target-arm: Break out mpidr_read_val()
[qemu/ar7.git] / target-arm / helper.c
blob86900c23f9a6b4980ab3ef5327631d5fce020b4c
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #ifndef CONFIG_USER_ONLY
16 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
17 int access_type, ARMMMUIdx mmu_idx,
18 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
19 target_ulong *page_size, uint32_t *fsr);
21 /* Definitions for the PMCCNTR and PMCR registers */
22 #define PMCRD 0x8
23 #define PMCRC 0x4
24 #define PMCRE 0x1
25 #endif
27 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
29 int nregs;
31 /* VFP data registers are always little-endian. */
32 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
33 if (reg < nregs) {
34 stfq_le_p(buf, env->vfp.regs[reg]);
35 return 8;
37 if (arm_feature(env, ARM_FEATURE_NEON)) {
38 /* Aliases for Q regs. */
39 nregs += 16;
40 if (reg < nregs) {
41 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
42 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
43 return 16;
46 switch (reg - nregs) {
47 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
48 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
49 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
51 return 0;
54 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56 int nregs;
58 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
59 if (reg < nregs) {
60 env->vfp.regs[reg] = ldfq_le_p(buf);
61 return 8;
63 if (arm_feature(env, ARM_FEATURE_NEON)) {
64 nregs += 16;
65 if (reg < nregs) {
66 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
67 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
68 return 16;
71 switch (reg - nregs) {
72 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
73 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
74 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
76 return 0;
79 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
81 switch (reg) {
82 case 0 ... 31:
83 /* 128 bit FP register */
84 stfq_le_p(buf, env->vfp.regs[reg * 2]);
85 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
86 return 16;
87 case 32:
88 /* FPSR */
89 stl_p(buf, vfp_get_fpsr(env));
90 return 4;
91 case 33:
92 /* FPCR */
93 stl_p(buf, vfp_get_fpcr(env));
94 return 4;
95 default:
96 return 0;
100 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
102 switch (reg) {
103 case 0 ... 31:
104 /* 128 bit FP register */
105 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
106 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
107 return 16;
108 case 32:
109 /* FPSR */
110 vfp_set_fpsr(env, ldl_p(buf));
111 return 4;
112 case 33:
113 /* FPCR */
114 vfp_set_fpcr(env, ldl_p(buf));
115 return 4;
116 default:
117 return 0;
121 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
123 assert(ri->fieldoffset);
124 if (cpreg_field_is_64bit(ri)) {
125 return CPREG_FIELD64(env, ri);
126 } else {
127 return CPREG_FIELD32(env, ri);
131 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
132 uint64_t value)
134 assert(ri->fieldoffset);
135 if (cpreg_field_is_64bit(ri)) {
136 CPREG_FIELD64(env, ri) = value;
137 } else {
138 CPREG_FIELD32(env, ri) = value;
142 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
144 return (char *)env + ri->fieldoffset;
147 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
149 /* Raw read of a coprocessor register (as needed for migration, etc). */
150 if (ri->type & ARM_CP_CONST) {
151 return ri->resetvalue;
152 } else if (ri->raw_readfn) {
153 return ri->raw_readfn(env, ri);
154 } else if (ri->readfn) {
155 return ri->readfn(env, ri);
156 } else {
157 return raw_read(env, ri);
161 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
162 uint64_t v)
164 /* Raw write of a coprocessor register (as needed for migration, etc).
165 * Note that constant registers are treated as write-ignored; the
166 * caller should check for success by whether a readback gives the
167 * value written.
169 if (ri->type & ARM_CP_CONST) {
170 return;
171 } else if (ri->raw_writefn) {
172 ri->raw_writefn(env, ri, v);
173 } else if (ri->writefn) {
174 ri->writefn(env, ri, v);
175 } else {
176 raw_write(env, ri, v);
180 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
182 /* Return true if the regdef would cause an assertion if you called
183 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
184 * program bug for it not to have the NO_RAW flag).
185 * NB that returning false here doesn't necessarily mean that calling
186 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
187 * read/write access functions which are safe for raw use" from "has
188 * read/write access functions which have side effects but has forgotten
189 * to provide raw access functions".
190 * The tests here line up with the conditions in read/write_raw_cp_reg()
191 * and assertions in raw_read()/raw_write().
193 if ((ri->type & ARM_CP_CONST) ||
194 ri->fieldoffset ||
195 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
196 return false;
198 return true;
201 bool write_cpustate_to_list(ARMCPU *cpu)
203 /* Write the coprocessor state from cpu->env to the (index,value) list. */
204 int i;
205 bool ok = true;
207 for (i = 0; i < cpu->cpreg_array_len; i++) {
208 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
209 const ARMCPRegInfo *ri;
211 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
212 if (!ri) {
213 ok = false;
214 continue;
216 if (ri->type & ARM_CP_NO_RAW) {
217 continue;
219 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
221 return ok;
224 bool write_list_to_cpustate(ARMCPU *cpu)
226 int i;
227 bool ok = true;
229 for (i = 0; i < cpu->cpreg_array_len; i++) {
230 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
231 uint64_t v = cpu->cpreg_values[i];
232 const ARMCPRegInfo *ri;
234 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
235 if (!ri) {
236 ok = false;
237 continue;
239 if (ri->type & ARM_CP_NO_RAW) {
240 continue;
242 /* Write value and confirm it reads back as written
243 * (to catch read-only registers and partially read-only
244 * registers where the incoming migration value doesn't match)
246 write_raw_cp_reg(&cpu->env, ri, v);
247 if (read_raw_cp_reg(&cpu->env, ri) != v) {
248 ok = false;
251 return ok;
254 static void add_cpreg_to_list(gpointer key, gpointer opaque)
256 ARMCPU *cpu = opaque;
257 uint64_t regidx;
258 const ARMCPRegInfo *ri;
260 regidx = *(uint32_t *)key;
261 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
263 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
264 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
265 /* The value array need not be initialized at this point */
266 cpu->cpreg_array_len++;
270 static void count_cpreg(gpointer key, gpointer opaque)
272 ARMCPU *cpu = opaque;
273 uint64_t regidx;
274 const ARMCPRegInfo *ri;
276 regidx = *(uint32_t *)key;
277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
279 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
280 cpu->cpreg_array_len++;
284 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
286 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
287 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
289 if (aidx > bidx) {
290 return 1;
292 if (aidx < bidx) {
293 return -1;
295 return 0;
298 void init_cpreg_list(ARMCPU *cpu)
300 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
301 * Note that we require cpreg_tuples[] to be sorted by key ID.
303 GList *keys;
304 int arraylen;
306 keys = g_hash_table_get_keys(cpu->cp_regs);
307 keys = g_list_sort(keys, cpreg_key_compare);
309 cpu->cpreg_array_len = 0;
311 g_list_foreach(keys, count_cpreg, cpu);
313 arraylen = cpu->cpreg_array_len;
314 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
315 cpu->cpreg_values = g_new(uint64_t, arraylen);
316 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
317 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
318 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
319 cpu->cpreg_array_len = 0;
321 g_list_foreach(keys, add_cpreg_to_list, cpu);
323 assert(cpu->cpreg_array_len == arraylen);
325 g_list_free(keys);
329 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
330 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
332 * access_el3_aa32ns: Used to check AArch32 register views.
333 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
335 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
336 const ARMCPRegInfo *ri)
338 bool secure = arm_is_secure_below_el3(env);
340 assert(!arm_el_is_aa64(env, 3));
341 if (secure) {
342 return CP_ACCESS_TRAP_UNCATEGORIZED;
344 return CP_ACCESS_OK;
347 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
348 const ARMCPRegInfo *ri)
350 if (!arm_el_is_aa64(env, 3)) {
351 return access_el3_aa32ns(env, ri);
353 return CP_ACCESS_OK;
356 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
358 ARMCPU *cpu = arm_env_get_cpu(env);
360 raw_write(env, ri, value);
361 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
364 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
366 ARMCPU *cpu = arm_env_get_cpu(env);
368 if (raw_read(env, ri) != value) {
369 /* Unlike real hardware the qemu TLB uses virtual addresses,
370 * not modified virtual addresses, so this causes a TLB flush.
