Initialize IA32_FEATURE_CONTROL MSR in reset and migration
[qemu/ar7.git] / target-i386 / kvm.c
blob84ac00a389b1008aa51f324e57779d33a8db2341
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static bool has_msr_kvm_steal_time;
72 static int lm_capable_kernel;
74 bool kvm_allows_irq0_override(void)
76 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
79 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
81 struct kvm_cpuid2 *cpuid;
82 int r, size;
84 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
85 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
86 cpuid->nent = max;
87 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
88 if (r == 0 && cpuid->nent >= max) {
89 r = -E2BIG;
91 if (r < 0) {
92 if (r == -E2BIG) {
93 g_free(cpuid);
94 return NULL;
95 } else {
96 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
97 strerror(-r));
98 exit(1);
101 return cpuid;
104 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
105 * for all entries.
107 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
109 struct kvm_cpuid2 *cpuid;
110 int max = 1;
111 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
112 max *= 2;
114 return cpuid;
117 struct kvm_para_features {
118 int cap;
119 int feature;
120 } para_features[] = {
121 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
122 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
123 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
124 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
125 { -1, -1 }
128 static int get_para_features(KVMState *s)
130 int i, features = 0;
132 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
133 if (kvm_check_extension(s, para_features[i].cap)) {
134 features |= (1 << para_features[i].feature);
138 return features;
142 /* Returns the value for a specific register on the cpuid entry
144 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
146 uint32_t ret = 0;
147 switch (reg) {
148 case R_EAX:
149 ret = entry->eax;
150 break;
151 case R_EBX:
152 ret = entry->ebx;
153 break;
154 case R_ECX:
155 ret = entry->ecx;
156 break;
157 case R_EDX:
158 ret = entry->edx;
159 break;
161 return ret;
164 /* Find matching entry for function/index on kvm_cpuid2 struct
166 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
167 uint32_t function,
168 uint32_t index)
170 int i;
171 for (i = 0; i < cpuid->nent; ++i) {
172 if (cpuid->entries[i].function == function &&
173 cpuid->entries[i].index == index) {
174 return &cpuid->entries[i];
177 /* not found: */
178 return NULL;
181 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
182 uint32_t index, int reg)
184 struct kvm_cpuid2 *cpuid;
185 uint32_t ret = 0;
186 uint32_t cpuid_1_edx;
187 bool found = false;
189 cpuid = get_supported_cpuid(s);
191 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
192 if (entry) {
193 found = true;
194 ret = cpuid_entry_get_reg(entry, reg);
197 /* Fixups for the data returned by KVM, below */
199 if (function == 1 && reg == R_EDX) {
200 /* KVM before 2.6.30 misreports the following features */
201 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
202 } else if (function == 1 && reg == R_ECX) {
203 /* We can set the hypervisor flag, even if KVM does not return it on
204 * GET_SUPPORTED_CPUID
206 ret |= CPUID_EXT_HYPERVISOR;
207 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
208 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
209 * and the irqchip is in the kernel.
211 if (kvm_irqchip_in_kernel() &&
212 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
213 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
216 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
217 * without the in-kernel irqchip
219 if (!kvm_irqchip_in_kernel()) {
220 ret &= ~CPUID_EXT_X2APIC;
222 } else if (function == 0x80000001 && reg == R_EDX) {
223 /* On Intel, kvm returns cpuid according to the Intel spec,
224 * so add missing bits according to the AMD spec:
226 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
227 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
230 g_free(cpuid);
232 /* fallback for older kernels */
233 if ((function == KVM_CPUID_FEATURES) && !found) {
234 ret = get_para_features(s);
237 return ret;
240 typedef struct HWPoisonPage {
241 ram_addr_t ram_addr;
242 QLIST_ENTRY(HWPoisonPage) list;
243 } HWPoisonPage;
245 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
246 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
248 static void kvm_unpoison_all(void *param)
250 HWPoisonPage *page, *next_page;
252 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
253 QLIST_REMOVE(page, list);
254 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
255 g_free(page);
259 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
261 HWPoisonPage *page;
263 QLIST_FOREACH(page, &hwpoison_page_list, list) {
264 if (page->ram_addr == ram_addr) {
265 return;
268 page = g_malloc(sizeof(HWPoisonPage));
269 page->ram_addr = ram_addr;
270 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
273 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
274 int *max_banks)
276 int r;
278 r = kvm_check_extension(s, KVM_CAP_MCE);
279 if (r > 0) {
280 *max_banks = r;
281 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
283 return -ENOSYS;
286 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
288 CPUX86State *env = &cpu->env;
289 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
290 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
291 uint64_t mcg_status = MCG_STATUS_MCIP;
293 if (code == BUS_MCEERR_AR) {
294 status |= MCI_STATUS_AR | 0x134;
295 mcg_status |= MCG_STATUS_EIPV;
296 } else {
297 status |= 0xc0;
298 mcg_status |= MCG_STATUS_RIPV;
300 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
301 (MCM_ADDR_PHYS << 6) | 0xc,
302 cpu_x86_support_mca_broadcast(env) ?
303 MCE_INJECT_BROADCAST : 0);
306 static void hardware_memory_error(void)
308 fprintf(stderr, "Hardware memory error!\n");
309 exit(1);
312 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
314 X86CPU *cpu = X86_CPU(c);
315 CPUX86State *env = &cpu->env;
316 ram_addr_t ram_addr;
317 hwaddr paddr;
319 if ((env->mcg_cap & MCG_SER_P) && addr
320 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
321 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
322 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
323 fprintf(stderr, "Hardware memory error for memory used by "
324 "QEMU itself instead of guest system!\n");
325 /* Hope we are lucky for AO MCE */
326 if (code == BUS_MCEERR_AO) {
327 return 0;
328 } else {
329 hardware_memory_error();
332 kvm_hwpoison_page_add(ram_addr);
333 kvm_mce_inject(cpu, paddr, code);
334 } else {
335 if (code == BUS_MCEERR_AO) {
336 return 0;
337 } else if (code == BUS_MCEERR_AR) {
338 hardware_memory_error();
339 } else {
340 return 1;
343 return 0;
346 int kvm_arch_on_sigbus(int code, void *addr)
348 X86CPU *cpu = X86_CPU(first_cpu);
350 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
351 ram_addr_t ram_addr;
352 hwaddr paddr;
354 /* Hope we are lucky for AO MCE */
355 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
356 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
357 addr, &paddr)) {
358 fprintf(stderr, "Hardware memory error for memory used by "
359 "QEMU itself instead of guest system!: %p\n", addr);
360 return 0;
362 kvm_hwpoison_page_add(ram_addr);
363 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
364 } else {
365 if (code == BUS_MCEERR_AO) {
366 return 0;
367 } else if (code == BUS_MCEERR_AR) {
368 hardware_memory_error();
369 } else {
370 return 1;
373 return 0;
376 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
378 CPUX86State *env = &cpu->env;
380 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
381 unsigned int bank, bank_num = env->mcg_cap & 0xff;
382 struct kvm_x86_mce mce;
384 env->exception_injected = -1;
387 * There must be at least one bank in use if an MCE is pending.
