block/dirty-bitmap: remove assertion from restore
[qemu/ar7.git] / target / arm / cpu.c
blob4c4e9e169eda287ca8ed1a31630571ba6a0ae82a
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 ARMCPU *cpu = ARM_CPU(cs);
44 cpu->env.regs[15] = value;
47 static bool arm_cpu_has_work(CPUState *cs)
49 ARMCPU *cpu = ARM_CPU(cs);
51 return (cpu->power_state != PSCI_OFF)
52 && cs->interrupt_request &
53 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55 | CPU_INTERRUPT_EXITTB);
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59 void *opaque)
61 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
63 entry->hook = hook;
64 entry->opaque = opaque;
66 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70 void *opaque)
72 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
74 entry->hook = hook;
75 entry->opaque = opaque;
77 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
82 /* Reset a single ARMCPRegInfo register */
83 ARMCPRegInfo *ri = value;
84 ARMCPU *cpu = opaque;
86 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87 return;
90 if (ri->resetfn) {
91 ri->resetfn(&cpu->env, ri);
92 return;
95 /* A zero offset is never possible as it would be regs[0]
96 * so we use it to indicate that reset is being handled elsewhere.
97 * This is basically only used for fields in non-core coprocessors
98 * (like the pxa2xx ones).
100 if (!ri->fieldoffset) {
101 return;
104 if (cpreg_field_is_64bit(ri)) {
105 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106 } else {
107 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
111 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Purely an assertion check: we've already done reset once,
114 * so now check that running the reset for the cpreg doesn't
115 * change its value. This traps bugs where two different cpregs
116 * both try to reset the same state field but to different values.
118 ARMCPRegInfo *ri = value;
119 ARMCPU *cpu = opaque;
120 uint64_t oldvalue, newvalue;
122 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123 return;
126 oldvalue = read_raw_cp_reg(&cpu->env, ri);
127 cp_reg_reset(key, value, opaque);
128 newvalue = read_raw_cp_reg(&cpu->env, ri);
129 assert(oldvalue == newvalue);
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
135 ARMCPU *cpu = ARM_CPU(s);
136 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137 CPUARMState *env = &cpu->env;
139 acc->parent_reset(s);
141 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
143 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
146 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
151 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152 s->halted = cpu->start_powered_off;
154 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
158 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159 /* 64 bit CPUs always start in 64 bit mode */
160 env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162 env->pstate = PSTATE_MODE_EL0t;
163 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165 /* and to the FP/Neon instructions */
166 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167 /* and to the SVE instructions */
168 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169 env->cp15.cptr_el[3] |= CPTR_EZ;
170 /* with maximum vector length */
171 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
174 #else
175 /* Reset into the highest available EL */
176 if (arm_feature(env, ARM_FEATURE_EL3)) {
177 env->pstate = PSTATE_MODE_EL3h;
178 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179 env->pstate = PSTATE_MODE_EL2h;
180 } else {
181 env->pstate = PSTATE_MODE_EL1h;
183 env->pc = cpu->rvbar;
184 #endif
185 } else {
186 #if defined(CONFIG_USER_ONLY)
187 /* Userspace expects access to cp10 and cp11 for FP/Neon */
188 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
192 #if defined(CONFIG_USER_ONLY)
193 env->uncached_cpsr = ARM_CPU_MODE_USR;
194 /* For user mode we must enable access to coprocessors */
195 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197 env->cp15.c15_cpar = 3;
198 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199 env->cp15.c15_cpar = 1;
201 #else
204 * If the highest available EL is EL2, AArch32 will start in Hyp
205 * mode; otherwise it starts in SVC. Note that if we start in
206 * AArch64 then these values in the uncached_cpsr will be ignored.
208 if (arm_feature(env, ARM_FEATURE_EL2) &&
209 !arm_feature(env, ARM_FEATURE_EL3)) {
210 env->uncached_cpsr = ARM_CPU_MODE_HYP;
211 } else {
212 env->uncached_cpsr = ARM_CPU_MODE_SVC;
214 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
216 if (arm_feature(env, ARM_FEATURE_M)) {
217 uint32_t initial_msp; /* Loaded from 0x0 */
218 uint32_t initial_pc; /* Loaded from 0x4 */
219 uint8_t *rom;
220 uint32_t vecbase;
222 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
223 env->v7m.secure = true;
224 } else {
225 /* This bit resets to 0 if security is supported, but 1 if
226 * it is not. The bit is not present in v7M, but we set it
227 * here so we can avoid having to make checks on it conditional
228 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
230 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
233 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234 * that it resets to 1, so QEMU always does that rather than making
235 * it dependent on CPU model. In v8M it is RES1.
237 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
238 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
239 if (arm_feature(env, ARM_FEATURE_V8)) {
240 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
242 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
244 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
245 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
246 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
249 /* Unlike A/R profile, M profile defines the reset LR value */
250 env->regs[14] = 0xffffffff;
252 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
254 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255 vecbase = env->v7m.vecbase[env->v7m.secure];
256 rom = rom_ptr(vecbase, 8);
257 if (rom) {
258 /* Address zero is covered by ROM which hasn't yet been
259 * copied into physical memory.
261 initial_msp = ldl_p(rom);
262 initial_pc = ldl_p(rom + 4);
263 } else {
264 /* Address zero not covered by a ROM blob, or the ROM blob
265 * is in non-modifiable memory and this is a second reset after
266 * it got copied into memory. In the latter case, rom_ptr
267 * will return a NULL pointer and we should use ldl_phys instead.
269 initial_msp = ldl_phys(s->as, vecbase);
270 initial_pc = ldl_phys(s->as, vecbase + 4);
273 env->regs[13] = initial_msp & 0xFFFFFFFC;
274 env->regs[15] = initial_pc & ~1;
275 env->thumb = initial_pc & 1;
278 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
279 * executing as AArch32 then check if highvecs are enabled and
280 * adjust the PC accordingly.
282 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283 env->regs[15] = 0xFFFF0000;
286 /* M profile requires that reset clears the exclusive monitor;
287 * A profile does not, but clearing it makes more sense than having it
288 * set with an exclusive access on address zero.
290 arm_clear_exclusive(env);
292 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
293 #endif
295 if (arm_feature(env, ARM_FEATURE_PMSA)) {
296 if (cpu->pmsav7_dregion > 0) {
297 if (arm_feature(env, ARM_FEATURE_V8)) {
298 memset(env->pmsav8.rbar[M_REG_NS], 0,
299 sizeof(*env->pmsav8.rbar[M_REG_NS])
300 * cpu->pmsav7_dregion);
301 memset(env->pmsav8.rlar[M_REG_NS], 0,
302 sizeof(*env->pmsav8.rlar[M_REG_NS])
303 * cpu->pmsav7_dregion);
304 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
305 memset(env->pmsav8.rbar[M_REG_S], 0,
306 sizeof(*env->pmsav8.rbar[M_REG_S])
307 * cpu->pmsav7_dregion);
308 memset(env->pmsav8.rlar[M_REG_S], 0,
309 sizeof(*env->pmsav8.rlar[M_REG_S])
310 * cpu->pmsav7_dregion);
312 } else if (arm_feature(env, ARM_FEATURE_V7)) {
313 memset(env->pmsav7.drbar, 0,
314 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
315 memset(env->pmsav7.drsr, 0,
316 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
317 memset(env->pmsav7.dracr, 0,
318 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
321 env->pmsav7.rnr[M_REG_NS] = 0;
322 env->pmsav7.rnr[M_REG_S] = 0;
323 env->pmsav8.mair0[M_REG_NS] = 0;
324 env->pmsav8.mair0[M_REG_S] = 0;
325 env->pmsav8.mair1[M_REG_NS] = 0;
326 env->pmsav8.mair1[M_REG_S] = 0;
329 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330 if (cpu->sau_sregion > 0) {
331 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
332 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
334 env->sau.rnr = 0;
335 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336 * the Cortex-M33 does.
