Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / disas / alpha.c
blobcef4f31cd73678a1b5ae87d17e27de84b0eec18d
1 /* alpha-dis.c -- Disassemble Alpha AXP instructions
2 Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@tamu.edu>,
4 patterned after the PPC opcode handling written by Ian Lance Taylor.
6 This file is part of GDB, GAS, and the GNU binutils.
8 GDB, GAS, and the GNU binutils are free software; you can redistribute
9 them and/or modify them under the terms of the GNU General Public
10 License as published by the Free Software Foundation; either version
11 2, or (at your option) any later version.
13 GDB, GAS, and the GNU binutils are distributed in the hope that they
14 will be useful, but WITHOUT ANY WARRANTY; without even the implied
15 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
16 the GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this file; see the file COPYING. If not, see
20 <http://www.gnu.org/licenses/>. */
22 #include "disas/bfd.h"
24 /* MAX is redefined below, so remove any previous definition. */
25 #undef MAX
27 /* The opcode table is an array of struct alpha_opcode. */
29 struct alpha_opcode
31 /* The opcode name. */
32 const char *name;
34 /* The opcode itself. Those bits which will be filled in with
35 operands are zeroes. */
36 unsigned opcode;
38 /* The opcode mask. This is used by the disassembler. This is a
39 mask containing ones indicating those bits which must match the
40 opcode field, and zeroes indicating those bits which need not
41 match (and are presumably filled in by operands). */
42 unsigned mask;
44 /* One bit flags for the opcode. These are primarily used to
45 indicate specific processors and environments support the
46 instructions. The defined values are listed below. */
47 unsigned flags;
49 /* An array of operand codes. Each code is an index into the
50 operand table. They appear in the order which the operands must
51 appear in assembly code, and are terminated by a zero. */
52 unsigned char operands[4];
55 /* The table itself is sorted by major opcode number, and is otherwise
56 in the order in which the disassembler should consider
57 instructions. */
58 extern const struct alpha_opcode alpha_opcodes[];
59 extern const unsigned alpha_num_opcodes;
61 /* Values defined for the flags field of a struct alpha_opcode. */
63 /* CPU Availability */
64 #define AXP_OPCODE_BASE 0x0001 /* Base architecture -- all cpus. */
65 #define AXP_OPCODE_EV4 0x0002 /* EV4 specific PALcode insns. */
66 #define AXP_OPCODE_EV5 0x0004 /* EV5 specific PALcode insns. */
67 #define AXP_OPCODE_EV6 0x0008 /* EV6 specific PALcode insns. */
68 #define AXP_OPCODE_BWX 0x0100 /* Byte/word extension (amask bit 0). */
69 #define AXP_OPCODE_CIX 0x0200 /* "Count" extension (amask bit 1). */
70 #define AXP_OPCODE_MAX 0x0400 /* Multimedia extension (amask bit 8). */
72 #define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
74 /* A macro to extract the major opcode from an instruction. */
75 #define AXP_OP(i) (((i) >> 26) & 0x3F)
77 /* The total number of major opcodes. */
78 #define AXP_NOPS 0x40
81 /* The operands table is an array of struct alpha_operand. */
83 struct alpha_operand
85 /* The number of bits in the operand. */
86 unsigned int bits : 5;
88 /* How far the operand is left shifted in the instruction. */
89 unsigned int shift : 5;
91 /* The default relocation type for this operand. */
92 signed int default_reloc : 16;
94 /* One bit syntax flags. */
95 unsigned int flags : 16;
97 /* Insertion function. This is used by the assembler. To insert an
98 operand value into an instruction, check this field.
100 If it is NULL, execute
101 i |= (op & ((1 << o->bits) - 1)) << o->shift;
102 (i is the instruction which we are filling in, o is a pointer to
103 this structure, and op is the opcode value; this assumes twos
104 complement arithmetic).
106 If this field is not NULL, then simply call it with the
107 instruction and the operand value. It will return the new value
108 of the instruction. If the ERRMSG argument is not NULL, then if
109 the operand value is illegal, *ERRMSG will be set to a warning
110 string (the operand will be inserted in any case). If the
111 operand value is legal, *ERRMSG will be unchanged (most operands
112 can accept any value). */
113 unsigned (*insert) (unsigned instruction, int op,
114 const char **errmsg);
116 /* Extraction function. This is used by the disassembler. To
117 extract this operand type from an instruction, check this field.
119 If it is NULL, compute
120 op = ((i) >> o->shift) & ((1 << o->bits) - 1);
121 if ((o->flags & AXP_OPERAND_SIGNED) != 0
122 && (op & (1 << (o->bits - 1))) != 0)
123 op -= 1 << o->bits;
124 (i is the instruction, o is a pointer to this structure, and op
125 is the result; this assumes twos complement arithmetic).
127 If this field is not NULL, then simply call it with the
128 instruction value. It will return the value of the operand. If
129 the INVALID argument is not NULL, *INVALID will be set to
130 non-zero if this operand type can not actually be extracted from
131 this operand (i.e., the instruction does not match). If the
132 operand is valid, *INVALID will not be changed. */
133 int (*extract) (unsigned instruction, int *invalid);
136 /* Elements in the table are retrieved by indexing with values from
137 the operands field of the alpha_opcodes table. */
139 extern const struct alpha_operand alpha_operands[];
140 extern const unsigned alpha_num_operands;
142 /* Values defined for the flags field of a struct alpha_operand. */
144 /* Mask for selecting the type for typecheck purposes */
145 #define AXP_OPERAND_TYPECHECK_MASK \
146 (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR | \
147 AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED | \
148 AXP_OPERAND_UNSIGNED)
150 /* This operand does not actually exist in the assembler input. This
151 is used to support extended mnemonics, for which two operands fields
152 are identical. The assembler should call the insert function with
153 any op value. The disassembler should call the extract function,
154 ignore the return value, and check the value placed in the invalid
155 argument. */
156 #define AXP_OPERAND_FAKE 01
158 /* The operand should be wrapped in parentheses rather than separated
159 from the previous by a comma. This is used for the load and store
160 instructions which want their operands to look like "Ra,disp(Rb)". */
161 #define AXP_OPERAND_PARENS 02
163 /* Used in combination with PARENS, this suppresses the suppression of
164 the comma. This is used for "jmp Ra,(Rb),hint". */
165 #define AXP_OPERAND_COMMA 04
167 /* This operand names an integer register. */
168 #define AXP_OPERAND_IR 010
170 /* This operand names a floating point register. */
171 #define AXP_OPERAND_FPR 020
173 /* This operand is a relative branch displacement. The disassembler
174 prints these symbolically if possible. */
175 #define AXP_OPERAND_RELATIVE 040
177 /* This operand takes signed values. */
178 #define AXP_OPERAND_SIGNED 0100
180 /* This operand takes unsigned values. This exists primarily so that
181 a flags value of 0 can be treated as end-of-arguments. */
182 #define AXP_OPERAND_UNSIGNED 0200
184 /* Suppress overflow detection on this field. This is used for hints. */
185 #define AXP_OPERAND_NOOVERFLOW 0400
187 /* Mask for optional argument default value. */
188 #define AXP_OPERAND_OPTIONAL_MASK 07000
190 /* This operand defaults to zero. This is used for jump hints. */
191 #define AXP_OPERAND_DEFAULT_ZERO 01000
193 /* This operand should default to the first (real) operand and is used
194 in conjunction with AXP_OPERAND_OPTIONAL. This allows
195 "and $0,3,$0" to be written as "and $0,3", etc. I don't like
196 it, but it's what DEC does. */
197 #define AXP_OPERAND_DEFAULT_FIRST 02000
199 /* Similarly, this operand should default to the second (real) operand.
200 This allows "negl $0" instead of "negl $0,$0". */
201 #define AXP_OPERAND_DEFAULT_SECOND 04000
204 /* Register common names */
206 #define AXP_REG_V0 0
207 #define AXP_REG_T0 1
208 #define AXP_REG_T1 2
209 #define AXP_REG_T2 3
210 #define AXP_REG_T3 4
211 #define AXP_REG_T4 5
212 #define AXP_REG_T5 6
213 #define AXP_REG_T6 7
214 #define AXP_REG_T7 8
215 #define AXP_REG_S0 9
216 #define AXP_REG_S1 10
217 #define AXP_REG_S2 11
218 #define AXP_REG_S3 12
219 #define AXP_REG_S4 13
220 #define AXP_REG_S5 14
221 #define AXP_REG_FP 15
222 #define AXP_REG_A0 16
223 #define AXP_REG_A1 17
224 #define AXP_REG_A2 18
225 #define AXP_REG_A3 19
226 #define AXP_REG_A4 20
227 #define AXP_REG_A5 21
228 #define AXP_REG_T8 22
229 #define AXP_REG_T9 23
230 #define AXP_REG_T10 24
231 #define AXP_REG_T11 25
232 #define AXP_REG_RA 26
233 #define AXP_REG_PV 27
234 #define AXP_REG_T12 27
235 #define AXP_REG_AT 28
236 #define AXP_REG_GP 29
237 #define AXP_REG_SP 30
238 #define AXP_REG_ZERO 31
240 enum bfd_reloc_code_real {
241 BFD_RELOC_23_PCREL_S2,
242 BFD_RELOC_ALPHA_HINT
245 /* This file holds the Alpha AXP opcode table. The opcode table includes
246 almost all of the extended instruction mnemonics. This permits the
247 disassembler to use them, and simplifies the assembler logic, at the
248 cost of increasing the table size. The table is strictly constant
249 data, so the compiler should be able to put it in the text segment.
251 This file also holds the operand table. All knowledge about inserting
252 and extracting operands from instructions is kept in this file.
254 The information for the base instruction set was compiled from the
255 _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
256 version 2.
258 The information for the post-ev5 architecture extensions BWX, CIX and
259 MAX came from version 3 of this same document, which is also available
260 on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
261 /literature/alphahb2.pdf
263 The information for the EV4 PALcode instructions was compiled from
264 _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
265 Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
266 revision dated June 1994.
