tcg: fix cpu_io_recompile
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blob16bccdd5c0126bc4b27ec21d1fb769ddaca20a67
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "mmu-hash64.h"
12 #include "cpu-models.h"
13 #include "trace.h"
14 #include "kvm_ppc.h"
15 #include "hw/ppc/spapr_ovec.h"
16 #include "mmu-book3s-v3.h"
18 struct SPRSyncState {
19 int spr;
20 target_ulong value;
21 target_ulong mask;
24 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
26 struct SPRSyncState *s = arg.host_ptr;
27 PowerPCCPU *cpu = POWERPC_CPU(cs);
28 CPUPPCState *env = &cpu->env;
30 cpu_synchronize_state(cs);
31 env->spr[s->spr] &= ~s->mask;
32 env->spr[s->spr] |= s->value;
35 static void set_spr(CPUState *cs, int spr, target_ulong value,
36 target_ulong mask)
38 struct SPRSyncState s = {
39 .spr = spr,
40 .value = value,
41 .mask = mask
43 run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
46 static bool has_spr(PowerPCCPU *cpu, int spr)
48 /* We can test whether the SPR is defined by checking for a valid name */
49 return cpu->env.spr_cb[spr].name != NULL;
52 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
55 * hash value/pteg group index is normalized by HPT mask
57 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
58 return false;
60 return true;
63 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
65 MachineState *machine = MACHINE(spapr);
66 MemoryHotplugState *hpms = &spapr->hotplug_memory;
68 if (addr < machine->ram_size) {
69 return true;
71 if ((addr >= hpms->base)
72 && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
73 return true;
76 return false;
79 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
80 target_ulong opcode, target_ulong *args)
82 target_ulong flags = args[0];
83 target_ulong ptex = args[1];
84 target_ulong pteh = args[2];
85 target_ulong ptel = args[3];
86 unsigned apshift;
87 target_ulong raddr;
88 target_ulong slot;
89 const ppc_hash_pte64_t *hptes;
91 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
92 if (!apshift) {
93 /* Bad page size encoding */
94 return H_PARAMETER;
97 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
99 if (is_ram_address(spapr, raddr)) {
100 /* Regular RAM - should have WIMG=0010 */
101 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
102 return H_PARAMETER;
104 } else {
105 target_ulong wimg_flags;
106 /* Looks like an IO address */
107 /* FIXME: What WIMG combinations could be sensible for IO?
108 * For now we allow WIMG=010x, but are there others? */
109 /* FIXME: Should we check against registered IO addresses? */
110 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
112 if (wimg_flags != HPTE64_R_I &&
113 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
114 return H_PARAMETER;
118 pteh &= ~0x60ULL;
120 if (!valid_ptex(cpu, ptex)) {
121 return H_PARAMETER;
124 slot = ptex & 7ULL;
125 ptex = ptex & ~7ULL;
127 if (likely((flags & H_EXACT) == 0)) {
128 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
129 for (slot = 0; slot < 8; slot++) {
130 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
131 break;
134 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
135 if (slot == 8) {
136 return H_PTEG_FULL;
138 } else {
139 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
140 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
141 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
142 return H_PTEG_FULL;
144 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
147 ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
149 args[0] = ptex + slot;
150 return H_SUCCESS;
153 typedef enum {
154 REMOVE_SUCCESS = 0,
155 REMOVE_NOT_FOUND = 1,
156 REMOVE_PARM = 2,
157 REMOVE_HW = 3,
158 } RemoveResult;
160 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
161 target_ulong avpn,
162 target_ulong flags,
163 target_ulong *vp, target_ulong *rp)
165 const ppc_hash_pte64_t *hptes;
166 target_ulong v, r;
168 if (!valid_ptex(cpu, ptex)) {
169 return REMOVE_PARM;
172 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
173 v = ppc_hash64_hpte0(cpu, hptes, 0);
174 r = ppc_hash64_hpte1(cpu, hptes, 0);
175 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
177 if ((v & HPTE64_V_VALID) == 0 ||
178 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
179 ((flags & H_ANDCOND) && (v & avpn) != 0)) {
180 return REMOVE_NOT_FOUND;
182 *vp = v;
183 *rp = r;
184 ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
185 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
186 return REMOVE_SUCCESS;
189 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
190 target_ulong opcode, target_ulong *args)
192 CPUPPCState *env = &cpu->env;
193 target_ulong flags = args[0];
194 target_ulong ptex = args[1];
195 target_ulong avpn = args[2];
196 RemoveResult ret;
198 ret = remove_hpte(cpu, ptex, avpn, flags,
199 &args[0], &args[1]);
201 switch (ret) {
202 case REMOVE_SUCCESS:
203 check_tlb_flush(env, true);
204 return H_SUCCESS;
206 case REMOVE_NOT_FOUND:
207 return H_NOT_FOUND;
209 case REMOVE_PARM:
210 return H_PARAMETER;
212 case REMOVE_HW:
213 return H_HARDWARE;
216 g_assert_not_reached();
219 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
220 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
221 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
222 #define H_BULK_REMOVE_END 0xc000000000000000ULL
