4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
40 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
42 ARMCPU
*cpu
= ARM_CPU(cs
);
44 cpu
->env
.regs
[15] = value
;
47 static bool arm_cpu_has_work(CPUState
*cs
)
49 ARMCPU
*cpu
= ARM_CPU(cs
);
51 return (cpu
->power_state
!= PSCI_OFF
)
52 && cs
->interrupt_request
&
53 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
54 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
55 | CPU_INTERRUPT_EXITTB
);
58 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
61 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
64 entry
->opaque
= opaque
;
66 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
69 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
72 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
75 entry
->opaque
= opaque
;
77 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
80 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
82 /* Reset a single ARMCPRegInfo register */
83 ARMCPRegInfo
*ri
= value
;
86 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
91 ri
->resetfn(&cpu
->env
, ri
);
95 /* A zero offset is never possible as it would be regs[0]
96 * so we use it to indicate that reset is being handled elsewhere.
97 * This is basically only used for fields in non-core coprocessors
98 * (like the pxa2xx ones).
100 if (!ri
->fieldoffset
) {
104 if (cpreg_field_is_64bit(ri
)) {
105 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
107 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
111 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
113 /* Purely an assertion check: we've already done reset once,
114 * so now check that running the reset for the cpreg doesn't
115 * change its value. This traps bugs where two different cpregs
116 * both try to reset the same state field but to different values.
118 ARMCPRegInfo
*ri
= value
;
119 ARMCPU
*cpu
= opaque
;
120 uint64_t oldvalue
, newvalue
;
122 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
126 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
127 cp_reg_reset(key
, value
, opaque
);
128 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
129 assert(oldvalue
== newvalue
);
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState
*s
)
135 ARMCPU
*cpu
= ARM_CPU(s
);
136 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
137 CPUARMState
*env
= &cpu
->env
;
139 acc
->parent_reset(s
);
141 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
143 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
144 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
146 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
147 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
148 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
149 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
151 cpu
->power_state
= cpu
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
152 s
->halted
= cpu
->start_powered_off
;
154 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
155 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
158 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
159 /* 64 bit CPUs always start in 64 bit mode */
161 #if defined(CONFIG_USER_ONLY)
162 env
->pstate
= PSTATE_MODE_EL0t
;
163 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
165 /* and to the FP/Neon instructions */
166 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
167 /* and to the SVE instructions */
168 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 16, 2, 3);
169 env
->cp15
.cptr_el
[3] |= CPTR_EZ
;
170 /* with maximum vector length */
171 env
->vfp
.zcr_el
[1] = cpu
->sve_max_vq
- 1;
172 env
->vfp
.zcr_el
[2] = env
->vfp
.zcr_el
[1];
173 env
->vfp
.zcr_el
[3] = env
->vfp
.zcr_el
[1];
175 /* Reset into the highest available EL */
176 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
177 env
->pstate
= PSTATE_MODE_EL3h
;
178 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
179 env
->pstate
= PSTATE_MODE_EL2h
;
181 env
->pstate
= PSTATE_MODE_EL1h
;
183 env
->pc
= cpu
->rvbar
;
186 #if defined(CONFIG_USER_ONLY)
187 /* Userspace expects access to cp10 and cp11 for FP/Neon */
188 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
192 #if defined(CONFIG_USER_ONLY)
193 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
194 /* For user mode we must enable access to coprocessors */
195 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
196 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
197 env
->cp15
.c15_cpar
= 3;
198 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
199 env
->cp15
.c15_cpar
= 1;
204 * If the highest available EL is EL2, AArch32 will start in Hyp
205 * mode; otherwise it starts in SVC. Note that if we start in
206 * AArch64 then these values in the uncached_cpsr will be ignored.
208 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
209 !arm_feature(env
, ARM_FEATURE_EL3
)) {
210 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
212 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
214 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
216 if (arm_feature(env
, ARM_FEATURE_M
)) {
217 uint32_t initial_msp
; /* Loaded from 0x0 */
218 uint32_t initial_pc
; /* Loaded from 0x4 */
222 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
223 env
->v7m
.secure
= true;
225 /* This bit resets to 0 if security is supported, but 1 if
226 * it is not. The bit is not present in v7M, but we set it
227 * here so we can avoid having to make checks on it conditional
228 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
230 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
233 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234 * that it resets to 1, so QEMU always does that rather than making
235 * it dependent on CPU model. In v8M it is RES1.
237 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
238 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
239 if (arm_feature(env
, ARM_FEATURE_V8
)) {
240 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
242 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
244 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
245 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
246 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
249 /* Unlike A/R profile, M profile defines the reset LR value */
250 env
->regs
[14] = 0xffffffff;
252 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
254 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
256 rom
= rom_ptr(vecbase
, 8);
258 /* Address zero is covered by ROM which hasn't yet been
259 * copied into physical memory.
261 initial_msp
= ldl_p(rom
);
262 initial_pc
= ldl_p(rom
+ 4);
264 /* Address zero not covered by a ROM blob, or the ROM blob
265 * is in non-modifiable memory and this is a second reset after
266 * it got copied into memory. In the latter case, rom_ptr
267 * will return a NULL pointer and we should use ldl_phys instead.
269 initial_msp
= ldl_phys(s
->as
, vecbase
);
270 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
273 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
274 env
->regs
[15] = initial_pc
& ~1;
275 env
->thumb
= initial_pc
& 1;
278 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
279 * executing as AArch32 then check if highvecs are enabled and
280 * adjust the PC accordingly.
282 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
283 env
->regs
[15] = 0xFFFF0000;
286 /* M profile requires that reset clears the exclusive monitor;
287 * A profile does not, but clearing it makes more sense than having it
288 * set with an exclusive access on address zero.
290 arm_clear_exclusive(env
);
292 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
295 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
296 if (cpu
->pmsav7_dregion
> 0) {
297 if (arm_feature(env
, ARM_FEATURE_V8
)) {
298 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
299 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
300 * cpu
->pmsav7_dregion
);
301 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
302 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
303 * cpu
->pmsav7_dregion
);
304 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
305 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
306 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
307 * cpu
->pmsav7_dregion
);
308 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
309 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
310 * cpu
->pmsav7_dregion
);
312 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
313 memset(env
->pmsav7
.drbar
, 0,
314 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
315 memset(env
->pmsav7
.drsr
, 0,
316 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
317 memset(env
->pmsav7
.dracr
, 0,
318 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
321 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
322 env
->pmsav7
.rnr
[M_REG_S
] = 0;
323 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
324 env
->pmsav8
.mair0
[M_REG_S
] = 0;
325 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
326 env
->pmsav8
.mair1
[M_REG_S
] = 0;
329 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
330 if (cpu
->sau_sregion
> 0) {
331 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
332 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
335 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336 * the Cortex-M33 does.
341 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
342 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
343 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
344 set_float_detect_tininess(float_tininess_before_rounding
,
345 &env
->vfp
.fp_status
);
346 set_float_detect_tininess(float_tininess_before_rounding
,
347 &env
->vfp
.standard_fp_status
);
348 set_float_detect_tininess(float_tininess_before_rounding
,
349 &env
->vfp
.fp_status_f16
);
350 #ifndef CONFIG_USER_ONLY
352 kvm_arm_reset_vcpu(cpu
);
356 hw_breakpoint_update_all(cpu
);
357 hw_watchpoint_update_all(cpu
);
360 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
362 CPUClass
*cc
= CPU_GET_CLASS(cs
);
363 CPUARMState
*env
= cs
->env_ptr
;
364 uint32_t cur_el
= arm_current_el(env
);
365 bool secure
= arm_is_secure(env
);
370 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
372 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
373 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
374 cs
->exception_index
= excp_idx
;
375 env
->exception
.target_el
= target_el
;
376 cc
->do_interrupt(cs
);
380 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
382 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
383 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
384 cs
->exception_index
= excp_idx
;
385 env
->exception
.target_el
= target_el
;
386 cc
->do_interrupt(cs
);
390 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
391 excp_idx
= EXCP_VIRQ
;
393 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
394 cs
->exception_index
= excp_idx
;
395 env
->exception
.target_el
= target_el
;
396 cc
->do_interrupt(cs
);
400 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
401 excp_idx
= EXCP_VFIQ
;
403 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
404 cs
->exception_index
= excp_idx
;
405 env
->exception
.target_el
= target_el
;
406 cc
->do_interrupt(cs
);
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
417 CPUClass
*cc
= CPU_GET_CLASS(cs
);
418 ARMCPU
*cpu
= ARM_CPU(cs
);
419 CPUARMState
*env
= &cpu
->env
;
422 /* ARMv7-M interrupt masking works differently than -A or -R.