268 The information for the EV5 PALcode instructions was compiled from
269 _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
270 Order Number EC-QAEQB-TE, preliminary revision dated April 1995. */
272 /* Local insertion and extraction functions */
274 static unsigned insert_rba (unsigned, int, const char **);
275 static unsigned insert_rca (unsigned, int, const char **);
276 static unsigned insert_za (unsigned, int, const char **);
277 static unsigned insert_zb (unsigned, int, const char **);
278 static unsigned insert_zc (unsigned, int, const char **);
279 static unsigned insert_bdisp (unsigned, int, const char **);
280 static unsigned insert_jhint (unsigned, int, const char **);
281 static unsigned insert_ev6hwjhint (unsigned, int, const char **);
283 static int extract_rba (unsigned, int *);
284 static int extract_rca (unsigned, int *);
285 static int extract_za (unsigned, int *);
286 static int extract_zb (unsigned, int *);
287 static int extract_zc (unsigned, int *);
288 static int extract_bdisp (unsigned, int *);
289 static int extract_jhint (unsigned, int *);
290 static int extract_ev6hwjhint (unsigned, int *);
293 /* The operands table */
295 const struct alpha_operand alpha_operands[] =
297 /* The fields are bits, shift, insert, extract, flags */
298 /* The zero index is used to indicate end-of-list */
299 #define UNUSED 0
300 { 0, 0, 0, 0, 0, 0 },
302 /* The plain integer register fields */
303 #define RA (UNUSED + 1)
304 { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
305 #define RB (RA + 1)
306 { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
307 #define RC (RB + 1)
308 { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
310 /* The plain fp register fields */
311 #define FA (RC + 1)
312 { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
313 #define FB (FA + 1)
314 { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
315 #define FC (FB + 1)
316 { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
318 /* The integer registers when they are ZERO */
319 #define ZA (FC + 1)
320 { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
321 #define ZB (ZA + 1)
322 { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
323 #define ZC (ZB + 1)
324 { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
326 /* The RB field when it needs parentheses */
327 #define PRB (ZC + 1)
328 { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
330 /* The RB field when it needs parentheses _and_ a preceding comma */
331 #define CPRB (PRB + 1)
332 { 5, 16, 0,
333 AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
335 /* The RB field when it must be the same as the RA field */
336 #define RBA (CPRB + 1)
337 { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
339 /* The RC field when it must be the same as the RB field */
340 #define RCA (RBA + 1)
341 { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
343 /* The RC field when it can *default* to RA */
344 #define DRC1 (RCA + 1)
345 { 5, 0, 0,
346 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
348 /* The RC field when it can *default* to RB */
349 #define DRC2 (DRC1 + 1)
350 { 5, 0, 0,
351 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
353 /* The FC field when it can *default* to RA */
354 #define DFC1 (DRC2 + 1)
355 { 5, 0, 0,
356 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
358 /* The FC field when it can *default* to RB */
359 #define DFC2 (DFC1 + 1)
360 { 5, 0, 0,
361 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
363 /* The unsigned 8-bit literal of Operate format insns */
364 #define LIT (DFC2 + 1)
365 { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
367 /* The signed 16-bit displacement of Memory format insns. From here
368 we can't tell what relocation should be used, so don't use a default. */
369 #define MDISP (LIT + 1)
370 { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
372 /* The signed "23-bit" aligned displacement of Branch format insns */
373 #define BDISP (MDISP + 1)
374 { 21, 0, BFD_RELOC_23_PCREL_S2,
375 AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
377 /* The 26-bit PALcode function */
378 #define PALFN (BDISP + 1)
379 { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
381 /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
382 #define JMPHINT (PALFN + 1)
383 { 14, 0, BFD_RELOC_ALPHA_HINT,
384 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
385 insert_jhint, extract_jhint },
387 /* The optional hint to RET/JSR_COROUTINE */
388 #define RETHINT (JMPHINT + 1)
389 { 14, 0, -RETHINT,
390 AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
392 /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
393 #define EV4HWDISP (RETHINT + 1)
394 #define EV6HWDISP (EV4HWDISP)
395 { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
397 /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
398 #define EV4HWINDEX (EV4HWDISP + 1)
399 { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
401 /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
402 that occur in DEC PALcode. */
403 #define EV4EXTHWINDEX (EV4HWINDEX + 1)
404 { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
406 /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
407 #define EV5HWDISP (EV4EXTHWINDEX + 1)
408 { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
410 /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
411 #define EV5HWINDEX (EV5HWDISP + 1)
412 { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
414 /* The 16-bit combined index/scoreboard mask for the ev6
415 hw_m[ft]pr (pal19/pal1d) insns */
416 #define EV6HWINDEX (EV5HWINDEX + 1)
417 { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
419 /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
420 #define EV6HWJMPHINT (EV6HWINDEX+ 1)
421 { 8, 0, -EV6HWJMPHINT,
422 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
423 insert_ev6hwjhint, extract_ev6hwjhint }
426 const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
428 /* The RB field when it is the same as the RA field in the same insn.
429 This operand is marked fake. The insertion function just copies
430 the RA field into the RB field, and the extraction function just
431 checks that the fields are the same. */
433 /*ARGSUSED*/
434 static unsigned
435 insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
437 return insn | (((insn >> 21) & 0x1f) << 16);
440 static int
441 extract_rba(unsigned insn, int *invalid)
443 if (invalid != (int *) NULL
444 && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
445 *invalid = 1;
446 return 0;
450 /* The same for the RC field */
452 /*ARGSUSED*/
453 static unsigned
454 insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
456 return insn | ((insn >> 21) & 0x1f);
459 static int
460 extract_rca(unsigned insn, int *invalid)
462 if (invalid != (int *) NULL
463 && ((insn >> 21) & 0x1f) != (insn & 0x1f))
464 *invalid = 1;
465 return 0;
469 /* Fake arguments in which the registers must be set to ZERO */
471 /*ARGSUSED*/
472 static unsigned
473 insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
475 return insn | (31 << 21);
478 static int
479 extract_za(unsigned insn, int *invalid)
481 if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
482 *invalid = 1;
483 return 0;
486 /*ARGSUSED*/
487 static unsigned
488 insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
490 return insn | (31 << 16);
493 static int
494 extract_zb(unsigned insn, int *invalid)
496 if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
497 *invalid = 1;
498 return 0;
501 /*ARGSUSED*/
502 static unsigned
503 insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
505 return insn | 31;
508 static int
509 extract_zc(unsigned insn, int *invalid)
511 if (invalid != (int *) NULL && (insn & 0x1f) != 31)
512 *invalid = 1;
513 return 0;
517 /* The displacement field of a Branch format insn. */
519 static unsigned
520 insert_bdisp(unsigned insn, int value, const char **errmsg)
522 if (errmsg != (const char **)NULL && (value & 3))
523 *errmsg = _("branch operand unaligned");
524 return insn | ((value / 4) & 0x1FFFFF);
527 /*ARGSUSED*/
528 static int
529 extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
531 return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
535 /* The hint field of a JMP/JSR insn. */
537 static unsigned
538 insert_jhint(unsigned insn, int value, const char **errmsg)
540 if (errmsg != (const char **)NULL && (value & 3))
541 *errmsg = _("jump hint unaligned");
542 return insn | ((value / 4) & 0x3FFF);
545 /*ARGSUSED*/
546 static int
547 extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
549 return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
552 /* The hint field of an EV6 HW_JMP/JSR insn. */
554 static unsigned
555 insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
557 if (errmsg != (const char **)NULL && (value & 3))
558 *errmsg = _("jump hint unaligned");
559 return insn | ((value / 4) & 0x1FFF);
562 /*ARGSUSED*/
563 static int
564 extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
566 return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
570 /* Macros used to form opcodes */
572 /* The main opcode */
573 #define OP(x) (((x) & 0x3F) << 26)
574 #define OP_MASK 0xFC000000
576 /* Branch format instructions */
577 #define BRA_(oo) OP(oo)
578 #define BRA_MASK OP_MASK
579 #define BRA(oo) BRA_(oo), BRA_MASK
581 /* Floating point format instructions */
582 #define FP_(oo,fff) (OP(oo) | (((fff) & 0x7FF) << 5))
583 #define FP_MASK (OP_MASK | 0xFFE0)
584 #define FP(oo,fff) FP_(oo,fff), FP_MASK
586 /* Memory format instructions */
587 #define MEM_(oo) OP(oo)
588 #define MEM_MASK OP_MASK
589 #define MEM(oo) MEM_(oo), MEM_MASK
591 /* Memory/Func Code format instructions */
592 #define MFC_(oo,ffff) (OP(oo) | ((ffff) & 0xFFFF))
593 #define MFC_MASK (OP_MASK | 0xFFFF)
594 #define MFC(oo,ffff) MFC_(oo,ffff), MFC_MASK
596 /* Memory/Branch format instructions */
597 #define MBR_(oo,h) (OP(oo) | (((h) & 3) << 14))
598 #define MBR_MASK (OP_MASK | 0xC000)
599 #define MBR(oo,h) MBR_(oo,h), MBR_MASK
601 /* Operate format instructions. The OPRL variant specifies a
602 literal second argument. */
603 #define OPR_(oo,ff) (OP(oo) | (((ff) & 0x7F) << 5))
604 #define OPRL_(oo,ff) (OPR_((oo),(ff)) | 0x1000)
605 #define OPR_MASK (OP_MASK | 0x1FE0)
606 #define OPR(oo,ff) OPR_(oo,ff), OPR_MASK
607 #define OPRL(oo,ff) OPRL_(oo,ff), OPR_MASK
609 /* Generic PALcode format instructions */
610 #define PCD_(oo) OP(oo)
611 #define PCD_MASK OP_MASK
612 #define PCD(oo) PCD_(oo), PCD_MASK
614 /* Specific PALcode instructions */
615 #define SPCD_(oo,ffff) (OP(oo) | ((ffff) & 0x3FFFFFF))
616 #define SPCD_MASK 0xFFFFFFFF
617 #define SPCD(oo,ffff) SPCD_(oo,ffff), SPCD_MASK
619 /* Hardware memory (hw_{ld,st}) instructions */
620 #define EV4HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
621 #define EV4HWMEM_MASK (OP_MASK | 0xF000)
622 #define EV4HWMEM(oo,f) EV4HWMEM_(oo,f), EV4HWMEM_MASK
624 #define EV5HWMEM_(oo,f) (OP(oo) | (((f) & 0x3F) << 10))
625 #define EV5HWMEM_MASK (OP_MASK | 0xF800)
626 #define EV5HWMEM(oo,f) EV5HWMEM_(oo,f), EV5HWMEM_MASK
628 #define EV6HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
629 #define EV6HWMEM_MASK (OP_MASK | 0xF000)
630 #define EV6HWMEM(oo,f) EV6HWMEM_(oo,f), EV6HWMEM_MASK
632 #define EV6HWMBR_(oo,h) (OP(oo) | (((h) & 7) << 13))
633 #define EV6HWMBR_MASK (OP_MASK | 0xE000)
634 #define EV6HWMBR(oo,h) EV6HWMBR_(oo,h), EV6HWMBR_MASK
636 /* Abbreviations for instruction subsets. */
637 #define BASE AXP_OPCODE_BASE
638 #define EV4 AXP_OPCODE_EV4
639 #define EV5 AXP_OPCODE_EV5
640 #define EV6 AXP_OPCODE_EV6
641 #define BWX AXP_OPCODE_BWX
642 #define CIX AXP_OPCODE_CIX
643 #define MAX AXP_OPCODE_MAX
645 /* Common combinations of arguments */
646 #define ARG_NONE { 0 }
647 #define ARG_BRA { RA, BDISP }
648 #define ARG_FBRA { FA, BDISP }
649 #define ARG_FP { FA, FB, DFC1 }
650 #define ARG_FPZ1 { ZA, FB, DFC1 }
651 #define ARG_MEM { RA, MDISP, PRB }
652 #define ARG_FMEM { FA, MDISP, PRB }
653 #define ARG_OPR { RA, RB, DRC1 }
654 #define ARG_OPRL { RA, LIT, DRC1 }
655 #define ARG_OPRZ1 { ZA, RB, DRC1 }
656 #define ARG_OPRLZ1 { ZA, LIT, RC }
657 #define ARG_PCD { PALFN }
658 #define ARG_EV4HWMEM { RA, EV4HWDISP, PRB }
659 #define ARG_EV4HWMPR { RA, RBA, EV4HWINDEX }
660 #define ARG_EV5HWMEM { RA, EV5HWDISP, PRB }
661 #define ARG_EV6HWMEM { RA, EV6HWDISP, PRB }
663 /* The opcode table.
665 The format of the opcode table is:
667 NAME OPCODE MASK { OPERANDS }
669 NAME is the name of the instruction.
671 OPCODE is the instruction opcode.
673 MASK is the opcode mask; this is used to tell the disassembler
674 which bits in the actual opcode must match OPCODE.
676 OPERANDS is the list of operands.
678 The preceding macros merge the text of the OPCODE and MASK fields.
680 The disassembler reads the table in order and prints the first
681 instruction which matches, so this table is sorted to put more
682 specific instructions before more general instructions.
684 Otherwise, it is sorted by major opcode and minor function code.
686 There are three classes of not-really-instructions in this table:
688 ALIAS is another name for another instruction. Some of
689 these come from the Architecture Handbook, some
690 come from the original gas opcode tables. In all
691 cases, the functionality of the opcode is unchanged.