223 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
224 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
225 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
226 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
227 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
228 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
229 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
230 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
231 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
232 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
233 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
235 #define H_BULK_REMOVE_MAX_BATCH 4
237 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
238 target_ulong opcode, target_ulong *args)
240 CPUPPCState *env = &cpu->env;
241 int i;
242 target_ulong rc = H_SUCCESS;
244 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
245 target_ulong *tsh = &args[i*2];
246 target_ulong tsl = args[i*2 + 1];
247 target_ulong v, r, ret;
249 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
250 break;
251 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
252 return H_PARAMETER;
255 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
256 *tsh |= H_BULK_REMOVE_RESPONSE;
258 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
259 *tsh |= H_BULK_REMOVE_PARM;
260 return H_PARAMETER;
263 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
264 (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
265 &v, &r);
267 *tsh |= ret << 60;
269 switch (ret) {
270 case REMOVE_SUCCESS:
271 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
272 break;
274 case REMOVE_PARM:
275 rc = H_PARAMETER;
276 goto exit;
278 case REMOVE_HW:
279 rc = H_HARDWARE;
280 goto exit;
283 exit:
284 check_tlb_flush(env, true);
286 return rc;
289 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
290 target_ulong opcode, target_ulong *args)
292 CPUPPCState *env = &cpu->env;
293 target_ulong flags = args[0];
294 target_ulong ptex = args[1];
295 target_ulong avpn = args[2];
296 const ppc_hash_pte64_t *hptes;
297 target_ulong v, r;
299 if (!valid_ptex(cpu, ptex)) {
300 return H_PARAMETER;
303 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
304 v = ppc_hash64_hpte0(cpu, hptes, 0);
305 r = ppc_hash64_hpte1(cpu, hptes, 0);
306 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
308 if ((v & HPTE64_V_VALID) == 0 ||
309 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
310 return H_NOT_FOUND;
313 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
314 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
315 r |= (flags << 55) & HPTE64_R_PP0;
316 r |= (flags << 48) & HPTE64_R_KEY_HI;
317 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
318 ppc_hash64_store_hpte(cpu, ptex,
319 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
320 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
321 /* Flush the tlb */
322 check_tlb_flush(env, true);
323 /* Don't need a memory barrier, due to qemu's global lock */
324 ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
325 return H_SUCCESS;
328 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
329 target_ulong opcode, target_ulong *args)
331 target_ulong flags = args[0];
332 target_ulong ptex = args[1];
333 uint8_t *hpte;
334 int i, ridx, n_entries = 1;
336 if (!valid_ptex(cpu, ptex)) {
337 return H_PARAMETER;
340 if (flags & H_READ_4) {
341 /* Clear the two low order bits */
342 ptex &= ~(3ULL);
343 n_entries = 4;
346 hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
348 for (i = 0, ridx = 0; i < n_entries; i++) {
349 args[ridx++] = ldq_p(hpte);
350 args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
351 hpte += HASH_PTE_SIZE_64;
354 return H_SUCCESS;
357 struct sPAPRPendingHPT {
358 /* These fields are read-only after initialization */
359 int shift;
360 QemuThread thread;
362 /* These fields are protected by the BQL */
363 bool complete;
365 /* These fields are private to the preparation thread if
366 * !complete, otherwise protected by the BQL */
367 int ret;
368 void *hpt;
371 static void free_pending_hpt(sPAPRPendingHPT *pending)
373 if (pending->hpt) {
374 qemu_vfree(pending->hpt);
377 g_free(pending);
380 static void *hpt_prepare_thread(void *opaque)
382 sPAPRPendingHPT *pending = opaque;
383 size_t size = 1ULL << pending->shift;
385 pending->hpt = qemu_memalign(size, size);
386 if (pending->hpt) {
387 memset(pending->hpt, 0, size);
388 pending->ret = H_SUCCESS;
389 } else {
390 pending->ret = H_NO_MEM;
393 qemu_mutex_lock_iothread();
395 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
396 /* Ready to go */
397 pending->complete = true;
398 } else {
399 /* We've been cancelled, clean ourselves up */
400 free_pending_hpt(pending);
403 qemu_mutex_unlock_iothread();
404 return NULL;
407 /* Must be called with BQL held */
408 static void cancel_hpt_prepare(sPAPRMachineState *spapr)
410 sPAPRPendingHPT *pending = spapr->pending_hpt;
412 /* Let the thread know it's cancelled */
413 spapr->pending_hpt = NULL;
415 if (!pending) {
416 /* Nothing to do */
417 return;
420 if (!pending->complete) {
421 /* thread will clean itself up */
422 return;
425 free_pending_hpt(pending);
428 /* Convert a return code from the KVM ioctl()s implementing resize HPT
429 * into a PAPR hypercall return code */