423 * There is no FIQ/IRQ distinction. Instead of I and F bits
424 * masking FIQ and IRQ interrupts, an exception is taken only
425 * if it is higher priority than the current execution priority
426 * (which depends on state like BASEPRI, FAULTMASK and the
427 * currently active exception).
429 if (interrupt_request
& CPU_INTERRUPT_HARD
430 && (armv7m_nvic_can_take_pending_exception(env
->nvic
))) {
431 cs
->exception_index
= EXCP_IRQ
;
432 cc
->do_interrupt(cs
);
439 void arm_cpu_update_virq(ARMCPU
*cpu
)
442 * Update the interrupt level for VIRQ, which is the logical OR of
443 * the HCR_EL2.VI bit and the input line level from the GIC.
445 CPUARMState
*env
= &cpu
->env
;
446 CPUState
*cs
= CPU(cpu
);
448 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
449 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
451 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
453 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
455 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
460 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
463 * Update the interrupt level for VFIQ, which is the logical OR of
464 * the HCR_EL2.VF bit and the input line level from the GIC.
466 CPUARMState
*env
= &cpu
->env
;
467 CPUState
*cs
= CPU(cpu
);
469 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
470 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
472 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
474 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
476 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
481 #ifndef CONFIG_USER_ONLY
482 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
484 ARMCPU
*cpu
= opaque
;
485 CPUARMState
*env
= &cpu
->env
;
486 CPUState
*cs
= CPU(cpu
);
487 static const int mask
[] = {
488 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
489 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
490 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
491 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
495 env
->irq_line_state
|= mask
[irq
];
497 env
->irq_line_state
&= ~mask
[irq
];
502 assert(arm_feature(env
, ARM_FEATURE_EL2
));
503 arm_cpu_update_virq(cpu
);
506 assert(arm_feature(env
, ARM_FEATURE_EL2
));
507 arm_cpu_update_vfiq(cpu
);
512 cpu_interrupt(cs
, mask
[irq
]);
514 cpu_reset_interrupt(cs
, mask
[irq
]);
518 g_assert_not_reached();
522 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
525 ARMCPU
*cpu
= opaque
;
526 CPUARMState
*env
= &cpu
->env
;
527 CPUState
*cs
= CPU(cpu
);
528 int kvm_irq
= KVM_ARM_IRQ_TYPE_CPU
<< KVM_ARM_IRQ_TYPE_SHIFT
;
529 uint32_t linestate_bit
;
533 kvm_irq
|= KVM_ARM_IRQ_CPU_IRQ
;
534 linestate_bit
= CPU_INTERRUPT_HARD
;
537 kvm_irq
|= KVM_ARM_IRQ_CPU_FIQ
;
538 linestate_bit
= CPU_INTERRUPT_FIQ
;
541 g_assert_not_reached();
545 env
->irq_line_state
|= linestate_bit
;
547 env
->irq_line_state
&= ~linestate_bit
;
550 kvm_irq
|= cs
->cpu_index
<< KVM_ARM_IRQ_VCPU_SHIFT
;
551 kvm_set_irq(kvm_state
, kvm_irq
, level
? 1 : 0);
555 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
557 ARMCPU
*cpu
= ARM_CPU(cs
);
558 CPUARMState
*env
= &cpu
->env
;
560 cpu_synchronize_state(cs
);
561 return arm_cpu_data_is_big_endian(env
);
566 static inline void set_feature(CPUARMState
*env
, int feature
)
568 env
->features
|= 1ULL << feature
;
571 static inline void unset_feature(CPUARMState
*env
, int feature
)
573 env
->features
&= ~(1ULL << feature
);
577 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
579 return print_insn_arm(pc
| 1, info
);
582 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
584 ARMCPU
*ac
= ARM_CPU(cpu
);
585 CPUARMState
*env
= &ac
->env
;
589 /* We might not be compiled with the A64 disassembler
590 * because it needs a C++ compiler. Leave print_insn
591 * unset in this case to use the caller default behaviour.
593 #if defined(CONFIG_ARM_A64_DIS)
594 info
->print_insn
= print_insn_arm_a64
;
596 info
->cap_arch
= CS_ARCH_ARM64
;
597 info
->cap_insn_unit
= 4;
598 info
->cap_insn_split
= 4;
602 info
->print_insn
= print_insn_thumb1
;
603 info
->cap_insn_unit
= 2;
604 info
->cap_insn_split
= 4;
605 cap_mode
= CS_MODE_THUMB
;
607 info
->print_insn
= print_insn_arm
;
608 info
->cap_insn_unit
= 4;
609 info
->cap_insn_split
= 4;
610 cap_mode
= CS_MODE_ARM
;
612 if (arm_feature(env
, ARM_FEATURE_V8
)) {
613 cap_mode
|= CS_MODE_V8
;
615 if (arm_feature(env
, ARM_FEATURE_M
)) {
616 cap_mode
|= CS_MODE_MCLASS
;
618 info
->cap_arch
= CS_ARCH_ARM
;
619 info
->cap_mode
= cap_mode
;
622 sctlr_b
= arm_sctlr_b(env
);
623 if (bswap_code(sctlr_b
)) {
624 #ifdef TARGET_WORDS_BIGENDIAN
625 info
->endian
= BFD_ENDIAN_LITTLE
;
627 info
->endian
= BFD_ENDIAN_BIG
;
630 info
->flags
&= ~INSN_ARM_BE32
;
631 #ifndef CONFIG_USER_ONLY
633 info
->flags
|= INSN_ARM_BE32
;
638 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
640 uint32_t Aff1
= idx
/ clustersz
;
641 uint32_t Aff0
= idx
% clustersz
;
642 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
645 static void cpreg_hashtable_data_destroy(gpointer data
)
648 * Destroy function for cpu->cp_regs hashtable data entries.
649 * We must free the name string because it was g_strdup()ed in
650 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
651 * from r->name because we know we definitely allocated it.
653 ARMCPRegInfo
*r
= data
;
655 g_free((void *)r
->name
);
659 static void arm_cpu_initfn(Object
*obj
)
661 CPUState
*cs
= CPU(obj
);
662 ARMCPU
*cpu
= ARM_CPU(obj
);
664 cs
->env_ptr
= &cpu
->env
;
665 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
666 g_free
, cpreg_hashtable_data_destroy
);
668 QLIST_INIT(&cpu
->pre_el_change_hooks
);
669 QLIST_INIT(&cpu
->el_change_hooks
);
671 #ifndef CONFIG_USER_ONLY
672 /* Our inbound IRQ and FIQ lines */
674 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
675 * the same interface as non-KVM CPUs.
677 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
679 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
682 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
683 ARRAY_SIZE(cpu
->gt_timer_outputs
));
685 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
686 "gicv3-maintenance-interrupt", 1);
687 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
691 /* DTB consumers generally don't in fact care what the 'compatible'
692 * string is, so always provide some string and trust that a hypothetical
693 * picky DTB consumer will also provide a helpful error message.
695 cpu
->dtb_compatible
= "qemu,unknown";
696 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
697 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
700 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
704 static Property arm_cpu_reset_cbar_property
=
705 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
707 static Property arm_cpu_reset_hivecs_property
=
708 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
710 static Property arm_cpu_rvbar_property
=
711 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
713 static Property arm_cpu_has_el2_property
=
714 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
716 static Property arm_cpu_has_el3_property
=
717 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
719 static Property arm_cpu_cfgend_property
=
720 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
722 /* use property name "pmu" to match other archs and virt tools */
723 static Property arm_cpu_has_pmu_property
=
724 DEFINE_PROP_BOOL("pmu", ARMCPU
, has_pmu
, true);
726 static Property arm_cpu_has_mpu_property
=
727 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
729 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
730 * because the CPU initfn will have already set cpu->pmsav7_dregion to
731 * the right value for that particular CPU type, and we don't want
732 * to override that with an incorrect constant value.