693 PSEUDO a stylized code form endorsed by Chapter A.4 of the
694 Architecture Handbook.
696 EXTRA a stylized code form found in the original gas tables.
698 And two annotations:
700 EV56 BUT opcodes that are officially introduced as of the ev56,
701 but with defined results on previous implementations.
703 EV56 UNA opcodes that were introduced as of the ev56 with
704 presumably undefined results on previous implementations
705 that were not assigned to a particular extension.
708 const struct alpha_opcode alpha_opcodes[] = {
709 { "halt", SPCD(0x00,0x0000), BASE, ARG_NONE },
710 { "draina", SPCD(0x00,0x0002), BASE, ARG_NONE },
711 { "bpt", SPCD(0x00,0x0080), BASE, ARG_NONE },
712 { "bugchk", SPCD(0x00,0x0081), BASE, ARG_NONE },
713 { "callsys", SPCD(0x00,0x0083), BASE, ARG_NONE },
714 { "chmk", SPCD(0x00,0x0083), BASE, ARG_NONE },
715 { "imb", SPCD(0x00,0x0086), BASE, ARG_NONE },
716 { "rduniq", SPCD(0x00,0x009e), BASE, ARG_NONE },
717 { "wruniq", SPCD(0x00,0x009f), BASE, ARG_NONE },
718 { "gentrap", SPCD(0x00,0x00aa), BASE, ARG_NONE },
719 { "call_pal", PCD(0x00), BASE, ARG_PCD },
720 { "pal", PCD(0x00), BASE, ARG_PCD }, /* alias */
722 { "lda", MEM(0x08), BASE, { RA, MDISP, ZB } }, /* pseudo */
723 { "lda", MEM(0x08), BASE, ARG_MEM },
724 { "ldah", MEM(0x09), BASE, { RA, MDISP, ZB } }, /* pseudo */
725 { "ldah", MEM(0x09), BASE, ARG_MEM },
726 { "ldbu", MEM(0x0A), BWX, ARG_MEM },
727 { "unop", MEM_(0x0B) | (30 << 16),
728 MEM_MASK, BASE, { ZA } }, /* pseudo */
729 { "ldq_u", MEM(0x0B), BASE, ARG_MEM },
730 { "ldwu", MEM(0x0C), BWX, ARG_MEM },
731 { "stw", MEM(0x0D), BWX, ARG_MEM },
732 { "stb", MEM(0x0E), BWX, ARG_MEM },
733 { "stq_u", MEM(0x0F), BASE, ARG_MEM },
735 { "sextl", OPR(0x10,0x00), BASE, ARG_OPRZ1 }, /* pseudo */
736 { "sextl", OPRL(0x10,0x00), BASE, ARG_OPRLZ1 }, /* pseudo */
737 { "addl", OPR(0x10,0x00), BASE, ARG_OPR },
738 { "addl", OPRL(0x10,0x00), BASE, ARG_OPRL },
739 { "s4addl", OPR(0x10,0x02), BASE, ARG_OPR },
740 { "s4addl", OPRL(0x10,0x02), BASE, ARG_OPRL },
741 { "negl", OPR(0x10,0x09), BASE, ARG_OPRZ1 }, /* pseudo */
742 { "negl", OPRL(0x10,0x09), BASE, ARG_OPRLZ1 }, /* pseudo */
743 { "subl", OPR(0x10,0x09), BASE, ARG_OPR },
744 { "subl", OPRL(0x10,0x09), BASE, ARG_OPRL },
745 { "s4subl", OPR(0x10,0x0B), BASE, ARG_OPR },
746 { "s4subl", OPRL(0x10,0x0B), BASE, ARG_OPRL },
747 { "cmpbge", OPR(0x10,0x0F), BASE, ARG_OPR },
748 { "cmpbge", OPRL(0x10,0x0F), BASE, ARG_OPRL },
749 { "s8addl", OPR(0x10,0x12), BASE, ARG_OPR },
750 { "s8addl", OPRL(0x10,0x12), BASE, ARG_OPRL },
751 { "s8subl", OPR(0x10,0x1B), BASE, ARG_OPR },
752 { "s8subl", OPRL(0x10,0x1B), BASE, ARG_OPRL },
753 { "cmpult", OPR(0x10,0x1D), BASE, ARG_OPR },
754 { "cmpult", OPRL(0x10,0x1D), BASE, ARG_OPRL },
755 { "addq", OPR(0x10,0x20), BASE, ARG_OPR },
756 { "addq", OPRL(0x10,0x20), BASE, ARG_OPRL },
757 { "s4addq", OPR(0x10,0x22), BASE, ARG_OPR },
758 { "s4addq", OPRL(0x10,0x22), BASE, ARG_OPRL },
759 { "negq", OPR(0x10,0x29), BASE, ARG_OPRZ1 }, /* pseudo */
760 { "negq", OPRL(0x10,0x29), BASE, ARG_OPRLZ1 }, /* pseudo */
761 { "subq", OPR(0x10,0x29), BASE, ARG_OPR },
762 { "subq", OPRL(0x10,0x29), BASE, ARG_OPRL },
763 { "s4subq", OPR(0x10,0x2B), BASE, ARG_OPR },
764 { "s4subq", OPRL(0x10,0x2B), BASE, ARG_OPRL },
765 { "cmpeq", OPR(0x10,0x2D), BASE, ARG_OPR },
766 { "cmpeq", OPRL(0x10,0x2D), BASE, ARG_OPRL },
767 { "s8addq", OPR(0x10,0x32), BASE, ARG_OPR },
768 { "s8addq", OPRL(0x10,0x32), BASE, ARG_OPRL },
769 { "s8subq", OPR(0x10,0x3B), BASE, ARG_OPR },
770 { "s8subq", OPRL(0x10,0x3B), BASE, ARG_OPRL },
771 { "cmpule", OPR(0x10,0x3D), BASE, ARG_OPR },
772 { "cmpule", OPRL(0x10,0x3D), BASE, ARG_OPRL },
773 { "addl/v", OPR(0x10,0x40), BASE, ARG_OPR },
774 { "addl/v", OPRL(0x10,0x40), BASE, ARG_OPRL },
775 { "negl/v", OPR(0x10,0x49), BASE, ARG_OPRZ1 }, /* pseudo */
776 { "negl/v", OPRL(0x10,0x49), BASE, ARG_OPRLZ1 }, /* pseudo */
777 { "subl/v", OPR(0x10,0x49), BASE, ARG_OPR },
778 { "subl/v", OPRL(0x10,0x49), BASE, ARG_OPRL },
779 { "cmplt", OPR(0x10,0x4D), BASE, ARG_OPR },
780 { "cmplt", OPRL(0x10,0x4D), BASE, ARG_OPRL },
781 { "addq/v", OPR(0x10,0x60), BASE, ARG_OPR },
782 { "addq/v", OPRL(0x10,0x60), BASE, ARG_OPRL },
783 { "negq/v", OPR(0x10,0x69), BASE, ARG_OPRZ1 }, /* pseudo */
784 { "negq/v", OPRL(0x10,0x69), BASE, ARG_OPRLZ1 }, /* pseudo */
785 { "subq/v", OPR(0x10,0x69), BASE, ARG_OPR },
786 { "subq/v", OPRL(0x10,0x69), BASE, ARG_OPRL },
787 { "cmple", OPR(0x10,0x6D), BASE, ARG_OPR },
788 { "cmple", OPRL(0x10,0x6D), BASE, ARG_OPRL },
790 { "and", OPR(0x11,0x00), BASE, ARG_OPR },
791 { "and", OPRL(0x11,0x00), BASE, ARG_OPRL },
792 { "andnot", OPR(0x11,0x08), BASE, ARG_OPR }, /* alias */
793 { "andnot", OPRL(0x11,0x08), BASE, ARG_OPRL }, /* alias */
794 { "bic", OPR(0x11,0x08), BASE, ARG_OPR },
795 { "bic", OPRL(0x11,0x08), BASE, ARG_OPRL },
796 { "cmovlbs", OPR(0x11,0x14), BASE, ARG_OPR },
797 { "cmovlbs", OPRL(0x11,0x14), BASE, ARG_OPRL },
798 { "cmovlbc", OPR(0x11,0x16), BASE, ARG_OPR },
799 { "cmovlbc", OPRL(0x11,0x16), BASE, ARG_OPRL },
800 { "nop", OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
801 { "clr", OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
802 { "mov", OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
803 { "mov", OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
804 { "mov", OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
805 { "or", OPR(0x11,0x20), BASE, ARG_OPR }, /* alias */
806 { "or", OPRL(0x11,0x20), BASE, ARG_OPRL }, /* alias */
807 { "bis", OPR(0x11,0x20), BASE, ARG_OPR },
808 { "bis", OPRL(0x11,0x20), BASE, ARG_OPRL },
809 { "cmoveq", OPR(0x11,0x24), BASE, ARG_OPR },
810 { "cmoveq", OPRL(0x11,0x24), BASE, ARG_OPRL },
811 { "cmovne", OPR(0x11,0x26), BASE, ARG_OPR },
812 { "cmovne", OPRL(0x11,0x26), BASE, ARG_OPRL },
813 { "not", OPR(0x11,0x28), BASE, ARG_OPRZ1 }, /* pseudo */
814 { "not", OPRL(0x11,0x28), BASE, ARG_OPRLZ1 }, /* pseudo */
815 { "ornot", OPR(0x11,0x28), BASE, ARG_OPR },
816 { "ornot", OPRL(0x11,0x28), BASE, ARG_OPRL },
817 { "xor", OPR(0x11,0x40), BASE, ARG_OPR },
818 { "xor", OPRL(0x11,0x40), BASE, ARG_OPRL },
819 { "cmovlt", OPR(0x11,0x44), BASE, ARG_OPR },
820 { "cmovlt", OPRL(0x11,0x44), BASE, ARG_OPRL },
821 { "cmovge", OPR(0x11,0x46), BASE, ARG_OPR },
822 { "cmovge", OPRL(0x11,0x46), BASE, ARG_OPRL },
823 { "eqv", OPR(0x11,0x48), BASE, ARG_OPR },
824 { "eqv", OPRL(0x11,0x48), BASE, ARG_OPRL },
825 { "xornot", OPR(0x11,0x48), BASE, ARG_OPR }, /* alias */
826 { "xornot", OPRL(0x11,0x48), BASE, ARG_OPRL }, /* alias */
827 { "amask", OPR(0x11,0x61), BASE, ARG_OPRZ1 }, /* ev56 but */
828 { "amask", OPRL(0x11,0x61), BASE, ARG_OPRLZ1 }, /* ev56 but */
829 { "cmovle", OPR(0x11,0x64), BASE, ARG_OPR },
830 { "cmovle", OPRL(0x11,0x64), BASE, ARG_OPRL },
831 { "cmovgt", OPR(0x11,0x66), BASE, ARG_OPR },
832 { "cmovgt", OPRL(0x11,0x66), BASE, ARG_OPRL },
833 { "implver", OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
834 0xFFFFFFE0, BASE, { RC } }, /* ev56 but */
836 { "mskbl", OPR(0x12,0x02), BASE, ARG_OPR },
837 { "mskbl", OPRL(0x12,0x02), BASE, ARG_OPRL },
838 { "extbl", OPR(0x12,0x06), BASE, ARG_OPR },
839 { "extbl", OPRL(0x12,0x06), BASE, ARG_OPRL },
840 { "insbl", OPR(0x12,0x0B), BASE, ARG_OPR },
841 { "insbl", OPRL(0x12,0x0B), BASE, ARG_OPRL },
842 { "mskwl", OPR(0x12,0x12), BASE, ARG_OPR },
843 { "mskwl", OPRL(0x12,0x12), BASE, ARG_OPRL },
844 { "extwl", OPR(0x12,0x16), BASE, ARG_OPR },
845 { "extwl", OPRL(0x12,0x16), BASE, ARG_OPRL },
846 { "inswl", OPR(0x12,0x1B), BASE, ARG_OPR },
847 { "inswl", OPRL(0x12,0x1B), BASE, ARG_OPRL },
848 { "mskll", OPR(0x12,0x22), BASE, ARG_OPR },
849 { "mskll", OPRL(0x12,0x22), BASE, ARG_OPRL },
850 { "extll", OPR(0x12,0x26), BASE, ARG_OPR },
851 { "extll", OPRL(0x12,0x26), BASE, ARG_OPRL },
852 { "insll", OPR(0x12,0x2B), BASE, ARG_OPR },
853 { "insll", OPRL(0x12,0x2B), BASE, ARG_OPRL },
854 { "zap", OPR(0x12,0x30), BASE, ARG_OPR },
855 { "zap", OPRL(0x12,0x30), BASE, ARG_OPRL },
856 { "zapnot", OPR(0x12,0x31), BASE, ARG_OPR },
857 { "zapnot", OPRL(0x12,0x31), BASE, ARG_OPRL },
858 { "mskql", OPR(0x12,0x32), BASE, ARG_OPR },
859 { "mskql", OPRL(0x12,0x32), BASE, ARG_OPRL },
860 { "srl", OPR(0x12,0x34), BASE, ARG_OPR },
861 { "srl", OPRL(0x12,0x34), BASE, ARG_OPRL },
862 { "extql", OPR(0x12,0x36), BASE, ARG_OPR },
863 { "extql", OPRL(0x12,0x36), BASE, ARG_OPRL },
864 { "sll", OPR(0x12,0x39), BASE, ARG_OPR },
865 { "sll", OPRL(0x12,0x39), BASE, ARG_OPRL },
866 { "insql", OPR(0x12,0x3B), BASE, ARG_OPR },
867 { "insql", OPRL(0x12,0x3B), BASE, ARG_OPRL },
868 { "sra", OPR(0x12,0x3C), BASE, ARG_OPR },
869 { "sra", OPRL(0x12,0x3C), BASE, ARG_OPRL },
870 { "mskwh", OPR(0x12,0x52), BASE, ARG_OPR },
871 { "mskwh", OPRL(0x12,0x52), BASE, ARG_OPRL },
872 { "inswh", OPR(0x12,0x57), BASE, ARG_OPR },
873 { "inswh", OPRL(0x12,0x57), BASE, ARG_OPRL },
874 { "extwh", OPR(0x12,0x5A), BASE, ARG_OPR },
875 { "extwh", OPRL(0x12,0x5A), BASE, ARG_OPRL },
876 { "msklh", OPR(0x12,0x62), BASE, ARG_OPR },
877 { "msklh", OPRL(0x12,0x62), BASE, ARG_OPRL },
878 { "inslh", OPR(0x12,0x67), BASE, ARG_OPR },
879 { "inslh", OPRL(0x12,0x67), BASE, ARG_OPRL },
880 { "extlh", OPR(0x12,0x6A), BASE, ARG_OPR },
881 { "extlh", OPRL(0x12,0x6A), BASE, ARG_OPRL },
882 { "mskqh", OPR(0x12,0x72), BASE, ARG_OPR },
883 { "mskqh", OPRL(0x12,0x72), BASE, ARG_OPRL },
884 { "insqh", OPR(0x12,0x77), BASE, ARG_OPR },
885 { "insqh", OPRL(0x12,0x77), BASE, ARG_OPRL },
886 { "extqh", OPR(0x12,0x7A), BASE, ARG_OPR },
887 { "extqh", OPRL(0x12,0x7A), BASE, ARG_OPRL },
889 { "mull", OPR(0x13,0x00), BASE, ARG_OPR },
890 { "mull", OPRL(0x13,0x00), BASE, ARG_OPRL },
891 { "mulq", OPR(0x13,0x20), BASE, ARG_OPR },
892 { "mulq", OPRL(0x13,0x20), BASE, ARG_OPRL },
893 { "umulh", OPR(0x13,0x30), BASE, ARG_OPR },
894 { "umulh", OPRL(0x13,0x30), BASE, ARG_OPRL },
895 { "mull/v", OPR(0x13,0x40), BASE, ARG_OPR },
896 { "mull/v", OPRL(0x13,0x40), BASE, ARG_OPRL },
897 { "mulq/v", OPR(0x13,0x60), BASE, ARG_OPR },
898 { "mulq/v", OPRL(0x13,0x60), BASE, ARG_OPRL },
900 { "itofs", FP(0x14,0x004), CIX, { RA, ZB, FC } },
901 { "sqrtf/c", FP(0x14,0x00A), CIX, ARG_FPZ1 },
902 { "sqrts/c", FP(0x14,0x00B), CIX, ARG_FPZ1 },
903 { "itoff", FP(0x14,0x014), CIX, { RA, ZB, FC } },
904 { "itoft", FP(0x14,0x024), CIX, { RA, ZB, FC } },
905 { "sqrtg/c", FP(0x14,0x02A), CIX, ARG_FPZ1 },
906 { "sqrtt/c", FP(0x14,0x02B), CIX, ARG_FPZ1 },
907 { "sqrts/m", FP(0x14,0x04B), CIX, ARG_FPZ1 },
908 { "sqrtt/m", FP(0x14,0x06B), CIX, ARG_FPZ1 },
909 { "sqrtf", FP(0x14,0x08A), CIX, ARG_FPZ1 },
910 { "sqrts", FP(0x14,0x08B), CIX, ARG_FPZ1 },
911 { "sqrtg", FP(0x14,0x0AA), CIX, ARG_FPZ1 },
912 { "sqrtt", FP(0x14,0x0AB), CIX, ARG_FPZ1 },
913 { "sqrts/d", FP(0x14,0x0CB), CIX, ARG_FPZ1 },
914 { "sqrtt/d", FP(0x14,0x0EB), CIX, ARG_FPZ1 },
915 { "sqrtf/uc", FP(0x14,0x10A), CIX, ARG_FPZ1 },
916 { "sqrts/uc", FP(0x14,0x10B), CIX, ARG_FPZ1 },