372 tlb_flush(CPU(cpu), 1);
373 raw_write(env, ri, value);
377 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
378 uint64_t value)
380 ARMCPU *cpu = arm_env_get_cpu(env);
382 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
383 && !extended_addresses_enabled(env)) {
384 /* For VMSA (when not using the LPAE long descriptor page table
385 * format) this register includes the ASID, so do a TLB flush.
386 * For PMSA it is purely a process ID and no action is needed.
388 tlb_flush(CPU(cpu), 1);
390 raw_write(env, ri, value);
393 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
394 uint64_t value)
396 /* Invalidate all (TLBIALL) */
397 ARMCPU *cpu = arm_env_get_cpu(env);
399 tlb_flush(CPU(cpu), 1);
402 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
403 uint64_t value)
405 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
406 ARMCPU *cpu = arm_env_get_cpu(env);
408 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
411 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
414 /* Invalidate by ASID (TLBIASID) */
415 ARMCPU *cpu = arm_env_get_cpu(env);
417 tlb_flush(CPU(cpu), value == 0);
420 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
421 uint64_t value)
423 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
424 ARMCPU *cpu = arm_env_get_cpu(env);
426 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
429 /* IS variants of TLB operations must affect all cores */
430 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
431 uint64_t value)
433 CPUState *other_cs;
435 CPU_FOREACH(other_cs) {
436 tlb_flush(other_cs, 1);
440 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
441 uint64_t value)
443 CPUState *other_cs;
445 CPU_FOREACH(other_cs) {
446 tlb_flush(other_cs, value == 0);
450 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
451 uint64_t value)
453 CPUState *other_cs;
455 CPU_FOREACH(other_cs) {
456 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
460 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 uint64_t value)
463 CPUState *other_cs;
465 CPU_FOREACH(other_cs) {
466 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
470 static const ARMCPRegInfo cp_reginfo[] = {
471 /* Define the secure and non-secure FCSE identifier CP registers
472 * separately because there is no secure bank in V8 (no _EL3). This allows
473 * the secure register to be properly reset and migrated. There is also no
474 * v8 EL1 version of the register so the non-secure instance stands alone.
476 { .name = "FCSEIDR(NS)",
477 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
478 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
479 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
480 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
481 { .name = "FCSEIDR(S)",
482 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
483 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
484 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
485 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
486 /* Define the secure and non-secure context identifier CP registers
487 * separately because there is no secure bank in V8 (no _EL3). This allows
488 * the secure register to be properly reset and migrated. In the
489 * non-secure case, the 32-bit register will have reset and migration
490 * disabled during registration as it is handled by the 64-bit instance.
492 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
493 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
494 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
495 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
496 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
497 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
498 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
499 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
500 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
501 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
502 REGINFO_SENTINEL
505 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
506 /* NB: Some of these registers exist in v8 but with more precise
507 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
509 /* MMU Domain access control / MPU write buffer control */
510 { .name = "DACR",
511 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
512 .access = PL1_RW, .resetvalue = 0,
513 .writefn = dacr_write, .raw_writefn = raw_write,
514 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
515 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
516 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
517 * For v6 and v5, these mappings are overly broad.
519 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
520 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
521 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
522 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
523 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
524 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
525 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
526 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
527 /* Cache maintenance ops; some of this space may be overridden later. */
528 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
529 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
530 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
531 REGINFO_SENTINEL
534 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
535 /* Not all pre-v6 cores implemented this WFI, so this is slightly
536 * over-broad.
538 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
539 .access = PL1_W, .type = ARM_CP_WFI },
540 REGINFO_SENTINEL
543 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
544 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
545 * is UNPREDICTABLE; we choose to NOP as most implementations do).
547 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
548 .access = PL1_W, .type = ARM_CP_WFI },
549 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
550 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
551 * OMAPCP will override this space.
553 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
554 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
555 .resetvalue = 0 },
556 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
557 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
558 .resetvalue = 0 },
559 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
560 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
561 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
562 .resetvalue = 0 },
563 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
564 * implementing it as RAZ means the "debug architecture version" bits
565 * will read as a reserved value, which should cause Linux to not try
566 * to use the debug hardware.
568 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
569 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
570 /* MMU TLB control. Note that the wildcarding means we cover not just
571 * the unified TLB ops but also the dside/iside/inner-shareable variants.
573 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
574 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
575 .type = ARM_CP_NO_RAW },
576 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
577 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
578 .type = ARM_CP_NO_RAW },
579 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
580 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
581 .type = ARM_CP_NO_RAW },
582 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
583 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
584 .type = ARM_CP_NO_RAW },
585 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
586 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
587 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
588 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
589 REGINFO_SENTINEL
592 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
595 uint32_t mask = 0;
597 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
598 if (!arm_feature(env, ARM_FEATURE_V8)) {
599 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
600 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
601 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
603 if (arm_feature(env, ARM_FEATURE_VFP)) {
604 /* VFP coprocessor: cp10 & cp11 [23:20] */
605 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
607 if (!arm_feature(env, ARM_FEATURE_NEON)) {
608 /* ASEDIS [31] bit is RAO/WI */
609 value |= (1 << 31);
612 /* VFPv3 and upwards with NEON implement 32 double precision
613 * registers (D0-D31).
615 if (!arm_feature(env, ARM_FEATURE_NEON) ||
616 !arm_feature(env, ARM_FEATURE_VFP3)) {
617 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
618 value |= (1 << 30);
621 value &= mask;
623 env->cp15.cpacr_el1 = value;
626 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
628 if (arm_feature(env, ARM_FEATURE_V8)) {
629 /* Check if CPACR accesses are to be trapped to EL2 */
630 if (arm_current_el(env) == 1 &&
631 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
632 return CP_ACCESS_TRAP_EL2;
633 /* Check if CPACR accesses are to be trapped to EL3 */
634 } else if (arm_current_el(env) < 3 &&
635 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
636 return CP_ACCESS_TRAP_EL3;
640 return CP_ACCESS_OK;
643 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
645 /* Check if CPTR accesses are set to trap to EL3 */
646 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
647 return CP_ACCESS_TRAP_EL3;
650 return CP_ACCESS_OK;
653 static const ARMCPRegInfo v6_cp_reginfo[] = {
654 /* prefetch by MVA in v6, NOP in v7 */
655 { .name = "MVA_prefetch",
656 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
657 .access = PL1_W, .type = ARM_CP_NOP },
658 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
659 .access = PL0_W, .type = ARM_CP_NOP },
660 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
661 .access = PL0_W, .type = ARM_CP_NOP },
662 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
663 .access = PL0_W, .type = ARM_CP_NOP },
664 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
665 .access = PL1_RW,
666 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
667 offsetof(CPUARMState, cp15.ifar_ns) },
668 .resetvalue = 0, },
669 /* Watchpoint Fault Address Register : should actually only be present
670 * for 1136, 1176, 11MPCore.
672 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
673 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
674 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
675 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
676 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
677 .resetvalue = 0, .writefn = cpacr_write },
678 REGINFO_SENTINEL
681 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
683 /* Performance monitor registers user accessibility is controlled
684 * by PMUSERENR.