734 static Property arm_cpu_pmsav7_dregion_property
=
735 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
737 qdev_prop_uint32
, uint32_t);
739 /* M profile: initial value of the Secure VTOR */
740 static Property arm_cpu_initsvtor_property
=
741 DEFINE_PROP_UINT32("init-svtor", ARMCPU
, init_svtor
, 0);
743 void arm_cpu_post_init(Object
*obj
)
745 ARMCPU
*cpu
= ARM_CPU(obj
);
747 /* M profile implies PMSA. We have to do this here rather than
748 * in realize with the other feature-implication checks because
749 * we look at the PMSA bit to see if we should add some properties.
751 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
752 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
755 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
756 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
757 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
,
761 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
762 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
,
766 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
767 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
,
771 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
772 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
773 * prevent "has_el3" from existing on CPUs which cannot support EL3.
775 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
,
778 #ifndef CONFIG_USER_ONLY
779 object_property_add_link(obj
, "secure-memory",
781 (Object
**)&cpu
->secure_memory
,
782 qdev_prop_allow_set_link_before_realize
,
783 OBJ_PROP_LINK_STRONG
,
788 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
789 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
,
793 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
794 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_pmu_property
,
798 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
799 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
,
801 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
802 qdev_property_add_static(DEVICE(obj
),
803 &arm_cpu_pmsav7_dregion_property
,
808 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
809 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
810 qdev_prop_allow_set_link_before_realize
,
811 OBJ_PROP_LINK_STRONG
,
813 qdev_property_add_static(DEVICE(obj
), &arm_cpu_initsvtor_property
,
817 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
,
821 static void arm_cpu_finalizefn(Object
*obj
)
823 ARMCPU
*cpu
= ARM_CPU(obj
);
824 ARMELChangeHook
*hook
, *next
;
826 g_hash_table_destroy(cpu
->cp_regs
);
828 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
829 QLIST_REMOVE(hook
, node
);
832 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
833 QLIST_REMOVE(hook
, node
);
838 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
840 CPUState
*cs
= CPU(dev
);
841 ARMCPU
*cpu
= ARM_CPU(dev
);
842 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
843 CPUARMState
*env
= &cpu
->env
;
845 Error
*local_err
= NULL
;
846 bool no_aa32
= false;
848 /* If we needed to query the host kernel for the CPU features
849 * then it's possible that might have failed in the initfn, but
850 * this is the first point where we can report it.
852 if (cpu
->host_cpu_probe_failed
) {
853 if (!kvm_enabled()) {
854 error_setg(errp
, "The 'host' CPU type can only be used with KVM");
856 error_setg(errp
, "Failed to retrieve host CPU features");
861 #ifndef CONFIG_USER_ONLY
862 /* The NVIC and M-profile CPU are two halves of a single piece of
863 * hardware; trying to use one without the other is a command line
864 * error and will result in segfaults if not caught here.
866 if (arm_feature(env
, ARM_FEATURE_M
)) {
868 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
873 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
878 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
879 arm_gt_ptimer_cb
, cpu
);
880 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
881 arm_gt_vtimer_cb
, cpu
);
882 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
883 arm_gt_htimer_cb
, cpu
);
884 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
885 arm_gt_stimer_cb
, cpu
);
888 cpu_exec_realizefn(cs
, &local_err
);
889 if (local_err
!= NULL
) {
890 error_propagate(errp
, local_err
);
894 /* Some features automatically imply others: */
895 if (arm_feature(env
, ARM_FEATURE_V8
)) {
896 if (arm_feature(env
, ARM_FEATURE_M
)) {
897 set_feature(env
, ARM_FEATURE_V7
);
899 set_feature(env
, ARM_FEATURE_V7VE
);
904 * There exist AArch64 cpus without AArch32 support. When KVM
905 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
906 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
908 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
909 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
912 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
913 /* v7 Virtualization Extensions. In real hardware this implies
914 * EL2 and also the presence of the Security Extensions.
915 * For QEMU, for backwards-compatibility we implement some
916 * CPUs or CPU configs which have no actual EL2 or EL3 but do
917 * include the various other features that V7VE implies.
918 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
919 * Security Extensions is ARM_FEATURE_EL3.
921 assert(no_aa32
|| cpu_isar_feature(arm_div
, cpu
));
922 set_feature(env
, ARM_FEATURE_LPAE
);
923 set_feature(env
, ARM_FEATURE_V7
);
925 if (arm_feature(env
, ARM_FEATURE_V7
)) {
926 set_feature(env
, ARM_FEATURE_VAPA
);
927 set_feature(env
, ARM_FEATURE_THUMB2
);
928 set_feature(env
, ARM_FEATURE_MPIDR
);
929 if (!arm_feature(env
, ARM_FEATURE_M
)) {
930 set_feature(env
, ARM_FEATURE_V6K
);
932 set_feature(env
, ARM_FEATURE_V6
);
935 /* Always define VBAR for V7 CPUs even if it doesn't exist in
936 * non-EL3 configs. This is needed by some legacy boards.
938 set_feature(env
, ARM_FEATURE_VBAR
);
940 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
941 set_feature(env
, ARM_FEATURE_V6
);
942 set_feature(env
, ARM_FEATURE_MVFR
);
944 if (arm_feature(env
, ARM_FEATURE_V6
)) {
945 set_feature(env
, ARM_FEATURE_V5
);
946 if (!arm_feature(env
, ARM_FEATURE_M
)) {
947 assert(no_aa32
|| cpu_isar_feature(jazelle
, cpu
));
948 set_feature(env
, ARM_FEATURE_AUXCR
);
951 if (arm_feature(env
, ARM_FEATURE_V5
)) {
952 set_feature(env
, ARM_FEATURE_V4T
);
954 if (arm_feature(env
, ARM_FEATURE_VFP4
)) {
955 set_feature(env
, ARM_FEATURE_VFP3
);
956 set_feature(env
, ARM_FEATURE_VFP_FP16
);
958 if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
959 set_feature(env
, ARM_FEATURE_VFP
);
961 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
962 set_feature(env
, ARM_FEATURE_V7MP
);
963 set_feature(env
, ARM_FEATURE_PXN
);
965 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
966 set_feature(env
, ARM_FEATURE_CBAR
);
968 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
969 !arm_feature(env
, ARM_FEATURE_M
)) {
970 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
973 if (arm_feature(env
, ARM_FEATURE_V7
) &&
974 !arm_feature(env
, ARM_FEATURE_M
) &&
975 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
976 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
981 /* For CPUs which might have tiny 1K pages, or which have an
982 * MPU and might have small region sizes, stick with 1K pages.
986 if (!set_preferred_target_page_bits(pagebits
)) {
987 /* This can only ever happen for hotplugging a CPU, or if
988 * the board code incorrectly creates a CPU which it has
989 * promised via minimum_page_size that it will not.
991 error_setg(errp
, "This CPU requires a smaller page size than the "
996 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
997 * We don't support setting cluster ID ([16..23]) (known as Aff2
998 * in later ARM ARM versions), or any of the higher affinity level fields,
999 * so these bits always RAZ.
1001 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1002 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1003 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1006 if (cpu
->reset_hivecs
) {
1007 cpu
->reset_sctlr
|= (1 << 13);
1011 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1012 cpu
->reset_sctlr
|= SCTLR_EE
;
1014 cpu
->reset_sctlr
|= SCTLR_B
;
1018 if (!cpu
->has_el3
) {
1019 /* If the has_el3 CPU property is disabled then we need to disable the
1022 unset_feature(env
, ARM_FEATURE_EL3
);
1024 /* Disable the security extension feature bits in the processor feature
1025 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1027 cpu
->id_pfr1
&= ~0xf0;
1028 cpu
->isar
.id_aa64pfr0
&= ~0xf000;
1031 if (!cpu
->has_el2
) {
1032 unset_feature(env
, ARM_FEATURE_EL2
);
1035 if (!cpu
->has_pmu
) {
1036 unset_feature(env
, ARM_FEATURE_PMU
);
1037 cpu
->id_aa64dfr0
&= ~0xf00;
1040 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1041 /* Disable the hypervisor feature bits in the processor feature
1042 * registers if we don't have EL2. These are id_pfr1[15:12] and
1043 * id_aa64pfr0_el1[11:8].
1045 cpu
->isar
.id_aa64pfr0
&= ~0xf00;
1046 cpu
->id_pfr1
&= ~0xf000;
1049 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1050 * to false or by setting pmsav7-dregion to 0.
