542 switch (opcode) {
12543 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12544 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12545 tcg_passres);
12546 break;
12547 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12548 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12549 tcg_passres);
12550 break;
12551 case 0x7: /* SQDMLSL, SQDMLSL2 */
12552 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12553 /* fall through */
12554 case 0x3: /* SQDMLAL, SQDMLAL2 */
12555 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
12556 tcg_res[pass],
12557 tcg_passres);
12558 break;
12559 default:
12560 g_assert_not_reached();
12562 tcg_temp_free_i64(tcg_passres);
12564 tcg_temp_free_i32(tcg_idx);
12566 if (is_scalar) {
12567 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12571 if (is_scalar) {
12572 tcg_res[1] = tcg_const_i64(0);
12575 for (pass = 0; pass < 2; pass++) {
12576 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12577 tcg_temp_free_i64(tcg_res[pass]);
12581 if (fpst) {
12582 tcg_temp_free_ptr(fpst);
12586 /* Crypto AES
12587 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
12588 * +-----------------+------+-----------+--------+-----+------+------+
12589 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
12590 * +-----------------+------+-----------+--------+-----+------+------+
12592 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
12594 int size = extract32(insn, 22, 2);
12595 int opcode = extract32(insn, 12, 5);
12596 int rn = extract32(insn, 5, 5);
12597 int rd = extract32(insn, 0, 5);
12598 int decrypt;
12599 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12600 TCGv_i32 tcg_decrypt;
12601 CryptoThreeOpIntFn *genfn;
12603 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
12604 || size != 0) {
12605 unallocated_encoding(s);
12606 return;
12609 switch (opcode) {
12610 case 0x4: /* AESE */
12611 decrypt = 0;
12612 genfn = gen_helper_crypto_aese;
12613 break;
12614 case 0x6: /* AESMC */
12615 decrypt = 0;
12616 genfn = gen_helper_crypto_aesmc;
12617 break;
12618 case 0x5: /* AESD */
12619 decrypt = 1;
12620 genfn = gen_helper_crypto_aese;
12621 break;
12622 case 0x7: /* AESIMC */
12623 decrypt = 1;
12624 genfn = gen_helper_crypto_aesmc;
12625 break;
12626 default:
12627 unallocated_encoding(s);
12628 return;
12631 if (!fp_access_check(s)) {
12632 return;
12635 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12636 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12637 tcg_decrypt = tcg_const_i32(decrypt);
12639 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
12641 tcg_temp_free_ptr(tcg_rd_ptr);
12642 tcg_temp_free_ptr(tcg_rn_ptr);
12643 tcg_temp_free_i32(tcg_decrypt);
12646 /* Crypto three-reg SHA
12647 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
12648 * +-----------------+------+---+------+---+--------+-----+------+------+
12649 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
12650 * +-----------------+------+---+------+---+--------+-----+------+------+
12652 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
12654 int size = extract32(insn, 22, 2);
12655 int opcode = extract32(insn, 12, 3);
12656 int rm = extract32(insn, 16, 5);
12657 int rn = extract32(insn, 5, 5);
12658 int rd = extract32(insn, 0, 5);
12659 CryptoThreeOpFn *genfn;
12660 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
12661 int feature = ARM_FEATURE_V8_SHA256;
12663 if (size != 0) {
12664 unallocated_encoding(s);
12665 return;
12668 switch (opcode) {
12669 case 0: /* SHA1C */
12670 case 1: /* SHA1P */
12671 case 2: /* SHA1M */
12672 case 3: /* SHA1SU0 */
12673 genfn = NULL;
12674 feature = ARM_FEATURE_V8_SHA1;
12675 break;
12676 case 4: /* SHA256H */
12677 genfn = gen_helper_crypto_sha256h;
12678 break;
12679 case 5: /* SHA256H2 */
12680 genfn = gen_helper_crypto_sha256h2;
12681 break;
12682 case 6: /* SHA256SU1 */
12683 genfn = gen_helper_crypto_sha256su1;
12684 break;
12685 default:
12686 unallocated_encoding(s);
12687 return;
12690 if (!arm_dc_feature(s, feature)) {
12691 unallocated_encoding(s);
12692 return;
12695 if (!fp_access_check(s)) {
12696 return;
12699 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12700 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12701 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
12703 if (genfn) {
12704 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
12705 } else {
12706 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
12708 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
12709 tcg_rm_ptr, tcg_opcode);
12710 tcg_temp_free_i32(tcg_opcode);
12713 tcg_temp_free_ptr(tcg_rd_ptr);