388 * Find it and use its values for the event injection.
390 for (bank = 0; bank < bank_num; bank++) {
391 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
392 break;
395 assert(bank < bank_num);
397 mce.bank = bank;
398 mce.status = env->mce_banks[bank * 4 + 1];
399 mce.mcg_status = env->mcg_status;
400 mce.addr = env->mce_banks[bank * 4 + 2];
401 mce.misc = env->mce_banks[bank * 4 + 3];
403 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
405 return 0;
408 static void cpu_update_state(void *opaque, int running, RunState state)
410 CPUX86State *env = opaque;
412 if (running) {
413 env->tsc_valid = false;
417 unsigned long kvm_arch_vcpu_id(CPUState *cs)
419 X86CPU *cpu = X86_CPU(cs);
420 return cpu->env.cpuid_apic_id;
423 #define KVM_MAX_CPUID_ENTRIES 100
425 int kvm_arch_init_vcpu(CPUState *cs)
427 struct {
428 struct kvm_cpuid2 cpuid;
429 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
430 } QEMU_PACKED cpuid_data;
431 X86CPU *cpu = X86_CPU(cs);
432 CPUX86State *env = &cpu->env;
433 uint32_t limit, i, j, cpuid_i;
434 uint32_t unused;
435 struct kvm_cpuid_entry2 *c;
436 uint32_t signature[3];
437 int r;
439 cpuid_i = 0;
441 /* Paravirtualization CPUIDs */
442 c = &cpuid_data.entries[cpuid_i++];
443 memset(c, 0, sizeof(*c));
444 c->function = KVM_CPUID_SIGNATURE;
445 if (!hyperv_enabled()) {
446 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
447 c->eax = 0;
448 } else {
449 memcpy(signature, "Microsoft Hv", 12);
450 c->eax = HYPERV_CPUID_MIN;
452 c->ebx = signature[0];
453 c->ecx = signature[1];
454 c->edx = signature[2];
456 c = &cpuid_data.entries[cpuid_i++];
457 memset(c, 0, sizeof(*c));
458 c->function = KVM_CPUID_FEATURES;
459 c->eax = env->features[FEAT_KVM];
461 if (hyperv_enabled()) {
462 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
463 c->eax = signature[0];
465 c = &cpuid_data.entries[cpuid_i++];
466 memset(c, 0, sizeof(*c));
467 c->function = HYPERV_CPUID_VERSION;
468 c->eax = 0x00001bbc;
469 c->ebx = 0x00060001;
471 c = &cpuid_data.entries[cpuid_i++];
472 memset(c, 0, sizeof(*c));
473 c->function = HYPERV_CPUID_FEATURES;
474 if (hyperv_relaxed_timing_enabled()) {
475 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
477 if (hyperv_vapic_recommended()) {
478 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
479 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
482 c = &cpuid_data.entries[cpuid_i++];
483 memset(c, 0, sizeof(*c));
484 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
485 if (hyperv_relaxed_timing_enabled()) {
486 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
488 if (hyperv_vapic_recommended()) {
489 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
491 c->ebx = hyperv_get_spinlock_retries();
493 c = &cpuid_data.entries[cpuid_i++];
494 memset(c, 0, sizeof(*c));
495 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
496 c->eax = 0x40;
497 c->ebx = 0x40;
499 c = &cpuid_data.entries[cpuid_i++];
500 memset(c, 0, sizeof(*c));
501 c->function = KVM_CPUID_SIGNATURE_NEXT;
502 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
503 c->eax = 0;
504 c->ebx = signature[0];
505 c->ecx = signature[1];
506 c->edx = signature[2];
509 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
511 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
513 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
515 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
517 for (i = 0; i <= limit; i++) {
518 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
519 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
520 abort();
522 c = &cpuid_data.entries[cpuid_i++];
524 switch (i) {
525 case 2: {
526 /* Keep reading function 2 till all the input is received */
527 int times;
529 c->function = i;
530 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
531 KVM_CPUID_FLAG_STATE_READ_NEXT;
532 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
533 times = c->eax & 0xff;
535 for (j = 1; j < times; ++j) {
536 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
537 fprintf(stderr, "cpuid_data is full, no space for "
538 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
539 abort();
541 c = &cpuid_data.entries[cpuid_i++];
542 c->function = i;
543 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
544 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
546 break;
548 case 4:
549 case 0xb:
550 case 0xd:
551 for (j = 0; ; j++) {
552 if (i == 0xd && j == 64) {
553 break;
555 c->function = i;
556 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
557 c->index = j;
558 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
560 if (i == 4 && c->eax == 0) {
561 break;
563 if (i == 0xb && !(c->ecx & 0xff00)) {
564 break;
566 if (i == 0xd && c->eax == 0) {
567 continue;
569 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
570 fprintf(stderr, "cpuid_data is full, no space for "
571 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
572 abort();
574 c = &cpuid_data.entries[cpuid_i++];
576 break;
577 default:
578 c->function = i;
579 c->flags = 0;
580 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
581 break;
584 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
586 for (i = 0x80000000; i <= limit; i++) {
587 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
588 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
589 abort();
591 c = &cpuid_data.entries[cpuid_i++];
593 c->function = i;
594 c->flags = 0;
595 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
598 /* Call Centaur's CPUID instructions they are supported. */
599 if (env->cpuid_xlevel2 > 0) {
600 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
602 for (i = 0xC0000000; i <= limit; i++) {
603 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
604 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
605 abort();
607 c = &cpuid_data.entries[cpuid_i++];
609 c->function = i;
610 c->flags = 0;
611 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
615 cpuid_data.cpuid.nent = cpuid_i;
617 if (((env->cpuid_version >> 8)&0xF) >= 6
618 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
619 (CPUID_MCE | CPUID_MCA)
620 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
621 uint64_t mcg_cap;
622 int banks;
623 int ret;
625 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
626 if (ret < 0) {
627 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
628 return ret;
631 if (banks > MCE_BANKS_DEF) {
632 banks = MCE_BANKS_DEF;
634 mcg_cap &= MCE_CAP_DEF;
635 mcg_cap |= banks;
636 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
637 if (ret < 0) {
638 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
639 return ret;
642 env->mcg_cap = mcg_cap;
645 qemu_add_vm_change_state_handler(cpu_update_state, env);
647 cpuid_data.cpuid.padding = 0;
648 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
649 if (r) {
650 return r;
653 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
654 if (r && env->tsc_khz) {
655 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
656 if (r < 0) {
657 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
658 return r;
662 if (kvm_has_xsave()) {
663 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
666 return 0;
669 void kvm_arch_reset_vcpu(CPUState *cs)
671 X86CPU *cpu = X86_CPU(cs);
672 CPUX86State *env = &cpu->env;
674 env->exception_injected = -1;
675 env->interrupt_injected = -1;
676 env->xcr0 = 1;
677 if (kvm_irqchip_in_kernel()) {
678 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
679 KVM_MP_STATE_UNINITIALIZED;
680 } else {
681 env->mp_state = KVM_MP_STATE_RUNNABLE;
685 static int kvm_get_supported_msrs(KVMState *s)
687 static int kvm_supported_msrs;
688 int ret = 0;
690 /* first time */
691 if (kvm_supported_msrs == 0) {
692 struct kvm_msr_list msr_list, *kvm_msr_list;
694 kvm_supported_msrs = -1;
696 /* Obtain MSR list from KVM. These are the MSRs that we must
697 * save/restore */
698 msr_list.nmsrs = 0;
699 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
700 if (ret < 0 && ret != -E2BIG) {
701 return ret;
703 /* Old kernel modules had a bug and could write beyond the provided
704 memory. Allocate at least a safe amount of 1K. */
705 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
706 msr_list.nmsrs *
707 sizeof(msr_list.indices[0])));
709 kvm_msr_list->nmsrs = msr_list.nmsrs;
710 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
711 if (ret >= 0) {
712 int i;
714 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
715 if (kvm_msr_list->indices[i] == MSR_STAR) {
716 has_msr_star = true;
717 continue;
719 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
720 has_msr_hsave_pa = true;
721 continue;
723 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
724 has_msr_tsc_adjust = true;
725 continue;
727 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
728 has_msr_tsc_deadline = true;
729 continue;
731 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
732 has_msr_misc_enable = true;
733 continue;
738 g_free(kvm_msr_list);
741 return ret;
744 int kvm_arch_init(KVMState *s)
746 uint64_t identity_base = 0xfffbc000;
747 uint64_t shadow_mem;
748 int ret;
749 struct utsname utsname;
751 ret = kvm_get_supported_msrs(s);
752 if (ret < 0) {
753 return ret;
756 uname(&utsname);
757 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
760 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
761 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
762 * Since these must be part of guest physical memory, we need to allocate
763 * them, both by setting their start addresses in the kernel and by
764 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
766 * Older KVM versions may not support setting the identity map base. In
767 * that case we need to stick with the default, i.e. a 256K maximum BIOS
768 * size.