686 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
687 return CP_ACCESS_TRAP;
689 return CP_ACCESS_OK;
692 #ifndef CONFIG_USER_ONLY
694 static inline bool arm_ccnt_enabled(CPUARMState *env)
696 /* This does not support checking PMCCFILTR_EL0 register */
698 if (!(env->cp15.c9_pmcr & PMCRE)) {
699 return false;
702 return true;
705 void pmccntr_sync(CPUARMState *env)
707 uint64_t temp_ticks;
709 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
710 get_ticks_per_sec(), 1000000);
712 if (env->cp15.c9_pmcr & PMCRD) {
713 /* Increment once every 64 processor clock cycles */
714 temp_ticks /= 64;
717 if (arm_ccnt_enabled(env)) {
718 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
722 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
723 uint64_t value)
725 pmccntr_sync(env);
727 if (value & PMCRC) {
728 /* The counter has been reset */
729 env->cp15.c15_ccnt = 0;
732 /* only the DP, X, D and E bits are writable */
733 env->cp15.c9_pmcr &= ~0x39;
734 env->cp15.c9_pmcr |= (value & 0x39);
736 pmccntr_sync(env);
739 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
741 uint64_t total_ticks;
743 if (!arm_ccnt_enabled(env)) {
744 /* Counter is disabled, do not change value */
745 return env->cp15.c15_ccnt;
748 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
749 get_ticks_per_sec(), 1000000);
751 if (env->cp15.c9_pmcr & PMCRD) {
752 /* Increment once every 64 processor clock cycles */
753 total_ticks /= 64;
755 return total_ticks - env->cp15.c15_ccnt;
758 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
759 uint64_t value)
761 uint64_t total_ticks;
763 if (!arm_ccnt_enabled(env)) {
764 /* Counter is disabled, set the absolute value */
765 env->cp15.c15_ccnt = value;
766 return;
769 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
770 get_ticks_per_sec(), 1000000);
772 if (env->cp15.c9_pmcr & PMCRD) {
773 /* Increment once every 64 processor clock cycles */
774 total_ticks /= 64;
776 env->cp15.c15_ccnt = total_ticks - value;
779 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
780 uint64_t value)
782 uint64_t cur_val = pmccntr_read(env, NULL);
784 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
787 #else /* CONFIG_USER_ONLY */
789 void pmccntr_sync(CPUARMState *env)
793 #endif
795 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t value)
798 pmccntr_sync(env);
799 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
800 pmccntr_sync(env);
803 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
804 uint64_t value)
806 value &= (1 << 31);
807 env->cp15.c9_pmcnten |= value;
810 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
811 uint64_t value)
813 value &= (1 << 31);
814 env->cp15.c9_pmcnten &= ~value;
817 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t value)
820 env->cp15.c9_pmovsr &= ~value;
823 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
824 uint64_t value)
826 env->cp15.c9_pmxevtyper = value & 0xff;
829 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 uint64_t value)
832 env->cp15.c9_pmuserenr = value & 1;
835 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
836 uint64_t value)
838 /* We have no event counters so only the C bit can be changed */
839 value &= (1 << 31);
840 env->cp15.c9_pminten |= value;
843 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
844 uint64_t value)
846 value &= (1 << 31);
847 env->cp15.c9_pminten &= ~value;
850 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
851 uint64_t value)
853 /* Note that even though the AArch64 view of this register has bits
854 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
855 * architectural requirements for bits which are RES0 only in some
856 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
857 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
859 raw_write(env, ri, value & ~0x1FULL);
862 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
864 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
865 * For bits that vary between AArch32/64, code needs to check the
866 * current execution mode before directly using the feature bit.
868 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
870 if (!arm_feature(env, ARM_FEATURE_EL2)) {
871 valid_mask &= ~SCR_HCE;
873 /* On ARMv7, SMD (or SCD as it is called in v7) is only
874 * supported if EL2 exists. The bit is UNK/SBZP when
875 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
876 * when EL2 is unavailable.
877 * On ARMv8, this bit is always available.
879 if (arm_feature(env, ARM_FEATURE_V7) &&
880 !arm_feature(env, ARM_FEATURE_V8)) {
881 valid_mask &= ~SCR_SMD;
885 /* Clear all-context RES0 bits. */
886 value &= valid_mask;
887 raw_write(env, ri, value);
890 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
892 ARMCPU *cpu = arm_env_get_cpu(env);
894 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
895 * bank
897 uint32_t index = A32_BANKED_REG_GET(env, csselr,
898 ri->secure & ARM_CP_SECSTATE_S);
900 return cpu->ccsidr[index];
903 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
904 uint64_t value)
906 raw_write(env, ri, value & 0xf);
909 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
911 CPUState *cs = ENV_GET_CPU(env);
912 uint64_t ret = 0;
914 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
915 ret |= CPSR_I;
917 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
918 ret |= CPSR_F;
920 /* External aborts are not possible in QEMU so A bit is always clear */
921 return ret;
924 static const ARMCPRegInfo v7_cp_reginfo[] = {
925 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
926 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
927 .access = PL1_W, .type = ARM_CP_NOP },
928 /* Performance monitors are implementation defined in v7,
929 * but with an ARM recommended set of registers, which we
930 * follow (although we don't actually implement any counters)
932 * Performance registers fall into three categories:
933 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
934 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
935 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
936 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
937 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
939 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
940 .access = PL0_RW, .type = ARM_CP_ALIAS,
941 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
942 .writefn = pmcntenset_write,
943 .accessfn = pmreg_access,
944 .raw_writefn = raw_write },
945 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
946 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
947 .access = PL0_RW, .accessfn = pmreg_access,
948 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
949 .writefn = pmcntenset_write, .raw_writefn = raw_write },
950 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
951 .access = PL0_RW,
952 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
953 .accessfn = pmreg_access,
954 .writefn = pmcntenclr_write,
955 .type = ARM_CP_ALIAS },
956 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
957 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
958 .access = PL0_RW, .accessfn = pmreg_access,
959 .type = ARM_CP_ALIAS,
960 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
961 .writefn = pmcntenclr_write },
962 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
963 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
964 .accessfn = pmreg_access,
965 .writefn = pmovsr_write,
966 .raw_writefn = raw_write },
967 /* Unimplemented so WI. */
968 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
969 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
970 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
971 * We choose to RAZ/WI.
973 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
974 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
975 .accessfn = pmreg_access },
976 #ifndef CONFIG_USER_ONLY
977 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
978 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
979 .readfn = pmccntr_read, .writefn = pmccntr_write32,
980 .accessfn = pmreg_access },
981 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
983 .access = PL0_RW, .accessfn = pmreg_access,
984 .type = ARM_CP_IO,
985 .readfn = pmccntr_read, .writefn = pmccntr_write, },
986 #endif
987 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
988 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
989 .writefn = pmccfiltr_write,
990 .access = PL0_RW, .accessfn = pmreg_access,
991 .type = ARM_CP_IO,
992 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
993 .resetvalue = 0, },
994 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
995 .access = PL0_RW,
996 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
997 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
998 .raw_writefn = raw_write },
999 /* Unimplemented, RAZ/WI. */
1000 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1001 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1002 .accessfn = pmreg_access },
1003 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1004 .access = PL0_R | PL1_RW,
1005 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1006 .resetvalue = 0,
1007 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1008 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1009 .access = PL1_RW,
1010 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1011 .resetvalue = 0,
1012 .writefn = pmintenset_write, .raw_writefn = raw_write },
1013 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1014 .access = PL1_RW, .type = ARM_CP_ALIAS,
1015 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1016 .writefn = pmintenclr_write, },
1017 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1018 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1019 .access = PL1_RW, .writefn = vbar_write,
1020 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1021 offsetof(CPUARMState, cp15.vbar_ns) },
1022 .resetvalue = 0 },
1023 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1024 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1025 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1026 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1027 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1028 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1029 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1030 offsetof(CPUARMState, cp15.csselr_ns) } },
1031 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1032 * just RAZ for all cores:
1034 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1035 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1036 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1037 /* Auxiliary fault status registers: these also are IMPDEF, and we
1038 * choose to RAZ/WI for all cores.
1040 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1041 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1042 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1043 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1044 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1045 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1046 /* MAIR can just read-as-written because we don't implement caches
1047 * and so don't need to care about memory attributes.
1049 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1050 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1051 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1052 .resetvalue = 0 },
1053 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1054 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1055 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1056 .resetvalue = 0 },
1057 /* For non-long-descriptor page tables these are PRRR and NMRR;
1058 * regardless they still act as reads-as-written for QEMU.
1060 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1061 * allows them to assign the correct fieldoffset based on the endianness
1062 * handled in the field definitions.