12714 tcg_temp_free_ptr(tcg_rn_ptr);
12715 tcg_temp_free_ptr(tcg_rm_ptr);
12718 /* Crypto two-reg SHA
12719 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
12720 * +-----------------+------+-----------+--------+-----+------+------+
12721 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
12722 * +-----------------+------+-----------+--------+-----+------+------+
12724 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
12726 int size = extract32(insn, 22, 2);
12727 int opcode = extract32(insn, 12, 5);
12728 int rn = extract32(insn, 5, 5);
12729 int rd = extract32(insn, 0, 5);
12730 CryptoTwoOpFn *genfn;
12731 int feature;
12732 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12734 if (size != 0) {
12735 unallocated_encoding(s);
12736 return;
12739 switch (opcode) {
12740 case 0: /* SHA1H */
12741 feature = ARM_FEATURE_V8_SHA1;
12742 genfn = gen_helper_crypto_sha1h;
12743 break;
12744 case 1: /* SHA1SU1 */
12745 feature = ARM_FEATURE_V8_SHA1;
12746 genfn = gen_helper_crypto_sha1su1;
12747 break;
12748 case 2: /* SHA256SU0 */
12749 feature = ARM_FEATURE_V8_SHA256;
12750 genfn = gen_helper_crypto_sha256su0;
12751 break;
12752 default:
12753 unallocated_encoding(s);
12754 return;
12757 if (!arm_dc_feature(s, feature)) {
12758 unallocated_encoding(s);
12759 return;
12762 if (!fp_access_check(s)) {
12763 return;
12766 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12767 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12769 genfn(tcg_rd_ptr, tcg_rn_ptr);
12771 tcg_temp_free_ptr(tcg_rd_ptr);
12772 tcg_temp_free_ptr(tcg_rn_ptr);
12775 /* Crypto three-reg SHA512
12776 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
12777 * +-----------------------+------+---+---+-----+--------+------+------+
12778 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
12779 * +-----------------------+------+---+---+-----+--------+------+------+
12781 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
12783 int opcode = extract32(insn, 10, 2);
12784 int o = extract32(insn, 14, 1);
12785 int rm = extract32(insn, 16, 5);
12786 int rn = extract32(insn, 5, 5);
12787 int rd = extract32(insn, 0, 5);
12788 int feature;
12789 CryptoThreeOpFn *genfn;
12791 if (o == 0) {
12792 switch (opcode) {
12793 case 0: /* SHA512H */
12794 feature = ARM_FEATURE_V8_SHA512;
12795 genfn = gen_helper_crypto_sha512h;
12796 break;
12797 case 1: /* SHA512H2 */
12798 feature = ARM_FEATURE_V8_SHA512;
12799 genfn = gen_helper_crypto_sha512h2;
12800 break;
12801 case 2: /* SHA512SU1 */
12802 feature = ARM_FEATURE_V8_SHA512;
12803 genfn = gen_helper_crypto_sha512su1;
12804 break;
12805 case 3: /* RAX1 */
12806 feature = ARM_FEATURE_V8_SHA3;
12807 genfn = NULL;
12808 break;
12810 } else {
12811 switch (opcode) {
12812 case 0: /* SM3PARTW1 */
12813 feature = ARM_FEATURE_V8_SM3;
12814 genfn = gen_helper_crypto_sm3partw1;
12815 break;
12816 case 1: /* SM3PARTW2 */
12817 feature = ARM_FEATURE_V8_SM3;
12818 genfn = gen_helper_crypto_sm3partw2;
12819 break;
12820 case 2: /* SM4EKEY */
12821 feature = ARM_FEATURE_V8_SM4;
12822 genfn = gen_helper_crypto_sm4ekey;
12823 break;
12824 default:
12825 unallocated_encoding(s);
12826 return;
12830 if (!arm_dc_feature(s, feature)) {
12831 unallocated_encoding(s);
12832 return;
12835 if (!fp_access_check(s)) {
12836 return;
12839 if (genfn) {
12840 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
12842 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12843 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12844 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
12846 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
12848 tcg_temp_free_ptr(tcg_rd_ptr);
12849 tcg_temp_free_ptr(tcg_rn_ptr);
12850 tcg_temp_free_ptr(tcg_rm_ptr);
12851 } else {
12852 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
12853 int pass;
12855 tcg_op1 = tcg_temp_new_i64();
12856 tcg_op2 = tcg_temp_new_i64();
12857 tcg_res[0] = tcg_temp_new_i64();
12858 tcg_res[1] = tcg_temp_new_i64();
12860 for (pass = 0; pass < 2; pass++) {
12861 read_vec_element(s, tcg_op1, rn, pass, MO_64);
12862 read_vec_element(s, tcg_op2, rm, pass, MO_64);
12864 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
12865 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12867 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
12868 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
12870 tcg_temp_free_i64(tcg_op1);
12871 tcg_temp_free_i64(tcg_op2);
12872 tcg_temp_free_i64(tcg_res[0]);
12873 tcg_temp_free_i64(tcg_res[1]);
12877 /* Crypto two-reg SHA512
12878 * 31 12 11 10 9 5 4 0
12879 * +-----------------------------------------+--------+------+------+