770 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
771 /* Allows up to 16M BIOSes. */
772 identity_base = 0xfeffc000;
774 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
775 if (ret < 0) {
776 return ret;
780 /* Set TSS base one page after EPT identity map. */
781 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
782 if (ret < 0) {
783 return ret;
786 /* Tell fw_cfg to notify the BIOS to reserve the range. */
787 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
788 if (ret < 0) {
789 fprintf(stderr, "e820_add_entry() table is full\n");
790 return ret;
792 qemu_register_reset(kvm_unpoison_all, NULL);
794 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
795 "kvm_shadow_mem", -1);
796 if (shadow_mem != -1) {
797 shadow_mem /= 4096;
798 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
799 if (ret < 0) {
800 return ret;
803 return 0;
806 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
808 lhs->selector = rhs->selector;
809 lhs->base = rhs->base;
810 lhs->limit = rhs->limit;
811 lhs->type = 3;
812 lhs->present = 1;
813 lhs->dpl = 3;
814 lhs->db = 0;
815 lhs->s = 1;
816 lhs->l = 0;
817 lhs->g = 0;
818 lhs->avl = 0;
819 lhs->unusable = 0;
822 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
824 unsigned flags = rhs->flags;
825 lhs->selector = rhs->selector;
826 lhs->base = rhs->base;
827 lhs->limit = rhs->limit;
828 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
829 lhs->present = (flags & DESC_P_MASK) != 0;
830 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
831 lhs->db = (flags >> DESC_B_SHIFT) & 1;
832 lhs->s = (flags & DESC_S_MASK) != 0;
833 lhs->l = (flags >> DESC_L_SHIFT) & 1;
834 lhs->g = (flags & DESC_G_MASK) != 0;
835 lhs->avl = (flags & DESC_AVL_MASK) != 0;
836 lhs->unusable = 0;
837 lhs->padding = 0;
840 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
842 lhs->selector = rhs->selector;
843 lhs->base = rhs->base;
844 lhs->limit = rhs->limit;
845 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
846 (rhs->present * DESC_P_MASK) |
847 (rhs->dpl << DESC_DPL_SHIFT) |
848 (rhs->db << DESC_B_SHIFT) |
849 (rhs->s * DESC_S_MASK) |
850 (rhs->l << DESC_L_SHIFT) |
851 (rhs->g * DESC_G_MASK) |
852 (rhs->avl * DESC_AVL_MASK);
855 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
857 if (set) {
858 *kvm_reg = *qemu_reg;
859 } else {
860 *qemu_reg = *kvm_reg;
864 static int kvm_getput_regs(X86CPU *cpu, int set)
866 CPUX86State *env = &cpu->env;
867 struct kvm_regs regs;
868 int ret = 0;
870 if (!set) {
871 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
872 if (ret < 0) {
873 return ret;
877 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
878 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
879 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
880 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
881 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
882 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
883 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
884 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
885 #ifdef TARGET_X86_64
886 kvm_getput_reg(&regs.r8, &env->regs[8], set);
887 kvm_getput_reg(&regs.r9, &env->regs[9], set);
888 kvm_getput_reg(&regs.r10, &env->regs[10], set);
889 kvm_getput_reg(&regs.r11, &env->regs[11], set);
890 kvm_getput_reg(&regs.r12, &env->regs[12], set);
891 kvm_getput_reg(&regs.r13, &env->regs[13], set);
892 kvm_getput_reg(&regs.r14, &env->regs[14], set);
893 kvm_getput_reg(&regs.r15, &env->regs[15], set);
894 #endif
896 kvm_getput_reg(&regs.rflags, &env->eflags, set);
897 kvm_getput_reg(&regs.rip, &env->eip, set);
899 if (set) {
900 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
903 return ret;
906 static int kvm_put_fpu(X86CPU *cpu)
908 CPUX86State *env = &cpu->env;
909 struct kvm_fpu fpu;
910 int i;
912 memset(&fpu, 0, sizeof fpu);
913 fpu.fsw = env->fpus & ~(7 << 11);
914 fpu.fsw |= (env->fpstt & 7) << 11;
915 fpu.fcw = env->fpuc;
916 fpu.last_opcode = env->fpop;
917 fpu.last_ip = env->fpip;
918 fpu.last_dp = env->fpdp;
919 for (i = 0; i < 8; ++i) {
920 fpu.ftwx |= (!env->fptags[i]) << i;
922 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
923 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
924 fpu.mxcsr = env->mxcsr;
926 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
929 #define XSAVE_FCW_FSW 0
930 #define XSAVE_FTW_FOP 1
931 #define XSAVE_CWD_RIP 2
932 #define XSAVE_CWD_RDP 4
933 #define XSAVE_MXCSR 6
934 #define XSAVE_ST_SPACE 8
935 #define XSAVE_XMM_SPACE 40
936 #define XSAVE_XSTATE_BV 128
937 #define XSAVE_YMMH_SPACE 144
939 static int kvm_put_xsave(X86CPU *cpu)
941 CPUX86State *env = &cpu->env;
942 struct kvm_xsave* xsave = env->kvm_xsave_buf;
943 uint16_t cwd, swd, twd;
944 int i, r;
946 if (!kvm_has_xsave()) {
947 return kvm_put_fpu(cpu);
950 memset(xsave, 0, sizeof(struct kvm_xsave));
951 twd = 0;
952 swd = env->fpus & ~(7 << 11);
953 swd |= (env->fpstt & 7) << 11;
954 cwd = env->fpuc;
955 for (i = 0; i < 8; ++i) {
956 twd |= (!env->fptags[i]) << i;
958 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
959 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
960 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
961 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
962 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
963 sizeof env->fpregs);
964 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
965 sizeof env->xmm_regs);
966 xsave->region[XSAVE_MXCSR] = env->mxcsr;
967 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
968 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
969 sizeof env->ymmh_regs);
970 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
971 return r;
974 static int kvm_put_xcrs(X86CPU *cpu)
976 CPUX86State *env = &cpu->env;
977 struct kvm_xcrs xcrs;
979 if (!kvm_has_xcrs()) {
980 return 0;
983 xcrs.nr_xcrs = 1;
984 xcrs.flags = 0;
985 xcrs.xcrs[0].xcr = 0;
986 xcrs.xcrs[0].value = env->xcr0;
987 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
990 static int kvm_put_sregs(X86CPU *cpu)
992 CPUX86State *env = &cpu->env;
993 struct kvm_sregs sregs;
995 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
996 if (env->interrupt_injected >= 0) {
997 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
998 (uint64_t)1 << (env->interrupt_injected % 64);
1001 if ((env->eflags & VM_MASK)) {
1002 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1003 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1004 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1005 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1006 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1007 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1008 } else {
1009 set_seg(&sregs.cs, &env->segs[R_CS]);
1010 set_seg(&sregs.ds, &env->segs[R_DS]);
1011 set_seg(&sregs.es, &env->segs[R_ES]);