338 env->sau.ctrl = 0;
341 set_flush_to_zero(1, &env->vfp.standard_fp_status);
342 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
343 set_default_nan_mode(1, &env->vfp.standard_fp_status);
344 set_float_detect_tininess(float_tininess_before_rounding,
345 &env->vfp.fp_status);
346 set_float_detect_tininess(float_tininess_before_rounding,
347 &env->vfp.standard_fp_status);
348 set_float_detect_tininess(float_tininess_before_rounding,
349 &env->vfp.fp_status_f16);
350 #ifndef CONFIG_USER_ONLY
351 if (kvm_enabled()) {
352 kvm_arm_reset_vcpu(cpu);
354 #endif
356 hw_breakpoint_update_all(cpu);
357 hw_watchpoint_update_all(cpu);
360 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
362 CPUClass *cc = CPU_GET_CLASS(cs);
363 CPUARMState *env = cs->env_ptr;
364 uint32_t cur_el = arm_current_el(env);
365 bool secure = arm_is_secure(env);
366 uint32_t target_el;
367 uint32_t excp_idx;
368 bool ret = false;
370 if (interrupt_request & CPU_INTERRUPT_FIQ) {
371 excp_idx = EXCP_FIQ;
372 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374 cs->exception_index = excp_idx;
375 env->exception.target_el = target_el;
376 cc->do_interrupt(cs);
377 ret = true;
380 if (interrupt_request & CPU_INTERRUPT_HARD) {
381 excp_idx = EXCP_IRQ;
382 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
383 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384 cs->exception_index = excp_idx;
385 env->exception.target_el = target_el;
386 cc->do_interrupt(cs);
387 ret = true;
390 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
391 excp_idx = EXCP_VIRQ;
392 target_el = 1;
393 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394 cs->exception_index = excp_idx;
395 env->exception.target_el = target_el;
396 cc->do_interrupt(cs);
397 ret = true;
400 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
401 excp_idx = EXCP_VFIQ;
402 target_el = 1;
403 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
404 cs->exception_index = excp_idx;
405 env->exception.target_el = target_el;
406 cc->do_interrupt(cs);
407 ret = true;
411 return ret;
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
417 CPUClass *cc = CPU_GET_CLASS(cs);
418 ARMCPU *cpu = ARM_CPU(cs);
419 CPUARMState *env = &cpu->env;
420 bool ret = false;
422 /* ARMv7-M interrupt masking works differently than -A or -R.
423 * There is no FIQ/IRQ distinction. Instead of I and F bits
424 * masking FIQ and IRQ interrupts, an exception is taken only
425 * if it is higher priority than the current execution priority
426 * (which depends on state like BASEPRI, FAULTMASK and the
427 * currently active exception).
429 if (interrupt_request & CPU_INTERRUPT_HARD
430 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
431 cs->exception_index = EXCP_IRQ;
432 cc->do_interrupt(cs);
433 ret = true;
435 return ret;
437 #endif
439 void arm_cpu_update_virq(ARMCPU *cpu)
442 * Update the interrupt level for VIRQ, which is the logical OR of
443 * the HCR_EL2.VI bit and the input line level from the GIC.
445 CPUARMState *env = &cpu->env;
446 CPUState *cs = CPU(cpu);
448 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
449 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
451 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
452 if (new_state) {
453 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
454 } else {
455 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
460 void arm_cpu_update_vfiq(ARMCPU *cpu)
463 * Update the interrupt level for VFIQ, which is the logical OR of
464 * the HCR_EL2.VF bit and the input line level from the GIC.
466 CPUARMState *env = &cpu->env;
467 CPUState *cs = CPU(cpu);
469 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
470 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
472 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
473 if (new_state) {
474 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
475 } else {
476 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
481 #ifndef CONFIG_USER_ONLY
482 static void arm_cpu_set_irq(void *opaque, int irq, int level)
484 ARMCPU *cpu = opaque;
485 CPUARMState *env = &cpu->env;
486 CPUState *cs = CPU(cpu);
487 static const int mask[] = {
488 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
489 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
490 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
491 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
494 if (level) {
495 env->irq_line_state |= mask[irq];
496 } else {
497 env->irq_line_state &= ~mask[irq];
500 switch (irq) {
501 case ARM_CPU_VIRQ:
502 assert(arm_feature(env, ARM_FEATURE_EL2));
503 arm_cpu_update_virq(cpu);
504 break;
505 case ARM_CPU_VFIQ:
506 assert(arm_feature(env, ARM_FEATURE_EL2));
507 arm_cpu_update_vfiq(cpu);
508 break;
509 case ARM_CPU_IRQ:
510 case ARM_CPU_FIQ:
511 if (level) {
512 cpu_interrupt(cs, mask[irq]);
513 } else {
514 cpu_reset_interrupt(cs, mask[irq]);
516 break;
517 default:
518 g_assert_not_reached();
522 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
524 #ifdef CONFIG_KVM
525 ARMCPU *cpu = opaque;
526 CPUARMState *env = &cpu->env;
527 CPUState *cs = CPU(cpu);
528 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
529 uint32_t linestate_bit;
531 switch (irq) {
532 case ARM_CPU_IRQ:
533 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
534 linestate_bit = CPU_INTERRUPT_HARD;
535 break;
536 case ARM_CPU_FIQ:
537 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
538 linestate_bit = CPU_INTERRUPT_FIQ;
539 break;
540 default:
541 g_assert_not_reached();
544 if (level) {
545 env->irq_line_state |= linestate_bit;
546 } else {
547 env->irq_line_state &= ~linestate_bit;
550 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
551 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
552 #endif
555 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
557 ARMCPU *cpu = ARM_CPU(cs);
558 CPUARMState *env = &cpu->env;
560 cpu_synchronize_state(cs);
561 return arm_cpu_data_is_big_endian(env);
564 #endif
566 static inline void set_feature(CPUARMState *env, int feature)
568 env->features |= 1ULL << feature;
571 static inline void unset_feature(CPUARMState *env, int feature)
573 env->features &= ~(1ULL << feature);
576 static int
577 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
579 return print_insn_arm(pc | 1, info);
582 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
584 ARMCPU *ac = ARM_CPU(cpu);
585 CPUARMState *env = &ac->env;
586 bool sctlr_b;
588 if (is_a64(env)) {
589 /* We might not be compiled with the A64 disassembler
590 * because it needs a C++ compiler. Leave print_insn
591 * unset in this case to use the caller default behaviour.
593 #if defined(CONFIG_ARM_A64_DIS)
594 info->print_insn = print_insn_arm_a64;
595 #endif
596 info->cap_arch = CS_ARCH_ARM64;
597 info->cap_insn_unit = 4;
598 info->cap_insn_split = 4;
599 } else {
600 int cap_mode;
601 if (env->thumb) {
602 info->print_insn = print_insn_thumb1;
603 info->cap_insn_unit = 2;
604 info->cap_insn_split = 4;
605 cap_mode = CS_MODE_THUMB;
606 } else {
607 info->print_insn = print_insn_arm;
608 info->cap_insn_unit = 4;
609 info->cap_insn_split = 4;
610 cap_mode = CS_MODE_ARM;
612 if (arm_feature(env, ARM_FEATURE_V8)) {
613 cap_mode |= CS_MODE_V8;
615 if (arm_feature(env, ARM_FEATURE_M)) {
616 cap_mode |= CS_MODE_MCLASS;
618 info->cap_arch = CS_ARCH_ARM;
619 info->cap_mode = cap_mode;
622 sctlr_b = arm_sctlr_b(env);
623 if (bswap_code(sctlr_b)) {
624 #ifdef TARGET_WORDS_BIGENDIAN
625 info->endian = BFD_ENDIAN_LITTLE;
626 #else
627 info->endian = BFD_ENDIAN_BIG;
628 #endif
630 info->flags &= ~INSN_ARM_BE32;
631 #ifndef CONFIG_USER_ONLY
632 if (sctlr_b) {
633 info->flags |= INSN_ARM_BE32;
635 #endif
638 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
640 uint32_t Aff1 = idx / clustersz;
641 uint32_t Aff0 = idx % clustersz;
642 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
645 static void cpreg_hashtable_data_destroy(gpointer data)
648 * Destroy function for cpu->cp_regs hashtable data entries.
649 * We must free the name string because it was g_strdup()ed in
650 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
651 * from r->name because we know we definitely allocated it.
653 ARMCPRegInfo *r = data;
655 g_free((void *)r->name);
656 g_free(r);
659 static void arm_cpu_initfn(Object *obj)
661 CPUState *cs = CPU(obj);
662 ARMCPU *cpu = ARM_CPU(obj);
664 cs->env_ptr = &cpu->env;
665 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
666 g_free, cpreg_hashtable_data_destroy);
668 QLIST_INIT(&cpu->pre_el_change_hooks);
669 QLIST_INIT(&cpu->el_change_hooks);
671 #ifndef CONFIG_USER_ONLY
672 /* Our inbound IRQ and FIQ lines */
673 if (kvm_enabled()) {
674 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
675 * the same interface as non-KVM CPUs.