430 static target_ulong resize_hpt_convert_rc(int ret)
432 if (ret >= 100000) {
433 return H_LONG_BUSY_ORDER_100_SEC;
434 } else if (ret >= 10000) {
435 return H_LONG_BUSY_ORDER_10_SEC;
436 } else if (ret >= 1000) {
437 return H_LONG_BUSY_ORDER_1_SEC;
438 } else if (ret >= 100) {
439 return H_LONG_BUSY_ORDER_100_MSEC;
440 } else if (ret >= 10) {
441 return H_LONG_BUSY_ORDER_10_MSEC;
442 } else if (ret > 0) {
443 return H_LONG_BUSY_ORDER_1_MSEC;
446 switch (ret) {
447 case 0:
448 return H_SUCCESS;
449 case -EPERM:
450 return H_AUTHORITY;
451 case -EINVAL:
452 return H_PARAMETER;
453 case -ENXIO:
454 return H_CLOSED;
455 case -ENOSPC:
456 return H_PTEG_FULL;
457 case -EBUSY:
458 return H_BUSY;
459 case -ENOMEM:
460 return H_NO_MEM;
461 default:
462 return H_HARDWARE;
466 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
467 sPAPRMachineState *spapr,
468 target_ulong opcode,
469 target_ulong *args)
471 target_ulong flags = args[0];
472 int shift = args[1];
473 sPAPRPendingHPT *pending = spapr->pending_hpt;
474 uint64_t current_ram_size;
475 int rc;
477 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
478 return H_AUTHORITY;
481 if (!spapr->htab_shift) {
482 /* Radix guest, no HPT */
483 return H_NOT_AVAILABLE;
486 trace_spapr_h_resize_hpt_prepare(flags, shift);
488 if (flags != 0) {
489 return H_PARAMETER;
492 if (shift && ((shift < 18) || (shift > 46))) {
493 return H_PARAMETER;
496 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
498 /* We only allow the guest to allocate an HPT one order above what
499 * we'd normally give them (to stop a small guest claiming a huge
500 * chunk of resources in the HPT */
501 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
502 return H_RESOURCE;
505 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
506 if (rc != -ENOSYS) {
507 return resize_hpt_convert_rc(rc);
510 if (pending) {
511 /* something already in progress */
512 if (pending->shift == shift) {
513 /* and it's suitable */
514 if (pending->complete) {
515 return pending->ret;
516 } else {
517 return H_LONG_BUSY_ORDER_100_MSEC;
521 /* not suitable, cancel and replace */
522 cancel_hpt_prepare(spapr);
525 if (!shift) {
526 /* nothing to do */
527 return H_SUCCESS;
530 /* start new prepare */
532 pending = g_new0(sPAPRPendingHPT, 1);
533 pending->shift = shift;
534 pending->ret = H_HARDWARE;
536 qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
537 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
539 spapr->pending_hpt = pending;
541 /* In theory we could estimate the time more accurately based on
542 * the new size, but there's not much point */
543 return H_LONG_BUSY_ORDER_100_MSEC;
546 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
548 uint8_t *addr = htab;
550 addr += pteg * HASH_PTEG_SIZE_64;
551 addr += slot * HASH_PTE_SIZE_64;
552 return ldq_p(addr);
555 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
556 uint64_t pte0, uint64_t pte1)
558 uint8_t *addr = htab;
560 addr += pteg * HASH_PTEG_SIZE_64;
561 addr += slot * HASH_PTE_SIZE_64;
563 stq_p(addr, pte0);
564 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
567 static int rehash_hpte(PowerPCCPU *cpu,
568 const ppc_hash_pte64_t *hptes,
569 void *old_hpt, uint64_t oldsize,
570 void *new_hpt, uint64_t newsize,
571 uint64_t pteg, int slot)
573 uint64_t old_hash_mask = (oldsize >> 7) - 1;
574 uint64_t new_hash_mask = (newsize >> 7) - 1;
575 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
576 target_ulong pte1;
577 uint64_t avpn;
578 unsigned base_pg_shift;
579 uint64_t hash, new_pteg, replace_pte0;
581 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
582 return H_SUCCESS;
585 pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
587 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
588 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
589 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
591 if (pte0 & HPTE64_V_SECONDARY) {
592 pteg = ~pteg;
595 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
596 uint64_t offset, vsid;
598 /* We only have 28 - 23 bits of offset in avpn */
599 offset = (avpn & 0x1f) << 23;
600 vsid = avpn >> 5;
601 /* We can find more bits from the pteg value */
602 if (base_pg_shift < 23) {
603 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
606 hash = vsid ^ (offset >> base_pg_shift);
607 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
608 uint64_t offset, vsid;
610 /* We only have 40 - 23 bits of seg_off in avpn */
611 offset = (avpn & 0x1ffff) << 23;
612 vsid = avpn >> 17;
613 if (base_pg_shift < 23) {
614 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
615 << base_pg_shift;
618 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
619 } else {
620 error_report("rehash_pte: Bad segment size in HPTE");
621 return H_HARDWARE;
624 new_pteg = hash & new_hash_mask;
625 if (pte0 & HPTE64_V_SECONDARY) {
626 assert(~pteg == (hash & old_hash_mask));
627 new_pteg = ~new_pteg;
628 } else {
629 assert(pteg == (hash & old_hash_mask));
631 assert((oldsize != newsize) || (pteg == new_pteg));
632 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
634 * Strictly speaking, we don't need all these tests, since we only
635 * ever rehash bolted HPTEs. We might in future handle non-bolted
636 * HPTEs, though so make the logic correct for those cases as
637 * well.