1012 set_seg(&sregs.fs, &env->segs[R_FS]);
1013 set_seg(&sregs.gs, &env->segs[R_GS]);
1014 set_seg(&sregs.ss, &env->segs[R_SS]);
1017 set_seg(&sregs.tr, &env->tr);
1018 set_seg(&sregs.ldt, &env->ldt);
1020 sregs.idt.limit = env->idt.limit;
1021 sregs.idt.base = env->idt.base;
1022 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1023 sregs.gdt.limit = env->gdt.limit;
1024 sregs.gdt.base = env->gdt.base;
1025 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1027 sregs.cr0 = env->cr[0];
1028 sregs.cr2 = env->cr[2];
1029 sregs.cr3 = env->cr[3];
1030 sregs.cr4 = env->cr[4];
1032 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1033 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1035 sregs.efer = env->efer;
1037 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1040 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1041 uint32_t index, uint64_t value)
1043 entry->index = index;
1044 entry->data = value;
1047 static int kvm_put_msrs(X86CPU *cpu, int level)
1049 CPUX86State *env = &cpu->env;
1050 struct {
1051 struct kvm_msrs info;
1052 struct kvm_msr_entry entries[100];
1053 } msr_data;
1054 struct kvm_msr_entry *msrs = msr_data.entries;
1055 int n = 0;
1057 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1058 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1059 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1060 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1061 if (has_msr_star) {
1062 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1064 if (has_msr_hsave_pa) {
1065 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1067 if (has_msr_tsc_adjust) {
1068 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1070 if (has_msr_tsc_deadline) {
1071 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1073 if (has_msr_misc_enable) {
1074 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1075 env->msr_ia32_misc_enable);
1077 #ifdef TARGET_X86_64
1078 if (lm_capable_kernel) {
1079 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1080 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1081 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1082 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1084 #endif
1085 if (level == KVM_PUT_FULL_STATE) {
1087 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1088 * writeback. Until this is fixed, we only write the offset to SMP
1089 * guests after migration, desynchronizing the VCPUs, but avoiding
1090 * huge jump-backs that would occur without any writeback at all.
1092 if (smp_cpus == 1 || env->tsc != 0) {
1093 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1097 * The following paravirtual MSRs have side effects on the guest or are
1098 * too heavy for normal writeback. Limit them to reset or full state
1099 * updates.
1101 if (level >= KVM_PUT_RESET_STATE) {
1102 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1103 env->system_time_msr);
1104 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1105 if (has_msr_async_pf_en) {
1106 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1107 env->async_pf_en_msr);
1109 if (has_msr_pv_eoi_en) {
1110 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1111 env->pv_eoi_en_msr);
1113 if (has_msr_kvm_steal_time) {
1114 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1115 env->steal_time_msr);
1117 if (hyperv_hypercall_available()) {
1118 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1119 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1121 if (hyperv_vapic_recommended()) {
1122 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1124 kvm_msr_entry_set(&msrs[n++], MSR_IA32_FEATURE_CONTROL, env->msr_ia32_feature_control);
1126 if (env->mcg_cap) {
1127 int i;
1129 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1130 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1131 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1132 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1136 msr_data.info.nmsrs = n;
1138 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1143 static int kvm_get_fpu(X86CPU *cpu)
1145 CPUX86State *env = &cpu->env;
1146 struct kvm_fpu fpu;
1147 int i, ret;
1149 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1150 if (ret < 0) {
1151 return ret;
1154 env->fpstt = (fpu.fsw >> 11) & 7;
1155 env->fpus = fpu.fsw;
1156 env->fpuc = fpu.fcw;
1157 env->fpop = fpu.last_opcode;
1158 env->fpip = fpu.last_ip;
1159 env->fpdp = fpu.last_dp;
1160 for (i = 0; i < 8; ++i) {
1161 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1163 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1164 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1165 env->mxcsr = fpu.mxcsr;
1167 return 0;
1170 static int kvm_get_xsave(X86CPU *cpu)
1172 CPUX86State *env = &cpu->env;
1173 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1174 int ret, i;
1175 uint16_t cwd, swd, twd;
1177 if (!kvm_has_xsave()) {
1178 return kvm_get_fpu(cpu);
1181 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1182 if (ret < 0) {
1183 return ret;
1186 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1187 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1188 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1189 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1190 env->fpstt = (swd >> 11) & 7;
1191 env->fpus = swd;
1192 env->fpuc = cwd;
1193 for (i = 0; i < 8; ++i) {
1194 env->fptags[i] = !((twd >> i) & 1);
1196 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1197 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1198 env->mxcsr = xsave->region[XSAVE_MXCSR];
1199 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1200 sizeof env->fpregs);
1201 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1202 sizeof env->xmm_regs);
1203 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1204 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1205 sizeof env->ymmh_regs);
1206 return 0;
1209 static int kvm_get_xcrs(X86CPU *cpu)
1211 CPUX86State *env = &cpu->env;
1212 int i, ret;
1213 struct kvm_xcrs xcrs;
1215 if (!kvm_has_xcrs()) {
1216 return 0;
1219 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1220 if (ret < 0) {
1221 return ret;
1224 for (i = 0; i < xcrs.nr_xcrs; i++) {
1225 /* Only support xcr0 now */
1226 if (xcrs.xcrs[0].xcr == 0) {
1227 env->xcr0 = xcrs.xcrs[0].value;
1228 break;
1231 return 0;
1234 static int kvm_get_sregs(X86CPU *cpu)
1236 CPUX86State *env = &cpu->env;
1237 struct kvm_sregs sregs;
1238 uint32_t hflags;
1239 int bit, i, ret;
1241 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1242 if (ret < 0) {
1243 return ret;
1246 /* There can only be one pending IRQ set in the bitmap at a time, so try
1247 to find it and save its number instead (-1 for none). */
1248 env->interrupt_injected = -1;
1249 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1250 if (sregs.interrupt_bitmap[i]) {