677 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
678 } else {
679 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
682 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
683 ARRAY_SIZE(cpu->gt_timer_outputs));
685 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
686 "gicv3-maintenance-interrupt", 1);
687 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
688 "pmu-interrupt", 1);
689 #endif
691 /* DTB consumers generally don't in fact care what the 'compatible'
692 * string is, so always provide some string and trust that a hypothetical
693 * picky DTB consumer will also provide a helpful error message.
695 cpu->dtb_compatible = "qemu,unknown";
696 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
697 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
699 if (tcg_enabled()) {
700 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
704 static Property arm_cpu_reset_cbar_property =
705 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
707 static Property arm_cpu_reset_hivecs_property =
708 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
710 static Property arm_cpu_rvbar_property =
711 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
713 static Property arm_cpu_has_el2_property =
714 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
716 static Property arm_cpu_has_el3_property =
717 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
719 static Property arm_cpu_cfgend_property =
720 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
722 /* use property name "pmu" to match other archs and virt tools */
723 static Property arm_cpu_has_pmu_property =
724 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
726 static Property arm_cpu_has_mpu_property =
727 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
729 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
730 * because the CPU initfn will have already set cpu->pmsav7_dregion to
731 * the right value for that particular CPU type, and we don't want
732 * to override that with an incorrect constant value.
734 static Property arm_cpu_pmsav7_dregion_property =
735 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
736 pmsav7_dregion,
737 qdev_prop_uint32, uint32_t);
739 /* M profile: initial value of the Secure VTOR */
740 static Property arm_cpu_initsvtor_property =
741 DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
743 void arm_cpu_post_init(Object *obj)
745 ARMCPU *cpu = ARM_CPU(obj);
747 /* M profile implies PMSA. We have to do this here rather than
748 * in realize with the other feature-implication checks because
749 * we look at the PMSA bit to see if we should add some properties.
751 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
752 set_feature(&cpu->env, ARM_FEATURE_PMSA);
755 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
756 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
757 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
758 &error_abort);
761 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
762 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
763 &error_abort);
766 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
767 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
768 &error_abort);
771 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
772 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
773 * prevent "has_el3" from existing on CPUs which cannot support EL3.
775 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
776 &error_abort);
778 #ifndef CONFIG_USER_ONLY
779 object_property_add_link(obj, "secure-memory",
780 TYPE_MEMORY_REGION,
781 (Object **)&cpu->secure_memory,
782 qdev_prop_allow_set_link_before_realize,
783 OBJ_PROP_LINK_STRONG,
784 &error_abort);
785 #endif
788 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
789 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
790 &error_abort);
793 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
794 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
795 &error_abort);
798 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
799 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
800 &error_abort);
801 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
802 qdev_property_add_static(DEVICE(obj),
803 &arm_cpu_pmsav7_dregion_property,
804 &error_abort);
808 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
809 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
810 qdev_prop_allow_set_link_before_realize,
811 OBJ_PROP_LINK_STRONG,
812 &error_abort);
813 qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
814 &error_abort);
817 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
818 &error_abort);
821 static void arm_cpu_finalizefn(Object *obj)
823 ARMCPU *cpu = ARM_CPU(obj);
824 ARMELChangeHook *hook, *next;
826 g_hash_table_destroy(cpu->cp_regs);
828 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
829 QLIST_REMOVE(hook, node);
830 g_free(hook);
832 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
833 QLIST_REMOVE(hook, node);
834 g_free(hook);
838 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
840 CPUState *cs = CPU(dev);
841 ARMCPU *cpu = ARM_CPU(dev);
842 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
843 CPUARMState *env = &cpu->env;
844 int pagebits;
845 Error *local_err = NULL;
846 bool no_aa32 = false;
848 /* If we needed to query the host kernel for the CPU features
849 * then it's possible that might have failed in the initfn, but
850 * this is the first point where we can report it.
852 if (cpu->host_cpu_probe_failed) {
853 if (!kvm_enabled()) {
854 error_setg(errp, "The 'host' CPU type can only be used with KVM");
855 } else {
856 error_setg(errp, "Failed to retrieve host CPU features");
858 return;
861 #ifndef CONFIG_USER_ONLY
862 /* The NVIC and M-profile CPU are two halves of a single piece of
863 * hardware; trying to use one without the other is a command line
864 * error and will result in segfaults if not caught here.
866 if (arm_feature(env, ARM_FEATURE_M)) {
867 if (!env->nvic) {
868 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
869 return;
871 } else {
872 if (env->nvic) {
873 error_setg(errp, "This board can only be used with Cortex-M CPUs");
874 return;
878 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
879 arm_gt_ptimer_cb, cpu);
880 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
881 arm_gt_vtimer_cb, cpu);
882 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
883 arm_gt_htimer_cb, cpu);
884 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
885 arm_gt_stimer_cb, cpu);
886 #endif
888 cpu_exec_realizefn(cs, &local_err);
889 if (local_err != NULL) {
890 error_propagate(errp, local_err);
891 return;
894 /* Some features automatically imply others: */
895 if (arm_feature(env, ARM_FEATURE_V8)) {
896 if (arm_feature(env, ARM_FEATURE_M)) {
897 set_feature(env, ARM_FEATURE_V7);
898 } else {
899 set_feature(env, ARM_FEATURE_V7VE);
904 * There exist AArch64 cpus without AArch32 support. When KVM
905 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
906 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
908 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
909 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
912 if (arm_feature(env, ARM_FEATURE_V7VE)) {
913 /* v7 Virtualization Extensions. In real hardware this implies
914 * EL2 and also the presence of the Security Extensions.
915 * For QEMU, for backwards-compatibility we implement some
916 * CPUs or CPU configs which have no actual EL2 or EL3 but do
917 * include the various other features that V7VE implies.
918 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
919 * Security Extensions is ARM_FEATURE_EL3.
921 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
922 set_feature(env, ARM_FEATURE_LPAE);
923 set_feature(env, ARM_FEATURE_V7);
925 if (arm_feature(env, ARM_FEATURE_V7)) {
926 set_feature(env, ARM_FEATURE_VAPA);
927 set_feature(env, ARM_FEATURE_THUMB2);
928 set_feature(env, ARM_FEATURE_MPIDR);
929 if (!arm_feature(env, ARM_FEATURE_M)) {
930 set_feature(env, ARM_FEATURE_V6K);
931 } else {
932 set_feature(env, ARM_FEATURE_V6);
935 /* Always define VBAR for V7 CPUs even if it doesn't exist in
936 * non-EL3 configs. This is needed by some legacy boards.
938 set_feature(env, ARM_FEATURE_VBAR);
940 if (arm_feature(env, ARM_FEATURE_V6K)) {
941 set_feature(env, ARM_FEATURE_V6);
942 set_feature(env, ARM_FEATURE_MVFR);
944 if (arm_feature(env, ARM_FEATURE_V6)) {
945 set_feature(env, ARM_FEATURE_V5);
946 if (!arm_feature(env, ARM_FEATURE_M)) {
947 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
948 set_feature(env, ARM_FEATURE_AUXCR);
951 if (arm_feature(env, ARM_FEATURE_V5)) {
952 set_feature(env, ARM_FEATURE_V4T);
954 if (arm_feature(env, ARM_FEATURE_VFP4)) {
955 set_feature(env, ARM_FEATURE_VFP3);
956 set_feature(env, ARM_FEATURE_VFP_FP16);
958 if (arm_feature(env, ARM_FEATURE_VFP3)) {
959 set_feature(env, ARM_FEATURE_VFP);
961 if (arm_feature(env, ARM_FEATURE_LPAE)) {
962 set_feature(env, ARM_FEATURE_V7MP);
963 set_feature(env, ARM_FEATURE_PXN);
965 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
966 set_feature(env, ARM_FEATURE_CBAR);
968 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
969 !arm_feature(env, ARM_FEATURE_M)) {
970 set_feature(env, ARM_FEATURE_THUMB_DSP);
973 if (arm_feature(env, ARM_FEATURE_V7) &&
974 !arm_feature(env, ARM_FEATURE_M) &&
975 !arm_feature(env, ARM_FEATURE_PMSA)) {
976 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
977 * can use 4K pages.