1052 if (!cpu
->has_mpu
) {
1053 cpu
->pmsav7_dregion
= 0;
1055 if (cpu
->pmsav7_dregion
== 0) {
1056 cpu
->has_mpu
= false;
1059 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1060 arm_feature(env
, ARM_FEATURE_V7
)) {
1061 uint32_t nr
= cpu
->pmsav7_dregion
;
1064 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1069 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1071 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1072 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1073 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1074 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1075 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1078 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1079 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1080 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1085 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1086 uint32_t nr
= cpu
->sau_sregion
;
1089 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1094 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1095 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1099 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1100 set_feature(env
, ARM_FEATURE_VBAR
);
1103 register_cp_regs_for_features(cpu
);
1104 arm_cpu_register_gdb_regs_for_features(cpu
);
1106 init_cpreg_list(cpu
);
1108 #ifndef CONFIG_USER_ONLY
1109 if (cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1112 if (!cpu
->secure_memory
) {
1113 cpu
->secure_memory
= cs
->memory
;
1115 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
1116 cpu
->secure_memory
);
1120 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
1122 /* No core_count specified, default to smp_cpus. */
1123 if (cpu
->core_count
== -1) {
1124 cpu
->core_count
= smp_cpus
;
1131 acc
->parent_realize(dev
, errp
);
1134 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
1139 const char *cpunamestr
;
1141 cpuname
= g_strsplit(cpu_model
, ",", 1);
1142 cpunamestr
= cpuname
[0];
1143 #ifdef CONFIG_USER_ONLY
1144 /* For backwards compatibility usermode emulation allows "-cpu any",
1145 * which has the same semantics as "-cpu max".
1147 if (!strcmp(cpunamestr
, "any")) {
1151 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
1152 oc
= object_class_by_name(typename
);
1153 g_strfreev(cpuname
);
1155 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
1156 object_class_is_abstract(oc
)) {
1162 /* CPU models. These are not needed for the AArch64 linux-user build. */
1163 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1165 static void arm926_initfn(Object
*obj
)
1167 ARMCPU
*cpu
= ARM_CPU(obj
);
1169 cpu
->dtb_compatible
= "arm,arm926";
1170 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1171 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1172 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1173 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1174 cpu
->midr
= 0x41069265;
1175 cpu
->reset_fpsid
= 0x41011090;
1176 cpu
->ctr
= 0x1dd20d2;
1177 cpu
->reset_sctlr
= 0x00090078;
1180 * ARMv5 does not have the ID_ISAR registers, but we can still
1181 * set the field to indicate Jazelle support within QEMU.
1183 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1186 static void arm946_initfn(Object
*obj
)
1188 ARMCPU
*cpu
= ARM_CPU(obj
);
1190 cpu
->dtb_compatible
= "arm,arm946";
1191 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1192 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1193 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1194 cpu
->midr
= 0x41059461;
1195 cpu
->ctr
= 0x0f004006;
1196 cpu
->reset_sctlr
= 0x00000078;
1199 static void arm1026_initfn(Object
*obj
)
1201 ARMCPU
*cpu
= ARM_CPU(obj
);
1203 cpu
->dtb_compatible
= "arm,arm1026";
1204 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1205 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1206 set_feature(&cpu
->env
, ARM_FEATURE_AUXCR
);
1207 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1208 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1209 cpu
->midr
= 0x4106a262;
1210 cpu
->reset_fpsid
= 0x410110a0;
1211 cpu
->ctr
= 0x1dd20d2;
1212 cpu
->reset_sctlr
= 0x00090078;
1213 cpu
->reset_auxcr
= 1;
1216 * ARMv5 does not have the ID_ISAR registers, but we can still
1217 * set the field to indicate Jazelle support within QEMU.
1219 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1222 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1223 ARMCPRegInfo ifar
= {
1224 .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
1226 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifar_ns
),
1229 define_one_arm_cp_reg(cpu
, &ifar
);
1233 static void arm1136_r2_initfn(Object
*obj
)
1235 ARMCPU
*cpu
= ARM_CPU(obj
);
1236 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1237 * older core than plain "arm1136". In particular this does not
1238 * have the v6K features.
1239 * These ID register values are correct for 1136 but may be wrong
1240 * for 1136_r2 (in particular r0p2 does not actually implement most
1241 * of the ID registers).
1244 cpu
->dtb_compatible
= "arm,arm1136";
1245 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1246 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1247 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1248 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1249 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1250 cpu
->midr
= 0x4107b362;
1251 cpu
->reset_fpsid
= 0x410120b4;
1252 cpu
->isar
.mvfr0
= 0x11111111;
1253 cpu
->isar
.mvfr1
= 0x00000000;
1254 cpu
->ctr
= 0x1dd20d2;
1255 cpu
->reset_sctlr
= 0x00050078;
1256 cpu
->id_pfr0
= 0x111;
1260 cpu
->id_mmfr0
= 0x01130003;
1261 cpu
->id_mmfr1
= 0x10030302;
1262 cpu
->id_mmfr2
= 0x01222110;
1263 cpu
->isar
.id_isar0
= 0x00140011;
1264 cpu
->isar
.id_isar1
= 0x12002111;
1265 cpu
->isar
.id_isar2
= 0x11231111;
1266 cpu
->isar
.id_isar3
= 0x01102131;
1267 cpu
->isar
.id_isar4
= 0x141;
1268 cpu
->reset_auxcr
= 7;
1271 static void arm1136_initfn(Object
*obj
)
1273 ARMCPU
*cpu
= ARM_CPU(obj
);
1275 cpu
->dtb_compatible
= "arm,arm1136";
1276 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1277 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1278 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1279 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1280 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1281 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1282 cpu
->midr
= 0x4117b363;
1283 cpu
->reset_fpsid
= 0x410120b4;
1284 cpu
->isar
.mvfr0
= 0x11111111;
1285 cpu
->isar
.mvfr1
= 0x00000000;
1286 cpu
->ctr
= 0x1dd20d2;
1287 cpu
->reset_sctlr
= 0x00050078;
1288 cpu
->id_pfr0
= 0x111;
1292 cpu
->id_mmfr0
= 0x01130003;
1293 cpu
->id_mmfr1
= 0x10030302;
1294 cpu
->id_mmfr2
= 0x01222110;
1295 cpu
->isar
.id_isar0
= 0x00140011;
1296 cpu
->isar
.id_isar1
= 0x12002111;
1297 cpu
->isar
.id_isar2
= 0x11231111;
1298 cpu
->isar
.id_isar3
= 0x01102131;
1299 cpu
->isar
.id_isar4
= 0x141;
1300 cpu
->reset_auxcr
= 7;
1303 static void arm1176_initfn(Object
*obj
)
1305 ARMCPU
*cpu
= ARM_CPU(obj
);