12880 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
12881 * +-----------------------------------------+--------+------+------+
12883 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
12885 int opcode = extract32(insn, 10, 2);
12886 int rn = extract32(insn, 5, 5);
12887 int rd = extract32(insn, 0, 5);
12888 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12889 int feature;
12890 CryptoTwoOpFn *genfn;
12892 switch (opcode) {
12893 case 0: /* SHA512SU0 */
12894 feature = ARM_FEATURE_V8_SHA512;
12895 genfn = gen_helper_crypto_sha512su0;
12896 break;
12897 case 1: /* SM4E */
12898 feature = ARM_FEATURE_V8_SM4;
12899 genfn = gen_helper_crypto_sm4e;
12900 break;
12901 default:
12902 unallocated_encoding(s);
12903 return;
12906 if (!arm_dc_feature(s, feature)) {
12907 unallocated_encoding(s);
12908 return;
12911 if (!fp_access_check(s)) {
12912 return;
12915 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12916 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12918 genfn(tcg_rd_ptr, tcg_rn_ptr);
12920 tcg_temp_free_ptr(tcg_rd_ptr);
12921 tcg_temp_free_ptr(tcg_rn_ptr);
12924 /* Crypto four-register
12925 * 31 23 22 21 20 16 15 14 10 9 5 4 0
12926 * +-------------------+-----+------+---+------+------+------+
12927 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
12928 * +-------------------+-----+------+---+------+------+------+
12930 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
12932 int op0 = extract32(insn, 21, 2);
12933 int rm = extract32(insn, 16, 5);
12934 int ra = extract32(insn, 10, 5);
12935 int rn = extract32(insn, 5, 5);
12936 int rd = extract32(insn, 0, 5);
12937 int feature;
12939 switch (op0) {
12940 case 0: /* EOR3 */
12941 case 1: /* BCAX */
12942 feature = ARM_FEATURE_V8_SHA3;
12943 break;
12944 case 2: /* SM3SS1 */
12945 feature = ARM_FEATURE_V8_SM3;
12946 break;
12947 default:
12948 unallocated_encoding(s);
12949 return;
12952 if (!arm_dc_feature(s, feature)) {
12953 unallocated_encoding(s);
12954 return;
12957 if (!fp_access_check(s)) {
12958 return;
12961 if (op0 < 2) {
12962 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
12963 int pass;
12965 tcg_op1 = tcg_temp_new_i64();
12966 tcg_op2 = tcg_temp_new_i64();
12967 tcg_op3 = tcg_temp_new_i64();
12968 tcg_res[0] = tcg_temp_new_i64();
12969 tcg_res[1] = tcg_temp_new_i64();
12971 for (pass = 0; pass < 2; pass++) {
12972 read_vec_element(s, tcg_op1, rn, pass, MO_64);
12973 read_vec_element(s, tcg_op2, rm, pass, MO_64);
12974 read_vec_element(s, tcg_op3, ra, pass, MO_64);
12976 if (op0 == 0) {
12977 /* EOR3 */
12978 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
12979 } else {
12980 /* BCAX */
12981 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
12983 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12985 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
12986 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
12988 tcg_temp_free_i64(tcg_op1);
12989 tcg_temp_free_i64(tcg_op2);
12990 tcg_temp_free_i64(tcg_op3);
12991 tcg_temp_free_i64(tcg_res[0]);
12992 tcg_temp_free_i64(tcg_res[1]);
12993 } else {
12994 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
12996 tcg_op1 = tcg_temp_new_i32();
12997 tcg_op2 = tcg_temp_new_i32();
12998 tcg_op3 = tcg_temp_new_i32();
12999 tcg_res = tcg_temp_new_i32();
13000 tcg_zero = tcg_const_i32(0);
13002 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13003 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13004 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13006 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13007 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13008 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13009 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13011 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13012 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13013 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13014 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13016 tcg_temp_free_i32(tcg_op1);
13017 tcg_temp_free_i32(tcg_op2);
13018 tcg_temp_free_i32(tcg_op3);
13019 tcg_temp_free_i32(tcg_res);
13020 tcg_temp_free_i32(tcg_zero);
13024 /* Crypto XAR
13025 * 31 21 20 16 15 10 9 5 4 0
13026 * +-----------------------+------+--------+------+------+
13027 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13028 * +-----------------------+------+--------+------+------+
13030 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13032 int rm = extract32(insn, 16, 5);
13033 int imm6 = extract32(insn, 10, 6);
13034 int rn = extract32(insn, 5, 5);
13035 int rd = extract32(insn, 0, 5);