639 if (replace_pte0 & HPTE64_V_VALID) {
640 assert(newsize < oldsize);
641 if (replace_pte0 & HPTE64_V_BOLTED) {
642 if (pte0 & HPTE64_V_BOLTED) {
643 /* Bolted collision, nothing we can do */
644 return H_PTEG_FULL;
645 } else {
646 /* Discard this hpte */
647 return H_SUCCESS;
652 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
653 return H_SUCCESS;
656 static int rehash_hpt(PowerPCCPU *cpu,
657 void *old_hpt, uint64_t oldsize,
658 void *new_hpt, uint64_t newsize)
660 uint64_t n_ptegs = oldsize >> 7;
661 uint64_t pteg;
662 int slot;
663 int rc;
665 for (pteg = 0; pteg < n_ptegs; pteg++) {
666 hwaddr ptex = pteg * HPTES_PER_GROUP;
667 const ppc_hash_pte64_t *hptes
668 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
670 if (!hptes) {
671 return H_HARDWARE;
674 for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
675 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
676 pteg, slot);
677 if (rc != H_SUCCESS) {
678 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
679 return rc;
682 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
685 return H_SUCCESS;
688 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
690 int ret;
692 cpu_synchronize_state(cs);
694 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
695 if (ret < 0) {
696 error_report("failed to push sregs to KVM: %s", strerror(-ret));
697 exit(1);
701 static void push_sregs_to_kvm_pr(sPAPRMachineState *spapr)
703 CPUState *cs;
706 * This is a hack for the benefit of KVM PR - it abuses the SDR1
707 * slot in kvm_sregs to communicate the userspace address of the
708 * HPT
710 if (!kvm_enabled() || !spapr->htab) {
711 return;
714 CPU_FOREACH(cs) {
715 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
719 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
720 sPAPRMachineState *spapr,
721 target_ulong opcode,
722 target_ulong *args)
724 target_ulong flags = args[0];
725 target_ulong shift = args[1];
726 sPAPRPendingHPT *pending = spapr->pending_hpt;
727 int rc;
728 size_t newsize;
730 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
731 return H_AUTHORITY;
734 if (!spapr->htab_shift) {
735 /* Radix guest, no HPT */
736 return H_NOT_AVAILABLE;
739 trace_spapr_h_resize_hpt_commit(flags, shift);
741 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
742 if (rc != -ENOSYS) {
743 rc = resize_hpt_convert_rc(rc);
744 if (rc == H_SUCCESS) {
745 /* Need to set the new htab_shift in the machine state */
746 spapr->htab_shift = shift;
748 return rc;
751 if (flags != 0) {
752 return H_PARAMETER;
755 if (!pending || (pending->shift != shift)) {
756 /* no matching prepare */
757 return H_CLOSED;
760 if (!pending->complete) {
761 /* prepare has not completed */
762 return H_BUSY;
765 /* Shouldn't have got past PREPARE without an HPT */
766 g_assert(spapr->htab_shift);
768 newsize = 1ULL << pending->shift;
769 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
770 pending->hpt, newsize);
771 if (rc == H_SUCCESS) {
772 qemu_vfree(spapr->htab);
773 spapr->htab = pending->hpt;
774 spapr->htab_shift = pending->shift;
776 push_sregs_to_kvm_pr(spapr);
778 pending->hpt = NULL; /* so it's not free()d */
781 /* Clean up */
782 spapr->pending_hpt = NULL;
783 free_pending_hpt(pending);
785 return rc;
788 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
789 target_ulong opcode, target_ulong *args)
791 cpu_synchronize_state(CPU(cpu));
792 cpu->env.spr[SPR_SPRG0] = args[0];
794 return H_SUCCESS;
797 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
798 target_ulong opcode, target_ulong *args)
800 if (!has_spr(cpu, SPR_DABR)) {
801 return H_HARDWARE; /* DABR register not available */
803 cpu_synchronize_state(CPU(cpu));
805 if (has_spr(cpu, SPR_DABRX)) {
806 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
807 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
808 return H_RESERVED_DABR;
811 cpu->env.spr[SPR_DABR] = args[0];
812 return H_SUCCESS;
815 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
816 target_ulong opcode, target_ulong *args)
818 target_ulong dabrx = args[1];
820 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
821 return H_HARDWARE;
824 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
825 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
826 return H_PARAMETER;
829 cpu_synchronize_state(CPU(cpu));
830 cpu->env.spr[SPR_DABRX] = dabrx;
831 cpu->env.spr[SPR_DABR] = args[0];
833 return H_SUCCESS;
836 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
837 target_ulong opcode, target_ulong *args)
839 target_ulong flags = args[0];
840 hwaddr dst = args[1];
841 hwaddr src = args[2];
842 hwaddr len = TARGET_PAGE_SIZE;
843 uint8_t *pdst, *psrc;
844 target_long ret = H_SUCCESS;
846 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
847 | H_COPY_PAGE | H_ZERO_PAGE)) {
848 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
849 flags);
850 return H_PARAMETER;
853 /* Map-in destination */
854 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
855 return H_PARAMETER;
857 pdst = cpu_physical_memory_map(dst, &len, 1);
858 if (!pdst || len != TARGET_PAGE_SIZE) {
859 return H_PARAMETER;
862 if (flags & H_COPY_PAGE) {
863 /* Map-in source, copy to destination, and unmap source again */
864 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
865 ret = H_PARAMETER;
866 goto unmap_out;
868 psrc = cpu_physical_memory_map(src, &len, 0);
869 if (!psrc || len != TARGET_PAGE_SIZE) {
870 ret = H_PARAMETER;
871 goto unmap_out;
873 memcpy(pdst, psrc, len);
874 cpu_physical_memory_unmap(psrc, len, 0, len);
875 } else if (flags & H_ZERO_PAGE) {
876 memset(pdst, 0, len); /* Just clear the destination page */
879 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
880 kvmppc_dcbst_range(cpu, pdst, len);
882 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