1307 cpu
->dtb_compatible
= "arm,arm1176";
1308 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1309 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1310 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1311 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1312 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1313 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1314 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1315 cpu
->midr
= 0x410fb767;
1316 cpu
->reset_fpsid
= 0x410120b5;
1317 cpu
->isar
.mvfr0
= 0x11111111;
1318 cpu
->isar
.mvfr1
= 0x00000000;
1319 cpu
->ctr
= 0x1dd20d2;
1320 cpu
->reset_sctlr
= 0x00050078;
1321 cpu
->id_pfr0
= 0x111;
1322 cpu
->id_pfr1
= 0x11;
1323 cpu
->id_dfr0
= 0x33;
1325 cpu
->id_mmfr0
= 0x01130003;
1326 cpu
->id_mmfr1
= 0x10030302;
1327 cpu
->id_mmfr2
= 0x01222100;
1328 cpu
->isar
.id_isar0
= 0x0140011;
1329 cpu
->isar
.id_isar1
= 0x12002111;
1330 cpu
->isar
.id_isar2
= 0x11231121;
1331 cpu
->isar
.id_isar3
= 0x01102131;
1332 cpu
->isar
.id_isar4
= 0x01141;
1333 cpu
->reset_auxcr
= 7;
1336 static void arm11mpcore_initfn(Object
*obj
)
1338 ARMCPU
*cpu
= ARM_CPU(obj
);
1340 cpu
->dtb_compatible
= "arm,arm11mpcore";
1341 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1342 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1343 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1344 set_feature(&cpu
->env
, ARM_FEATURE_MPIDR
);
1345 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1346 cpu
->midr
= 0x410fb022;
1347 cpu
->reset_fpsid
= 0x410120b4;
1348 cpu
->isar
.mvfr0
= 0x11111111;
1349 cpu
->isar
.mvfr1
= 0x00000000;
1350 cpu
->ctr
= 0x1d192992; /* 32K icache 32K dcache */
1351 cpu
->id_pfr0
= 0x111;
1355 cpu
->id_mmfr0
= 0x01100103;
1356 cpu
->id_mmfr1
= 0x10020302;
1357 cpu
->id_mmfr2
= 0x01222000;
1358 cpu
->isar
.id_isar0
= 0x00100011;
1359 cpu
->isar
.id_isar1
= 0x12002111;
1360 cpu
->isar
.id_isar2
= 0x11221011;
1361 cpu
->isar
.id_isar3
= 0x01102131;
1362 cpu
->isar
.id_isar4
= 0x141;
1363 cpu
->reset_auxcr
= 1;
1366 static void cortex_m0_initfn(Object
*obj
)
1368 ARMCPU
*cpu
= ARM_CPU(obj
);
1369 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1370 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1372 cpu
->midr
= 0x410cc200;
1375 static void cortex_m3_initfn(Object
*obj
)
1377 ARMCPU
*cpu
= ARM_CPU(obj
);
1378 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1379 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1380 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1381 cpu
->midr
= 0x410fc231;
1382 cpu
->pmsav7_dregion
= 8;
1383 cpu
->id_pfr0
= 0x00000030;
1384 cpu
->id_pfr1
= 0x00000200;
1385 cpu
->id_dfr0
= 0x00100000;
1386 cpu
->id_afr0
= 0x00000000;
1387 cpu
->id_mmfr0
= 0x00000030;
1388 cpu
->id_mmfr1
= 0x00000000;
1389 cpu
->id_mmfr2
= 0x00000000;
1390 cpu
->id_mmfr3
= 0x00000000;
1391 cpu
->isar
.id_isar0
= 0x01141110;
1392 cpu
->isar
.id_isar1
= 0x02111000;
1393 cpu
->isar
.id_isar2
= 0x21112231;
1394 cpu
->isar
.id_isar3
= 0x01111110;
1395 cpu
->isar
.id_isar4
= 0x01310102;
1396 cpu
->isar
.id_isar5
= 0x00000000;
1397 cpu
->isar
.id_isar6
= 0x00000000;
1400 static void cortex_m4_initfn(Object
*obj
)
1402 ARMCPU
*cpu
= ARM_CPU(obj
);
1404 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1405 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1406 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1407 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1408 cpu
->midr
= 0x410fc240; /* r0p0 */
1409 cpu
->pmsav7_dregion
= 8;
1410 cpu
->id_pfr0
= 0x00000030;
1411 cpu
->id_pfr1
= 0x00000200;
1412 cpu
->id_dfr0
= 0x00100000;
1413 cpu
->id_afr0
= 0x00000000;
1414 cpu
->id_mmfr0
= 0x00000030;
1415 cpu
->id_mmfr1
= 0x00000000;
1416 cpu
->id_mmfr2
= 0x00000000;
1417 cpu
->id_mmfr3
= 0x00000000;
1418 cpu
->isar
.id_isar0
= 0x01141110;
1419 cpu
->isar
.id_isar1
= 0x02111000;
1420 cpu
->isar
.id_isar2
= 0x21112231;
1421 cpu
->isar
.id_isar3
= 0x01111110;
1422 cpu
->isar
.id_isar4
= 0x01310102;
1423 cpu
->isar
.id_isar5
= 0x00000000;
1424 cpu
->isar
.id_isar6
= 0x00000000;
1427 static void cortex_m33_initfn(Object
*obj
)
1429 ARMCPU
*cpu
= ARM_CPU(obj
);
1431 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
1432 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1433 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1434 set_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
);
1435 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1436 cpu
->midr
= 0x410fd213; /* r0p3 */
1437 cpu
->pmsav7_dregion
= 16;
1438 cpu
->sau_sregion
= 8;
1439 cpu
->id_pfr0
= 0x00000030;
1440 cpu
->id_pfr1
= 0x00000210;
1441 cpu
->id_dfr0
= 0x00200000;
1442 cpu
->id_afr0
= 0x00000000;
1443 cpu
->id_mmfr0
= 0x00101F40;
1444 cpu
->id_mmfr1
= 0x00000000;
1445 cpu
->id_mmfr2
= 0x01000000;
1446 cpu
->id_mmfr3
= 0x00000000;
1447 cpu
->isar
.id_isar0
= 0x01101110;
1448 cpu
->isar
.id_isar1
= 0x02212000;
1449 cpu
->isar
.id_isar2
= 0x20232232;
1450 cpu
->isar
.id_isar3
= 0x01111131;
1451 cpu
->isar
.id_isar4
= 0x01310132;
1452 cpu
->isar
.id_isar5
= 0x00000000;
1453 cpu
->isar
.id_isar6
= 0x00000000;
1454 cpu
->clidr
= 0x00000000;
1455 cpu
->ctr
= 0x8000c000;
1458 static void arm_v7m_class_init(ObjectClass
*oc
, void *data
)
1460 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
1461 CPUClass
*cc
= CPU_CLASS(oc
);
1464 #ifndef CONFIG_USER_ONLY
1465 cc
->do_interrupt
= arm_v7m_cpu_do_interrupt
;
1468 cc
->cpu_exec_interrupt
= arm_v7m_cpu_exec_interrupt
;
1471 static const ARMCPRegInfo cortexr5_cp_reginfo
[] = {
1472 /* Dummy the TCM region regs for the moment */
1473 { .name
= "ATCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1474 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1475 { .name
= "BTCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1476 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1477 { .name
= "DCACHE_INVAL", .cp
= 15, .opc1
= 0, .crn
= 15, .crm
= 5,
1478 .opc2
= 0, .access
= PL1_W
, .type
= ARM_CP_NOP
},
1482 static void cortex_r5_initfn(Object
*obj
)
1484 ARMCPU
*cpu
= ARM_CPU(obj
);
1486 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1487 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1488 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1489 cpu
->midr
= 0x411fc153; /* r1p3 */
1490 cpu
->id_pfr0
= 0x0131;
1491 cpu
->id_pfr1
= 0x001;
1492 cpu
->id_dfr0
= 0x010400;
1494 cpu
->id_mmfr0
= 0x0210030;
1495 cpu
->id_mmfr1
= 0x00000000;
1496 cpu
->id_mmfr2
= 0x01200000;
1497 cpu
->id_mmfr3
= 0x0211;
1498 cpu
->isar
.id_isar0
= 0x02101111;
1499 cpu
->isar
.id_isar1
= 0x13112111;
1500 cpu
->isar
.id_isar2
= 0x21232141;
1501 cpu
->isar
.id_isar3
= 0x01112131;
1502 cpu
->isar
.id_isar4
= 0x0010142;
1503 cpu
->isar
.id_isar5
= 0x0;
1504 cpu
->isar
.id_isar6
= 0x0;
1505 cpu
->mp_is_up
= true;
1506 cpu
->pmsav7_dregion
= 16;
1507 define_arm_cp_regs(cpu
, cortexr5_cp_reginfo
);
1510 static void cortex_r5f_initfn(Object
*obj
)
1512 ARMCPU
*cpu
= ARM_CPU(obj
);
1514 cortex_r5_initfn(obj
);
1515 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1518 static const ARMCPRegInfo cortexa8_cp_reginfo