1251 bit = ctz64(sregs.interrupt_bitmap[i]);
1252 env->interrupt_injected = i * 64 + bit;
1253 break;
1257 get_seg(&env->segs[R_CS], &sregs.cs);
1258 get_seg(&env->segs[R_DS], &sregs.ds);
1259 get_seg(&env->segs[R_ES], &sregs.es);
1260 get_seg(&env->segs[R_FS], &sregs.fs);
1261 get_seg(&env->segs[R_GS], &sregs.gs);
1262 get_seg(&env->segs[R_SS], &sregs.ss);
1264 get_seg(&env->tr, &sregs.tr);
1265 get_seg(&env->ldt, &sregs.ldt);
1267 env->idt.limit = sregs.idt.limit;
1268 env->idt.base = sregs.idt.base;
1269 env->gdt.limit = sregs.gdt.limit;
1270 env->gdt.base = sregs.gdt.base;
1272 env->cr[0] = sregs.cr0;
1273 env->cr[2] = sregs.cr2;
1274 env->cr[3] = sregs.cr3;
1275 env->cr[4] = sregs.cr4;
1277 env->efer = sregs.efer;
1279 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1281 #define HFLAG_COPY_MASK \
1282 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1283 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1284 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1285 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1287 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1288 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1289 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1290 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1291 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1292 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1293 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1295 if (env->efer & MSR_EFER_LMA) {
1296 hflags |= HF_LMA_MASK;
1299 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1300 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1301 } else {
1302 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1303 (DESC_B_SHIFT - HF_CS32_SHIFT);
1304 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1305 (DESC_B_SHIFT - HF_SS32_SHIFT);
1306 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1307 !(hflags & HF_CS32_MASK)) {
1308 hflags |= HF_ADDSEG_MASK;
1309 } else {
1310 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1311 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1314 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1316 return 0;
1319 static int kvm_get_msrs(X86CPU *cpu)
1321 CPUX86State *env = &cpu->env;
1322 struct {
1323 struct kvm_msrs info;
1324 struct kvm_msr_entry entries[100];
1325 } msr_data;
1326 struct kvm_msr_entry *msrs = msr_data.entries;
1327 int ret, i, n;
1329 n = 0;
1330 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1331 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1332 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1333 msrs[n++].index = MSR_PAT;
1334 if (has_msr_star) {
1335 msrs[n++].index = MSR_STAR;
1337 if (has_msr_hsave_pa) {
1338 msrs[n++].index = MSR_VM_HSAVE_PA;
1340 if (has_msr_tsc_adjust) {
1341 msrs[n++].index = MSR_TSC_ADJUST;
1343 if (has_msr_tsc_deadline) {
1344 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1346 if (has_msr_misc_enable) {
1347 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1349 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1351 if (!env->tsc_valid) {
1352 msrs[n++].index = MSR_IA32_TSC;
1353 env->tsc_valid = !runstate_is_running();
1356 #ifdef TARGET_X86_64
1357 if (lm_capable_kernel) {
1358 msrs[n++].index = MSR_CSTAR;
1359 msrs[n++].index = MSR_KERNELGSBASE;
1360 msrs[n++].index = MSR_FMASK;
1361 msrs[n++].index = MSR_LSTAR;
1363 #endif
1364 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1365 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1366 if (has_msr_async_pf_en) {
1367 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1369 if (has_msr_pv_eoi_en) {
1370 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1372 if (has_msr_kvm_steal_time) {
1373 msrs[n++].index = MSR_KVM_STEAL_TIME;
1376 if (env->mcg_cap) {
1377 msrs[n++].index = MSR_MCG_STATUS;
1378 msrs[n++].index = MSR_MCG_CTL;
1379 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1380 msrs[n++].index = MSR_MC0_CTL + i;
1384 msr_data.info.nmsrs = n;
1385 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1386 if (ret < 0) {
1387 return ret;
1390 for (i = 0; i < ret; i++) {
1391 switch (msrs[i].index) {
1392 case MSR_IA32_SYSENTER_CS:
1393 env->sysenter_cs = msrs[i].data;
1394 break;
1395 case MSR_IA32_SYSENTER_ESP:
1396 env->sysenter_esp = msrs[i].data;
1397 break;
1398 case MSR_IA32_SYSENTER_EIP:
1399 env->sysenter_eip = msrs[i].data;
1400 break;
1401 case MSR_PAT:
1402 env->pat = msrs[i].data;
1403 break;
1404 case MSR_STAR:
1405 env->star = msrs[i].data;
1406 break;
1407 #ifdef TARGET_X86_64
1408 case MSR_CSTAR:
1409 env->cstar = msrs[i].data;
1410 break;
1411 case MSR_KERNELGSBASE:
1412 env->kernelgsbase = msrs[i].data;
1413 break;
1414 case MSR_FMASK:
1415 env->fmask = msrs[i].data;
1416 break;
1417 case MSR_LSTAR:
1418 env->lstar = msrs[i].data;
1419 break;
1420 #endif
1421 case MSR_IA32_TSC:
1422 env->tsc = msrs[i].data;
1423 break;
1424 case MSR_TSC_ADJUST:
1425 env->tsc_adjust = msrs[i].data;
1426 break;
1427 case MSR_IA32_TSCDEADLINE:
1428 env->tsc_deadline = msrs[i].data;
1429 break;
1430 case MSR_VM_HSAVE_PA:
1431 env->vm_hsave = msrs[i].data;
1432 break;
1433 case MSR_KVM_SYSTEM_TIME:
1434 env->system_time_msr = msrs[i].data;
1435 break;
1436 case MSR_KVM_WALL_CLOCK:
1437 env->wall_clock_msr = msrs[i].data;
1438 break;
1439 case MSR_MCG_STATUS:
1440 env->mcg_status = msrs[i].data;
1441 break;
1442 case MSR_MCG_CTL:
1443 env->mcg_ctl = msrs[i].data;
1444 break;
1445 case MSR_IA32_MISC_ENABLE:
1446 env->msr_ia32_misc_enable = msrs[i].data;
1447 break;
1448 case MSR_IA32_FEATURE_CONTROL:
1449 env->msr_ia32_feature_control = msrs[i].data;
1450 default:
1451 if (msrs[i].index >= MSR_MC0_CTL &&
1452 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1453 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1455 break;
1456 case MSR_KVM_ASYNC_PF_EN:
1457 env->async_pf_en_msr = msrs[i].data;
1458 break;
1459 case MSR_KVM_PV_EOI_EN:
1460 env->pv_eoi_en_msr = msrs[i].data;
1461 break;
1462 case MSR_KVM_STEAL_TIME:
1463 env->steal_time_msr = msrs[i].data;
1464 break;
1468 return 0;
1471 static int kvm_put_mp_state(X86CPU *cpu)
1473 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1475 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1478 static int kvm_get_mp_state(X86CPU *cpu)
1480 CPUState *cs = CPU(cpu);
1481 CPUX86State *env = &cpu->env;
1482 struct kvm_mp_state mp_state;
1483 int ret;
1485 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1486 if (ret < 0) {
1487 return ret;
1489 env->mp_state = mp_state.mp_state;
1490 if (kvm_irqchip_in_kernel()) {
1491 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1493 return 0;
1496 static int kvm_get_apic(X86CPU *cpu)
1498 CPUX86State *env = &cpu->env;
1499 DeviceState *apic = env->apic_state;
1500 struct kvm_lapic_state kapic;
1501 int ret;
1503 if (apic && kvm_irqchip_in_kernel()) {