1064 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1065 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1067 offsetof(CPUARMState, cp15.mair0_ns) },
1068 .resetfn = arm_cp_reset_ignore },
1069 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1070 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1071 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1072 offsetof(CPUARMState, cp15.mair1_ns) },
1073 .resetfn = arm_cp_reset_ignore },
1074 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1075 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1076 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1077 /* 32 bit ITLB invalidates */
1078 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1079 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1080 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1081 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1082 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1083 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1084 /* 32 bit DTLB invalidates */
1085 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1086 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1087 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1088 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1089 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1090 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1091 /* 32 bit TLB invalidates */
1092 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1093 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1094 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1095 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1096 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1097 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1098 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1099 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1100 REGINFO_SENTINEL
1103 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1104 /* 32 bit TLB invalidates, Inner Shareable */
1105 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1106 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1107 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1108 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1109 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1110 .type = ARM_CP_NO_RAW, .access = PL1_W,
1111 .writefn = tlbiasid_is_write },
1112 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1113 .type = ARM_CP_NO_RAW, .access = PL1_W,
1114 .writefn = tlbimvaa_is_write },
1115 REGINFO_SENTINEL
1118 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1119 uint64_t value)
1121 value &= 1;
1122 env->teecr = value;
1125 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1127 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1128 return CP_ACCESS_TRAP;
1130 return CP_ACCESS_OK;
1133 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1134 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1135 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1136 .resetvalue = 0,
1137 .writefn = teecr_write },
1138 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1139 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1140 .accessfn = teehbr_access, .resetvalue = 0 },
1141 REGINFO_SENTINEL
1144 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1145 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1146 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1147 .access = PL0_RW,
1148 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1149 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1150 .access = PL0_RW,
1151 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1152 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1153 .resetfn = arm_cp_reset_ignore },
1154 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1155 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1156 .access = PL0_R|PL1_W,
1157 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1158 .resetvalue = 0},
1159 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1160 .access = PL0_R|PL1_W,
1161 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1162 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1163 .resetfn = arm_cp_reset_ignore },
1164 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1165 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1166 .access = PL1_RW,
1167 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1168 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1169 .access = PL1_RW,
1170 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1171 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1172 .resetvalue = 0 },
1173 REGINFO_SENTINEL
1176 #ifndef CONFIG_USER_ONLY
1178 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1180 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1181 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1182 return CP_ACCESS_TRAP;
1184 return CP_ACCESS_OK;
1187 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1189 unsigned int cur_el = arm_current_el(env);
1190 bool secure = arm_is_secure(env);
1192 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1193 if (cur_el == 0 &&
1194 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1195 return CP_ACCESS_TRAP;
1198 if (arm_feature(env, ARM_FEATURE_EL2) &&
1199 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1200 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1201 return CP_ACCESS_TRAP_EL2;
1203 return CP_ACCESS_OK;
1206 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1208 unsigned int cur_el = arm_current_el(env);
1209 bool secure = arm_is_secure(env);
1211 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1212 * EL0[PV]TEN is zero.
1214 if (cur_el == 0 &&
1215 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1216 return CP_ACCESS_TRAP;
1219 if (arm_feature(env, ARM_FEATURE_EL2) &&
1220 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1221 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1222 return CP_ACCESS_TRAP_EL2;
1224 return CP_ACCESS_OK;
1227 static CPAccessResult gt_pct_access(CPUARMState *env,
1228 const ARMCPRegInfo *ri)
1230 return gt_counter_access(env, GTIMER_PHYS);
1233 static CPAccessResult gt_vct_access(CPUARMState *env,
1234 const ARMCPRegInfo *ri)
1236 return gt_counter_access(env, GTIMER_VIRT);
1239 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1241 return gt_timer_access(env, GTIMER_PHYS);
1244 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1246 return gt_timer_access(env, GTIMER_VIRT);
1249 static CPAccessResult gt_stimer_access(CPUARMState *env,
1250 const ARMCPRegInfo *ri)
1252 /* The AArch64 register view of the secure physical timer is
1253 * always accessible from EL3, and configurably accessible from
1254 * Secure EL1.
1256 switch (arm_current_el(env)) {
1257 case 1:
1258 if (!arm_is_secure(env)) {
1259 return CP_ACCESS_TRAP;
1261 if (!(env->cp15.scr_el3 & SCR_ST)) {
1262 return CP_ACCESS_TRAP_EL3;
1264 return CP_ACCESS_OK;
1265 case 0:
1266 case 2:
1267 return CP_ACCESS_TRAP;
1268 case 3:
1269 return CP_ACCESS_OK;
1270 default:
1271 g_assert_not_reached();
1275 static uint64_t gt_get_countervalue(CPUARMState *env)
1277 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1280 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1282 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1284 if (gt->ctl & 1) {
1285 /* Timer enabled: calculate and set current ISTATUS, irq, and
1286 * reset timer to when ISTATUS next has to change
1288 uint64_t offset = timeridx == GTIMER_VIRT ?
1289 cpu->env.cp15.cntvoff_el2 : 0;
1290 uint64_t count = gt_get_countervalue(&cpu->env);
1291 /* Note that this must be unsigned 64 bit arithmetic: */
1292 int istatus = count - offset >= gt->cval;
1293 uint64_t nexttick;
1295 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1296 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1297 (istatus && !(gt->ctl & 2)));
1298 if (istatus) {
1299 /* Next transition is when count rolls back over to zero */
1300 nexttick = UINT64_MAX;
1301 } else {
1302 /* Next transition is when we hit cval */
1303 nexttick = gt->cval + offset;
1305 /* Note that the desired next expiry time might be beyond the
1306 * signed-64-bit range of a QEMUTimer -- in this case we just
1307 * set the timer for as far in the future as possible. When the
1308 * timer expires we will reset the timer for any remaining period.
1310 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1311 nexttick = INT64_MAX / GTIMER_SCALE;
1313 timer_mod(cpu->gt_timer[timeridx], nexttick);
1314 } else {
1315 /* Timer disabled: ISTATUS and timer output always clear */
1316 gt->ctl &= ~4;
1317 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1318 timer_del(cpu->gt_timer[timeridx]);
1322 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1323 int timeridx)
1325 ARMCPU *cpu = arm_env_get_cpu(env);
1327 timer_del(cpu->gt_timer[timeridx]);
1330 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1332 return gt_get_countervalue(env);
1335 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1337 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1340 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1341 int timeridx,
1342 uint64_t value)
1344 env->cp15.c14_timer[timeridx].cval = value;
1345 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1348 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1349 int timeridx)
1351 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1353 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1354 (gt_get_countervalue(env) - offset));
1357 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1358 int timeridx,
1359 uint64_t value)
1361 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1363 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1364 sextract64(value, 0, 32);
1365 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1368 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1369 int timeridx,
1370 uint64_t value)
1372 ARMCPU *cpu = arm_env_get_cpu(env);
1373 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1375 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1376 if ((oldval ^ value) & 1) {
1377 /* Enable toggled */
1378 gt_recalc_timer(cpu, timeridx);
1379 } else if ((oldval ^ value) & 2) {
1380 /* IMASK toggled: don't need to recalculate,
1381 * just set the interrupt line based on ISTATUS
1383 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1384 (oldval & 4) && !(value & 2));
1388 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1390 gt_timer_reset(env, ri, GTIMER_PHYS);
1393 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1394 uint64_t value)
1396 gt_cval_write(env, ri, GTIMER_PHYS, value);
1399 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1401 return gt_tval_read(env, ri, GTIMER_PHYS);
1404 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1405 uint64_t value)
1407 gt_tval_write(env, ri, GTIMER_PHYS, value);
1410 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1411 uint64_t value)
1413 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1416 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1418 gt_timer_reset(env, ri, GTIMER_VIRT);
1421 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1422 uint64_t value)
1424 gt_cval_write(env, ri, GTIMER_VIRT, value);
1427 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1429 return gt_tval_read(env, ri, GTIMER_VIRT);
1432 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1433 uint64_t value)
1435 gt_tval_write(env, ri, GTIMER_VIRT, value);
1438 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1439 uint64_t value)
1441 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1444 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1445 uint64_t value)
1447 ARMCPU *cpu = arm_env_get_cpu(env);
1449 raw_write(env, ri, value);
1450 gt_recalc_timer(cpu, GTIMER_VIRT);
1453 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1455 gt_timer_reset(env, ri, GTIMER_HYP);
1458 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1459 uint64_t value)
1461 gt_cval_write(env, ri, GTIMER_HYP, value);
1464 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1466 return gt_tval_read(env, ri, GTIMER_HYP);
1469 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1470 uint64_t value)
1472 gt_tval_write(env, ri, GTIMER_HYP, value);
1475 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1476 uint64_t value)
1478 gt_ctl_write(env, ri, GTIMER_HYP, value);
1481 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1483 gt_timer_reset(env, ri, GTIMER_SEC);
1486 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1487 uint64_t value)
1489 gt_cval_write(env, ri, GTIMER_SEC, value);
1492 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1494 return gt_tval_read(env, ri, GTIMER_SEC);
1497 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1498 uint64_t value)
1500 gt_tval_write(env, ri, GTIMER_SEC, value);
1503 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1504 uint64_t value)
1506 gt_ctl_write(env, ri, GTIMER_SEC, value);
1509 void arm_gt_ptimer_cb(void *opaque)
1511 ARMCPU *cpu = opaque;
1513 gt_recalc_timer(cpu, GTIMER_PHYS);
1516 void arm_gt_vtimer_cb(void *opaque)
1518 ARMCPU *cpu = opaque;
1520 gt_recalc_timer(cpu, GTIMER_VIRT);
1523 void arm_gt_htimer_cb(void *opaque)
1525 ARMCPU *cpu = opaque;
1527 gt_recalc_timer(cpu, GTIMER_HYP);
1530 void arm_gt_stimer_cb(void *opaque)
1532 ARMCPU *cpu = opaque;
1534 gt_recalc_timer(cpu, GTIMER_SEC);
1537 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1538 /* Note that CNTFRQ is purely reads-as-written for the benefit
1539 * of software; writing it doesn't actually change the timer frequency.