[] = {
1519 { .name
= "L2LOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 0,
1520 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1521 { .name
= "L2AUXCR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1522 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1526 static void cortex_a8_initfn(Object
*obj
)
1528 ARMCPU
*cpu
= ARM_CPU(obj
);
1530 cpu
->dtb_compatible
= "arm,cortex-a8";
1531 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1532 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1533 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1534 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1535 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1536 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1537 cpu
->midr
= 0x410fc080;
1538 cpu
->reset_fpsid
= 0x410330c0;
1539 cpu
->isar
.mvfr0
= 0x11110222;
1540 cpu
->isar
.mvfr1
= 0x00011111;
1541 cpu
->ctr
= 0x82048004;
1542 cpu
->reset_sctlr
= 0x00c50078;
1543 cpu
->id_pfr0
= 0x1031;
1544 cpu
->id_pfr1
= 0x11;
1545 cpu
->id_dfr0
= 0x400;
1547 cpu
->id_mmfr0
= 0x31100003;
1548 cpu
->id_mmfr1
= 0x20000000;
1549 cpu
->id_mmfr2
= 0x01202000;
1550 cpu
->id_mmfr3
= 0x11;
1551 cpu
->isar
.id_isar0
= 0x00101111;
1552 cpu
->isar
.id_isar1
= 0x12112111;
1553 cpu
->isar
.id_isar2
= 0x21232031;
1554 cpu
->isar
.id_isar3
= 0x11112131;
1555 cpu
->isar
.id_isar4
= 0x00111142;
1556 cpu
->dbgdidr
= 0x15141000;
1557 cpu
->clidr
= (1 << 27) | (2 << 24) | 3;
1558 cpu
->ccsidr
[0] = 0xe007e01a; /* 16k L1 dcache. */
1559 cpu
->ccsidr
[1] = 0x2007e01a; /* 16k L1 icache. */
1560 cpu
->ccsidr
[2] = 0xf0000000; /* No L2 icache. */
1561 cpu
->reset_auxcr
= 2;
1562 define_arm_cp_regs(cpu
, cortexa8_cp_reginfo
);
1565 static const ARMCPRegInfo cortexa9_cp_reginfo
[] = {
1566 /* power_control should be set to maximum latency. Again,
1567 * default to 0 and set by private hook
1569 { .name
= "A9_PWRCTL", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1570 .access
= PL1_RW
, .resetvalue
= 0,
1571 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_control
) },
1572 { .name
= "A9_DIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 1,
1573 .access
= PL1_RW
, .resetvalue
= 0,
1574 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_diagnostic
) },
1575 { .name
= "A9_PWRDIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 2,
1576 .access
= PL1_RW
, .resetvalue
= 0,
1577 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_diagnostic
) },
1578 { .name
= "NEONBUSY", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1579 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1580 /* TLB lockdown control */
1581 { .name
= "TLB_LOCKR", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 2,
1582 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1583 { .name
= "TLB_LOCKW", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 4,
1584 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1585 { .name
= "TLB_VA", .cp
= 15, .crn
= 15, .crm
= 5, .opc1
= 5, .opc2
= 2,
1586 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1587 { .name
= "TLB_PA", .cp
= 15, .crn
= 15, .crm
= 6, .opc1
= 5, .opc2
= 2,
1588 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1589 { .name
= "TLB_ATTR", .cp
= 15, .crn
= 15, .crm
= 7, .opc1
= 5, .opc2
= 2,
1590 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1594 static void cortex_a9_initfn(Object
*obj
)
1596 ARMCPU
*cpu
= ARM_CPU(obj
);
1598 cpu
->dtb_compatible
= "arm,cortex-a9";
1599 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1600 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1601 set_feature(&cpu
->env
, ARM_FEATURE_VFP_FP16
);
1602 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1603 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1604 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1605 /* Note that A9 supports the MP extensions even for
1606 * A9UP and single-core A9MP (which are both different
1607 * and valid configurations; we don't model A9UP).
1609 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1610 set_feature(&cpu
->env
, ARM_FEATURE_CBAR
);
1611 cpu
->midr
= 0x410fc090;
1612 cpu
->reset_fpsid
= 0x41033090;
1613 cpu
->isar
.mvfr0
= 0x11110222;
1614 cpu
->isar
.mvfr1
= 0x01111111;
1615 cpu
->ctr
= 0x80038003;
1616 cpu
->reset_sctlr
= 0x00c50078;
1617 cpu
->id_pfr0
= 0x1031;
1618 cpu
->id_pfr1
= 0x11;
1619 cpu
->id_dfr0
= 0x000;
1621 cpu
->id_mmfr0
= 0x00100103;
1622 cpu
->id_mmfr1
= 0x20000000;
1623 cpu
->id_mmfr2
= 0x01230000;
1624 cpu
->id_mmfr3
= 0x00002111;
1625 cpu
->isar
.id_isar0
= 0x00101111;
1626 cpu
->isar
.id_isar1
= 0x13112111;
1627 cpu
->isar
.id_isar2
= 0x21232041;
1628 cpu
->isar
.id_isar3
= 0x11112131;
1629 cpu
->isar
.id_isar4
= 0x00111142;
1630 cpu
->dbgdidr
= 0x35141000;
1631 cpu
->clidr
= (1 << 27) | (1 << 24) | 3;
1632 cpu
->ccsidr
[0] = 0xe00fe019; /* 16k L1 dcache. */
1633 cpu
->ccsidr
[1] = 0x200fe019; /* 16k L1 icache. */
1634 define_arm_cp_regs(cpu
, cortexa9_cp_reginfo
);
1637 #ifndef CONFIG_USER_ONLY
1638 static uint64_t a15_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1640 /* Linux wants the number of processors from here.
1641 * Might as well set the interrupt-controller bit too.
1643 return ((smp_cpus
- 1) << 24) | (1 << 23);
1647 static const ARMCPRegInfo cortexa15_cp_reginfo
[] = {
1648 #ifndef CONFIG_USER_ONLY
1649 { .name
= "L2CTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1650 .access
= PL1_RW
, .resetvalue
= 0, .readfn
= a15_l2ctlr_read
,
1651 .writefn
= arm_cp_write_ignore
, },
1653 { .name
= "L2ECTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 3,
1654 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1658 static void cortex_a7_initfn(Object
*obj
)
1660 ARMCPU
*cpu
= ARM_CPU(obj
);
1662 cpu
->dtb_compatible
= "arm,cortex-a7";
1663 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1664 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1665 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1666 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1667 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1668 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1669 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1670 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1671 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1672 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A7
;
1673 cpu
->midr
= 0x410fc075;
1674 cpu
->reset_fpsid
= 0x41023075;
1675 cpu
->isar
.mvfr0
= 0x10110222;
1676 cpu
->isar
.mvfr1
= 0x11111111;
1677 cpu
->ctr
= 0x84448003;
1678 cpu
->reset_sctlr
= 0x00c50078;
1679 cpu
->id_pfr0
= 0x00001131;
1680 cpu
->id_pfr1
= 0x00011011;
1681 cpu
->id_dfr0
= 0x02010555;
1682 cpu
->pmceid0
= 0x00000000;
1683 cpu
->pmceid1
= 0x00000000;
1684 cpu
->id_afr0
= 0x00000000;
1685 cpu
->id_mmfr0
= 0x10101105;
1686 cpu
->id_mmfr1
= 0x40000000;
1687 cpu
->id_mmfr2
= 0x01240000;
1688 cpu
->id_mmfr3
= 0x02102211;
1689 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1690 * table 4-41 gives 0x02101110, which includes the arm div insns.