1504 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1505 if (ret < 0) {
1506 return ret;
1509 kvm_get_apic_state(apic, &kapic);
1511 return 0;
1514 static int kvm_put_apic(X86CPU *cpu)
1516 CPUX86State *env = &cpu->env;
1517 DeviceState *apic = env->apic_state;
1518 struct kvm_lapic_state kapic;
1520 if (apic && kvm_irqchip_in_kernel()) {
1521 kvm_put_apic_state(apic, &kapic);
1523 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1525 return 0;
1528 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1530 CPUX86State *env = &cpu->env;
1531 struct kvm_vcpu_events events;
1533 if (!kvm_has_vcpu_events()) {
1534 return 0;
1537 events.exception.injected = (env->exception_injected >= 0);
1538 events.exception.nr = env->exception_injected;
1539 events.exception.has_error_code = env->has_error_code;
1540 events.exception.error_code = env->error_code;
1541 events.exception.pad = 0;
1543 events.interrupt.injected = (env->interrupt_injected >= 0);
1544 events.interrupt.nr = env->interrupt_injected;
1545 events.interrupt.soft = env->soft_interrupt;
1547 events.nmi.injected = env->nmi_injected;
1548 events.nmi.pending = env->nmi_pending;
1549 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1550 events.nmi.pad = 0;
1552 events.sipi_vector = env->sipi_vector;
1554 events.flags = 0;
1555 if (level >= KVM_PUT_RESET_STATE) {
1556 events.flags |=
1557 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1560 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1563 static int kvm_get_vcpu_events(X86CPU *cpu)
1565 CPUX86State *env = &cpu->env;
1566 struct kvm_vcpu_events events;
1567 int ret;
1569 if (!kvm_has_vcpu_events()) {
1570 return 0;
1573 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1574 if (ret < 0) {
1575 return ret;
1577 env->exception_injected =
1578 events.exception.injected ? events.exception.nr : -1;
1579 env->has_error_code = events.exception.has_error_code;
1580 env->error_code = events.exception.error_code;
1582 env->interrupt_injected =
1583 events.interrupt.injected ? events.interrupt.nr : -1;
1584 env->soft_interrupt = events.interrupt.soft;
1586 env->nmi_injected = events.nmi.injected;
1587 env->nmi_pending = events.nmi.pending;
1588 if (events.nmi.masked) {
1589 env->hflags2 |= HF2_NMI_MASK;
1590 } else {
1591 env->hflags2 &= ~HF2_NMI_MASK;
1594 env->sipi_vector = events.sipi_vector;
1596 return 0;
1599 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1601 CPUState *cs = CPU(cpu);
1602 CPUX86State *env = &cpu->env;
1603 int ret = 0;
1604 unsigned long reinject_trap = 0;
1606 if (!kvm_has_vcpu_events()) {
1607 if (env->exception_injected == 1) {
1608 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1609 } else if (env->exception_injected == 3) {
1610 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1612 env->exception_injected = -1;
1616 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1617 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1618 * by updating the debug state once again if single-stepping is on.
1619 * Another reason to call kvm_update_guest_debug here is a pending debug
1620 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1621 * reinject them via SET_GUEST_DEBUG.
1623 if (reinject_trap ||
1624 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
1625 ret = kvm_update_guest_debug(env, reinject_trap);
1627 return ret;
1630 static int kvm_put_debugregs(X86CPU *cpu)
1632 CPUX86State *env = &cpu->env;
1633 struct kvm_debugregs dbgregs;
1634 int i;
1636 if (!kvm_has_debugregs()) {
1637 return 0;
1640 for (i = 0; i < 4; i++) {
1641 dbgregs.db[i] = env->dr[i];
1643 dbgregs.dr6 = env->dr[6];
1644 dbgregs.dr7 = env->dr[7];
1645 dbgregs.flags = 0;
1647 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1650 static int kvm_get_debugregs(X86CPU *cpu)
1652 CPUX86State *env = &cpu->env;
1653 struct kvm_debugregs dbgregs;
1654 int i, ret;
1656 if (!kvm_has_debugregs()) {
1657 return 0;
1660 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1661 if (ret < 0) {
1662 return ret;
1664 for (i = 0; i < 4; i++) {
1665 env->dr[i] = dbgregs.db[i];
1667 env->dr[4] = env->dr[6] = dbgregs.dr6;
1668 env->dr[5] = env->dr[7] = dbgregs.dr7;
1670 return 0;
1673 int kvm_arch_put_registers(CPUState *cpu, int level)
1675 X86CPU *x86_cpu = X86_CPU(cpu);
1676 int ret;
1678 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1680 ret = kvm_getput_regs(x86_cpu, 1);
1681 if (ret < 0) {
1682 return ret;
1684 ret = kvm_put_xsave(x86_cpu);
1685 if (ret < 0) {
1686 return ret;
1688 ret = kvm_put_xcrs(x86_cpu);
1689 if (ret < 0) {
1690 return ret;
1692 ret = kvm_put_sregs(x86_cpu);
1693 if (ret < 0) {
1694 return ret;
1696 /* must be before kvm_put_msrs */
1697 ret = kvm_inject_mce_oldstyle(x86_cpu);
1698 if (ret < 0) {
1699 return ret;
1701 ret = kvm_put_msrs(x86_cpu, level);
1702 if (ret < 0) {
1703 return ret;
1705 if (level >= KVM_PUT_RESET_STATE) {
1706 ret = kvm_put_mp_state(x86_cpu);
1707 if (ret < 0) {
1708 return ret;
1710 ret = kvm_put_apic(x86_cpu);
1711 if (ret < 0) {
1712 return ret;
1715 ret = kvm_put_vcpu_events(x86_cpu, level);
1716 if (ret < 0) {
1717 return ret;
1719 ret = kvm_put_debugregs(x86_cpu);
1720 if (ret < 0) {
1721 return ret;
1723 /* must be last */
1724 ret = kvm_guest_debug_workarounds(x86_cpu);
1725 if (ret < 0) {
1726 return ret;
1728 return 0;
1731 int kvm_arch_get_registers(CPUState *cs)
1733 X86CPU *cpu = X86_CPU(cs);
1734 int ret;
1736 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1738 ret = kvm_getput_regs(cpu, 0);
1739 if (ret < 0) {
1740 return ret;
1742 ret = kvm_get_xsave(cpu);
1743 if (ret < 0) {
1744 return ret;
1746 ret = kvm_get_xcrs(cpu);
1747 if (ret < 0) {
1748 return ret;
1750 ret = kvm_get_sregs(cpu);
1751 if (ret < 0) {
1752 return ret;
1754 ret = kvm_get_msrs(cpu);
1755 if (ret < 0) {
1756 return ret;
1758 ret = kvm_get_mp_state(cpu);
1759 if (ret < 0) {
1760 return ret;
1762 ret = kvm_get_apic(cpu);
1763 if (ret < 0) {
1764 return ret;
1766 ret = kvm_get_vcpu_events(cpu);
1767 if (ret < 0) {
1768 return ret;
1770 ret = kvm_get_debugregs(cpu);
1771 if (ret < 0) {
1772 return ret;
1774 return 0;
1777 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1779 X86CPU *x86_cpu = X86_CPU(cpu);
1780 CPUX86State *env = &x86_cpu->env;
1781 int ret;
1783 /* Inject NMI */
1784 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1785 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1786 DPRINTF("injected NMI\n");
1787 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1788 if (ret < 0) {
1789 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1790 strerror(-ret));
1794 if (!kvm_irqchip_in_kernel()) {
1795 /* Force the VCPU out of its inner loop to process any INIT requests
1796 * or pending TPR access reports. */
1797 if (cpu->interrupt_request &
1798 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1799 cpu->exit_request = 1;