979 pagebits = 12;
980 } else {
981 /* For CPUs which might have tiny 1K pages, or which have an
982 * MPU and might have small region sizes, stick with 1K pages.
984 pagebits = 10;
986 if (!set_preferred_target_page_bits(pagebits)) {
987 /* This can only ever happen for hotplugging a CPU, or if
988 * the board code incorrectly creates a CPU which it has
989 * promised via minimum_page_size that it will not.
991 error_setg(errp, "This CPU requires a smaller page size than the "
992 "system is using");
993 return;
996 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
997 * We don't support setting cluster ID ([16..23]) (known as Aff2
998 * in later ARM ARM versions), or any of the higher affinity level fields,
999 * so these bits always RAZ.
1001 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1002 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1003 ARM_DEFAULT_CPUS_PER_CLUSTER);
1006 if (cpu->reset_hivecs) {
1007 cpu->reset_sctlr |= (1 << 13);
1010 if (cpu->cfgend) {
1011 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1012 cpu->reset_sctlr |= SCTLR_EE;
1013 } else {
1014 cpu->reset_sctlr |= SCTLR_B;
1018 if (!cpu->has_el3) {
1019 /* If the has_el3 CPU property is disabled then we need to disable the
1020 * feature.
1022 unset_feature(env, ARM_FEATURE_EL3);
1024 /* Disable the security extension feature bits in the processor feature
1025 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1027 cpu->id_pfr1 &= ~0xf0;
1028 cpu->isar.id_aa64pfr0 &= ~0xf000;
1031 if (!cpu->has_el2) {
1032 unset_feature(env, ARM_FEATURE_EL2);
1035 if (!cpu->has_pmu) {
1036 unset_feature(env, ARM_FEATURE_PMU);
1037 cpu->id_aa64dfr0 &= ~0xf00;
1040 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1041 /* Disable the hypervisor feature bits in the processor feature
1042 * registers if we don't have EL2. These are id_pfr1[15:12] and
1043 * id_aa64pfr0_el1[11:8].
1045 cpu->isar.id_aa64pfr0 &= ~0xf00;
1046 cpu->id_pfr1 &= ~0xf000;
1049 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1050 * to false or by setting pmsav7-dregion to 0.
1052 if (!cpu->has_mpu) {
1053 cpu->pmsav7_dregion = 0;
1055 if (cpu->pmsav7_dregion == 0) {
1056 cpu->has_mpu = false;
1059 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1060 arm_feature(env, ARM_FEATURE_V7)) {
1061 uint32_t nr = cpu->pmsav7_dregion;
1063 if (nr > 0xff) {
1064 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1065 return;
1068 if (nr) {
1069 if (arm_feature(env, ARM_FEATURE_V8)) {
1070 /* PMSAv8 */
1071 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1072 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1073 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1074 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1075 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1077 } else {
1078 env->pmsav7.drbar = g_new0(uint32_t, nr);
1079 env->pmsav7.drsr = g_new0(uint32_t, nr);
1080 env->pmsav7.dracr = g_new0(uint32_t, nr);
1085 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1086 uint32_t nr = cpu->sau_sregion;
1088 if (nr > 0xff) {
1089 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1090 return;
1093 if (nr) {
1094 env->sau.rbar = g_new0(uint32_t, nr);
1095 env->sau.rlar = g_new0(uint32_t, nr);
1099 if (arm_feature(env, ARM_FEATURE_EL3)) {
1100 set_feature(env, ARM_FEATURE_VBAR);
1103 register_cp_regs_for_features(cpu);
1104 arm_cpu_register_gdb_regs_for_features(cpu);
1106 init_cpreg_list(cpu);
1108 #ifndef CONFIG_USER_ONLY
1109 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1110 cs->num_ases = 2;
1112 if (!cpu->secure_memory) {
1113 cpu->secure_memory = cs->memory;
1115 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1116 cpu->secure_memory);
1117 } else {
1118 cs->num_ases = 1;
1120 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1122 /* No core_count specified, default to smp_cpus. */
1123 if (cpu->core_count == -1) {
1124 cpu->core_count = smp_cpus;
1126 #endif
1128 qemu_init_vcpu(cs);
1129 cpu_reset(cs);
1131 acc->parent_realize(dev, errp);
1134 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1136 ObjectClass *oc;
1137 char *typename;
1138 char **cpuname;
1139 const char *cpunamestr;
1141 cpuname = g_strsplit(cpu_model, ",", 1);
1142 cpunamestr = cpuname[0];
1143 #ifdef CONFIG_USER_ONLY
1144 /* For backwards compatibility usermode emulation allows "-cpu any",
1145 * which has the same semantics as "-cpu max".
1147 if (!strcmp(cpunamestr, "any")) {
1148 cpunamestr = "max";
1150 #endif
1151 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1152 oc = object_class_by_name(typename);
1153 g_strfreev(cpuname);
1154 g_free(typename);
1155 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1156 object_class_is_abstract(oc)) {
1157 return NULL;
1159 return oc;
1162 /* CPU models. These are not needed for the AArch64 linux-user build. */
1163 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1165 static void arm926_initfn(Object *obj)
1167 ARMCPU *cpu = ARM_CPU(obj);
1169 cpu->dtb_compatible = "arm,arm926";
1170 set_feature(&cpu->env, ARM_FEATURE_V5);
1171 set_feature(&cpu->env, ARM_FEATURE_VFP);
1172 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1173 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1174 cpu->midr = 0x41069265;
1175 cpu->reset_fpsid = 0x41011090;
1176 cpu->ctr = 0x1dd20d2;
1177 cpu->reset_sctlr = 0x00090078;
1180 * ARMv5 does not have the ID_ISAR registers, but we can still
1181 * set the field to indicate Jazelle support within QEMU.
1183 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1186 static void arm946_initfn(Object *obj)
1188 ARMCPU *cpu = ARM_CPU(obj);
1190 cpu->dtb_compatible = "arm,arm946";
1191 set_feature(&cpu->env, ARM_FEATURE_V5);
1192 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1193 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1194 cpu->midr = 0x41059461;
1195 cpu->ctr = 0x0f004006;
1196 cpu->reset_sctlr = 0x00000078;
1199 static void arm1026_initfn(Object *obj)
1201 ARMCPU *cpu = ARM_CPU(obj);
1203 cpu->dtb_compatible = "arm,arm1026";
1204 set_feature(&cpu->env, ARM_FEATURE_V5);
1205 set_feature(&cpu->env, ARM_FEATURE_VFP);
1206 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1207 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1208 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1209 cpu->midr = 0x4106a262;
1210 cpu->reset_fpsid = 0x410110a0;
1211 cpu->ctr = 0x1dd20d2;
1212 cpu->reset_sctlr = 0x00090078;
1213 cpu->reset_auxcr = 1;
1216 * ARMv5 does not have the ID_ISAR registers, but we can still
1217 * set the field to indicate Jazelle support within QEMU.
1219 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1222 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1223 ARMCPRegInfo ifar = {
1224 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1225 .access = PL1_RW,
1226 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1227 .resetvalue = 0
1229 define_one_arm_cp_reg(cpu, &ifar);
1233 static void arm1136_r2_initfn(Object *obj)
1235 ARMCPU *cpu = ARM_CPU(obj);
1236 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1237 * older core than plain "arm1136". In particular this does not
1238 * have the v6K features.
1239 * These ID register values are correct for 1136 but may be wrong
1240 * for 1136_r2 (in particular r0p2 does not actually implement most
1241 * of the ID registers).