13036 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13037 int pass;
13039 if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) {
13040 unallocated_encoding(s);
13041 return;
13044 if (!fp_access_check(s)) {
13045 return;
13048 tcg_op1 = tcg_temp_new_i64();
13049 tcg_op2 = tcg_temp_new_i64();
13050 tcg_res[0] = tcg_temp_new_i64();
13051 tcg_res[1] = tcg_temp_new_i64();
13053 for (pass = 0; pass < 2; pass++) {
13054 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13055 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13057 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13058 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13060 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13061 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13063 tcg_temp_free_i64(tcg_op1);
13064 tcg_temp_free_i64(tcg_op2);
13065 tcg_temp_free_i64(tcg_res[0]);
13066 tcg_temp_free_i64(tcg_res[1]);
13069 /* Crypto three-reg imm2
13070 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13071 * +-----------------------+------+-----+------+--------+------+------+
13072 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13073 * +-----------------------+------+-----+------+--------+------+------+
13075 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13077 int opcode = extract32(insn, 10, 2);
13078 int imm2 = extract32(insn, 12, 2);
13079 int rm = extract32(insn, 16, 5);
13080 int rn = extract32(insn, 5, 5);
13081 int rd = extract32(insn, 0, 5);
13082 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13083 TCGv_i32 tcg_imm2, tcg_opcode;
13085 if (!arm_dc_feature(s, ARM_FEATURE_V8_SM3)) {
13086 unallocated_encoding(s);
13087 return;
13090 if (!fp_access_check(s)) {
13091 return;
13094 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13095 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13096 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13097 tcg_imm2 = tcg_const_i32(imm2);
13098 tcg_opcode = tcg_const_i32(opcode);
13100 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13101 tcg_opcode);
13103 tcg_temp_free_ptr(tcg_rd_ptr);
13104 tcg_temp_free_ptr(tcg_rn_ptr);
13105 tcg_temp_free_ptr(tcg_rm_ptr);
13106 tcg_temp_free_i32(tcg_imm2);
13107 tcg_temp_free_i32(tcg_opcode);
13110 /* C3.6 Data processing - SIMD, inc Crypto
13112 * As the decode gets a little complex we are using a table based
13113 * approach for this part of the decode.
13115 static const AArch64DecodeTable data_proc_simd[] = {
13116 /* pattern , mask , fn */
13117 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13118 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13119 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13120 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13121 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13122 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13123 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13124 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13125 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13126 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13127 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13128 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13129 { 0x2e000000, 0xbf208400, disas_simd_ext },
13130 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13131 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13132 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13133 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13134 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13135 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13136 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13137 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13138 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13139 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13140 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13141 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13142 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13143 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13144 { 0xce800000, 0xffe00000, disas_crypto_xar },
13145 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13146 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13147 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13148 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13149 { 0x00000000, 0x00000000, NULL }
13152 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13154 /* Note that this is called with all non-FP cases from
13155 * table C3-6 so it must UNDEF for entries not specifically
13156 * allocated to instructions in that table.