1802 /* Try to inject an interrupt if the guest can accept it */
1803 if (run->ready_for_interrupt_injection &&
1804 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1805 (env->eflags & IF_MASK)) {
1806 int irq;
1808 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1809 irq = cpu_get_pic_interrupt(env);
1810 if (irq >= 0) {
1811 struct kvm_interrupt intr;
1813 intr.irq = irq;
1814 DPRINTF("injected interrupt %d\n", irq);
1815 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1816 if (ret < 0) {
1817 fprintf(stderr,
1818 "KVM: injection failed, interrupt lost (%s)\n",
1819 strerror(-ret));
1824 /* If we have an interrupt but the guest is not ready to receive an
1825 * interrupt, request an interrupt window exit. This will
1826 * cause a return to userspace as soon as the guest is ready to
1827 * receive interrupts. */
1828 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1829 run->request_interrupt_window = 1;
1830 } else {
1831 run->request_interrupt_window = 0;
1834 DPRINTF("setting tpr\n");
1835 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1839 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1841 X86CPU *x86_cpu = X86_CPU(cpu);
1842 CPUX86State *env = &x86_cpu->env;
1844 if (run->if_flag) {
1845 env->eflags |= IF_MASK;
1846 } else {
1847 env->eflags &= ~IF_MASK;
1849 cpu_set_apic_tpr(env->apic_state, run->cr8);
1850 cpu_set_apic_base(env->apic_state, run->apic_base);
1853 int kvm_arch_process_async_events(CPUState *cs)
1855 X86CPU *cpu = X86_CPU(cs);
1856 CPUX86State *env = &cpu->env;
1858 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1859 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1860 assert(env->mcg_cap);
1862 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1864 kvm_cpu_synchronize_state(cs);
1866 if (env->exception_injected == EXCP08_DBLE) {
1867 /* this means triple fault */
1868 qemu_system_reset_request();
1869 cs->exit_request = 1;
1870 return 0;
1872 env->exception_injected = EXCP12_MCHK;
1873 env->has_error_code = 0;
1875 cs->halted = 0;
1876 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1877 env->mp_state = KVM_MP_STATE_RUNNABLE;
1881 if (kvm_irqchip_in_kernel()) {
1882 return 0;
1885 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
1886 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
1887 apic_poll_irq(env->apic_state);
1889 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1890 (env->eflags & IF_MASK)) ||
1891 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1892 cs->halted = 0;
1894 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
1895 kvm_cpu_synchronize_state(cs);
1896 do_cpu_init(cpu);
1898 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
1899 kvm_cpu_synchronize_state(cs);
1900 do_cpu_sipi(cpu);
1902 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
1903 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
1904 kvm_cpu_synchronize_state(cs);
1905 apic_handle_tpr_access_report(env->apic_state, env->eip,
1906 env->tpr_access_type);
1909 return cs->halted;
1912 static int kvm_handle_halt(X86CPU *cpu)
1914 CPUState *cs = CPU(cpu);
1915 CPUX86State *env = &cpu->env;
1917 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1918 (env->eflags & IF_MASK)) &&
1919 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1920 cs->halted = 1;
1921 return EXCP_HLT;
1924 return 0;
1927 static int kvm_handle_tpr_access(X86CPU *cpu)
1929 CPUX86State *env = &cpu->env;
1930 CPUState *cs = CPU(cpu);
1931 struct kvm_run *run = cs->kvm_run;
1933 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1934 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1935 : TPR_ACCESS_READ);
1936 return 1;
1939 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1941 static const uint8_t int3 = 0xcc;
1943 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1944 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
1945 return -EINVAL;
1947 return 0;
1950 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1952 uint8_t int3;
1954 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1955 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1956 return -EINVAL;
1958 return 0;
1961 static struct {
1962 target_ulong addr;
1963 int len;
1964 int type;
1965 } hw_breakpoint[4];
1967 static int nb_hw_breakpoint;
1969 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1971 int n;
1973 for (n = 0; n < nb_hw_breakpoint; n++) {
1974 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1975 (hw_breakpoint[n].len == len || len == -1)) {
1976 return n;
1979 return -1;
1982 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1983 target_ulong len, int type)
1985 switch (type) {
1986 case GDB_BREAKPOINT_HW:
1987 len = 1;
1988 break;
1989 case GDB_WATCHPOINT_WRITE:
1990 case GDB_WATCHPOINT_ACCESS:
1991 switch (len) {
1992 case 1:
1993 break;
1994 case 2:
1995 case 4:
1996 case 8:
1997 if (addr & (len - 1)) {
1998 return -EINVAL;
2000 break;
2001 default:
2002 return -EINVAL;
2004 break;
2005 default:
2006 return -ENOSYS;
2009 if (nb_hw_breakpoint == 4) {
2010 return -ENOBUFS;
2012 if (find_hw_breakpoint(addr, len, type) >= 0) {
2013 return -EEXIST;
2015 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2016 hw_breakpoint[nb_hw_breakpoint].len = len;
2017 hw_breakpoint[nb_hw_breakpoint].type = type;
2018 nb_hw_breakpoint++;
2020 return 0;
2023 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2024 target_ulong len, int type)
2026 int n;
2028 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2029 if (n < 0) {
2030 return -ENOENT;
2032 nb_hw_breakpoint--;
2033 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2035 return 0;
2038 void kvm_arch_remove_all_hw_breakpoints(void)
2040 nb_hw_breakpoint = 0;
2043 static CPUWatchpoint hw_watchpoint;
2045 static int kvm_handle_debug(X86CPU *cpu,
2046 struct kvm_debug_exit_arch *arch_info)
2048 CPUState *cs = CPU(cpu);
2049 CPUX86State *env = &cpu->env;
2050 int ret = 0;
2051 int n;
2053 if (arch_info->exception == 1) {
2054 if (arch_info->dr6 & (1 << 14)) {
2055 if (cs->singlestep_enabled) {
2056 ret = EXCP_DEBUG;
2058 } else {
2059 for (n = 0; n < 4; n++) {
2060 if (arch_info->dr6 & (1 << n)) {
2061 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2062 case 0x0:
2063 ret = EXCP_DEBUG;
2064 break;
2065 case 0x1:
2066 ret = EXCP_DEBUG;
2067 env->watchpoint_hit = &hw_watchpoint;
2068 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2069 hw_watchpoint.flags = BP_MEM_WRITE;
2070 break;
2071 case 0x3:
2072 ret = EXCP_DEBUG;
2073 env->watchpoint_hit = &hw_watchpoint;
2074 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2075 hw_watchpoint.flags = BP_MEM_ACCESS;
2076 break;
2081 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2082 ret = EXCP_DEBUG;
2084 if (ret == 0) {
2085 cpu_synchronize_state(CPU(cpu));
2086 assert(env->exception_injected == -1);