1244 cpu->dtb_compatible = "arm,arm1136";
1245 set_feature(&cpu->env, ARM_FEATURE_V6);
1246 set_feature(&cpu->env, ARM_FEATURE_VFP);
1247 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1248 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1249 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1250 cpu->midr = 0x4107b362;
1251 cpu->reset_fpsid = 0x410120b4;
1252 cpu->isar.mvfr0 = 0x11111111;
1253 cpu->isar.mvfr1 = 0x00000000;
1254 cpu->ctr = 0x1dd20d2;
1255 cpu->reset_sctlr = 0x00050078;
1256 cpu->id_pfr0 = 0x111;
1257 cpu->id_pfr1 = 0x1;
1258 cpu->id_dfr0 = 0x2;
1259 cpu->id_afr0 = 0x3;
1260 cpu->id_mmfr0 = 0x01130003;
1261 cpu->id_mmfr1 = 0x10030302;
1262 cpu->id_mmfr2 = 0x01222110;
1263 cpu->isar.id_isar0 = 0x00140011;
1264 cpu->isar.id_isar1 = 0x12002111;
1265 cpu->isar.id_isar2 = 0x11231111;
1266 cpu->isar.id_isar3 = 0x01102131;
1267 cpu->isar.id_isar4 = 0x141;
1268 cpu->reset_auxcr = 7;
1271 static void arm1136_initfn(Object *obj)
1273 ARMCPU *cpu = ARM_CPU(obj);
1275 cpu->dtb_compatible = "arm,arm1136";
1276 set_feature(&cpu->env, ARM_FEATURE_V6K);
1277 set_feature(&cpu->env, ARM_FEATURE_V6);
1278 set_feature(&cpu->env, ARM_FEATURE_VFP);
1279 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1280 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1281 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1282 cpu->midr = 0x4117b363;
1283 cpu->reset_fpsid = 0x410120b4;
1284 cpu->isar.mvfr0 = 0x11111111;
1285 cpu->isar.mvfr1 = 0x00000000;
1286 cpu->ctr = 0x1dd20d2;
1287 cpu->reset_sctlr = 0x00050078;
1288 cpu->id_pfr0 = 0x111;
1289 cpu->id_pfr1 = 0x1;
1290 cpu->id_dfr0 = 0x2;
1291 cpu->id_afr0 = 0x3;
1292 cpu->id_mmfr0 = 0x01130003;
1293 cpu->id_mmfr1 = 0x10030302;
1294 cpu->id_mmfr2 = 0x01222110;
1295 cpu->isar.id_isar0 = 0x00140011;
1296 cpu->isar.id_isar1 = 0x12002111;
1297 cpu->isar.id_isar2 = 0x11231111;
1298 cpu->isar.id_isar3 = 0x01102131;
1299 cpu->isar.id_isar4 = 0x141;
1300 cpu->reset_auxcr = 7;
1303 static void arm1176_initfn(Object *obj)
1305 ARMCPU *cpu = ARM_CPU(obj);
1307 cpu->dtb_compatible = "arm,arm1176";
1308 set_feature(&cpu->env, ARM_FEATURE_V6K);
1309 set_feature(&cpu->env, ARM_FEATURE_VFP);
1310 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1311 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1312 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1313 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1314 set_feature(&cpu->env, ARM_FEATURE_EL3);
1315 cpu->midr = 0x410fb767;
1316 cpu->reset_fpsid = 0x410120b5;
1317 cpu->isar.mvfr0 = 0x11111111;
1318 cpu->isar.mvfr1 = 0x00000000;
1319 cpu->ctr = 0x1dd20d2;
1320 cpu->reset_sctlr = 0x00050078;
1321 cpu->id_pfr0 = 0x111;
1322 cpu->id_pfr1 = 0x11;
1323 cpu->id_dfr0 = 0x33;
1324 cpu->id_afr0 = 0;
1325 cpu->id_mmfr0 = 0x01130003;
1326 cpu->id_mmfr1 = 0x10030302;
1327 cpu->id_mmfr2 = 0x01222100;
1328 cpu->isar.id_isar0 = 0x0140011;
1329 cpu->isar.id_isar1 = 0x12002111;
1330 cpu->isar.id_isar2 = 0x11231121;
1331 cpu->isar.id_isar3 = 0x01102131;
1332 cpu->isar.id_isar4 = 0x01141;
1333 cpu->reset_auxcr = 7;
1336 static void arm11mpcore_initfn(Object *obj)
1338 ARMCPU *cpu = ARM_CPU(obj);
1340 cpu->dtb_compatible = "arm,arm11mpcore";
1341 set_feature(&cpu->env, ARM_FEATURE_V6K);
1342 set_feature(&cpu->env, ARM_FEATURE_VFP);
1343 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1344 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1345 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1346 cpu->midr = 0x410fb022;
1347 cpu->reset_fpsid = 0x410120b4;
1348 cpu->isar.mvfr0 = 0x11111111;
1349 cpu->isar.mvfr1 = 0x00000000;
1350 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1351 cpu->id_pfr0 = 0x111;
1352 cpu->id_pfr1 = 0x1;
1353 cpu->id_dfr0 = 0;
1354 cpu->id_afr0 = 0x2;
1355 cpu->id_mmfr0 = 0x01100103;
1356 cpu->id_mmfr1 = 0x10020302;
1357 cpu->id_mmfr2 = 0x01222000;
1358 cpu->isar.id_isar0 = 0x00100011;
1359 cpu->isar.id_isar1 = 0x12002111;
1360 cpu->isar.id_isar2 = 0x11221011;
1361 cpu->isar.id_isar3 = 0x01102131;
1362 cpu->isar.id_isar4 = 0x141;
1363 cpu->reset_auxcr = 1;
1366 static void cortex_m0_initfn(Object *obj)
1368 ARMCPU *cpu = ARM_CPU(obj);
1369 set_feature(&cpu->env, ARM_FEATURE_V6);
1370 set_feature(&cpu->env, ARM_FEATURE_M);
1372 cpu->midr = 0x410cc200;
1375 static void cortex_m3_initfn(Object *obj)
1377 ARMCPU *cpu = ARM_CPU(obj);
1378 set_feature(&cpu->env, ARM_FEATURE_V7);
1379 set_feature(&cpu->env, ARM_FEATURE_M);
1380 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1381 cpu->midr = 0x410fc231;
1382 cpu->pmsav7_dregion = 8;
1383 cpu->id_pfr0 = 0x00000030;
1384 cpu->id_pfr1 = 0x00000200;
1385 cpu->id_dfr0 = 0x00100000;
1386 cpu->id_afr0 = 0x00000000;
1387 cpu->id_mmfr0 = 0x00000030;
1388 cpu->id_mmfr1 = 0x00000000;
1389 cpu->id_mmfr2 = 0x00000000;
1390 cpu->id_mmfr3 = 0x00000000;
1391 cpu->isar.id_isar0 = 0x01141110;
1392 cpu->isar.id_isar1 = 0x02111000;
1393 cpu->isar.id_isar2 = 0x21112231;
1394 cpu->isar.id_isar3 = 0x01111110;
1395 cpu->isar.id_isar4 = 0x01310102;
1396 cpu->isar.id_isar5 = 0x00000000;
1397 cpu->isar.id_isar6 = 0x00000000;
1400 static void cortex_m4_initfn(Object *obj)
1402 ARMCPU *cpu = ARM_CPU(obj);
1404 set_feature(&cpu->env, ARM_FEATURE_V7);
1405 set_feature(&cpu->env, ARM_FEATURE_M);
1406 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1407 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1408 cpu->midr = 0x410fc240; /* r0p0 */
1409 cpu->pmsav7_dregion = 8;
1410 cpu->id_pfr0 = 0x00000030;
1411 cpu->id_pfr1 = 0x00000200;
1412 cpu->id_dfr0 = 0x00100000;
1413 cpu->id_afr0 = 0x00000000;
1414 cpu->id_mmfr0 = 0x00000030;
1415 cpu->id_mmfr1 = 0x00000000;
1416 cpu->id_mmfr2 = 0x00000000;
1417 cpu->id_mmfr3 = 0x00000000;
1418 cpu->isar.id_isar0 = 0x01141110;
1419 cpu->isar.id_isar1 = 0x02111000;
1420 cpu->isar.id_isar2 = 0x21112231;
1421 cpu->isar.id_isar3 = 0x01111110;
1422 cpu->isar.id_isar4 = 0x01310102;
1423 cpu->isar.id_isar5 = 0x00000000;
1424 cpu->isar.id_isar6 = 0x00000000;
1427 static void cortex_m33_initfn(Object *obj)
1429 ARMCPU *cpu = ARM_CPU(obj);
1431 set_feature(&cpu->env, ARM_FEATURE_V8);
1432 set_feature(&cpu->env, ARM_FEATURE_M);
1433 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1434 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1435 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1436 cpu->midr = 0x410fd213; /* r0p3 */
1437 cpu->pmsav7_dregion = 16;
1438 cpu->sau_sregion = 8;
1439 cpu->id_pfr0 = 0x00000030;
1440 cpu->id_pfr1 = 0x00000210;
1441 cpu->id_dfr0 = 0x00200000;
1442 cpu->id_afr0 = 0x00000000;
1443 cpu->id_mmfr0 = 0x00101F40;
1444 cpu->id_mmfr1 = 0x00000000;
1445 cpu->id_mmfr2 = 0x01000000;
1446 cpu->id_mmfr3 = 0x00000000;
1447 cpu->isar.id_isar0 = 0x01101110;
1448 cpu->isar.id_isar1 = 0x02212000;
1449 cpu->isar.id_isar2 = 0x20232232;
1450 cpu->isar.id_isar3 = 0x01111131;
1451 cpu->isar.id_isar4 = 0x01310132;
1452 cpu->isar.id_isar5 = 0x00000000;
1453 cpu->isar.id_isar6 = 0x00000000;
1454 cpu->clidr = 0x00000000;
1455 cpu->ctr = 0x8000c000;
1458 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1460 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1461 CPUClass *cc = CPU_CLASS(oc);
1463 acc->info = data;
1464 #ifndef CONFIG_USER_ONLY
1465 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1466 #endif
1468 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1471 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1472 /* Dummy the TCM region regs for the moment */
1473 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1474 .access = PL1_RW, .type = ARM_CP_CONST },
1475 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1476 .access = PL1_RW, .type = ARM_CP_CONST },
1477 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1478 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1479 REGINFO_SENTINEL