883 if (kvm_enabled()) {
884 kvmppc_icbi_range(cpu, pdst, len);
885 } else {
886 tb_flush(CPU(cpu));
890 unmap_out:
891 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
892 return ret;
895 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
896 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
897 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
898 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
899 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
900 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
902 #define VPA_MIN_SIZE 640
903 #define VPA_SIZE_OFFSET 0x4
904 #define VPA_SHARED_PROC_OFFSET 0x9
905 #define VPA_SHARED_PROC_VAL 0x2
907 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
909 CPUState *cs = CPU(ppc_env_get_cpu(env));
910 uint16_t size;
911 uint8_t tmp;
913 if (vpa == 0) {
914 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
915 return H_HARDWARE;
918 if (vpa % env->dcache_line_size) {
919 return H_PARAMETER;
921 /* FIXME: bounds check the address */
923 size = lduw_be_phys(cs->as, vpa + 0x4);
925 if (size < VPA_MIN_SIZE) {
926 return H_PARAMETER;
929 /* VPA is not allowed to cross a page boundary */
930 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
931 return H_PARAMETER;
934 env->vpa_addr = vpa;
936 tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
937 tmp |= VPA_SHARED_PROC_VAL;
938 stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
940 return H_SUCCESS;
943 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
945 if (env->slb_shadow_addr) {
946 return H_RESOURCE;
949 if (env->dtl_addr) {
950 return H_RESOURCE;
953 env->vpa_addr = 0;
954 return H_SUCCESS;
957 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
959 CPUState *cs = CPU(ppc_env_get_cpu(env));
960 uint32_t size;
962 if (addr == 0) {
963 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
964 return H_HARDWARE;
967 size = ldl_be_phys(cs->as, addr + 0x4);
968 if (size < 0x8) {
969 return H_PARAMETER;
972 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
973 return H_PARAMETER;
976 if (!env->vpa_addr) {
977 return H_RESOURCE;
980 env->slb_shadow_addr = addr;
981 env->slb_shadow_size = size;
983 return H_SUCCESS;
986 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
988 env->slb_shadow_addr = 0;
989 env->slb_shadow_size = 0;
990 return H_SUCCESS;
993 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
995 CPUState *cs = CPU(ppc_env_get_cpu(env));
996 uint32_t size;
998 if (addr == 0) {
999 hcall_dprintf("Can't cope with DTL at logical 0\n");
1000 return H_HARDWARE;
1003 size = ldl_be_phys(cs->as, addr + 0x4);
1005 if (size < 48) {
1006 return H_PARAMETER;
1009 if (!env->vpa_addr) {
1010 return H_RESOURCE;
1013 env->dtl_addr = addr;
1014 env->dtl_size = size;
1016 return H_SUCCESS;
1019 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
1021 env->dtl_addr = 0;
1022 env->dtl_size = 0;
1024 return H_SUCCESS;
1027 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1028 target_ulong opcode, target_ulong *args)
1030 target_ulong flags = args[0];
1031 target_ulong procno = args[1];
1032 target_ulong vpa = args[2];
1033 target_ulong ret = H_PARAMETER;
1034 CPUPPCState *tenv;
1035 PowerPCCPU *tcpu;
1037 tcpu = spapr_find_cpu(procno);
1038 if (!tcpu) {
1039 return H_PARAMETER;
1041 tenv = &tcpu->env;
1043 switch (flags) {
1044 case FLAGS_REGISTER_VPA:
1045 ret = register_vpa(tenv, vpa);
1046 break;
1048 case FLAGS_DEREGISTER_VPA:
1049 ret = deregister_vpa(tenv, vpa);
1050 break;
1052 case FLAGS_REGISTER_SLBSHADOW:
1053 ret = register_slb_shadow(tenv, vpa);
1054 break;
1056 case FLAGS_DEREGISTER_SLBSHADOW:
1057 ret = deregister_slb_shadow(tenv, vpa);
1058 break;
1060 case FLAGS_REGISTER_DTL:
1061 ret = register_dtl(tenv, vpa);
1062 break;
1064 case FLAGS_DEREGISTER_DTL:
1065 ret = deregister_dtl(tenv, vpa);
1066 break;
1069 return ret;
1072 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1073 target_ulong opcode, target_ulong *args)
1075 CPUPPCState *env = &cpu->env;
1076 CPUState *cs = CPU(cpu);
1078 env->msr |= (1ULL << MSR_EE);
1079 hreg_compute_hflags(env);
1080 if (!cpu_has_work(cs)) {
1081 cs->halted = 1;
1082 cs->exception_index = EXCP_HLT;
1083 cs->exit_request = 1;
1085 return H_SUCCESS;
1088 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1089 target_ulong opcode, target_ulong *args)
1091 target_ulong rtas_r3 = args[0];
1092 uint32_t token = rtas_ld(rtas_r3, 0);
1093 uint32_t nargs = rtas_ld(rtas_r3, 1);
1094 uint32_t nret = rtas_ld(rtas_r3, 2);
1096 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1097 nret, rtas_r3 + 12 + 4*nargs);
1100 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1101 target_ulong opcode, target_ulong *args)
1103 CPUState *cs = CPU(cpu);
1104 target_ulong size = args[0];
1105 target_ulong addr = args[1];
1107 switch (size) {
1108 case 1:
1109 args[0] = ldub_phys(cs->as, addr);
1110 return H_SUCCESS;
1111 case 2:
1112 args[0] = lduw_phys(cs->as, addr);
1113 return H_SUCCESS;
1114 case 4:
1115 args[0] = ldl_phys(cs->as, addr);
1116 return H_SUCCESS;
1117 case 8:
1118 args[0] = ldq_phys(cs->as, addr);
1119 return H_SUCCESS;
1121 return H_PARAMETER;
1124 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1125 target_ulong opcode, target_ulong *args)
1127 CPUState *cs = CPU(cpu);
1129 target_ulong size = args[0];
1130 target_ulong addr = args[1];
1131 target_ulong val = args[2];
1133 switch (size) {
1134 case 1:
1135 stb_phys(cs->as, addr, val);
1136 return H_SUCCESS;
1137 case 2:
1138 stw_phys(cs->as, addr, val);
1139 return H_SUCCESS;
1140 case 4:
1141 stl_phys(cs->as, addr, val);
1142 return H_SUCCESS;
1143 case 8:
1144 stq_phys(cs->as, addr, val);
1145 return H_SUCCESS;
1147 return H_PARAMETER;
1150 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1151 target_ulong opcode, target_ulong *args)