1540 * Our reset value matches the fixed frequency we implement the timer at.
1542 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1543 .type = ARM_CP_ALIAS,
1544 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1545 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1547 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1548 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1549 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1550 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1551 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1553 /* overall control: mostly access permissions */
1554 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1555 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1556 .access = PL1_RW,
1557 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1558 .resetvalue = 0,
1560 /* per-timer control */
1561 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1562 .secure = ARM_CP_SECSTATE_NS,
1563 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1564 .accessfn = gt_ptimer_access,
1565 .fieldoffset = offsetoflow32(CPUARMState,
1566 cp15.c14_timer[GTIMER_PHYS].ctl),
1567 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1569 { .name = "CNTP_CTL(S)",
1570 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1571 .secure = ARM_CP_SECSTATE_S,
1572 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1573 .accessfn = gt_ptimer_access,
1574 .fieldoffset = offsetoflow32(CPUARMState,
1575 cp15.c14_timer[GTIMER_SEC].ctl),
1576 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1578 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1579 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1580 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1581 .accessfn = gt_ptimer_access,
1582 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1583 .resetvalue = 0,
1584 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1586 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1587 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1588 .accessfn = gt_vtimer_access,
1589 .fieldoffset = offsetoflow32(CPUARMState,
1590 cp15.c14_timer[GTIMER_VIRT].ctl),
1591 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1593 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1594 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1595 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1596 .accessfn = gt_vtimer_access,
1597 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1598 .resetvalue = 0,
1599 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1601 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1602 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1603 .secure = ARM_CP_SECSTATE_NS,
1604 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1605 .accessfn = gt_ptimer_access,
1606 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1608 { .name = "CNTP_TVAL(S)",
1609 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1610 .secure = ARM_CP_SECSTATE_S,
1611 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1612 .accessfn = gt_ptimer_access,
1613 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1615 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1616 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1617 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1618 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1619 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1621 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1622 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1623 .accessfn = gt_vtimer_access,
1624 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1626 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1627 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1628 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1629 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1630 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1632 /* The counter itself */
1633 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1634 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1635 .accessfn = gt_pct_access,
1636 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1638 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1639 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1640 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1641 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1643 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1644 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1645 .accessfn = gt_vct_access,
1646 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1648 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1649 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1650 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1651 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1653 /* Comparison value, indicating when the timer goes off */
1654 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1655 .secure = ARM_CP_SECSTATE_NS,
1656 .access = PL1_RW | PL0_R,
1657 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1658 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1659 .accessfn = gt_ptimer_access,
1660 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1662 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1663 .secure = ARM_CP_SECSTATE_S,
1664 .access = PL1_RW | PL0_R,
1665 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1666 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1667 .accessfn = gt_ptimer_access,
1668 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1670 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1671 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1672 .access = PL1_RW | PL0_R,
1673 .type = ARM_CP_IO,
1674 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1675 .resetvalue = 0, .accessfn = gt_ptimer_access,
1676 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1678 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1679 .access = PL1_RW | PL0_R,
1680 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1681 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1682 .accessfn = gt_vtimer_access,
1683 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1685 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1686 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1687 .access = PL1_RW | PL0_R,
1688 .type = ARM_CP_IO,
1689 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1690 .resetvalue = 0, .accessfn = gt_vtimer_access,
1691 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1693 /* Secure timer -- this is actually restricted to only EL3
1694 * and configurably Secure-EL1 via the accessfn.
1696 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1697 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1698 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1699 .accessfn = gt_stimer_access,
1700 .readfn = gt_sec_tval_read,
1701 .writefn = gt_sec_tval_write,
1702 .resetfn = gt_sec_timer_reset,
1704 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1705 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1706 .type = ARM_CP_IO, .access = PL1_RW,
1707 .accessfn = gt_stimer_access,
1708 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1709 .resetvalue = 0,
1710 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1712 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1713 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1714 .type = ARM_CP_IO, .access = PL1_RW,
1715 .accessfn = gt_stimer_access,
1716 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1717 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1719 REGINFO_SENTINEL
1722 #else
1723 /* In user-mode none of the generic timer registers are accessible,
1724 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1725 * so instead just don't register any of them.
1727 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1728 REGINFO_SENTINEL
1731 #endif
1733 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1735 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1736 raw_write(env, ri, value);
1737 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1738 raw_write(env, ri, value & 0xfffff6ff);
1739 } else {
1740 raw_write(env, ri, value & 0xfffff1ff);
1744 #ifndef CONFIG_USER_ONLY
1745 /* get_phys_addr() isn't present for user-mode-only targets */
1747 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1749 if (ri->opc2 & 4) {
1750 /* The ATS12NSO* operations must trap to EL3 if executed in
1751 * Secure EL1 (which can only happen if EL3 is AArch64).
1752 * They are simply UNDEF if executed from NS EL1.
1753 * They function normally from EL2 or EL3.
1755 if (arm_current_el(env) == 1) {
1756 if (arm_is_secure_below_el3(env)) {
1757 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1759 return CP_ACCESS_TRAP_UNCATEGORIZED;
1762 return CP_ACCESS_OK;
1765 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1766 int access_type, ARMMMUIdx mmu_idx)
1768 hwaddr phys_addr;
1769 target_ulong page_size;
1770 int prot;
1771 uint32_t fsr;
1772 bool ret;
1773 uint64_t par64;
1774 MemTxAttrs attrs = {};
1776 ret = get_phys_addr(env, value, access_type, mmu_idx,
1777 &phys_addr, &attrs, &prot, &page_size, &fsr);
1778 if (extended_addresses_enabled(env)) {
1779 /* fsr is a DFSR/IFSR value for the long descriptor
1780 * translation table format, but with WnR always clear.
1781 * Convert it to a 64-bit PAR.