1482 static void cortex_r5_initfn(Object *obj)
1484 ARMCPU *cpu = ARM_CPU(obj);
1486 set_feature(&cpu->env, ARM_FEATURE_V7);
1487 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1488 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1489 cpu->midr = 0x411fc153; /* r1p3 */
1490 cpu->id_pfr0 = 0x0131;
1491 cpu->id_pfr1 = 0x001;
1492 cpu->id_dfr0 = 0x010400;
1493 cpu->id_afr0 = 0x0;
1494 cpu->id_mmfr0 = 0x0210030;
1495 cpu->id_mmfr1 = 0x00000000;
1496 cpu->id_mmfr2 = 0x01200000;
1497 cpu->id_mmfr3 = 0x0211;
1498 cpu->isar.id_isar0 = 0x02101111;
1499 cpu->isar.id_isar1 = 0x13112111;
1500 cpu->isar.id_isar2 = 0x21232141;
1501 cpu->isar.id_isar3 = 0x01112131;
1502 cpu->isar.id_isar4 = 0x0010142;
1503 cpu->isar.id_isar5 = 0x0;
1504 cpu->isar.id_isar6 = 0x0;
1505 cpu->mp_is_up = true;
1506 cpu->pmsav7_dregion = 16;
1507 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1510 static void cortex_r5f_initfn(Object *obj)
1512 ARMCPU *cpu = ARM_CPU(obj);
1514 cortex_r5_initfn(obj);
1515 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1518 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1519 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1520 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1521 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1522 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1523 REGINFO_SENTINEL
1526 static void cortex_a8_initfn(Object *obj)
1528 ARMCPU *cpu = ARM_CPU(obj);
1530 cpu->dtb_compatible = "arm,cortex-a8";
1531 set_feature(&cpu->env, ARM_FEATURE_V7);
1532 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1533 set_feature(&cpu->env, ARM_FEATURE_NEON);
1534 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1535 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1536 set_feature(&cpu->env, ARM_FEATURE_EL3);
1537 cpu->midr = 0x410fc080;
1538 cpu->reset_fpsid = 0x410330c0;
1539 cpu->isar.mvfr0 = 0x11110222;
1540 cpu->isar.mvfr1 = 0x00011111;
1541 cpu->ctr = 0x82048004;
1542 cpu->reset_sctlr = 0x00c50078;
1543 cpu->id_pfr0 = 0x1031;
1544 cpu->id_pfr1 = 0x11;
1545 cpu->id_dfr0 = 0x400;
1546 cpu->id_afr0 = 0;
1547 cpu->id_mmfr0 = 0x31100003;
1548 cpu->id_mmfr1 = 0x20000000;
1549 cpu->id_mmfr2 = 0x01202000;
1550 cpu->id_mmfr3 = 0x11;
1551 cpu->isar.id_isar0 = 0x00101111;
1552 cpu->isar.id_isar1 = 0x12112111;
1553 cpu->isar.id_isar2 = 0x21232031;
1554 cpu->isar.id_isar3 = 0x11112131;
1555 cpu->isar.id_isar4 = 0x00111142;
1556 cpu->dbgdidr = 0x15141000;
1557 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1558 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1559 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1560 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1561 cpu->reset_auxcr = 2;
1562 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1565 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1566 /* power_control should be set to maximum latency. Again,
1567 * default to 0 and set by private hook
1569 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1570 .access = PL1_RW, .resetvalue = 0,
1571 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1572 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1573 .access = PL1_RW, .resetvalue = 0,
1574 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1575 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1576 .access = PL1_RW, .resetvalue = 0,
1577 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1578 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1579 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1580 /* TLB lockdown control */
1581 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1582 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1583 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1584 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1585 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1586 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1587 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1588 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1589 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1590 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1591 REGINFO_SENTINEL
1594 static void cortex_a9_initfn(Object *obj)
1596 ARMCPU *cpu = ARM_CPU(obj);
1598 cpu->dtb_compatible = "arm,cortex-a9";
1599 set_feature(&cpu->env, ARM_FEATURE_V7);
1600 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1601 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1602 set_feature(&cpu->env, ARM_FEATURE_NEON);
1603 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1604 set_feature(&cpu->env, ARM_FEATURE_EL3);
1605 /* Note that A9 supports the MP extensions even for
1606 * A9UP and single-core A9MP (which are both different
1607 * and valid configurations; we don't model A9UP).
1609 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1610 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1611 cpu->midr = 0x410fc090;
1612 cpu->reset_fpsid = 0x41033090;
1613 cpu->isar.mvfr0 = 0x11110222;
1614 cpu->isar.mvfr1 = 0x01111111;
1615 cpu->ctr = 0x80038003;
1616 cpu->reset_sctlr = 0x00c50078;
1617 cpu->id_pfr0 = 0x1031;
1618 cpu->id_pfr1 = 0x11;
1619 cpu->id_dfr0 = 0x000;
1620 cpu->id_afr0 = 0;
1621 cpu->id_mmfr0 = 0x00100103;
1622 cpu->id_mmfr1 = 0x20000000;
1623 cpu->id_mmfr2 = 0x01230000;
1624 cpu->id_mmfr3 = 0x00002111;
1625 cpu->isar.id_isar0 = 0x00101111;
1626 cpu->isar.id_isar1 = 0x13112111;
1627 cpu->isar.id_isar2 = 0x21232041;
1628 cpu->isar.id_isar3 = 0x11112131;
1629 cpu->isar.id_isar4 = 0x00111142;
1630 cpu->dbgdidr = 0x35141000;
1631 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1632 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1633 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1634 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1637 #ifndef CONFIG_USER_ONLY
1638 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1640 /* Linux wants the number of processors from here.
1641 * Might as well set the interrupt-controller bit too.
1643 return ((smp_cpus - 1) << 24) | (1 << 23);
1645 #endif
1647 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1648 #ifndef CONFIG_USER_ONLY
1649 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1650 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1651 .writefn = arm_cp_write_ignore, },
1652 #endif
1653 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1654 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1655 REGINFO_SENTINEL
1658 static void cortex_a7_initfn(Object *obj)
1660 ARMCPU *cpu = ARM_CPU(obj);
1662 cpu->dtb_compatible = "arm,cortex-a7";
1663 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1664 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1665 set_feature(&cpu->env, ARM_FEATURE_NEON);
1666 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1667 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1668 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1669 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1670 set_feature(&cpu->env, ARM_FEATURE_EL2);
1671 set_feature(&cpu->env, ARM_FEATURE_EL3);
1672 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1673 cpu->midr = 0x410fc075;
1674 cpu->reset_fpsid = 0x41023075;
1675 cpu->isar.mvfr0 = 0x10110222;
1676 cpu->isar.mvfr1 = 0x11111111;
1677 cpu->ctr = 0x84448003;
1678 cpu->reset_sctlr = 0x00c50078;
1679 cpu->id_pfr0 = 0x00001131;
1680 cpu->id_pfr1 = 0x00011011;
1681 cpu->id_dfr0 = 0x02010555;
1682 cpu->pmceid0 = 0x00000000;
1683 cpu->pmceid1 = 0x00000000;
1684 cpu->id_afr0 = 0x00000000;
1685 cpu->id_mmfr0 = 0x10101105;
1686 cpu->id_mmfr1 = 0x40000000;
1687 cpu->id_mmfr2 = 0x01240000;
1688 cpu->id_mmfr3 = 0x02102211;
1689 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1690 * table 4-41 gives 0x02101110, which includes the arm div insns.