1153 CPUState *cs = CPU(cpu);
1155 target_ulong dst = args[0]; /* Destination address */
1156 target_ulong src = args[1]; /* Source address */
1157 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1158 target_ulong count = args[3]; /* Element count */
1159 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
1160 uint64_t tmp;
1161 unsigned int mask = (1 << esize) - 1;
1162 int step = 1 << esize;
1164 if (count > 0x80000000) {
1165 return H_PARAMETER;
1168 if ((dst & mask) || (src & mask) || (op > 1)) {
1169 return H_PARAMETER;
1172 if (dst >= src && dst < (src + (count << esize))) {
1173 dst = dst + ((count - 1) << esize);
1174 src = src + ((count - 1) << esize);
1175 step = -step;
1178 while (count--) {
1179 switch (esize) {
1180 case 0:
1181 tmp = ldub_phys(cs->as, src);
1182 break;
1183 case 1:
1184 tmp = lduw_phys(cs->as, src);
1185 break;
1186 case 2:
1187 tmp = ldl_phys(cs->as, src);
1188 break;
1189 case 3:
1190 tmp = ldq_phys(cs->as, src);
1191 break;
1192 default:
1193 return H_PARAMETER;
1195 if (op == 1) {
1196 tmp = ~tmp;
1198 switch (esize) {
1199 case 0:
1200 stb_phys(cs->as, dst, tmp);
1201 break;
1202 case 1:
1203 stw_phys(cs->as, dst, tmp);
1204 break;
1205 case 2:
1206 stl_phys(cs->as, dst, tmp);
1207 break;
1208 case 3:
1209 stq_phys(cs->as, dst, tmp);
1210 break;
1212 dst = dst + step;
1213 src = src + step;
1216 return H_SUCCESS;
1219 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1220 target_ulong opcode, target_ulong *args)
1222 /* Nothing to do on emulation, KVM will trap this in the kernel */
1223 return H_SUCCESS;
1226 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1227 target_ulong opcode, target_ulong *args)
1229 /* Nothing to do on emulation, KVM will trap this in the kernel */
1230 return H_SUCCESS;
1233 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1234 target_ulong mflags,
1235 target_ulong value1,
1236 target_ulong value2)
1238 CPUState *cs;
1240 if (value1) {
1241 return H_P3;
1243 if (value2) {
1244 return H_P4;
1247 switch (mflags) {
1248 case H_SET_MODE_ENDIAN_BIG:
1249 CPU_FOREACH(cs) {
1250 set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
1252 spapr_pci_switch_vga(true);
1253 return H_SUCCESS;
1255 case H_SET_MODE_ENDIAN_LITTLE:
1256 CPU_FOREACH(cs) {
1257 set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
1259 spapr_pci_switch_vga(false);
1260 return H_SUCCESS;
1263 return H_UNSUPPORTED_FLAG;
1266 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1267 target_ulong mflags,
1268 target_ulong value1,
1269 target_ulong value2)
1271 CPUState *cs;
1272 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1274 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1275 return H_P2;
1277 if (value1) {
1278 return H_P3;
1280 if (value2) {
1281 return H_P4;
1284 if (mflags == AIL_RESERVED) {
1285 return H_UNSUPPORTED_FLAG;
1288 CPU_FOREACH(cs) {
1289 set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1292 return H_SUCCESS;
1295 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1296 target_ulong opcode, target_ulong *args)
1298 target_ulong resource = args[1];
1299 target_ulong ret = H_P2;
1301 switch (resource) {
1302 case H_SET_MODE_RESOURCE_LE:
1303 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1304 break;
1305 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1306 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1307 args[2], args[3]);
1308 break;
1311 return ret;
1314 static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1315 target_ulong opcode, target_ulong *args)
1317 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1318 opcode, " (H_CLEAN_SLB)");
1319 return H_FUNCTION;
1322 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1323 target_ulong opcode, target_ulong *args)
1325 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1326 opcode, " (H_INVALIDATE_PID)");
1327 return H_FUNCTION;
1330 static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
1331 uint64_t patbe_old, uint64_t patbe_new)
1334 * We have 4 Options:
1335 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1336 * HASH->RADIX : Free HPT
1337 * RADIX->HASH : Allocate HPT
1338 * NOTHING->HASH : Allocate HPT
1339 * Note: NOTHING implies the case where we said the guest could choose
1340 * later and so assumed radix and now it's called H_REG_PROC_TBL
1343 if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
1344 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1345 } else if (!(patbe_old & PATBE1_GR)) {
1346 /* HASH->RADIX : Free HPT */
1347 spapr_free_hpt(spapr);
1348 } else if (!(patbe_new & PATBE1_GR)) {
1349 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1350 spapr_setup_hpt_and_vrma(spapr);
1352 return;
1355 #define FLAGS_MASK 0x01FULL
1356 #define FLAG_MODIFY 0x10
1357 #define FLAG_REGISTER 0x08
1358 #define FLAG_RADIX 0x04
1359 #define FLAG_HASH_PROC_TBL 0x02
1360 #define FLAG_GTSE 0x01
1362 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1363 sPAPRMachineState *spapr,
1364 target_ulong opcode,
1365 target_ulong *args)
1367 CPUState *cs;
1368 target_ulong flags = args[0];
1369 target_ulong proc_tbl = args[1];
1370 target_ulong page_size = args[2];
1371 target_ulong table_size = args[3];
1372 uint64_t cproc;
1374 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1375 return H_PARAMETER;
1377 if (flags & FLAG_MODIFY) {
1378 if (flags & FLAG_REGISTER) {
1379 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1380 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1381 return H_P2;
1382 } else if (page_size) {
1383 return H_P3;
1384 } else if (table_size > 24) {
1385 return H_P4;
1387 cproc = PATBE1_GR | proc_tbl | table_size;
1388 } else { /* Register new HPT process table */
1389 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1390 /* TODO - Not Supported */