1783 par64 = (1 << 11); /* LPAE bit always set */
1784 if (!ret) {
1785 par64 |= phys_addr & ~0xfffULL;
1786 if (!attrs.secure) {
1787 par64 |= (1 << 9); /* NS */
1789 /* We don't set the ATTR or SH fields in the PAR. */
1790 } else {
1791 par64 |= 1; /* F */
1792 par64 |= (fsr & 0x3f) << 1; /* FS */
1793 /* Note that S2WLK and FSTAGE are always zero, because we don't
1794 * implement virtualization and therefore there can't be a stage 2
1795 * fault.
1798 } else {
1799 /* fsr is a DFSR/IFSR value for the short descriptor
1800 * translation table format (with WnR always clear).
1801 * Convert it to a 32-bit PAR.
1803 if (!ret) {
1804 /* We do not set any attribute bits in the PAR */
1805 if (page_size == (1 << 24)
1806 && arm_feature(env, ARM_FEATURE_V7)) {
1807 par64 = (phys_addr & 0xff000000) | (1 << 1);
1808 } else {
1809 par64 = phys_addr & 0xfffff000;
1811 if (!attrs.secure) {
1812 par64 |= (1 << 9); /* NS */
1814 } else {
1815 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1816 ((fsr & 0xf) << 1) | 1;
1819 return par64;
1822 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1824 int access_type = ri->opc2 & 1;
1825 uint64_t par64;
1826 ARMMMUIdx mmu_idx;
1827 int el = arm_current_el(env);
1828 bool secure = arm_is_secure_below_el3(env);
1830 switch (ri->opc2 & 6) {
1831 case 0:
1832 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1833 switch (el) {
1834 case 3:
1835 mmu_idx = ARMMMUIdx_S1E3;
1836 break;
1837 case 2:
1838 mmu_idx = ARMMMUIdx_S1NSE1;
1839 break;
1840 case 1:
1841 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1842 break;
1843 default:
1844 g_assert_not_reached();
1846 break;
1847 case 2:
1848 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1849 switch (el) {
1850 case 3:
1851 mmu_idx = ARMMMUIdx_S1SE0;
1852 break;
1853 case 2:
1854 mmu_idx = ARMMMUIdx_S1NSE0;
1855 break;
1856 case 1:
1857 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1858 break;
1859 default:
1860 g_assert_not_reached();
1862 break;
1863 case 4:
1864 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1865 mmu_idx = ARMMMUIdx_S12NSE1;
1866 break;
1867 case 6:
1868 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1869 mmu_idx = ARMMMUIdx_S12NSE0;
1870 break;
1871 default:
1872 g_assert_not_reached();
1875 par64 = do_ats_write(env, value, access_type, mmu_idx);
1877 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1880 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
1881 uint64_t value)
1883 int access_type = ri->opc2 & 1;
1884 uint64_t par64;
1886 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
1888 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1891 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
1893 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
1894 return CP_ACCESS_TRAP;
1896 return CP_ACCESS_OK;
1899 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1900 uint64_t value)
1902 int access_type = ri->opc2 & 1;
1903 ARMMMUIdx mmu_idx;
1904 int secure = arm_is_secure_below_el3(env);
1906 switch (ri->opc2 & 6) {
1907 case 0:
1908 switch (ri->opc1) {
1909 case 0: /* AT S1E1R, AT S1E1W */
1910 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1911 break;
1912 case 4: /* AT S1E2R, AT S1E2W */
1913 mmu_idx = ARMMMUIdx_S1E2;
1914 break;
1915 case 6: /* AT S1E3R, AT S1E3W */
1916 mmu_idx = ARMMMUIdx_S1E3;
1917 break;
1918 default:
1919 g_assert_not_reached();
1921 break;
1922 case 2: /* AT S1E0R, AT S1E0W */
1923 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1924 break;
1925 case 4: /* AT S12E1R, AT S12E1W */
1926 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
1927 break;
1928 case 6: /* AT S12E0R, AT S12E0W */
1929 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
1930 break;
1931 default:
1932 g_assert_not_reached();
1935 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1937 #endif
1939 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1940 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1941 .access = PL1_RW, .resetvalue = 0,
1942 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1943 offsetoflow32(CPUARMState, cp15.par_ns) },
1944 .writefn = par_write },
1945 #ifndef CONFIG_USER_ONLY
1946 /* This underdecoding is safe because the reginfo is NO_RAW. */
1947 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1948 .access = PL1_W, .accessfn = ats_access,
1949 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1950 #endif
1951 REGINFO_SENTINEL
1954 /* Return basic MPU access permission bits. */
1955 static uint32_t simple_mpu_ap_bits(uint32_t val)
1957 uint32_t ret;
1958 uint32_t mask;
1959 int i;
1960 ret = 0;
1961 mask = 3;
1962 for (i = 0; i < 16; i += 2) {
1963 ret |= (val >> i) & mask;
1964 mask <<= 2;
1966 return ret;
1969 /* Pad basic MPU access permission bits to extended format. */
1970 static uint32_t extended_mpu_ap_bits(uint32_t val)
1972 uint32_t ret;
1973 uint32_t mask;
1974 int i;
1975 ret = 0;
1976 mask = 3;
1977 for (i = 0; i < 16; i += 2) {
1978 ret |= (val & mask) << i;
1979 mask <<= 2;
1981 return ret;
1984 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1985 uint64_t value)
1987 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1990 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1992 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1995 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1996 uint64_t value)
1998 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2001 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2003 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2006 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2008 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2010 if (!u32p) {
2011 return 0;
2014 u32p += env->cp15.c6_rgnr;
2015 return *u32p;
2018 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2019 uint64_t value)
2021 ARMCPU *cpu = arm_env_get_cpu(env);
2022 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2024 if (!u32p) {
2025 return;
2028 u32p += env->cp15.c6_rgnr;
2029 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2030 *u32p = value;
2033 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2035 ARMCPU *cpu = arm_env_get_cpu(env);
2036 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2038 if (!u32p) {
2039 return;
2042 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2045 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2046 uint64_t value)
2048 ARMCPU *cpu = arm_env_get_cpu(env);
2049 uint32_t nrgs = cpu->pmsav7_dregion;
2051 if (value >= nrgs) {
2052 qemu_log_mask(LOG_GUEST_ERROR,
2053 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2054 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2055 return;
2058 raw_write(env, ri, value);
2061 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2062 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2063 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2064 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2065 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2066 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2067 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2068 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2069 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2070 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2071 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2072 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2073 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2074 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2075 .access = PL1_RW,
2076 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2077 .writefn = pmsav7_rgnr_write },
2078 REGINFO_SENTINEL
2081 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2082 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2083 .access = PL1_RW, .type = ARM_CP_ALIAS,
2084 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2085 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2086 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2087 .access = PL1_RW, .type = ARM_CP_ALIAS,
2088 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2089 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2090 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2091 .access = PL1_RW,
2092 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2093 .resetvalue = 0, },
2094 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2095 .access = PL1_RW,
2096 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2097 .resetvalue = 0, },
2098 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2099 .access = PL1_RW,
2100 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2101 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2102 .access = PL1_RW,
2103 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2104 /* Protection region base and size registers */
2105 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2106 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2108 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2109 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2110 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2111 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2112 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2113 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2114 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2115 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2116 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2117 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2118 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2119 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2120 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2121 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2122 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2123 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2124 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2125 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2126 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2127 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2129 REGINFO_SENTINEL
2132 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2133 uint64_t value)
2135 TCR *tcr = raw_ptr(env, ri);
2136 int maskshift = extract32(value, 0, 3);
2138 if (!arm_feature(env, ARM_FEATURE_V8)) {
2139 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2140 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2141 * using Long-desciptor translation table format */
2142 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2143 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2144 /* In an implementation that includes the Security Extensions
2145 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2146 * Short-descriptor translation table format.
2148 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2149 } else {
2150 value &= TTBCR_N;
2154 /* Update the masks corresponding to the TCR bank being written
2155 * Note that we always calculate mask and base_mask, but
2156 * they are only used for short-descriptor tables (ie if EAE is 0);
2157 * for long-descriptor tables the TCR fields are used differently
2158 * and the mask and base_mask values are meaningless.