1692 cpu->isar.id_isar0 = 0x02101110;
1693 cpu->isar.id_isar1 = 0x13112111;
1694 cpu->isar.id_isar2 = 0x21232041;
1695 cpu->isar.id_isar3 = 0x11112131;
1696 cpu->isar.id_isar4 = 0x10011142;
1697 cpu->dbgdidr = 0x3515f005;
1698 cpu->clidr = 0x0a200023;
1699 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1700 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1701 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1702 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1705 static void cortex_a15_initfn(Object *obj)
1707 ARMCPU *cpu = ARM_CPU(obj);
1709 cpu->dtb_compatible = "arm,cortex-a15";
1710 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1711 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1712 set_feature(&cpu->env, ARM_FEATURE_NEON);
1713 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1714 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1715 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1716 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1717 set_feature(&cpu->env, ARM_FEATURE_EL2);
1718 set_feature(&cpu->env, ARM_FEATURE_EL3);
1719 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1720 cpu->midr = 0x412fc0f1;
1721 cpu->reset_fpsid = 0x410430f0;
1722 cpu->isar.mvfr0 = 0x10110222;
1723 cpu->isar.mvfr1 = 0x11111111;
1724 cpu->ctr = 0x8444c004;
1725 cpu->reset_sctlr = 0x00c50078;
1726 cpu->id_pfr0 = 0x00001131;
1727 cpu->id_pfr1 = 0x00011011;
1728 cpu->id_dfr0 = 0x02010555;
1729 cpu->pmceid0 = 0x0000000;
1730 cpu->pmceid1 = 0x00000000;
1731 cpu->id_afr0 = 0x00000000;
1732 cpu->id_mmfr0 = 0x10201105;
1733 cpu->id_mmfr1 = 0x20000000;
1734 cpu->id_mmfr2 = 0x01240000;
1735 cpu->id_mmfr3 = 0x02102211;
1736 cpu->isar.id_isar0 = 0x02101110;
1737 cpu->isar.id_isar1 = 0x13112111;
1738 cpu->isar.id_isar2 = 0x21232041;
1739 cpu->isar.id_isar3 = 0x11112131;
1740 cpu->isar.id_isar4 = 0x10011142;
1741 cpu->dbgdidr = 0x3515f021;
1742 cpu->clidr = 0x0a200023;
1743 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1744 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1745 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1746 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1749 static void ti925t_initfn(Object *obj)
1751 ARMCPU *cpu = ARM_CPU(obj);
1752 set_feature(&cpu->env, ARM_FEATURE_V4T);
1753 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1754 cpu->midr = ARM_CPUID_TI925T;
1755 cpu->ctr = 0x5109149;
1756 cpu->reset_sctlr = 0x00000070;
1759 static void sa1100_initfn(Object *obj)
1761 ARMCPU *cpu = ARM_CPU(obj);
1763 cpu->dtb_compatible = "intel,sa1100";
1764 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1765 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1766 cpu->midr = 0x4401A11B;
1767 cpu->reset_sctlr = 0x00000070;
1770 static void sa1110_initfn(Object *obj)
1772 ARMCPU *cpu = ARM_CPU(obj);
1773 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1774 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1775 cpu->midr = 0x6901B119;
1776 cpu->reset_sctlr = 0x00000070;
1779 static void pxa250_initfn(Object *obj)
1781 ARMCPU *cpu = ARM_CPU(obj);
1783 cpu->dtb_compatible = "marvell,xscale";
1784 set_feature(&cpu->env, ARM_FEATURE_V5);
1785 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1786 cpu->midr = 0x69052100;
1787 cpu->ctr = 0xd172172;
1788 cpu->reset_sctlr = 0x00000078;
1791 static void pxa255_initfn(Object *obj)
1793 ARMCPU *cpu = ARM_CPU(obj);
1795 cpu->dtb_compatible = "marvell,xscale";
1796 set_feature(&cpu->env, ARM_FEATURE_V5);
1797 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1798 cpu->midr = 0x69052d00;
1799 cpu->ctr = 0xd172172;
1800 cpu->reset_sctlr = 0x00000078;
1803 static void pxa260_initfn(Object *obj)
1805 ARMCPU *cpu = ARM_CPU(obj);
1807 cpu->dtb_compatible = "marvell,xscale";
1808 set_feature(&cpu->env, ARM_FEATURE_V5);
1809 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1810 cpu->midr = 0x69052903;
1811 cpu->ctr = 0xd172172;
1812 cpu->reset_sctlr = 0x00000078;
1815 static void pxa261_initfn(Object *obj)
1817 ARMCPU *cpu = ARM_CPU(obj);
1819 cpu->dtb_compatible = "marvell,xscale";
1820 set_feature(&cpu->env, ARM_FEATURE_V5);
1821 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1822 cpu->midr = 0x69052d05;
1823 cpu->ctr = 0xd172172;
1824 cpu->reset_sctlr = 0x00000078;
1827 static void pxa262_initfn(Object *obj)
1829 ARMCPU *cpu = ARM_CPU(obj);
1831 cpu->dtb_compatible = "marvell,xscale";
1832 set_feature(&cpu->env, ARM_FEATURE_V5);
1833 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1834 cpu->midr = 0x69052d06;
1835 cpu->ctr = 0xd172172;
1836 cpu->reset_sctlr = 0x00000078;
1839 static void pxa270a0_initfn(Object *obj)
1841 ARMCPU *cpu = ARM_CPU(obj);
1843 cpu->dtb_compatible = "marvell,xscale";
1844 set_feature(&cpu->env, ARM_FEATURE_V5);
1845 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1846 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1847 cpu->midr = 0x69054110;
1848 cpu->ctr = 0xd172172;
1849 cpu->reset_sctlr = 0x00000078;
1852 static void pxa270a1_initfn(Object *obj)
1854 ARMCPU *cpu = ARM_CPU(obj);
1856 cpu->dtb_compatible = "marvell,xscale";
1857 set_feature(&cpu->env, ARM_FEATURE_V5);
1858 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1859 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1860 cpu->midr = 0x69054111;
1861 cpu->ctr = 0xd172172;
1862 cpu->reset_sctlr = 0x00000078;
1865 static void pxa270b0_initfn(Object *obj)
1867 ARMCPU *cpu = ARM_CPU(obj);
1869 cpu->dtb_compatible = "marvell,xscale";
1870 set_feature(&cpu->env, ARM_FEATURE_V5);
1871 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1872 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1873 cpu->midr = 0x69054112;
1874 cpu->ctr = 0xd172172;
1875 cpu->reset_sctlr = 0x00000078;
1878 static void pxa270b1_initfn(Object *obj)
1880 ARMCPU *cpu = ARM_CPU(obj);
1882 cpu->dtb_compatible = "marvell,xscale";
1883 set_feature(&cpu->env, ARM_FEATURE_V5);
1884 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1885 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1886 cpu->midr = 0x69054113;
1887 cpu->ctr = 0xd172172;
1888 cpu->reset_sctlr = 0x00000078;
1891 static void pxa270c0_initfn(Object *obj)
1893 ARMCPU *cpu = ARM_CPU(obj);
1895 cpu->dtb_compatible = "marvell,xscale";
1896 set_feature(&cpu->env, ARM_FEATURE_V5);
1897 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1898 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1899 cpu->midr = 0x69054114;
1900 cpu->ctr = 0xd172172;
1901 cpu->reset_sctlr = 0x00000078;
1904 static void pxa270c5_initfn(Object *obj)
1906 ARMCPU *cpu = ARM_CPU(obj);
1908 cpu->dtb_compatible = "marvell,xscale";
1909 set_feature(&cpu->env, ARM_FEATURE_V5);
1910 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1911 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1912 cpu->midr = 0x69054117;
1913 cpu->ctr = 0xd172172;
1914 cpu->reset_sctlr = 0x00000078;
1917 #ifndef TARGET_AARCH64
1918 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1919 * otherwise, a CPU with as many features enabled as our emulation supports.
1920 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1921 * this only needs to handle 32 bits.