1391 /* Technically caused by flag bits => H_PARAMETER */
1392 return H_PARAMETER;
1393 } else { /* Hash with SLB */
1394 if (proc_tbl >> 38) {
1395 return H_P2;
1396 } else if (page_size & ~0x7) {
1397 return H_P3;
1398 } else if (table_size > 24) {
1399 return H_P4;
1402 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1405 } else { /* Deregister current process table */
1406 /* Set to benign value: (current GR) | 0. This allows
1407 * deregistration in KVM to succeed even if the radix bit in flags
1408 * doesn't match the radix bit in the old PATB. */
1409 cproc = spapr->patb_entry & PATBE1_GR;
1411 } else { /* Maintain current registration */
1412 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
1413 /* Technically caused by flag bits => H_PARAMETER */
1414 return H_PARAMETER; /* Existing Process Table Mismatch */
1416 cproc = spapr->patb_entry;
1419 /* Check if we need to setup OR free the hpt */
1420 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1422 spapr->patb_entry = cproc; /* Save new process table */
1424 /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1425 CPU_FOREACH(cs) {
1426 set_spr(cs, SPR_LPCR,
1427 ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
1428 ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
1429 LPCR_UPRT | LPCR_GTSE);
1432 if (kvm_enabled()) {
1433 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1434 flags & FLAG_GTSE, cproc);
1436 return H_SUCCESS;
1439 #define H_SIGNAL_SYS_RESET_ALL -1
1440 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1442 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1443 sPAPRMachineState *spapr,
1444 target_ulong opcode, target_ulong *args)
1446 target_long target = args[0];
1447 CPUState *cs;
1449 if (target < 0) {
1450 /* Broadcast */
1451 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1452 return H_PARAMETER;
1455 CPU_FOREACH(cs) {
1456 PowerPCCPU *c = POWERPC_CPU(cs);
1458 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1459 if (c == cpu) {
1460 continue;
1463 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1465 return H_SUCCESS;
1467 } else {
1468 /* Unicast */
1469 cs = CPU(spapr_find_cpu(target));
1470 if (cs) {
1471 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1472 return H_SUCCESS;
1474 return H_PARAMETER;
1478 static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1479 target_ulong *addr, bool *raw_mode_supported,
1480 Error **errp)
1482 bool explicit_match = false; /* Matched the CPU's real PVR */
1483 uint32_t max_compat = spapr->max_compat_pvr;
1484 uint32_t best_compat = 0;
1485 int i;
1488 * We scan the supplied table of PVRs looking for two things
1489 * 1. Is our real CPU PVR in the list?
1490 * 2. What's the "best" listed logical PVR
1492 for (i = 0; i < 512; ++i) {
1493 uint32_t pvr, pvr_mask;
1495 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1496 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1497 *addr += 8;
1499 if (~pvr_mask & pvr) {
1500 break; /* Terminator record */
1503 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1504 explicit_match = true;
1505 } else {
1506 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1507 best_compat = pvr;
1512 if ((best_compat == 0) && (!explicit_match || max_compat)) {
1513 /* We couldn't find a suitable compatibility mode, and either
1514 * the guest doesn't support "raw" mode for this CPU, or raw
1515 * mode is disabled because a maximum compat mode is set */
1516 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1517 return 0;
1520 *raw_mode_supported = explicit_match;
1522 /* Parsing finished */
1523 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1525 return best_compat;
1528 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1529 sPAPRMachineState *spapr,
1530 target_ulong opcode,
1531 target_ulong *args)
1533 /* Working address in data buffer */
1534 target_ulong addr = ppc64_phys_to_real(args[0]);
1535 target_ulong ov_table;
1536 uint32_t cas_pvr;
1537 sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1538 bool guest_radix;
1539 Error *local_err = NULL;
1540 bool raw_mode_supported = false;
1542 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1543 if (local_err) {
1544 error_report_err(local_err);
1545 return H_HARDWARE;
1548 /* Update CPUs */
1549 if (cpu->compat_pvr != cas_pvr) {
1550 ppc_set_compat_all(cas_pvr, &local_err);
1551 if (local_err) {
1552 /* We fail to set compat mode (likely because running with KVM PR),
1553 * but maybe we can fallback to raw mode if the guest supports it.
1555 if (!raw_mode_supported) {
1556 error_report_err(local_err);
1557 return H_HARDWARE;
1559 local_err = NULL;
1563 /* For the future use: here @ov_table points to the first option vector */
1564 ov_table = addr;
1566 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1567 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1568 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1569 error_report("guest requested hash and radix MMU, which is invalid.");
1570 exit(EXIT_FAILURE);
1572 /* The radix/hash bit in byte 24 requires special handling: */
1573 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1574 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1577 * HPT resizing is a bit of a special case, because when enabled
1578 * we assume an HPT guest will support it until it says it
1579 * doesn't, instead of assuming it won't support it until it says
1580 * it does. Strictly speaking that approach could break for
1581 * guests which don't make a CAS call, but those are so old we
1582 * don't care about them. Without that assumption we'd have to
1583 * make at least a temporary allocation of an HPT sized for max
1584 * memory, which could be impossibly difficult under KVM HV if
1585 * maxram is large.