2160 tcr->raw_tcr = value;
2161 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2162 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2165 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2166 uint64_t value)
2168 ARMCPU *cpu = arm_env_get_cpu(env);
2170 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2171 /* With LPAE the TTBCR could result in a change of ASID
2172 * via the TTBCR.A1 bit, so do a TLB flush.
2174 tlb_flush(CPU(cpu), 1);
2176 vmsa_ttbcr_raw_write(env, ri, value);
2179 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2181 TCR *tcr = raw_ptr(env, ri);
2183 /* Reset both the TCR as well as the masks corresponding to the bank of
2184 * the TCR being reset.
2186 tcr->raw_tcr = 0;
2187 tcr->mask = 0;
2188 tcr->base_mask = 0xffffc000u;
2191 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2192 uint64_t value)
2194 ARMCPU *cpu = arm_env_get_cpu(env);
2195 TCR *tcr = raw_ptr(env, ri);
2197 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2198 tlb_flush(CPU(cpu), 1);
2199 tcr->raw_tcr = value;
2202 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2203 uint64_t value)
2205 /* 64 bit accesses to the TTBRs can change the ASID and so we
2206 * must flush the TLB.
2208 if (cpreg_field_is_64bit(ri)) {
2209 ARMCPU *cpu = arm_env_get_cpu(env);
2211 tlb_flush(CPU(cpu), 1);
2213 raw_write(env, ri, value);
2216 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2217 uint64_t value)
2219 ARMCPU *cpu = arm_env_get_cpu(env);
2220 CPUState *cs = CPU(cpu);
2222 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2223 if (raw_read(env, ri) != value) {
2224 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2225 ARMMMUIdx_S2NS, -1);
2226 raw_write(env, ri, value);
2230 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2231 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2232 .access = PL1_RW, .type = ARM_CP_ALIAS,
2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2234 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2235 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2236 .access = PL1_RW, .resetvalue = 0,
2237 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2238 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2239 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2240 .access = PL1_RW, .resetvalue = 0,
2241 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2242 offsetof(CPUARMState, cp15.dfar_ns) } },
2243 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2244 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2245 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2246 .resetvalue = 0, },
2247 REGINFO_SENTINEL
2250 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2251 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2253 .access = PL1_RW,
2254 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2255 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2256 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2257 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2258 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2259 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2260 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2261 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2262 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2264 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2265 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2266 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2267 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2268 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2269 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2270 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2271 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2272 .raw_writefn = vmsa_ttbcr_raw_write,
2273 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2274 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2275 REGINFO_SENTINEL
2278 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2279 uint64_t value)
2281 env->cp15.c15_ticonfig = value & 0xe7;
2282 /* The OS_TYPE bit in this register changes the reported CPUID! */
2283 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2284 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2287 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2288 uint64_t value)
2290 env->cp15.c15_threadid = value & 0xffff;
2293 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2294 uint64_t value)
2296 /* Wait-for-interrupt (deprecated) */
2297 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2300 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2301 uint64_t value)
2303 /* On OMAP there are registers indicating the max/min index of dcache lines
2304 * containing a dirty line; cache flush operations have to reset these.
2306 env->cp15.c15_i_max = 0x000;
2307 env->cp15.c15_i_min = 0xff0;
2310 static const ARMCPRegInfo omap_cp_reginfo[] = {
2311 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2312 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2313 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2314 .resetvalue = 0, },
2315 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2316 .access = PL1_RW, .type = ARM_CP_NOP },
2317 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2318 .access = PL1_RW,
2319 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2320 .writefn = omap_ticonfig_write },
2321 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2322 .access = PL1_RW,
2323 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2324 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2325 .access = PL1_RW, .resetvalue = 0xff0,
2326 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2327 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2328 .access = PL1_RW,
2329 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2330 .writefn = omap_threadid_write },
2331 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2332 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2333 .type = ARM_CP_NO_RAW,
2334 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2335 /* TODO: Peripheral port remap register:
2336 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2337 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2338 * when MMU is off.
2340 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2341 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2342 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2343 .writefn = omap_cachemaint_write },
2344 { .name = "C9", .cp = 15, .crn = 9,
2345 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2346 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2347 REGINFO_SENTINEL
2350 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2351 uint64_t value)
2353 env->cp15.c15_cpar = value & 0x3fff;
2356 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2357 { .name = "XSCALE_CPAR",
2358 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2359 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2360 .writefn = xscale_cpar_write, },
2361 { .name = "XSCALE_AUXCR",
2362 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2363 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2364 .resetvalue = 0, },
2365 /* XScale specific cache-lockdown: since we have no cache we NOP these
2366 * and hope the guest does not really rely on cache behaviour.
2368 { .name = "XSCALE_LOCK_ICACHE_LINE",
2369 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2370 .access = PL1_W, .type = ARM_CP_NOP },
2371 { .name = "XSCALE_UNLOCK_ICACHE",
2372 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2373 .access = PL1_W, .type = ARM_CP_NOP },
2374 { .name = "XSCALE_DCACHE_LOCK",
2375 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2376 .access = PL1_RW, .type = ARM_CP_NOP },
2377 { .name = "XSCALE_UNLOCK_DCACHE",
2378 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2379 .access = PL1_W, .type = ARM_CP_NOP },
2380 REGINFO_SENTINEL
2383 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2384 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2385 * implementation of this implementation-defined space.
2386 * Ideally this should eventually disappear in favour of actually
2387 * implementing the correct behaviour for all cores.
2389 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2390 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2391 .access = PL1_RW,
2392 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2393 .resetvalue = 0 },
2394 REGINFO_SENTINEL
2397 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2398 /* Cache status: RAZ because we have no cache so it's always clean */
2399 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2400 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2401 .resetvalue = 0 },
2402 REGINFO_SENTINEL
2405 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2406 /* We never have a a block transfer operation in progress */
2407 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2408 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2409 .resetvalue = 0 },
2410 /* The cache ops themselves: these all NOP for QEMU */
2411 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2412 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2413 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2414 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2415 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2416 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2417 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2418 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2419 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2420 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2421 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2422 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2423 REGINFO_SENTINEL
2426 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2427 /* The cache test-and-clean instructions always return (1 << 30)
2428 * to indicate that there are no dirty cache lines.
2430 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2431 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2432 .resetvalue = (1 << 30) },
2433 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2434 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2435 .resetvalue = (1 << 30) },
2436 REGINFO_SENTINEL
2439 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2440 /* Ignore ReadBuffer accesses */
2441 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2442 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2443 .access = PL1_RW, .resetvalue = 0,
2444 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2445 REGINFO_SENTINEL
2448 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2450 ARMCPU *cpu = arm_env_get_cpu(env);
2451 unsigned int cur_el = arm_current_el(env);
2452 bool secure = arm_is_secure(env);
2454 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2455 return env->cp15.vpidr_el2;
2457 return raw_read(env, ri);
2460 static uint64_t mpidr_read_val(CPUARMState *env)
2462 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2463 uint64_t mpidr = cpu->mp_affinity;
2465 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2466 mpidr |= (1U << 31);
2467 /* Cores which are uniprocessor (non-coherent)
2468 * but still implement the MP extensions set
2469 * bit 30. (For instance, Cortex-R5).