917 { "sqrtg/uc", FP(0x14,0x12A), CIX, ARG_FPZ1 },
918 { "sqrtt/uc", FP(0x14,0x12B), CIX, ARG_FPZ1 },
919 { "sqrts/um", FP(0x14,0x14B), CIX, ARG_FPZ1 },
920 { "sqrtt/um", FP(0x14,0x16B), CIX, ARG_FPZ1 },
921 { "sqrtf/u", FP(0x14,0x18A), CIX, ARG_FPZ1 },
922 { "sqrts/u", FP(0x14,0x18B), CIX, ARG_FPZ1 },
923 { "sqrtg/u", FP(0x14,0x1AA), CIX, ARG_FPZ1 },
924 { "sqrtt/u", FP(0x14,0x1AB), CIX, ARG_FPZ1 },
925 { "sqrts/ud", FP(0x14,0x1CB), CIX, ARG_FPZ1 },
926 { "sqrtt/ud", FP(0x14,0x1EB), CIX, ARG_FPZ1 },
927 { "sqrtf/sc", FP(0x14,0x40A), CIX, ARG_FPZ1 },
928 { "sqrtg/sc", FP(0x14,0x42A), CIX, ARG_FPZ1 },
929 { "sqrtf/s", FP(0x14,0x48A), CIX, ARG_FPZ1 },
930 { "sqrtg/s", FP(0x14,0x4AA), CIX, ARG_FPZ1 },
931 { "sqrtf/suc", FP(0x14,0x50A), CIX, ARG_FPZ1 },
932 { "sqrts/suc", FP(0x14,0x50B), CIX, ARG_FPZ1 },
933 { "sqrtg/suc", FP(0x14,0x52A), CIX, ARG_FPZ1 },
934 { "sqrtt/suc", FP(0x14,0x52B), CIX, ARG_FPZ1 },
935 { "sqrts/sum", FP(0x14,0x54B), CIX, ARG_FPZ1 },
936 { "sqrtt/sum", FP(0x14,0x56B), CIX, ARG_FPZ1 },
937 { "sqrtf/su", FP(0x14,0x58A), CIX, ARG_FPZ1 },
938 { "sqrts/su", FP(0x14,0x58B), CIX, ARG_FPZ1 },
939 { "sqrtg/su", FP(0x14,0x5AA), CIX, ARG_FPZ1 },
940 { "sqrtt/su", FP(0x14,0x5AB), CIX, ARG_FPZ1 },
941 { "sqrts/sud", FP(0x14,0x5CB), CIX, ARG_FPZ1 },
942 { "sqrtt/sud", FP(0x14,0x5EB), CIX, ARG_FPZ1 },
943 { "sqrts/suic", FP(0x14,0x70B), CIX, ARG_FPZ1 },
944 { "sqrtt/suic", FP(0x14,0x72B), CIX, ARG_FPZ1 },
945 { "sqrts/suim", FP(0x14,0x74B), CIX, ARG_FPZ1 },
946 { "sqrtt/suim", FP(0x14,0x76B), CIX, ARG_FPZ1 },
947 { "sqrts/sui", FP(0x14,0x78B), CIX, ARG_FPZ1 },
948 { "sqrtt/sui", FP(0x14,0x7AB), CIX, ARG_FPZ1 },
949 { "sqrts/suid", FP(0x14,0x7CB), CIX, ARG_FPZ1 },
950 { "sqrtt/suid", FP(0x14,0x7EB), CIX, ARG_FPZ1 },
952 { "addf/c", FP(0x15,0x000), BASE, ARG_FP },
953 { "subf/c", FP(0x15,0x001), BASE, ARG_FP },
954 { "mulf/c", FP(0x15,0x002), BASE, ARG_FP },
955 { "divf/c", FP(0x15,0x003), BASE, ARG_FP },
956 { "cvtdg/c", FP(0x15,0x01E), BASE, ARG_FPZ1 },
957 { "addg/c", FP(0x15,0x020), BASE, ARG_FP },
958 { "subg/c", FP(0x15,0x021), BASE, ARG_FP },
959 { "mulg/c", FP(0x15,0x022), BASE, ARG_FP },
960 { "divg/c", FP(0x15,0x023), BASE, ARG_FP },
961 { "cvtgf/c", FP(0x15,0x02C), BASE, ARG_FPZ1 },
962 { "cvtgd/c", FP(0x15,0x02D), BASE, ARG_FPZ1 },
963 { "cvtgq/c", FP(0x15,0x02F), BASE, ARG_FPZ1 },
964 { "cvtqf/c", FP(0x15,0x03C), BASE, ARG_FPZ1 },
965 { "cvtqg/c", FP(0x15,0x03E), BASE, ARG_FPZ1 },
966 { "addf", FP(0x15,0x080), BASE, ARG_FP },
967 { "negf", FP(0x15,0x081), BASE, ARG_FPZ1 }, /* pseudo */
968 { "subf", FP(0x15,0x081), BASE, ARG_FP },
969 { "mulf", FP(0x15,0x082), BASE, ARG_FP },
970 { "divf", FP(0x15,0x083), BASE, ARG_FP },
971 { "cvtdg", FP(0x15,0x09E), BASE, ARG_FPZ1 },
972 { "addg", FP(0x15,0x0A0), BASE, ARG_FP },
973 { "negg", FP(0x15,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
974 { "subg", FP(0x15,0x0A1), BASE, ARG_FP },
975 { "mulg", FP(0x15,0x0A2), BASE, ARG_FP },
976 { "divg", FP(0x15,0x0A3), BASE, ARG_FP },
977 { "cmpgeq", FP(0x15,0x0A5), BASE, ARG_FP },
978 { "cmpglt", FP(0x15,0x0A6), BASE, ARG_FP },
979 { "cmpgle", FP(0x15,0x0A7), BASE, ARG_FP },
980 { "cvtgf", FP(0x15,0x0AC), BASE, ARG_FPZ1 },
981 { "cvtgd", FP(0x15,0x0AD), BASE, ARG_FPZ1 },
982 { "cvtgq", FP(0x15,0x0AF), BASE, ARG_FPZ1 },
983 { "cvtqf", FP(0x15,0x0BC), BASE, ARG_FPZ1 },
984 { "cvtqg", FP(0x15,0x0BE), BASE, ARG_FPZ1 },
985 { "addf/uc", FP(0x15,0x100), BASE, ARG_FP },
986 { "subf/uc", FP(0x15,0x101), BASE, ARG_FP },
987 { "mulf/uc", FP(0x15,0x102), BASE, ARG_FP },
988 { "divf/uc", FP(0x15,0x103), BASE, ARG_FP },
989 { "cvtdg/uc", FP(0x15,0x11E), BASE, ARG_FPZ1 },
990 { "addg/uc", FP(0x15,0x120), BASE, ARG_FP },
991 { "subg/uc", FP(0x15,0x121), BASE, ARG_FP },
992 { "mulg/uc", FP(0x15,0x122), BASE, ARG_FP },
993 { "divg/uc", FP(0x15,0x123), BASE, ARG_FP },
994 { "cvtgf/uc", FP(0x15,0x12C), BASE, ARG_FPZ1 },
995 { "cvtgd/uc", FP(0x15,0x12D), BASE, ARG_FPZ1 },
996 { "cvtgq/vc", FP(0x15,0x12F), BASE, ARG_FPZ1 },
997 { "addf/u", FP(0x15,0x180), BASE, ARG_FP },
998 { "subf/u", FP(0x15,0x181), BASE, ARG_FP },
999 { "mulf/u", FP(0x15,0x182), BASE, ARG_FP },
1000 { "divf/u", FP(0x15,0x183), BASE, ARG_FP },
1001 { "cvtdg/u", FP(0x15,0x19E), BASE, ARG_FPZ1 },
1002 { "addg/u", FP(0x15,0x1A0), BASE, ARG_FP },
1003 { "subg/u", FP(0x15,0x1A1), BASE, ARG_FP },
1004 { "mulg/u", FP(0x15,0x1A2), BASE, ARG_FP },
1005 { "divg/u", FP(0x15,0x1A3), BASE, ARG_FP },
1006 { "cvtgf/u", FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1007 { "cvtgd/u", FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1008 { "cvtgq/v", FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1009 { "addf/sc", FP(0x15,0x400), BASE, ARG_FP },
1010 { "subf/sc", FP(0x15,0x401), BASE, ARG_FP },
1011 { "mulf/sc", FP(0x15,0x402), BASE, ARG_FP },
1012 { "divf/sc", FP(0x15,0x403), BASE, ARG_FP },
1013 { "cvtdg/sc", FP(0x15,0x41E), BASE, ARG_FPZ1 },
1014 { "addg/sc", FP(0x15,0x420), BASE, ARG_FP },
1015 { "subg/sc", FP(0x15,0x421), BASE, ARG_FP },
1016 { "mulg/sc", FP(0x15,0x422), BASE, ARG_FP },
1017 { "divg/sc", FP(0x15,0x423), BASE, ARG_FP },
1018 { "cvtgf/sc", FP(0x15,0x42C), BASE, ARG_FPZ1 },
1019 { "cvtgd/sc", FP(0x15,0x42D), BASE, ARG_FPZ1 },
1020 { "cvtgq/sc", FP(0x15,0x42F), BASE, ARG_FPZ1 },
1021 { "addf/s", FP(0x15,0x480), BASE, ARG_FP },
1022 { "negf/s", FP(0x15,0x481), BASE, ARG_FPZ1 }, /* pseudo */
1023 { "subf/s", FP(0x15,0x481), BASE, ARG_FP },
1024 { "mulf/s", FP(0x15,0x482), BASE, ARG_FP },
1025 { "divf/s", FP(0x15,0x483), BASE, ARG_FP },
1026 { "cvtdg/s", FP(0x15,0x49E), BASE, ARG_FPZ1 },
1027 { "addg/s", FP(0x15,0x4A0), BASE, ARG_FP },
1028 { "negg/s", FP(0x15,0x4A1), BASE, ARG_FPZ1 }, /* pseudo */
1029 { "subg/s", FP(0x15,0x4A1), BASE, ARG_FP },
1030 { "mulg/s", FP(0x15,0x4A2), BASE, ARG_FP },
1031 { "divg/s", FP(0x15,0x4A3), BASE, ARG_FP },
1032 { "cmpgeq/s", FP(0x15,0x4A5), BASE, ARG_FP },
1033 { "cmpglt/s", FP(0x15,0x4A6), BASE, ARG_FP },
1034 { "cmpgle/s", FP(0x15,0x4A7), BASE, ARG_FP },
1035 { "cvtgf/s", FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1036 { "cvtgd/s", FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1037 { "cvtgq/s", FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1038 { "addf/suc", FP(0x15,0x500), BASE, ARG_FP },
1039 { "subf/suc", FP(0x15,0x501), BASE, ARG_FP },
1040 { "mulf/suc", FP(0x15,0x502), BASE, ARG_FP },
1041 { "divf/suc", FP(0x15,0x503), BASE, ARG_FP },
1042 { "cvtdg/suc", FP(0x15,0x51E), BASE, ARG_FPZ1 },
1043 { "addg/suc", FP(0x15,0x520), BASE, ARG_FP },
1044 { "subg/suc", FP(0x15,0x521), BASE, ARG_FP },
1045 { "mulg/suc", FP(0x15,0x522), BASE, ARG_FP },
1046 { "divg/suc", FP(0x15,0x523), BASE, ARG_FP },
1047 { "cvtgf/suc", FP(0x15,0x52C), BASE, ARG_FPZ1 },
1048 { "cvtgd/suc", FP(0x15,0x52D), BASE, ARG_FPZ1 },
1049 { "cvtgq/svc", FP(0x15,0x52F), BASE, ARG_FPZ1 },
1050 { "addf/su", FP(0x15,0x580), BASE, ARG_FP },
1051 { "subf/su", FP(0x15,0x581), BASE, ARG_FP },
1052 { "mulf/su", FP(0x15,0x582), BASE, ARG_FP },
1053 { "divf/su", FP(0x15,0x583), BASE, ARG_FP },
1054 { "cvtdg/su", FP(0x15,0x59E), BASE, ARG_FPZ1 },
1055 { "addg/su", FP(0x15,0x5A0), BASE, ARG_FP },
1056 { "subg/su", FP(0x15,0x5A1), BASE, ARG_FP },
1057 { "mulg/su", FP(0x15,0x5A2), BASE, ARG_FP },
1058 { "divg/su", FP(0x15,0x5A3), BASE, ARG_FP },
1059 { "cvtgf/su", FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1060 { "cvtgd/su", FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1061 { "cvtgq/sv", FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1063 { "adds/c", FP(0x16,0x000), BASE, ARG_FP },
1064 { "subs/c", FP(0x16,0x001), BASE, ARG_FP },
1065 { "muls/c", FP(0x16,0x002), BASE, ARG_FP },
1066 { "divs/c", FP(0x16,0x003), BASE, ARG_FP },
1067 { "addt/c", FP(0x16,0x020), BASE, ARG_FP },
1068 { "subt/c", FP(0x16,0x021), BASE, ARG_FP },
1069 { "mult/c", FP(0x16,0x022), BASE, ARG_FP },
1070 { "divt/c", FP(0x16,0x023), BASE, ARG_FP },
1071 { "cvtts/c", FP(0x16,0x02C), BASE, ARG_FPZ1 },
1072 { "cvttq/c", FP(0x16,0x02F), BASE, ARG_FPZ1 },
1073 { "cvtqs/c", FP(0x16,0x03C), BASE, ARG_FPZ1 },
1074 { "cvtqt/c", FP(0x16,0x03E), BASE, ARG_FPZ1 },
1075 { "adds/m", FP(0x16,0x040), BASE, ARG_FP },
1076 { "subs/m", FP(0x16,0x041), BASE, ARG_FP },
1077 { "muls/m", FP(0x16,0x042), BASE, ARG_FP },
1078 { "divs/m", FP(0x16,0x043), BASE, ARG_FP },
1079 { "addt/m", FP(0x16,0x060), BASE, ARG_FP },
1080 { "subt/m", FP(0x16,0x061), BASE, ARG_FP },
1081 { "mult/m", FP(0x16,0x062), BASE, ARG_FP },
1082 { "divt/m", FP(0x16,0x063), BASE, ARG_FP },
1083 { "cvtts/m", FP(0x16,0x06C), BASE, ARG_FPZ1 },
1084 { "cvttq/m", FP(0x16,0x06F), BASE, ARG_FPZ1 },
1085 { "cvtqs/m", FP(0x16,0x07C), BASE, ARG_FPZ1 },
1086 { "cvtqt/m", FP(0x16,0x07E), BASE, ARG_FPZ1 },
1087 { "adds", FP(0x16,0x080), BASE, ARG_FP },
1088 { "negs", FP(0x16,0x081), BASE, ARG_FPZ1 }, /* pseudo */
1089 { "subs", FP(0x16,0x081), BASE, ARG_FP },
1090 { "muls", FP(0x16,0x082), BASE, ARG_FP },
1091 { "divs", FP(0x16,0x083), BASE, ARG_FP },
1092 { "addt", FP(0x16,0x0A0), BASE, ARG_FP },
1093 { "negt", FP(0x16,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
1094 { "subt", FP(0x16,0x0A1), BASE, ARG_FP },
1095 { "mult", FP(0x16,0x0A2), BASE, ARG_FP },
1096 { "divt", FP(0x16,0x0A3), BASE, ARG_FP },
1097 { "cmptun", FP(0x16,0x0A4), BASE, ARG_FP },
1098 { "cmpteq", FP(0x16,0x0A5), BASE, ARG_FP },
1099 { "cmptlt", FP(0x16,0x0A6), BASE, ARG_FP },
1100 { "cmptle", FP(0x16,0x0A7), BASE, ARG_FP },
1101 { "cvtts", FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1102 { "cvttq", FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1103 { "cvtqs", FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1104 { "cvtqt", FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1105 { "adds/d", FP(0x16,0x0C0), BASE, ARG_FP },
1106 { "subs/d", FP(0x16,0x0C1), BASE, ARG_FP },
1107 { "muls/d", FP(0x16,0x0C2), BASE, ARG_FP },
1108 { "divs/d", FP(0x16,0x0C3), BASE, ARG_FP },
1109 { "addt/d", FP(0x16,0x0E0), BASE, ARG_FP },
1110 { "subt/d", FP(0x16,0x0E1), BASE, ARG_FP },
1111 { "mult/d", FP(0x16,0x0E2), BASE, ARG_FP },
1112 { "divt/d", FP(0x16,0x0E3), BASE, ARG_FP },
1113 { "cvtts/d", FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1114 { "cvttq/d", FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1115 { "cvtqs/d", FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1116 { "cvtqt/d", FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1117 { "adds/uc", FP(0x16,0x100), BASE, ARG_FP },
1118 { "subs/uc", FP(0x16,0x101), BASE, ARG_FP },
1119 { "muls/uc", FP(0x16,0x102), BASE, ARG_FP },
1120 { "divs/uc", FP(0x16,0x103), BASE, ARG_FP },
1121 { "addt/uc", FP(0x16,0x120), BASE, ARG_FP },
1122 { "subt/uc", FP(0x16,0x121), BASE, ARG_FP },
1123 { "mult/uc", FP(0x16,0x122), BASE, ARG_FP },
1124 { "divt/uc", FP(0x16,0x123), BASE, ARG_FP },
1125 { "cvtts/uc", FP(0x16,0x12C), BASE, ARG_FPZ1 },
1126 { "cvttq/vc", FP(0x16,0x12F), BASE, ARG_FPZ1 },