13158 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13159 if (fn) {
13160 fn(s, insn);
13161 } else {
13162 unallocated_encoding(s);
13166 /* C3.6 Data processing - SIMD and floating point */
13167 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13169 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13170 disas_data_proc_fp(s, insn);
13171 } else {
13172 /* SIMD, including crypto */
13173 disas_data_proc_simd(s, insn);
13177 /* C3.1 A64 instruction index by encoding */
13178 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13180 uint32_t insn;
13182 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13183 s->insn = insn;
13184 s->pc += 4;
13186 s->fp_access_checked = false;
13188 switch (extract32(insn, 25, 4)) {
13189 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
13190 unallocated_encoding(s);
13191 break;
13192 case 0x8: case 0x9: /* Data processing - immediate */
13193 disas_data_proc_imm(s, insn);
13194 break;
13195 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13196 disas_b_exc_sys(s, insn);
13197 break;
13198 case 0x4:
13199 case 0x6:
13200 case 0xc:
13201 case 0xe: /* Loads and stores */
13202 disas_ldst(s, insn);
13203 break;
13204 case 0x5:
13205 case 0xd: /* Data processing - register */
13206 disas_data_proc_reg(s, insn);
13207 break;
13208 case 0x7:
13209 case 0xf: /* Data processing - SIMD and floating point */
13210 disas_data_proc_simd_fp(s, insn);
13211 break;
13212 default:
13213 assert(FALSE); /* all 15 cases should be handled above */
13214 break;
13217 /* if we allocated any temporaries, free them here */
13218 free_tmp_a64(s);
13221 static int aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13222 CPUState *cpu, int max_insns)
13224 DisasContext *dc = container_of(dcbase, DisasContext, base);
13225 CPUARMState *env = cpu->env_ptr;
13226 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13227 int bound;
13229 dc->pc = dc->base.pc_first;
13230 dc->condjmp = 0;
13232 dc->aarch64 = 1;
13233 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
13234 * there is no secure EL1, so we route exceptions to EL3.
13236 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
13237 !arm_el_is_aa64(env, 3);
13238 dc->thumb = 0;
13239 dc->sctlr_b = 0;
13240 dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
13241 dc->condexec_mask = 0;
13242 dc->condexec_cond = 0;
13243 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
13244 dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
13245 dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
13246 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13247 #if !defined(CONFIG_USER_ONLY)
13248 dc->user = (dc->current_el == 0);
13249 #endif
13250 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
13251 dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags);
13252 dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16;
13253 dc->vec_len = 0;
13254 dc->vec_stride = 0;
13255 dc->cp_regs = arm_cpu->cp_regs;
13256 dc->features = env->features;
13258 /* Single step state. The code-generation logic here is:
13259 * SS_ACTIVE == 0:
13260 * generate code with no special handling for single-stepping (except
13261 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13262 * this happens anyway because those changes are all system register or
13263 * PSTATE writes).
13264 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13265 * emit code for one insn
13266 * emit code to clear PSTATE.SS
13267 * emit code to generate software step exception for completed step
13268 * end TB (as usual for having generated an exception)
13269 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13270 * emit code to generate a software step exception
13271 * end the TB
13273 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
13274 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
13275 dc->is_ldex = false;
13276 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
13278 /* Bound the number of insns to execute to those left on the page. */
13279 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13281 /* If architectural single step active, limit to 1. */
13282 if (dc->ss_active) {
13283 bound = 1;
13285 max_insns = MIN(max_insns, bound);
13287 init_tmp_a64_array(dc);
13289 return max_insns;
13292 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13294 tcg_clear_temp_count();
13297 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13299 DisasContext *dc = container_of(dcbase, DisasContext, base);
13301 tcg_gen_insn_start(dc->pc, 0, 0);
13302 dc->insn_start = tcg_last_op();
13305 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
13306 const CPUBreakpoint *bp)
13308 DisasContext *dc = container_of(dcbase, DisasContext, base);
13310 if (bp->flags & BP_CPU) {
13311 gen_a64_set_pc_im(dc->pc);
13312 gen_helper_check_breakpoints(cpu_env);
13313 /* End the TB early; it likely won't be executed */
13314 dc->base.is_jmp = DISAS_TOO_MANY;
13315 } else {
13316 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
13317 /* The address covered by the breakpoint must be
13318 included in [tb->pc, tb->pc + tb->size) in order
13319 to for it to be properly cleared -- thus we
13320 increment the PC here so that the logic setting
13321 tb->size below does the right thing. */
13322 dc->pc += 4;
13323 dc->base.is_jmp = DISAS_NORETURN;
13326 return true;
13329 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13331 DisasContext *dc = container_of(dcbase, DisasContext, base);
13332 CPUARMState *env = cpu->env_ptr;
13334 if (dc->ss_active && !dc->pstate_ss) {
13335 /* Singlestep state is Active-pending.