1692 cpu
->isar
.id_isar0
= 0x02101110;
1693 cpu
->isar
.id_isar1
= 0x13112111;
1694 cpu
->isar
.id_isar2
= 0x21232041;
1695 cpu
->isar
.id_isar3
= 0x11112131;
1696 cpu
->isar
.id_isar4
= 0x10011142;
1697 cpu
->dbgdidr
= 0x3515f005;
1698 cpu
->clidr
= 0x0a200023;
1699 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1700 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1701 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1702 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
); /* Same as A15 */
1705 static void cortex_a15_initfn(Object
*obj
)
1707 ARMCPU
*cpu
= ARM_CPU(obj
);
1709 cpu
->dtb_compatible
= "arm,cortex-a15";
1710 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1711 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1712 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1713 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1714 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1715 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1716 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1717 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1718 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1719 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A15
;
1720 cpu
->midr
= 0x412fc0f1;
1721 cpu
->reset_fpsid
= 0x410430f0;
1722 cpu
->isar
.mvfr0
= 0x10110222;
1723 cpu
->isar
.mvfr1
= 0x11111111;
1724 cpu
->ctr
= 0x8444c004;
1725 cpu
->reset_sctlr
= 0x00c50078;
1726 cpu
->id_pfr0
= 0x00001131;
1727 cpu
->id_pfr1
= 0x00011011;
1728 cpu
->id_dfr0
= 0x02010555;
1729 cpu
->pmceid0
= 0x0000000;
1730 cpu
->pmceid1
= 0x00000000;
1731 cpu
->id_afr0
= 0x00000000;
1732 cpu
->id_mmfr0
= 0x10201105;
1733 cpu
->id_mmfr1
= 0x20000000;
1734 cpu
->id_mmfr2
= 0x01240000;
1735 cpu
->id_mmfr3
= 0x02102211;
1736 cpu
->isar
.id_isar0
= 0x02101110;
1737 cpu
->isar
.id_isar1
= 0x13112111;
1738 cpu
->isar
.id_isar2
= 0x21232041;
1739 cpu
->isar
.id_isar3
= 0x11112131;
1740 cpu
->isar
.id_isar4
= 0x10011142;
1741 cpu
->dbgdidr
= 0x3515f021;
1742 cpu
->clidr
= 0x0a200023;
1743 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1744 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1745 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1746 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
);
1749 static void ti925t_initfn(Object
*obj
)
1751 ARMCPU
*cpu
= ARM_CPU(obj
);
1752 set_feature(&cpu
->env
, ARM_FEATURE_V4T
);
1753 set_feature(&cpu
->env
, ARM_FEATURE_OMAPCP
);
1754 cpu
->midr
= ARM_CPUID_TI925T
;
1755 cpu
->ctr
= 0x5109149;
1756 cpu
->reset_sctlr
= 0x00000070;
1759 static void sa1100_initfn(Object
*obj
)
1761 ARMCPU
*cpu
= ARM_CPU(obj
);
1763 cpu
->dtb_compatible
= "intel,sa1100";
1764 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1765 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1766 cpu
->midr
= 0x4401A11B;
1767 cpu
->reset_sctlr
= 0x00000070;
1770 static void sa1110_initfn(Object
*obj
)
1772 ARMCPU
*cpu
= ARM_CPU(obj
);
1773 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1774 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1775 cpu
->midr
= 0x6901B119;
1776 cpu
->reset_sctlr
= 0x00000070;
1779 static void pxa250_initfn(Object
*obj
)
1781 ARMCPU
*cpu
= ARM_CPU(obj
);
1783 cpu
->dtb_compatible
= "marvell,xscale";
1784 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1785 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1786 cpu
->midr
= 0x69052100;
1787 cpu
->ctr
= 0xd172172;
1788 cpu
->reset_sctlr
= 0x00000078;
1791 static void pxa255_initfn(Object
*obj
)
1793 ARMCPU
*cpu
= ARM_CPU(obj
);
1795 cpu
->dtb_compatible
= "marvell,xscale";
1796 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1797 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1798 cpu
->midr
= 0x69052d00;
1799 cpu
->ctr
= 0xd172172;
1800 cpu
->reset_sctlr
= 0x00000078;
1803 static void pxa260_initfn(Object
*obj
)
1805 ARMCPU
*cpu
= ARM_CPU(obj
);
1807 cpu
->dtb_compatible
= "marvell,xscale";
1808 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1809 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1810 cpu
->midr
= 0x69052903;
1811 cpu
->ctr
= 0xd172172;
1812 cpu
->reset_sctlr
= 0x00000078;
1815 static void pxa261_initfn(Object
*obj
)
1817 ARMCPU
*cpu
= ARM_CPU(obj
);
1819 cpu
->dtb_compatible
= "marvell,xscale";
1820 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1821 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1822 cpu
->midr
= 0x69052d05;
1823 cpu
->ctr
= 0xd172172;
1824 cpu
->reset_sctlr
= 0x00000078;
1827 static void pxa262_initfn(Object
*obj
)
1829 ARMCPU
*cpu
= ARM_CPU(obj
);
1831 cpu
->dtb_compatible
= "marvell,xscale";
1832 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1833 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1834 cpu
->midr
= 0x69052d06;
1835 cpu
->ctr
= 0xd172172;
1836 cpu
->reset_sctlr
= 0x00000078;
1839 static void pxa270a0_initfn(Object
*obj
)
1841 ARMCPU
*cpu
= ARM_CPU(obj
);
1843 cpu
->dtb_compatible
= "marvell,xscale";
1844 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1845 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1846 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1847 cpu
->midr
= 0x69054110;
1848 cpu
->ctr
= 0xd172172;
1849 cpu
->reset_sctlr
= 0x00000078;
1852 static void pxa270a1_initfn(Object
*obj
)
1854 ARMCPU
*cpu
= ARM_CPU(obj
);
1856 cpu
->dtb_compatible
= "marvell,xscale";
1857 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1858 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1859 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1860 cpu
->midr
= 0x69054111;
1861 cpu
->ctr
= 0xd172172;
1862 cpu
->reset_sctlr
= 0x00000078;
1865 static void pxa270b0_initfn(Object
*obj
)
1867 ARMCPU
*cpu
= ARM_CPU(obj
);
1869 cpu
->dtb_compatible
= "marvell,xscale";
1870 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1871 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1872 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1873 cpu
->midr
= 0x69054112;
1874 cpu
->ctr
= 0xd172172;
1875 cpu
->reset_sctlr
= 0x00000078;
1878 static void pxa270b1_initfn(Object
*obj
)
1880 ARMCPU
*cpu
= ARM_CPU(obj
);
1882 cpu
->dtb_compatible
= "marvell,xscale";
1883 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1884 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1885 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1886 cpu
->midr
= 0x69054113;
1887 cpu
->ctr
= 0xd172172;
1888 cpu
->reset_sctlr
= 0x00000078;
1891 static void pxa270c0_initfn(Object
*obj
)
1893 ARMCPU
*cpu
= ARM_CPU(obj
);
1895 cpu
->dtb_compatible
= "marvell,xscale";
1896 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1897 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1898 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1899 cpu
->midr
= 0x69054114;
1900 cpu
->ctr
= 0xd172172;
1901 cpu
->reset_sctlr
= 0x00000078;
1904 static void pxa270c5_initfn(Object
*obj
)
1906 ARMCPU
*cpu
= ARM_CPU(obj
);
1908 cpu
->dtb_compatible
= "marvell,xscale";
1909 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1910 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1911 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1912 cpu
->midr
= 0x69054117;
1913 cpu
->ctr
= 0xd172172;
1914 cpu
->reset_sctlr
= 0x00000078;
1917 #ifndef TARGET_AARCH64
1918 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1919 * otherwise, a CPU with as many features enabled as our emulation supports.
1920 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1921 * this only needs to handle 32 bits.
1923 static void arm_max_initfn(Object
*obj
)
1925 ARMCPU
*cpu
= ARM_CPU(obj
);
1927 if (kvm_enabled()) {
1928 kvm_arm_set_cpu_features_from_host(cpu
);
1930 cortex_a15_initfn(obj
);
1931 #ifdef CONFIG_USER_ONLY
1932 /* We don't set these in system emulation mode for the moment,
1933 * since we don't correctly set (all of) the ID registers to
1936 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
1940 t
= cpu
->isar
.id_isar5
;
1941 t
= FIELD_DP32(t
, ID_ISAR5
, AES
, 2);
1942 t
= FIELD_DP32(t
, ID_ISAR5
, SHA1
, 1);
1943 t
= FIELD_DP32(t
, ID_ISAR5
, SHA2
, 1);
1944 t
= FIELD_DP32(t
, ID_ISAR5
, CRC32
, 1);
1945 t
= FIELD_DP32(t
, ID_ISAR5
, RDM
, 1);
1946 t
= FIELD_DP32(t
, ID_ISAR5
, VCMA
, 1);
1947 cpu
->isar
.id_isar5
= t
;
1949 t
= cpu
->isar
.id_isar6
;
1950 t
= FIELD_DP32(t
, ID_ISAR6
, DP
, 1);
1951 cpu
->isar
.id_isar6
= t
;
1954 t
= FIELD_DP32(t
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
1962 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1966 void (*initfn
)(Object
*obj
);
1967 void (*class_init
)(ObjectClass
*oc
, void *data
);
1970 static const ARMCPUInfo arm_cpus
[] = {
1971 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1972 { .name
= "arm926", .initfn
= arm926_initfn
},
1973 { .name
= "arm946", .initfn
= arm946_initfn
},
1974 { .name
= "arm1026", .initfn
= arm1026_initfn
},
1975 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1976 * older core than plain "arm1136". In particular this does not
1977 * have the v6K features.