2088 /* pass to guest */
2089 env->exception_injected = arch_info->exception;
2090 env->has_error_code = 0;
2093 return ret;
2096 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2098 const uint8_t type_code[] = {
2099 [GDB_BREAKPOINT_HW] = 0x0,
2100 [GDB_WATCHPOINT_WRITE] = 0x1,
2101 [GDB_WATCHPOINT_ACCESS] = 0x3
2103 const uint8_t len_code[] = {
2104 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2106 int n;
2108 if (kvm_sw_breakpoints_active(cpu)) {
2109 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2111 if (nb_hw_breakpoint > 0) {
2112 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2113 dbg->arch.debugreg[7] = 0x0600;
2114 for (n = 0; n < nb_hw_breakpoint; n++) {
2115 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2116 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2117 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2118 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2123 static bool host_supports_vmx(void)
2125 uint32_t ecx, unused;
2127 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2128 return ecx & CPUID_EXT_VMX;
2131 #define VMX_INVALID_GUEST_STATE 0x80000021
2133 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2135 X86CPU *cpu = X86_CPU(cs);
2136 uint64_t code;
2137 int ret;
2139 switch (run->exit_reason) {
2140 case KVM_EXIT_HLT:
2141 DPRINTF("handle_hlt\n");
2142 ret = kvm_handle_halt(cpu);
2143 break;
2144 case KVM_EXIT_SET_TPR:
2145 ret = 0;
2146 break;
2147 case KVM_EXIT_TPR_ACCESS:
2148 ret = kvm_handle_tpr_access(cpu);
2149 break;
2150 case KVM_EXIT_FAIL_ENTRY:
2151 code = run->fail_entry.hardware_entry_failure_reason;
2152 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2153 code);
2154 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2155 fprintf(stderr,
2156 "\nIf you're running a guest on an Intel machine without "
2157 "unrestricted mode\n"
2158 "support, the failure can be most likely due to the guest "
2159 "entering an invalid\n"
2160 "state for Intel VT. For example, the guest maybe running "
2161 "in big real mode\n"
2162 "which is not supported on less recent Intel processors."
2163 "\n\n");
2165 ret = -1;
2166 break;
2167 case KVM_EXIT_EXCEPTION:
2168 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2169 run->ex.exception, run->ex.error_code);
2170 ret = -1;
2171 break;
2172 case KVM_EXIT_DEBUG:
2173 DPRINTF("kvm_exit_debug\n");
2174 ret = kvm_handle_debug(cpu, &run->debug.arch);
2175 break;
2176 default:
2177 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2178 ret = -1;
2179 break;
2182 return ret;
2185 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2187 X86CPU *cpu = X86_CPU(cs);
2188 CPUX86State *env = &cpu->env;
2190 kvm_cpu_synchronize_state(cs);
2191 return !(env->cr[0] & CR0_PE_MASK) ||
2192 ((env->segs[R_CS].selector & 3) != 3);
2195 void kvm_arch_init_irq_routing(KVMState *s)
2197 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2198 /* If kernel can't do irq routing, interrupt source
2199 * override 0->2 cannot be set up as required by HPET.
2200 * So we have to disable it.
2202 no_hpet = 1;
2204 /* We know at this point that we're using the in-kernel
2205 * irqchip, so we can use irqfds, and on x86 we know
2206 * we can use msi via irqfd and GSI routing.
2208 kvm_irqfds_allowed = true;
2209 kvm_msi_via_irqfd_allowed = true;
2210 kvm_gsi_routing_allowed = true;
2213 /* Classic KVM device assignment interface. Will remain x86 only. */
2214 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2215 uint32_t flags, uint32_t *dev_id)
2217 struct kvm_assigned_pci_dev dev_data = {
2218 .segnr = dev_addr->domain,
2219 .busnr = dev_addr->bus,
2220 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2221 .flags = flags,
2223 int ret;
2225 dev_data.assigned_dev_id =
2226 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2228 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2229 if (ret < 0) {
2230 return ret;
2233 *dev_id = dev_data.assigned_dev_id;
2235 return 0;
2238 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2240 struct kvm_assigned_pci_dev dev_data = {
2241 .assigned_dev_id = dev_id,
2244 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2247 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2248 uint32_t irq_type, uint32_t guest_irq)
2250 struct kvm_assigned_irq assigned_irq = {
2251 .assigned_dev_id = dev_id,
2252 .guest_irq = guest_irq,
2253 .flags = irq_type,
2256 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2257 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2258 } else {
2259 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2263 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2264 uint32_t guest_irq)
2266 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2267 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2269 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2272 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2274 struct kvm_assigned_pci_dev dev_data = {
2275 .assigned_dev_id = dev_id,
2276 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2279 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2282 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2283 uint32_t type)
2285 struct kvm_assigned_irq assigned_irq = {
2286 .assigned_dev_id = dev_id,
2287 .flags = type,
2290 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2293 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2295 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2296 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2299 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2301 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2302 KVM_DEV_IRQ_GUEST_MSI, virq);
2305 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2307 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2308 KVM_DEV_IRQ_HOST_MSI);
2311 bool kvm_device_msix_supported(KVMState *s)
2313 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2314 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2315 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2318 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2319 uint32_t nr_vectors)
2321 struct kvm_assigned_msix_nr msix_nr = {
2322 .assigned_dev_id = dev_id,
2323 .entry_nr = nr_vectors,
2326 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2329 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2330 int virq)
2332 struct kvm_assigned_msix_entry msix_entry = {
2333 .assigned_dev_id = dev_id,
2334 .gsi = virq,
2335 .entry = vector,
2338 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2341 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2343 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2344 KVM_DEV_IRQ_GUEST_MSIX, 0);
2347 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2349 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2350 KVM_DEV_IRQ_HOST_MSIX);