13336 * If we're in this state at the start of a TB then either
13337 * a) we just took an exception to an EL which is being debugged
13338 * and this is the first insn in the exception handler
13339 * b) debug exceptions were masked and we just unmasked them
13340 * without changing EL (eg by clearing PSTATE.D)
13341 * In either case we're going to take a swstep exception in the
13342 * "did not step an insn" case, and so the syndrome ISV and EX
13343 * bits should be zero.
13345 assert(dc->base.num_insns == 1);
13346 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
13347 default_exception_el(dc));
13348 dc->base.is_jmp = DISAS_NORETURN;
13349 } else {
13350 disas_a64_insn(env, dc);
13353 dc->base.pc_next = dc->pc;
13354 translator_loop_temp_check(&dc->base);
13357 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13359 DisasContext *dc = container_of(dcbase, DisasContext, base);
13361 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
13362 /* Note that this means single stepping WFI doesn't halt the CPU.
13363 * For conditional branch insns this is harmless unreachable code as
13364 * gen_goto_tb() has already handled emitting the debug exception
13365 * (and thus a tb-jump is not possible when singlestepping).
13367 switch (dc->base.is_jmp) {
13368 default:
13369 gen_a64_set_pc_im(dc->pc);
13370 /* fall through */
13371 case DISAS_EXIT:
13372 case DISAS_JUMP:
13373 if (dc->base.singlestep_enabled) {
13374 gen_exception_internal(EXCP_DEBUG);
13375 } else {
13376 gen_step_complete_exception(dc);
13378 break;
13379 case DISAS_NORETURN:
13380 break;
13382 } else {
13383 switch (dc->base.is_jmp) {
13384 case DISAS_NEXT:
13385 case DISAS_TOO_MANY:
13386 gen_goto_tb(dc, 1, dc->pc);
13387 break;
13388 default:
13389 case DISAS_UPDATE:
13390 gen_a64_set_pc_im(dc->pc);
13391 /* fall through */
13392 case DISAS_EXIT:
13393 tcg_gen_exit_tb(0);
13394 break;
13395 case DISAS_JUMP:
13396 tcg_gen_lookup_and_goto_ptr();
13397 break;
13398 case DISAS_NORETURN:
13399 case DISAS_SWI:
13400 break;
13401 case DISAS_WFE:
13402 gen_a64_set_pc_im(dc->pc);
13403 gen_helper_wfe(cpu_env);
13404 break;
13405 case DISAS_YIELD:
13406 gen_a64_set_pc_im(dc->pc);
13407 gen_helper_yield(cpu_env);
13408 break;
13409 case DISAS_WFI:
13411 /* This is a special case because we don't want to just halt the CPU
13412 * if trying to debug across a WFI.
13414 TCGv_i32 tmp = tcg_const_i32(4);
13416 gen_a64_set_pc_im(dc->pc);
13417 gen_helper_wfi(cpu_env, tmp);
13418 tcg_temp_free_i32(tmp);
13419 /* The helper doesn't necessarily throw an exception, but we
13420 * must go back to the main loop to check for interrupts anyway.
13422 tcg_gen_exit_tb(0);
13423 break;
13428 /* Functions above can change dc->pc, so re-align db->pc_next */
13429 dc->base.pc_next = dc->pc;
13432 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
13433 CPUState *cpu)
13435 DisasContext *dc = container_of(dcbase, DisasContext, base);
13437 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
13438 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
13441 const TranslatorOps aarch64_translator_ops = {
13442 .init_disas_context = aarch64_tr_init_disas_context,
13443 .tb_start = aarch64_tr_tb_start,
13444 .insn_start = aarch64_tr_insn_start,
13445 .breakpoint_check = aarch64_tr_breakpoint_check,
13446 .translate_insn = aarch64_tr_translate_insn,
13447 .tb_stop = aarch64_tr_tb_stop,
13448 .disas_log = aarch64_tr_disas_log,