1127 { "adds/um", FP(0x16,0x140), BASE, ARG_FP },
1128 { "subs/um", FP(0x16,0x141), BASE, ARG_FP },
1129 { "muls/um", FP(0x16,0x142), BASE, ARG_FP },
1130 { "divs/um", FP(0x16,0x143), BASE, ARG_FP },
1131 { "addt/um", FP(0x16,0x160), BASE, ARG_FP },
1132 { "subt/um", FP(0x16,0x161), BASE, ARG_FP },
1133 { "mult/um", FP(0x16,0x162), BASE, ARG_FP },
1134 { "divt/um", FP(0x16,0x163), BASE, ARG_FP },
1135 { "cvtts/um", FP(0x16,0x16C), BASE, ARG_FPZ1 },
1136 { "cvttq/vm", FP(0x16,0x16F), BASE, ARG_FPZ1 },
1137 { "adds/u", FP(0x16,0x180), BASE, ARG_FP },
1138 { "subs/u", FP(0x16,0x181), BASE, ARG_FP },
1139 { "muls/u", FP(0x16,0x182), BASE, ARG_FP },
1140 { "divs/u", FP(0x16,0x183), BASE, ARG_FP },
1141 { "addt/u", FP(0x16,0x1A0), BASE, ARG_FP },
1142 { "subt/u", FP(0x16,0x1A1), BASE, ARG_FP },
1143 { "mult/u", FP(0x16,0x1A2), BASE, ARG_FP },
1144 { "divt/u", FP(0x16,0x1A3), BASE, ARG_FP },
1145 { "cvtts/u", FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1146 { "cvttq/v", FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1147 { "adds/ud", FP(0x16,0x1C0), BASE, ARG_FP },
1148 { "subs/ud", FP(0x16,0x1C1), BASE, ARG_FP },
1149 { "muls/ud", FP(0x16,0x1C2), BASE, ARG_FP },
1150 { "divs/ud", FP(0x16,0x1C3), BASE, ARG_FP },
1151 { "addt/ud", FP(0x16,0x1E0), BASE, ARG_FP },
1152 { "subt/ud", FP(0x16,0x1E1), BASE, ARG_FP },
1153 { "mult/ud", FP(0x16,0x1E2), BASE, ARG_FP },
1154 { "divt/ud", FP(0x16,0x1E3), BASE, ARG_FP },
1155 { "cvtts/ud", FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1156 { "cvttq/vd", FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1157 { "cvtst", FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1158 { "adds/suc", FP(0x16,0x500), BASE, ARG_FP },
1159 { "subs/suc", FP(0x16,0x501), BASE, ARG_FP },
1160 { "muls/suc", FP(0x16,0x502), BASE, ARG_FP },
1161 { "divs/suc", FP(0x16,0x503), BASE, ARG_FP },
1162 { "addt/suc", FP(0x16,0x520), BASE, ARG_FP },
1163 { "subt/suc", FP(0x16,0x521), BASE, ARG_FP },
1164 { "mult/suc", FP(0x16,0x522), BASE, ARG_FP },
1165 { "divt/suc", FP(0x16,0x523), BASE, ARG_FP },
1166 { "cvtts/suc", FP(0x16,0x52C), BASE, ARG_FPZ1 },
1167 { "cvttq/svc", FP(0x16,0x52F), BASE, ARG_FPZ1 },
1168 { "adds/sum", FP(0x16,0x540), BASE, ARG_FP },
1169 { "subs/sum", FP(0x16,0x541), BASE, ARG_FP },
1170 { "muls/sum", FP(0x16,0x542), BASE, ARG_FP },
1171 { "divs/sum", FP(0x16,0x543), BASE, ARG_FP },
1172 { "addt/sum", FP(0x16,0x560), BASE, ARG_FP },
1173 { "subt/sum", FP(0x16,0x561), BASE, ARG_FP },
1174 { "mult/sum", FP(0x16,0x562), BASE, ARG_FP },
1175 { "divt/sum", FP(0x16,0x563), BASE, ARG_FP },
1176 { "cvtts/sum", FP(0x16,0x56C), BASE, ARG_FPZ1 },
1177 { "cvttq/svm", FP(0x16,0x56F), BASE, ARG_FPZ1 },
1178 { "adds/su", FP(0x16,0x580), BASE, ARG_FP },
1179 { "negs/su", FP(0x16,0x581), BASE, ARG_FPZ1 }, /* pseudo */
1180 { "subs/su", FP(0x16,0x581), BASE, ARG_FP },
1181 { "muls/su", FP(0x16,0x582), BASE, ARG_FP },
1182 { "divs/su", FP(0x16,0x583), BASE, ARG_FP },
1183 { "addt/su", FP(0x16,0x5A0), BASE, ARG_FP },
1184 { "negt/su", FP(0x16,0x5A1), BASE, ARG_FPZ1 }, /* pseudo */
1185 { "subt/su", FP(0x16,0x5A1), BASE, ARG_FP },
1186 { "mult/su", FP(0x16,0x5A2), BASE, ARG_FP },
1187 { "divt/su", FP(0x16,0x5A3), BASE, ARG_FP },
1188 { "cmptun/su", FP(0x16,0x5A4), BASE, ARG_FP },
1189 { "cmpteq/su", FP(0x16,0x5A5), BASE, ARG_FP },
1190 { "cmptlt/su", FP(0x16,0x5A6), BASE, ARG_FP },
1191 { "cmptle/su", FP(0x16,0x5A7), BASE, ARG_FP },
1192 { "cvtts/su", FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1193 { "cvttq/sv", FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1194 { "adds/sud", FP(0x16,0x5C0), BASE, ARG_FP },
1195 { "subs/sud", FP(0x16,0x5C1), BASE, ARG_FP },
1196 { "muls/sud", FP(0x16,0x5C2), BASE, ARG_FP },
1197 { "divs/sud", FP(0x16,0x5C3), BASE, ARG_FP },
1198 { "addt/sud", FP(0x16,0x5E0), BASE, ARG_FP },
1199 { "subt/sud", FP(0x16,0x5E1), BASE, ARG_FP },
1200 { "mult/sud", FP(0x16,0x5E2), BASE, ARG_FP },
1201 { "divt/sud", FP(0x16,0x5E3), BASE, ARG_FP },
1202 { "cvtts/sud", FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1203 { "cvttq/svd", FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1204 { "cvtst/s", FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1205 { "adds/suic", FP(0x16,0x700), BASE, ARG_FP },
1206 { "subs/suic", FP(0x16,0x701), BASE, ARG_FP },
1207 { "muls/suic", FP(0x16,0x702), BASE, ARG_FP },
1208 { "divs/suic", FP(0x16,0x703), BASE, ARG_FP },
1209 { "addt/suic", FP(0x16,0x720), BASE, ARG_FP },
1210 { "subt/suic", FP(0x16,0x721), BASE, ARG_FP },
1211 { "mult/suic", FP(0x16,0x722), BASE, ARG_FP },
1212 { "divt/suic", FP(0x16,0x723), BASE, ARG_FP },
1213 { "cvtts/suic", FP(0x16,0x72C), BASE, ARG_FPZ1 },
1214 { "cvttq/svic", FP(0x16,0x72F), BASE, ARG_FPZ1 },
1215 { "cvtqs/suic", FP(0x16,0x73C), BASE, ARG_FPZ1 },
1216 { "cvtqt/suic", FP(0x16,0x73E), BASE, ARG_FPZ1 },
1217 { "adds/suim", FP(0x16,0x740), BASE, ARG_FP },
1218 { "subs/suim", FP(0x16,0x741), BASE, ARG_FP },
1219 { "muls/suim", FP(0x16,0x742), BASE, ARG_FP },
1220 { "divs/suim", FP(0x16,0x743), BASE, ARG_FP },
1221 { "addt/suim", FP(0x16,0x760), BASE, ARG_FP },
1222 { "subt/suim", FP(0x16,0x761), BASE, ARG_FP },
1223 { "mult/suim", FP(0x16,0x762), BASE, ARG_FP },
1224 { "divt/suim", FP(0x16,0x763), BASE, ARG_FP },
1225 { "cvtts/suim", FP(0x16,0x76C), BASE, ARG_FPZ1 },
1226 { "cvttq/svim", FP(0x16,0x76F), BASE, ARG_FPZ1 },
1227 { "cvtqs/suim", FP(0x16,0x77C), BASE, ARG_FPZ1 },
1228 { "cvtqt/suim", FP(0x16,0x77E), BASE, ARG_FPZ1 },
1229 { "adds/sui", FP(0x16,0x780), BASE, ARG_FP },
1230 { "negs/sui", FP(0x16,0x781), BASE, ARG_FPZ1 }, /* pseudo */
1231 { "subs/sui", FP(0x16,0x781), BASE, ARG_FP },
1232 { "muls/sui", FP(0x16,0x782), BASE, ARG_FP },
1233 { "divs/sui", FP(0x16,0x783), BASE, ARG_FP },
1234 { "addt/sui", FP(0x16,0x7A0), BASE, ARG_FP },
1235 { "negt/sui", FP(0x16,0x7A1), BASE, ARG_FPZ1 }, /* pseudo */
1236 { "subt/sui", FP(0x16,0x7A1), BASE, ARG_FP },
1237 { "mult/sui", FP(0x16,0x7A2), BASE, ARG_FP },
1238 { "divt/sui", FP(0x16,0x7A3), BASE, ARG_FP },
1239 { "cvtts/sui", FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1240 { "cvttq/svi", FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1241 { "cvtqs/sui", FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1242 { "cvtqt/sui", FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1243 { "adds/suid", FP(0x16,0x7C0), BASE, ARG_FP },
1244 { "subs/suid", FP(0x16,0x7C1), BASE, ARG_FP },
1245 { "muls/suid", FP(0x16,0x7C2), BASE, ARG_FP },
1246 { "divs/suid", FP(0x16,0x7C3), BASE, ARG_FP },
1247 { "addt/suid", FP(0x16,0x7E0), BASE, ARG_FP },
1248 { "subt/suid", FP(0x16,0x7E1), BASE, ARG_FP },
1249 { "mult/suid", FP(0x16,0x7E2), BASE, ARG_FP },
1250 { "divt/suid", FP(0x16,0x7E3), BASE, ARG_FP },
1251 { "cvtts/suid", FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1252 { "cvttq/svid", FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1253 { "cvtqs/suid", FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1254 { "cvtqt/suid", FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1256 { "cvtlq", FP(0x17,0x010), BASE, ARG_FPZ1 },
1257 { "fnop", FP(0x17,0x020), BASE, { ZA, ZB, ZC } }, /* pseudo */
1258 { "fclr", FP(0x17,0x020), BASE, { ZA, ZB, FC } }, /* pseudo */
1259 { "fabs", FP(0x17,0x020), BASE, ARG_FPZ1 }, /* pseudo */
1260 { "fmov", FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1261 { "cpys", FP(0x17,0x020), BASE, ARG_FP },
1262 { "fneg", FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1263 { "cpysn", FP(0x17,0x021), BASE, ARG_FP },
1264 { "cpyse", FP(0x17,0x022), BASE, ARG_FP },
1265 { "mt_fpcr", FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1266 { "mf_fpcr", FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1267 { "fcmoveq", FP(0x17,0x02A), BASE, ARG_FP },
1268 { "fcmovne", FP(0x17,0x02B), BASE, ARG_FP },
1269 { "fcmovlt", FP(0x17,0x02C), BASE, ARG_FP },
1270 { "fcmovge", FP(0x17,0x02D), BASE, ARG_FP },
1271 { "fcmovle", FP(0x17,0x02E), BASE, ARG_FP },
1272 { "fcmovgt", FP(0x17,0x02F), BASE, ARG_FP },
1273 { "cvtql", FP(0x17,0x030), BASE, ARG_FPZ1 },
1274 { "cvtql/v", FP(0x17,0x130), BASE, ARG_FPZ1 },
1275 { "cvtql/sv", FP(0x17,0x530), BASE, ARG_FPZ1 },
1277 { "trapb", MFC(0x18,0x0000), BASE, ARG_NONE },
1278 { "draint", MFC(0x18,0x0000), BASE, ARG_NONE }, /* alias */
1279 { "excb", MFC(0x18,0x0400), BASE, ARG_NONE },
1280 { "mb", MFC(0x18,0x4000), BASE, ARG_NONE },
1281 { "wmb", MFC(0x18,0x4400), BASE, ARG_NONE },
1282 { "fetch", MFC(0x18,0x8000), BASE, { ZA, PRB } },
1283 { "fetch_m", MFC(0x18,0xA000), BASE, { ZA, PRB } },
1284 { "rpcc", MFC(0x18,0xC000), BASE, { RA } },
1285 { "rc", MFC(0x18,0xE000), BASE, { RA } },
1286 { "ecb", MFC(0x18,0xE800), BASE, { ZA, PRB } }, /* ev56 una */
1287 { "rs", MFC(0x18,0xF000), BASE, { RA } },
1288 { "wh64", MFC(0x18,0xF800), BASE, { ZA, PRB } }, /* ev56 una */
1289 { "wh64en", MFC(0x18,0xFC00), BASE, { ZA, PRB } }, /* ev7 una */
1291 { "hw_mfpr", OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1292 { "hw_mfpr", OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1293 { "hw_mfpr", OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1294 { "hw_mfpr/i", OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1295 { "hw_mfpr/a", OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1296 { "hw_mfpr/ai", OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1297 { "hw_mfpr/p", OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1298 { "hw_mfpr/pi", OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1299 { "hw_mfpr/pa", OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1300 { "hw_mfpr/pai", OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1301 { "pal19", PCD(0x19), BASE, ARG_PCD },
1303 { "jmp", MBR_(0x1A,0), MBR_MASK | 0x3FFF, /* pseudo */
1304 BASE, { ZA, CPRB } },
1305 { "jmp", MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1306 { "jsr", MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1307 { "ret", MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1308 0xFFFFFFFF, BASE, { 0 } },