1923 static void arm_max_initfn(Object *obj)
1925 ARMCPU *cpu = ARM_CPU(obj);
1927 if (kvm_enabled()) {
1928 kvm_arm_set_cpu_features_from_host(cpu);
1929 } else {
1930 cortex_a15_initfn(obj);
1931 #ifdef CONFIG_USER_ONLY
1932 /* We don't set these in system emulation mode for the moment,
1933 * since we don't correctly set (all of) the ID registers to
1934 * advertise them.
1936 set_feature(&cpu->env, ARM_FEATURE_V8);
1938 uint32_t t;
1940 t = cpu->isar.id_isar5;
1941 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1942 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1943 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1944 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1945 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1946 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1947 cpu->isar.id_isar5 = t;
1949 t = cpu->isar.id_isar6;
1950 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1951 cpu->isar.id_isar6 = t;
1953 t = cpu->id_mmfr4;
1954 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
1955 cpu->id_mmfr4 = t;
1957 #endif
1960 #endif
1962 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1964 struct ARMCPUInfo {
1965 const char *name;
1966 void (*initfn)(Object *obj);
1967 void (*class_init)(ObjectClass *oc, void *data);
1970 static const ARMCPUInfo arm_cpus[] = {
1971 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1972 { .name = "arm926", .initfn = arm926_initfn },
1973 { .name = "arm946", .initfn = arm946_initfn },
1974 { .name = "arm1026", .initfn = arm1026_initfn },
1975 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1976 * older core than plain "arm1136". In particular this does not
1977 * have the v6K features.
1979 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1980 { .name = "arm1136", .initfn = arm1136_initfn },
1981 { .name = "arm1176", .initfn = arm1176_initfn },
1982 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1983 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
1984 .class_init = arm_v7m_class_init },
1985 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1986 .class_init = arm_v7m_class_init },
1987 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1988 .class_init = arm_v7m_class_init },
1989 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
1990 .class_init = arm_v7m_class_init },
1991 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1992 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
1993 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1994 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1995 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1996 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1997 { .name = "ti925t", .initfn = ti925t_initfn },
1998 { .name = "sa1100", .initfn = sa1100_initfn },
1999 { .name = "sa1110", .initfn = sa1110_initfn },
2000 { .name = "pxa250", .initfn = pxa250_initfn },
2001 { .name = "pxa255", .initfn = pxa255_initfn },
2002 { .name = "pxa260", .initfn = pxa260_initfn },
2003 { .name = "pxa261", .initfn = pxa261_initfn },
2004 { .name = "pxa262", .initfn = pxa262_initfn },
2005 /* "pxa270" is an alias for "pxa270-a0" */
2006 { .name = "pxa270", .initfn = pxa270a0_initfn },
2007 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2008 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2009 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2010 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2011 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2012 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2013 #ifndef TARGET_AARCH64
2014 { .name = "max", .initfn = arm_max_initfn },
2015 #endif
2016 #ifdef CONFIG_USER_ONLY
2017 { .name = "any", .initfn = arm_max_initfn },
2018 #endif
2019 #endif
2020 { .name = NULL }
2023 static Property arm_cpu_properties[] = {
2024 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2025 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2026 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2027 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2028 mp_affinity, ARM64_AFFINITY_INVALID),
2029 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2030 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2031 DEFINE_PROP_END_OF_LIST()
2034 #ifdef CONFIG_USER_ONLY
2035 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2036 int rw, int mmu_idx)
2038 ARMCPU *cpu = ARM_CPU(cs);
2039 CPUARMState *env = &cpu->env;
2041 env->exception.vaddress = address;
2042 if (rw == 2) {
2043 cs->exception_index = EXCP_PREFETCH_ABORT;
2044 } else {
2045 cs->exception_index = EXCP_DATA_ABORT;
2047 return 1;
2049 #endif
2051 static gchar *arm_gdb_arch_name(CPUState *cs)
2053 ARMCPU *cpu = ARM_CPU(cs);
2054 CPUARMState *env = &cpu->env;
2056 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2057 return g_strdup("iwmmxt");
2059 return g_strdup("arm");
2062 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2064 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2065 CPUClass *cc = CPU_CLASS(acc);
2066 DeviceClass *dc = DEVICE_CLASS(oc);
2068 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2069 &acc->parent_realize);
2070 dc->props = arm_cpu_properties;
2072 acc->parent_reset = cc->reset;
2073 cc->reset = arm_cpu_reset;
2075 cc->class_by_name = arm_cpu_class_by_name;
2076 cc->has_work = arm_cpu_has_work;
2077 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2078 cc->dump_state = arm_cpu_dump_state;
2079 cc->set_pc = arm_cpu_set_pc;
2080 cc->gdb_read_register = arm_cpu_gdb_read_register;
2081 cc->gdb_write_register = arm_cpu_gdb_write_register;
2082 #ifdef CONFIG_USER_ONLY
2083 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2084 #else
2085 cc->do_interrupt = arm_cpu_do_interrupt;
2086 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2087 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2088 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2089 cc->asidx_from_attrs = arm_asidx_from_attrs;
2090 cc->vmsd = &vmstate_arm_cpu;
2091 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2092 cc->write_elf64_note = arm_cpu_write_elf64_note;
2093 cc->write_elf32_note = arm_cpu_write_elf32_note;
2094 #endif
2095 cc->gdb_num_core_regs = 26;
2096 cc->gdb_core_xml_file = "arm-core.xml";
2097 cc->gdb_arch_name = arm_gdb_arch_name;
2098 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2099 cc->gdb_stop_before_watchpoint = true;
2100 cc->debug_excp_handler = arm_debug_excp_handler;
2101 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2102 #if !defined(CONFIG_USER_ONLY)
2103 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2104 #endif
2106 cc->disas_set_info = arm_disas_set_info;
2107 #ifdef CONFIG_TCG
2108 cc->tcg_initialize = arm_translate_init;
2109 #endif
2112 #ifdef CONFIG_KVM
2113 static void arm_host_initfn(Object *obj)
2115 ARMCPU *cpu = ARM_CPU(obj);
2117 kvm_arm_set_cpu_features_from_host(cpu);
2118 arm_cpu_post_init(obj);
2121 static const TypeInfo host_arm_cpu_type_info = {
2122 .name = TYPE_ARM_HOST_CPU,
2123 #ifdef TARGET_AARCH64
2124 .parent = TYPE_AARCH64_CPU,
2125 #else
2126 .parent = TYPE_ARM_CPU,
2127 #endif
2128 .instance_init = arm_host_initfn,
2131 #endif
2133 static void arm_cpu_instance_init(Object *obj)
2135 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2137 acc->info->initfn(obj);
2138 arm_cpu_post_init(obj);
2141 static void cpu_register_class_init(ObjectClass *oc, void *data)
2143 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2145 acc->info = data;
2148 static void cpu_register(const ARMCPUInfo *info)
2150 TypeInfo type_info = {
2151 .parent = TYPE_ARM_CPU,
2152 .instance_size = sizeof(ARMCPU),
2153 .instance_init = arm_cpu_instance_init,
2154 .class_size = sizeof(ARMCPUClass),
2155 .class_init = info->class_init ?: cpu_register_class_init,
2156 .class_data = (void *)info,
2159 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2160 type_register(&type_info);
2161 g_free((void *)type_info.name);
2164 static const TypeInfo arm_cpu_type_info = {
2165 .name = TYPE_ARM_CPU,
2166 .parent = TYPE_CPU,
2167 .instance_size = sizeof(ARMCPU),
2168 .instance_init = arm_cpu_initfn,
2169 .instance_finalize = arm_cpu_finalizefn,
2170 .abstract = true,
2171 .class_size = sizeof(ARMCPUClass),
2172 .class_init = arm_cpu_class_init,
2175 static const TypeInfo idau_interface_type_info = {
2176 .name = TYPE_IDAU_INTERFACE,
2177 .parent = TYPE_INTERFACE,
2178 .class_size = sizeof(IDAUInterfaceClass),
2181 static void arm_cpu_register_types(void)
2183 const ARMCPUInfo *info = arm_cpus;
2185 type_register_static(&arm_cpu_type_info);
2186 type_register_static(&idau_interface_type_info);
2188 while (info->name) {
2189 cpu_register(info);
2190 info++;
2193 #ifdef CONFIG_KVM
2194 type_register_static(&host_arm_cpu_type_info);
2195 #endif
2198 type_init(arm_cpu_register_types)