1979 { .name
= "arm1136-r2", .initfn
= arm1136_r2_initfn
},
1980 { .name
= "arm1136", .initfn
= arm1136_initfn
},
1981 { .name
= "arm1176", .initfn
= arm1176_initfn
},
1982 { .name
= "arm11mpcore", .initfn
= arm11mpcore_initfn
},
1983 { .name
= "cortex-m0", .initfn
= cortex_m0_initfn
,
1984 .class_init
= arm_v7m_class_init
},
1985 { .name
= "cortex-m3", .initfn
= cortex_m3_initfn
,
1986 .class_init
= arm_v7m_class_init
},
1987 { .name
= "cortex-m4", .initfn
= cortex_m4_initfn
,
1988 .class_init
= arm_v7m_class_init
},
1989 { .name
= "cortex-m33", .initfn
= cortex_m33_initfn
,
1990 .class_init
= arm_v7m_class_init
},
1991 { .name
= "cortex-r5", .initfn
= cortex_r5_initfn
},
1992 { .name
= "cortex-r5f", .initfn
= cortex_r5f_initfn
},
1993 { .name
= "cortex-a7", .initfn
= cortex_a7_initfn
},
1994 { .name
= "cortex-a8", .initfn
= cortex_a8_initfn
},
1995 { .name
= "cortex-a9", .initfn
= cortex_a9_initfn
},
1996 { .name
= "cortex-a15", .initfn
= cortex_a15_initfn
},
1997 { .name
= "ti925t", .initfn
= ti925t_initfn
},
1998 { .name
= "sa1100", .initfn
= sa1100_initfn
},
1999 { .name
= "sa1110", .initfn
= sa1110_initfn
},
2000 { .name
= "pxa250", .initfn
= pxa250_initfn
},
2001 { .name
= "pxa255", .initfn
= pxa255_initfn
},
2002 { .name
= "pxa260", .initfn
= pxa260_initfn
},
2003 { .name
= "pxa261", .initfn
= pxa261_initfn
},
2004 { .name
= "pxa262", .initfn
= pxa262_initfn
},
2005 /* "pxa270" is an alias for "pxa270-a0" */
2006 { .name
= "pxa270", .initfn
= pxa270a0_initfn
},
2007 { .name
= "pxa270-a0", .initfn
= pxa270a0_initfn
},
2008 { .name
= "pxa270-a1", .initfn
= pxa270a1_initfn
},
2009 { .name
= "pxa270-b0", .initfn
= pxa270b0_initfn
},
2010 { .name
= "pxa270-b1", .initfn
= pxa270b1_initfn
},
2011 { .name
= "pxa270-c0", .initfn
= pxa270c0_initfn
},
2012 { .name
= "pxa270-c5", .initfn
= pxa270c5_initfn
},
2013 #ifndef TARGET_AARCH64
2014 { .name
= "max", .initfn
= arm_max_initfn
},
2016 #ifdef CONFIG_USER_ONLY
2017 { .name
= "any", .initfn
= arm_max_initfn
},
2023 static Property arm_cpu_properties
[] = {
2024 DEFINE_PROP_BOOL("start-powered-off", ARMCPU
, start_powered_off
, false),
2025 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
2026 DEFINE_PROP_UINT32("midr", ARMCPU
, midr
, 0),
2027 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2028 mp_affinity
, ARM64_AFFINITY_INVALID
),
2029 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2030 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2031 DEFINE_PROP_END_OF_LIST()
2034 #ifdef CONFIG_USER_ONLY
2035 static int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int size
,
2036 int rw
, int mmu_idx
)
2038 ARMCPU
*cpu
= ARM_CPU(cs
);
2039 CPUARMState
*env
= &cpu
->env
;
2041 env
->exception
.vaddress
= address
;
2043 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
2045 cs
->exception_index
= EXCP_DATA_ABORT
;
2051 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2053 ARMCPU
*cpu
= ARM_CPU(cs
);
2054 CPUARMState
*env
= &cpu
->env
;
2056 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2057 return g_strdup("iwmmxt");
2059 return g_strdup("arm");
2062 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2064 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2065 CPUClass
*cc
= CPU_CLASS(acc
);
2066 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2068 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2069 &acc
->parent_realize
);
2070 dc
->props
= arm_cpu_properties
;
2072 acc
->parent_reset
= cc
->reset
;
2073 cc
->reset
= arm_cpu_reset
;
2075 cc
->class_by_name
= arm_cpu_class_by_name
;
2076 cc
->has_work
= arm_cpu_has_work
;
2077 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
2078 cc
->dump_state
= arm_cpu_dump_state
;
2079 cc
->set_pc
= arm_cpu_set_pc
;
2080 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2081 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2082 #ifdef CONFIG_USER_ONLY
2083 cc
->handle_mmu_fault
= arm_cpu_handle_mmu_fault
;
2085 cc
->do_interrupt
= arm_cpu_do_interrupt
;
2086 cc
->do_unaligned_access
= arm_cpu_do_unaligned_access
;
2087 cc
->do_transaction_failed
= arm_cpu_do_transaction_failed
;
2088 cc
->get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
;
2089 cc
->asidx_from_attrs
= arm_asidx_from_attrs
;
2090 cc
->vmsd
= &vmstate_arm_cpu
;
2091 cc
->virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
;
2092 cc
->write_elf64_note
= arm_cpu_write_elf64_note
;
2093 cc
->write_elf32_note
= arm_cpu_write_elf32_note
;
2095 cc
->gdb_num_core_regs
= 26;
2096 cc
->gdb_core_xml_file
= "arm-core.xml";
2097 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2098 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2099 cc
->gdb_stop_before_watchpoint
= true;
2100 cc
->debug_excp_handler
= arm_debug_excp_handler
;
2101 cc
->debug_check_watchpoint
= arm_debug_check_watchpoint
;
2102 #if !defined(CONFIG_USER_ONLY)
2103 cc
->adjust_watchpoint_address
= arm_adjust_watchpoint_address
;
2106 cc
->disas_set_info
= arm_disas_set_info
;
2108 cc
->tcg_initialize
= arm_translate_init
;
2113 static void arm_host_initfn(Object
*obj
)
2115 ARMCPU
*cpu
= ARM_CPU(obj
);
2117 kvm_arm_set_cpu_features_from_host(cpu
);
2118 arm_cpu_post_init(obj
);
2121 static const TypeInfo host_arm_cpu_type_info
= {
2122 .name
= TYPE_ARM_HOST_CPU
,
2123 #ifdef TARGET_AARCH64
2124 .parent
= TYPE_AARCH64_CPU
,
2126 .parent
= TYPE_ARM_CPU
,
2128 .instance_init
= arm_host_initfn
,
2133 static void arm_cpu_instance_init(Object
*obj
)
2135 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2137 acc
->info
->initfn(obj
);
2138 arm_cpu_post_init(obj
);
2141 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2143 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2148 static void cpu_register(const ARMCPUInfo
*info
)
2150 TypeInfo type_info
= {
2151 .parent
= TYPE_ARM_CPU
,
2152 .instance_size
= sizeof(ARMCPU
),
2153 .instance_init
= arm_cpu_instance_init
,
2154 .class_size
= sizeof(ARMCPUClass
),
2155 .class_init
= info
->class_init
?: cpu_register_class_init
,
2156 .class_data
= (void *)info
,
2159 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2160 type_register(&type_info
);
2161 g_free((void *)type_info
.name
);
2164 static const TypeInfo arm_cpu_type_info
= {
2165 .name
= TYPE_ARM_CPU
,
2167 .instance_size
= sizeof(ARMCPU
),
2168 .instance_init
= arm_cpu_initfn
,
2169 .instance_finalize
= arm_cpu_finalizefn
,
2171 .class_size
= sizeof(ARMCPUClass
),
2172 .class_init
= arm_cpu_class_init
,
2175 static const TypeInfo idau_interface_type_info
= {
2176 .name
= TYPE_IDAU_INTERFACE
,
2177 .parent
= TYPE_INTERFACE
,
2178 .class_size
= sizeof(IDAUInterfaceClass
),
2181 static void arm_cpu_register_types(void)
2183 const ARMCPUInfo
*info
= arm_cpus
;
2185 type_register_static(&arm_cpu_type_info
);
2186 type_register_static(&idau_interface_type_info
);
2188 while (info
->name
) {
2194 type_register_static(&host_arm_cpu_type_info
);
2198 type_init(arm_cpu_register_types
)