1587 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1588 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1590 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1591 error_report(
1592 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1593 exit(1);
1596 if (spapr->htab_shift < maxshift) {
1597 /* Guest doesn't know about HPT resizing, so we
1598 * pre-emptively resize for the maximum permitted RAM. At
1599 * the point this is called, nothing should have been
1600 * entered into the existing HPT */
1601 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1602 push_sregs_to_kvm_pr(spapr);
1606 /* NOTE: there are actually a number of ov5 bits where input from the
1607 * guest is always zero, and the platform/QEMU enables them independently
1608 * of guest input. To model these properly we'd want some sort of mask,
1609 * but since they only currently apply to memory migration as defined
1610 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1611 * to worry about this for now.
1613 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1615 /* also clear the radix/hash bit from the current ov5_cas bits to
1616 * be in sync with the newly ov5 bits. Else the radix bit will be
1617 * seen as being removed and this will generate a reset loop
1619 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1621 /* full range of negotiated ov5 capabilities */
1622 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1623 spapr_ovec_cleanup(ov5_guest);
1624 /* capabilities that have been added since CAS-generated guest reset.
1625 * if capabilities have since been removed, generate another reset
1627 ov5_updates = spapr_ovec_new();
1628 spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1629 ov5_cas_old, spapr->ov5_cas);
1630 /* Now that processing is finished, set the radix/hash bit for the
1631 * guest if it requested a valid mode; otherwise terminate the boot. */
1632 if (guest_radix) {
1633 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1634 error_report("Guest requested unavailable MMU mode (radix).");
1635 exit(EXIT_FAILURE);
1637 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1638 } else {
1639 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1640 && !kvmppc_has_cap_mmu_hash_v3()) {
1641 error_report("Guest requested unavailable MMU mode (hash).");
1642 exit(EXIT_FAILURE);
1645 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1646 OV1_PPC_3_00);
1647 if (!spapr->cas_reboot) {
1648 /* If spapr_machine_reset() did not set up a HPT but one is necessary
1649 * (because the guest isn't going to use radix) then set it up here. */
1650 if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1651 /* legacy hash or new hash: */
1652 spapr_setup_hpt_and_vrma(spapr);
1654 spapr->cas_reboot =
1655 (spapr_h_cas_compose_response(spapr, args[1], args[2],
1656 ov5_updates) != 0);
1658 spapr_ovec_cleanup(ov5_updates);
1660 if (spapr->cas_reboot) {
1661 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1664 return H_SUCCESS;
1667 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1668 sPAPRMachineState *spapr,
1669 target_ulong opcode,
1670 target_ulong *args)
1672 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1673 ~H_CPU_CHAR_THR_RECONF_TRIG;
1674 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1675 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1676 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1677 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1679 switch (safe_cache) {
1680 case SPAPR_CAP_WORKAROUND:
1681 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1682 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1683 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1684 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1685 break;
1686 case SPAPR_CAP_FIXED:
1687 break;
1688 default: /* broken */
1689 assert(safe_cache == SPAPR_CAP_BROKEN);
1690 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1691 break;
1694 switch (safe_bounds_check) {
1695 case SPAPR_CAP_WORKAROUND:
1696 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1697 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1698 break;
1699 case SPAPR_CAP_FIXED:
1700 break;
1701 default: /* broken */
1702 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1703 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1704 break;
1707 switch (safe_indirect_branch) {
1708 case SPAPR_CAP_FIXED_CCD:
1709 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1710 break;
1711 case SPAPR_CAP_FIXED_IBS:
1712 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1713 break;
1714 default: /* broken */
1715 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1716 break;
1719 args[0] = characteristics;
1720 args[1] = behaviour;
1722 return H_SUCCESS;
1725 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1726 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1728 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1730 spapr_hcall_fn *slot;
1732 if (opcode <= MAX_HCALL_OPCODE) {
1733 assert((opcode & 0x3) == 0);
1735 slot = &papr_hypercall_table[opcode / 4];
1736 } else {
1737 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1739 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1742 assert(!(*slot));
1743 *slot = fn;
1746 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1747 target_ulong *args)
1749 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1751 if ((opcode <= MAX_HCALL_OPCODE)
1752 && ((opcode & 0x3) == 0)) {
1753 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1755 if (fn) {
1756 return fn(cpu, spapr, opcode, args);
1758 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1759 (opcode <= KVMPPC_HCALL_MAX)) {
1760 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1762 if (fn) {
1763 return fn(cpu, spapr, opcode, args);
1767 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1768 opcode);
1769 return H_FUNCTION;
1772 static void hypercall_register_types(void)
1774 /* hcall-pft */
1775 spapr_register_hypercall(H_ENTER, h_enter);
1776 spapr_register_hypercall(H_REMOVE, h_remove);
1777 spapr_register_hypercall(H_PROTECT, h_protect);
1778 spapr_register_hypercall(H_READ, h_read);
1780 /* hcall-bulk */
1781 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1783 /* hcall-hpt-resize */
1784 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1785 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1787 /* hcall-splpar */
1788 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1789 spapr_register_hypercall(H_CEDE, h_cede);
1790 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1792 /* processor register resource access h-calls */
1793 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1794 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1795 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1796 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1797 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1799 /* In Memory Table MMU h-calls */
1800 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1801 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1802 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1804 /* hcall-get-cpu-characteristics */
1805 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1806 h_get_cpu_characteristics);
1808 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1809 * here between the "CI" and the "CACHE" variants, they will use whatever
1810 * mapping attributes qemu is using. When using KVM, the kernel will
1811 * enforce the attributes more strongly
1813 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1814 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1815 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1816 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1817 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1818 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1819 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1821 /* qemu/KVM-PPC specific hcalls */
1822 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1824 /* ibm,client-architecture-support support */
1825 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1828 type_init(hypercall_register_types)