1309 { "ret", MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1310 { "jcr", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1311 { "jsr_coroutine", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1313 { "hw_ldl", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1314 { "hw_ldl", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1315 { "hw_ldl", EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1316 { "hw_ldl/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1317 { "hw_ldl/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1318 { "hw_ldl/a", EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1319 { "hw_ldl/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1320 { "hw_ldl/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1321 { "hw_ldl/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1322 { "hw_ldl/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1323 { "hw_ldl/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1324 { "hw_ldl/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1325 { "hw_ldl/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1326 { "hw_ldl/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1327 { "hw_ldl/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1328 { "hw_ldl/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1329 { "hw_ldl/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1330 { "hw_ldl/p", EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1331 { "hw_ldl/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1332 { "hw_ldl/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1333 { "hw_ldl/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1334 { "hw_ldl/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1335 { "hw_ldl/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1336 { "hw_ldl/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1337 { "hw_ldl/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1338 { "hw_ldl/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1339 { "hw_ldl/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1340 { "hw_ldl/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1341 { "hw_ldl/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1342 { "hw_ldl/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1343 { "hw_ldl/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1344 { "hw_ldl/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1345 { "hw_ldl/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1346 { "hw_ldl/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1347 { "hw_ldl/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1348 { "hw_ldl/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1349 { "hw_ldl/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1350 { "hw_ldl/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1351 { "hw_ldl/v", EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1352 { "hw_ldl/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1353 { "hw_ldl/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1354 { "hw_ldl/w", EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1355 { "hw_ldl/wa", EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1356 { "hw_ldl/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1357 { "hw_ldl/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1358 { "hw_ldl/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1359 { "hw_ldl_l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1360 { "hw_ldl_l/a", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1361 { "hw_ldl_l/av", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1362 { "hw_ldl_l/aw", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1363 { "hw_ldl_l/awv", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1364 { "hw_ldl_l/p", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1365 { "hw_ldl_l/p", EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1366 { "hw_ldl_l/pa", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1367 { "hw_ldl_l/pav", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1368 { "hw_ldl_l/paw", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1369 { "hw_ldl_l/pawv", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1370 { "hw_ldl_l/pv", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1371 { "hw_ldl_l/pw", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1372 { "hw_ldl_l/pwv", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1373 { "hw_ldl_l/v", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1374 { "hw_ldl_l/w", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1375 { "hw_ldl_l/wv", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1376 { "hw_ldq", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1377 { "hw_ldq", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1378 { "hw_ldq", EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1379 { "hw_ldq/a", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1380 { "hw_ldq/a", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1381 { "hw_ldq/a", EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1382 { "hw_ldq/al", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1383 { "hw_ldq/ar", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1384 { "hw_ldq/av", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1385 { "hw_ldq/avl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1386 { "hw_ldq/aw", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1387 { "hw_ldq/awl", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1388 { "hw_ldq/awv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1389 { "hw_ldq/awvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1390 { "hw_ldq/l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1391 { "hw_ldq/p", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1392 { "hw_ldq/p", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1393 { "hw_ldq/p", EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1394 { "hw_ldq/pa", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1395 { "hw_ldq/pa", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1396 { "hw_ldq/pal", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1397 { "hw_ldq/par", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1398 { "hw_ldq/pav", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1399 { "hw_ldq/pavl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1400 { "hw_ldq/paw", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1401 { "hw_ldq/pawl", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1402 { "hw_ldq/pawv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1403 { "hw_ldq/pawvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1404 { "hw_ldq/pl", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1405 { "hw_ldq/pr", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1406 { "hw_ldq/pv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1407 { "hw_ldq/pvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1408 { "hw_ldq/pw", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1409 { "hw_ldq/pwl", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1410 { "hw_ldq/pwv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1411 { "hw_ldq/pwvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1412 { "hw_ldq/r", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1413 { "hw_ldq/v", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1414 { "hw_ldq/v", EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1415 { "hw_ldq/vl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1416 { "hw_ldq/w", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1417 { "hw_ldq/w", EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1418 { "hw_ldq/wa", EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1419 { "hw_ldq/wl", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1420 { "hw_ldq/wv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1421 { "hw_ldq/wvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1422 { "hw_ldq_l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1423 { "hw_ldq_l/a", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1424 { "hw_ldq_l/av", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1425 { "hw_ldq_l/aw", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1426 { "hw_ldq_l/awv", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1427 { "hw_ldq_l/p", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1428 { "hw_ldq_l/p", EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1429 { "hw_ldq_l/pa", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1430 { "hw_ldq_l/pav", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1431 { "hw_ldq_l/paw", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1432 { "hw_ldq_l/pawv", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1433 { "hw_ldq_l/pv", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1434 { "hw_ldq_l/pw", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1435 { "hw_ldq_l/pwv", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1436 { "hw_ldq_l/v", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1437 { "hw_ldq_l/w", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1438 { "hw_ldq_l/wv", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1439 { "hw_ld", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1440 { "hw_ld", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1441 { "hw_ld/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1442 { "hw_ld/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1443 { "hw_ld/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1444 { "hw_ld/aq", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1445 { "hw_ld/aq", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1446 { "hw_ld/aql", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1447 { "hw_ld/aqv", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1448 { "hw_ld/aqvl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1449 { "hw_ld/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1450 { "hw_ld/arq", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1451 { "hw_ld/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1452 { "hw_ld/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1453 { "hw_ld/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1454 { "hw_ld/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1455 { "hw_ld/awq", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1456 { "hw_ld/awql", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1457 { "hw_ld/awqv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1458 { "hw_ld/awqvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1459 { "hw_ld/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1460 { "hw_ld/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1461 { "hw_ld/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1462 { "hw_ld/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1463 { "hw_ld/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1464 { "hw_ld/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1465 { "hw_ld/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1466 { "hw_ld/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1467 { "hw_ld/paq", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1468 { "hw_ld/paq", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1469 { "hw_ld/paql", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1470 { "hw_ld/paqv", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1471 { "hw_ld/paqvl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1472 { "hw_ld/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1473 { "hw_ld/parq", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1474 { "hw_ld/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1475 { "hw_ld/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1476 { "hw_ld/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1477 { "hw_ld/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1478 { "hw_ld/pawq", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1479 { "hw_ld/pawql", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1480 { "hw_ld/pawqv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1481 { "hw_ld/pawqvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1482 { "hw_ld/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1483 { "hw_ld/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1484 { "hw_ld/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1485 { "hw_ld/pq", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1486 { "hw_ld/pq", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1487 { "hw_ld/pql", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1488 { "hw_ld/pqv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1489 { "hw_ld/pqvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1490 { "hw_ld/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1491 { "hw_ld/prq", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1492 { "hw_ld/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1493 { "hw_ld/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1494 { "hw_ld/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1495 { "hw_ld/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1496 { "hw_ld/pwq", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1497 { "hw_ld/pwql", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1498 { "hw_ld/pwqv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1499 { "hw_ld/pwqvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1500 { "hw_ld/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1501 { "hw_ld/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1502 { "hw_ld/q", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1503 { "hw_ld/q", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1504 { "hw_ld/ql", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1505 { "hw_ld/qv", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1506 { "hw_ld/qvl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1507 { "hw_ld/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1508 { "hw_ld/rq", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1509 { "hw_ld/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1510 { "hw_ld/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1511 { "hw_ld/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1512 { "hw_ld/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1513 { "hw_ld/wq", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1514 { "hw_ld/wql", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1515 { "hw_ld/wqv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1516 { "hw_ld/wqvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1517 { "hw_ld/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1518 { "hw_ld/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1519 { "pal1b", PCD(0x1B), BASE, ARG_PCD },
1521 { "sextb", OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1522 { "sextw", OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1523 { "ctpop", OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1524 { "perr", OPR(0x1C, 0x31), MAX, ARG_OPR },
1525 { "ctlz", OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1526 { "cttz", OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1527 { "unpkbw", OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1528 { "unpkbl", OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1529 { "pkwb", OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1530 { "pklb", OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1531 { "minsb8", OPR(0x1C, 0x38), MAX, ARG_OPR },
1532 { "minsb8", OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1533 { "minsw4", OPR(0x1C, 0x39), MAX, ARG_OPR },
1534 { "minsw4", OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1535 { "minub8", OPR(0x1C, 0x3A), MAX, ARG_OPR },
1536 { "minub8", OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1537 { "minuw4", OPR(0x1C, 0x3B), MAX, ARG_OPR },
1538 { "minuw4", OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1539 { "maxub8", OPR(0x1C, 0x3C), MAX, ARG_OPR },
1540 { "maxub8", OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1541 { "maxuw4", OPR(0x1C, 0x3D), MAX, ARG_OPR },
1542 { "maxuw4", OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1543 { "maxsb8", OPR(0x1C, 0x3E), MAX, ARG_OPR },
1544 { "maxsb8", OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1545 { "maxsw4", OPR(0x1C, 0x3F), MAX, ARG_OPR },
1546 { "maxsw4", OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1547 { "ftoit", FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1548 { "ftois", FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1550 { "hw_mtpr", OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1551 { "hw_mtpr", OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1552 { "hw_mtpr", OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1553 { "hw_mtpr/i", OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1554 { "hw_mtpr/a", OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1555 { "hw_mtpr/ai", OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1556 { "hw_mtpr/p", OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1557 { "hw_mtpr/pi", OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1558 { "hw_mtpr/pa", OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1559 { "hw_mtpr/pai", OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1560 { "pal1d", PCD(0x1D), BASE, ARG_PCD },
1562 { "hw_rei", SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1563 { "hw_rei_stall", SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1564 { "hw_jmp", EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1565 { "hw_jsr", EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1566 { "hw_ret", EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1567 { "hw_jcr", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1568 { "hw_coroutine", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1569 { "hw_jmp/stall", EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1570 { "hw_jsr/stall", EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1571 { "hw_ret/stall", EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1572 { "hw_jcr/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1573 { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1574 { "pal1e", PCD(0x1E), BASE, ARG_PCD },
1576 { "hw_stl", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1577 { "hw_stl", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1578 { "hw_stl", EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1579 { "hw_stl/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1580 { "hw_stl/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1581 { "hw_stl/a", EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1582 { "hw_stl/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1583 { "hw_stl/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1584 { "hw_stl/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1585 { "hw_stl/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1586 { "hw_stl/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1587 { "hw_stl/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1588 { "hw_stl/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1589 { "hw_stl/p", EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1590 { "hw_stl/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1591 { "hw_stl/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1592 { "hw_stl/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1593 { "hw_stl/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1594 { "hw_stl/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1595 { "hw_stl/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1596 { "hw_stl/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1597 { "hw_stl/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1598 { "hw_stl/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1599 { "hw_stl/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1600 { "hw_stl/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1601 { "hw_stl/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1602 { "hw_stl_c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1603 { "hw_stl_c/a", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1604 { "hw_stl_c/av", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1605 { "hw_stl_c/p", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1606 { "hw_stl_c/p", EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1607 { "hw_stl_c/pa", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1608 { "hw_stl_c/pav", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1609 { "hw_stl_c/pv", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1610 { "hw_stl_c/v", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1611 { "hw_stq", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1612 { "hw_stq", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1613 { "hw_stq", EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1614 { "hw_stq/a", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1615 { "hw_stq/a", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1616 { "hw_stq/a", EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1617 { "hw_stq/ac", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1618 { "hw_stq/ar", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1619 { "hw_stq/av", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1620 { "hw_stq/avc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1621 { "hw_stq/c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1622 { "hw_stq/p", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1623 { "hw_stq/p", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1624 { "hw_stq/p", EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1625 { "hw_stq/pa", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1626 { "hw_stq/pa", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1627 { "hw_stq/pac", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1628 { "hw_stq/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1629 { "hw_stq/par", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1630 { "hw_stq/pav", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1631 { "hw_stq/pavc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1632 { "hw_stq/pc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1633 { "hw_stq/pr", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1634 { "hw_stq/pv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1635 { "hw_stq/pvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1636 { "hw_stq/r", EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1637 { "hw_stq/v", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1638 { "hw_stq/vc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1639 { "hw_stq_c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1640 { "hw_stq_c/a", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1641 { "hw_stq_c/av", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1642 { "hw_stq_c/p", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1643 { "hw_stq_c/p", EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1644 { "hw_stq_c/pa", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1645 { "hw_stq_c/pav", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1646 { "hw_stq_c/pv", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1647 { "hw_stq_c/v", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1648 { "hw_st", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1649 { "hw_st", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1650 { "hw_st/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1651 { "hw_st/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1652 { "hw_st/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1653 { "hw_st/aq", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1654 { "hw_st/aq", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1655 { "hw_st/aqc", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1656 { "hw_st/aqv", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1657 { "hw_st/aqvc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1658 { "hw_st/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1659 { "hw_st/arq", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1660 { "hw_st/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1661 { "hw_st/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1662 { "hw_st/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1663 { "hw_st/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1664 { "hw_st/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1665 { "hw_st/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1666 { "hw_st/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1667 { "hw_st/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1668 { "hw_st/paq", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1669 { "hw_st/paq", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1670 { "hw_st/paqc", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1671 { "hw_st/paqv", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1672 { "hw_st/paqvc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1673 { "hw_st/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1674 { "hw_st/parq", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1675 { "hw_st/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1676 { "hw_st/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1677 { "hw_st/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1678 { "hw_st/pq", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1679 { "hw_st/pq", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1680 { "hw_st/pqc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1681 { "hw_st/pqv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1682 { "hw_st/pqvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1683 { "hw_st/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1684 { "hw_st/prq", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1685 { "hw_st/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1686 { "hw_st/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1687 { "hw_st/q", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1688 { "hw_st/q", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1689 { "hw_st/qc", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1690 { "hw_st/qv", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1691 { "hw_st/qvc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1692 { "hw_st/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1693 { "hw_st/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1694 { "hw_st/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1695 { "pal1f", PCD(0x1F), BASE, ARG_PCD },
1697 { "ldf", MEM(0x20), BASE, ARG_FMEM },
1698 { "ldg", MEM(0x21), BASE, ARG_FMEM },
1699 { "lds", MEM(0x22), BASE, ARG_FMEM },
1700 { "ldt", MEM(0x23), BASE, ARG_FMEM },
1701 { "stf", MEM(0x24), BASE, ARG_FMEM },
1702 { "stg", MEM(0x25), BASE, ARG_FMEM },
1703 { "sts", MEM(0x26), BASE, ARG_FMEM },
1704 { "stt", MEM(0x27), BASE, ARG_FMEM },
1706 { "ldl", MEM(0x28), BASE, ARG_MEM },
1707 { "ldq", MEM(0x29), BASE, ARG_MEM },
1708 { "ldl_l", MEM(0x2A), BASE, ARG_MEM },
1709 { "ldq_l", MEM(0x2B), BASE, ARG_MEM },
1710 { "stl", MEM(0x2C), BASE, ARG_MEM },
1711 { "stq", MEM(0x2D), BASE, ARG_MEM },
1712 { "stl_c", MEM(0x2E), BASE, ARG_MEM },
1713 { "stq_c", MEM(0x2F), BASE, ARG_MEM },
1715 { "br", BRA(0x30), BASE, { ZA, BDISP } }, /* pseudo */
1716 { "br", BRA(0x30), BASE, ARG_BRA },
1717 { "fbeq", BRA(0x31), BASE, ARG_FBRA },
1718 { "fblt", BRA(0x32), BASE, ARG_FBRA },
1719 { "fble", BRA(0x33), BASE, ARG_FBRA },
1720 { "bsr", BRA(0x34), BASE, ARG_BRA },
1721 { "fbne", BRA(0x35), BASE, ARG_FBRA },
1722 { "fbge", BRA(0x36), BASE, ARG_FBRA },
1723 { "fbgt", BRA(0x37), BASE, ARG_FBRA },
1724 { "blbc", BRA(0x38), BASE, ARG_BRA },
1725 { "beq", BRA(0x39), BASE, ARG_BRA },
1726 { "blt", BRA(0x3A), BASE, ARG_BRA },
1727 { "ble", BRA(0x3B), BASE, ARG_BRA },
1728 { "blbs", BRA(0x3C), BASE, ARG_BRA },
1729 { "bne", BRA(0x3D), BASE, ARG_BRA },
1730 { "bge", BRA(0x3E), BASE, ARG_BRA },
1731 { "bgt", BRA(0x3F), BASE, ARG_BRA },
1734 const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1736 /* OSF register names. */
1738 static const char * const osf_regnames[64] = {
1739 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1740 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1741 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1742 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1743 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1744 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1745 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1746 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1749 /* VMS register names. */
1751 static const char * const vms_regnames[64] = {
1752 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1753 "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1754 "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1755 "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1756 "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1757 "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1758 "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1759 "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1762 /* Disassemble Alpha instructions. */
1765 print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
1767 static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1768 const char * const * regnames;
1769 const struct alpha_opcode *opcode, *opcode_end;
1770 const unsigned char *opindex;
1771 unsigned insn, op, isa_mask;
1772 int need_comma;
1774 /* Initialize the majorop table the first time through */
1775 if (!opcode_index[0])
1777 opcode = alpha_opcodes;
1778 opcode_end = opcode + alpha_num_opcodes;
1780 for (op = 0; op < AXP_NOPS; ++op)
1782 opcode_index[op] = opcode;
1783 while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1784 ++opcode;
1786 opcode_index[op] = opcode;
1789 if (info->flavour == bfd_target_evax_flavour)
1790 regnames = vms_regnames;
1791 else
1792 regnames = osf_regnames;
1794 isa_mask = AXP_OPCODE_NOPAL;
1795 switch (info->mach)
1797 case bfd_mach_alpha_ev4:
1798 isa_mask |= AXP_OPCODE_EV4;
1799 break;
1800 case bfd_mach_alpha_ev5:
1801 isa_mask |= AXP_OPCODE_EV5;
1802 break;
1803 case bfd_mach_alpha_ev6:
1804 isa_mask |= AXP_OPCODE_EV6;
1805 break;
1808 /* Read the insn into a host word */
1810 bfd_byte buffer[4];
1811 int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1812 if (status != 0)
1814 (*info->memory_error_func) (status, memaddr, info);
1815 return -1;
1817 insn = bfd_getl32 (buffer);
1820 /* Get the major opcode of the instruction. */
1821 op = AXP_OP (insn);
1823 /* Find the first match in the opcode table. */
1824 opcode_end = opcode_index[op + 1];
1825 for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1827 if ((insn ^ opcode->opcode) & opcode->mask)
1828 continue;
1830 if (!(opcode->flags & isa_mask))
1831 continue;
1833 /* Make two passes over the operands. First see if any of them
1834 have extraction functions, and, if they do, make sure the
1835 instruction is valid. */
1837 int invalid = 0;
1838 for (opindex = opcode->operands; *opindex != 0; opindex++)
1840 const struct alpha_operand *operand = alpha_operands + *opindex;
1841 if (operand->extract)
1842 (*operand->extract) (insn, &invalid);
1844 if (invalid)
1845 continue;
1848 /* The instruction is valid. */
1849 goto found;
1852 /* No instruction found */
1853 (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1855 return 4;
1857 found:
1858 (*info->fprintf_func) (info->stream, "%s", opcode->name);
1859 if (opcode->operands[0] != 0)
1860 (*info->fprintf_func) (info->stream, "\t");
1862 /* Now extract and print the operands. */
1863 need_comma = 0;
1864 for (opindex = opcode->operands; *opindex != 0; opindex++)
1866 const struct alpha_operand *operand = alpha_operands + *opindex;
1867 int value;
1869 /* Operands that are marked FAKE are simply ignored. We
1870 already made sure that the extract function considered
1871 the instruction to be valid. */
1872 if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1873 continue;
1875 /* Extract the value from the instruction. */
1876 if (operand->extract)
1877 value = (*operand->extract) (insn, (int *) NULL);
1878 else
1880 value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1881 if (operand->flags & AXP_OPERAND_SIGNED)
1883 int signbit = 1 << (operand->bits - 1);
1884 value = (value ^ signbit) - signbit;
1888 if (need_comma &&
1889 ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1890 != AXP_OPERAND_PARENS))
1892 (*info->fprintf_func) (info->stream, ",");
1894 if (operand->flags & AXP_OPERAND_PARENS)
1895 (*info->fprintf_func) (info->stream, "(");
1897 /* Print the operand as directed by the flags. */
1898 if (operand->flags & AXP_OPERAND_IR)
1899 (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1900 else if (operand->flags & AXP_OPERAND_FPR)
1901 (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1902 else if (operand->flags & AXP_OPERAND_RELATIVE)
1903 (*info->print_address_func) (memaddr + 4 + value, info);
1904 else if (operand->flags & AXP_OPERAND_SIGNED)
1905 (*info->fprintf_func) (info->stream, "%d", value);
1906 else
1907 (*info->fprintf_func) (info->stream, "%#x", value);
1909 if (operand->flags & AXP_OPERAND_PARENS)
1910 (*info->fprintf_func) (info->stream, ")");
1911 need_comma = 1;
1914 return 4;