2471 if (cpu->mp_is_up) {
2472 mpidr |= (1u << 30);
2475 return mpidr;
2478 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2480 return mpidr_read_val(env);
2483 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2484 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2485 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2486 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2487 REGINFO_SENTINEL
2490 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2491 /* NOP AMAIR0/1 */
2492 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2493 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2494 .access = PL1_RW, .type = ARM_CP_CONST,
2495 .resetvalue = 0 },
2496 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2497 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2498 .access = PL1_RW, .type = ARM_CP_CONST,
2499 .resetvalue = 0 },
2500 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2501 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2502 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2503 offsetof(CPUARMState, cp15.par_ns)} },
2504 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2505 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2506 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2507 offsetof(CPUARMState, cp15.ttbr0_ns) },
2508 .writefn = vmsa_ttbr_write, },
2509 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2510 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2511 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2512 offsetof(CPUARMState, cp15.ttbr1_ns) },
2513 .writefn = vmsa_ttbr_write, },
2514 REGINFO_SENTINEL
2517 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2519 return vfp_get_fpcr(env);
2522 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2523 uint64_t value)
2525 vfp_set_fpcr(env, value);
2528 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2530 return vfp_get_fpsr(env);
2533 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2534 uint64_t value)
2536 vfp_set_fpsr(env, value);
2539 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2541 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2542 return CP_ACCESS_TRAP;
2544 return CP_ACCESS_OK;
2547 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548 uint64_t value)
2550 env->daif = value & PSTATE_DAIF;
2553 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2554 const ARMCPRegInfo *ri)
2556 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2557 * SCTLR_EL1.UCI is set.
2559 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2560 return CP_ACCESS_TRAP;
2562 return CP_ACCESS_OK;
2565 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2566 * Page D4-1736 (DDI0487A.b)
2569 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2570 uint64_t value)
2572 ARMCPU *cpu = arm_env_get_cpu(env);
2573 CPUState *cs = CPU(cpu);
2575 if (arm_is_secure_below_el3(env)) {
2576 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2577 } else {
2578 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2582 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2583 uint64_t value)
2585 bool sec = arm_is_secure_below_el3(env);
2586 CPUState *other_cs;
2588 CPU_FOREACH(other_cs) {
2589 if (sec) {
2590 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2591 } else {
2592 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2593 ARMMMUIdx_S12NSE0, -1);
2598 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2599 uint64_t value)
2601 /* Note that the 'ALL' scope must invalidate both stage 1 and
2602 * stage 2 translations, whereas most other scopes only invalidate
2603 * stage 1 translations.
2605 ARMCPU *cpu = arm_env_get_cpu(env);
2606 CPUState *cs = CPU(cpu);
2608 if (arm_is_secure_below_el3(env)) {
2609 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2610 } else {
2611 if (arm_feature(env, ARM_FEATURE_EL2)) {
2612 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2613 ARMMMUIdx_S2NS, -1);
2614 } else {
2615 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2620 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2621 uint64_t value)
2623 ARMCPU *cpu = arm_env_get_cpu(env);
2624 CPUState *cs = CPU(cpu);
2626 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2629 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2630 uint64_t value)
2632 ARMCPU *cpu = arm_env_get_cpu(env);
2633 CPUState *cs = CPU(cpu);
2635 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2638 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2639 uint64_t value)
2641 /* Note that the 'ALL' scope must invalidate both stage 1 and
2642 * stage 2 translations, whereas most other scopes only invalidate
2643 * stage 1 translations.
2645 bool sec = arm_is_secure_below_el3(env);
2646 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2647 CPUState *other_cs;
2649 CPU_FOREACH(other_cs) {
2650 if (sec) {
2651 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2652 } else if (has_el2) {
2653 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2654 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2655 } else {
2656 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2657 ARMMMUIdx_S12NSE0, -1);
2662 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2663 uint64_t value)
2665 CPUState *other_cs;
2667 CPU_FOREACH(other_cs) {
2668 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2672 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673 uint64_t value)
2675 CPUState *other_cs;
2677 CPU_FOREACH(other_cs) {
2678 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2682 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2683 uint64_t value)
2685 /* Invalidate by VA, EL1&0 (AArch64 version).
2686 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2687 * since we don't support flush-for-specific-ASID-only or
2688 * flush-last-level-only.
2690 ARMCPU *cpu = arm_env_get_cpu(env);
2691 CPUState *cs = CPU(cpu);
2692 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2694 if (arm_is_secure_below_el3(env)) {
2695 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2696 ARMMMUIdx_S1SE0, -1);
2697 } else {
2698 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2699 ARMMMUIdx_S12NSE0, -1);
2703 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2704 uint64_t value)
2706 /* Invalidate by VA, EL2
2707 * Currently handles both VAE2 and VALE2, since we don't support
2708 * flush-last-level-only.
2710 ARMCPU *cpu = arm_env_get_cpu(env);
2711 CPUState *cs = CPU(cpu);
2712 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2714 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2717 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2718 uint64_t value)
2720 /* Invalidate by VA, EL3
2721 * Currently handles both VAE3 and VALE3, since we don't support
2722 * flush-last-level-only.
2724 ARMCPU *cpu = arm_env_get_cpu(env);
2725 CPUState *cs = CPU(cpu);
2726 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2728 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2731 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2732 uint64_t value)
2734 bool sec = arm_is_secure_below_el3(env);
2735 CPUState *other_cs;
2736 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2738 CPU_FOREACH(other_cs) {
2739 if (sec) {
2740 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2741 ARMMMUIdx_S1SE0, -1);
2742 } else {
2743 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2744 ARMMMUIdx_S12NSE0, -1);
2749 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2750 uint64_t value)
2752 CPUState *other_cs;
2753 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2755 CPU_FOREACH(other_cs) {
2756 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2760 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2761 uint64_t value)
2763 CPUState *other_cs;
2764 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2766 CPU_FOREACH(other_cs) {
2767 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2771 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2772 uint64_t value)
2774 /* Invalidate by IPA. This has to invalidate any structures that
2775 * contain only stage 2 translation information, but does not need
2776 * to apply to structures that contain combined stage 1 and stage 2
2777 * translation information.
2778 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2780 ARMCPU *cpu = arm_env_get_cpu(env);
2781 CPUState *cs = CPU(cpu);
2782 uint64_t pageaddr;
2784 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2785 return;
2788 pageaddr = sextract64(value << 12, 0, 48);
2790 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2793 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794 uint64_t value)
2796 CPUState *other_cs;
2797 uint64_t pageaddr;
2799 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2800 return;
2803 pageaddr = sextract64(value << 12, 0, 48);
2805 CPU_FOREACH(other_cs) {
2806 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2810 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2812 /* We don't implement EL2, so the only control on DC ZVA is the
2813 * bit in the SCTLR which can prohibit access for EL0.
2815 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2816 return CP_ACCESS_TRAP;
2818 return CP_ACCESS_OK;
2821 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2823 ARMCPU *cpu = arm_env_get_cpu(env);
2824 int dzp_bit = 1 << 4;
2826 /* DZP indicates whether DC ZVA access is allowed */
2827 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2828 dzp_bit = 0;
2830 return cpu->dcz_blocksize | dzp_bit;
2833 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2835 if (!(env->pstate & PSTATE_SP)) {
2836 /* Access to SP_EL0 is undefined if it's being used as
2837 * the stack pointer.
2839 return CP_ACCESS_TRAP_UNCATEGORIZED;
2841 return CP_ACCESS_OK;
2844 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2846 return env->pstate & PSTATE_SP;
2849 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2851 update_spsel(env, val);
2854 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855 uint64_t value)
2857 ARMCPU *cpu = arm_env_get_cpu(env);
2859 if (raw_read(env, ri) == value) {
2860 /* Skip the TLB flush if nothing actually changed; Linux likes
2861 * to do a lot of pointless SCTLR writes.
2863 return;
2866 raw_write(env, ri, value);
2867 /* ??? Lots of these bits are not implemented. */
2868 /* This may enable/disable the MMU, so do a TLB flush. */
2869 tlb_flush(CPU(cpu), 1);
2872 static const ARMCPRegInfo v8_cp_reginfo[] = {
2873 /* Minimal set of EL0-visible registers. This will need to be expanded
2874 * significantly for system emulation of AArch64 CPUs.
2876 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2877 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2878 .access = PL0_RW, .type = ARM_CP_NZCV },
2879 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2880 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2881 .type = ARM_CP_NO_RAW,
2882 .access = PL0_RW, .accessfn = aa64_daif_access,
2883 .fieldoffset = offsetof(CPUARMState, daif),
2884 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2885 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2886 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2887 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2888 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2889 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2890 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2891 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2892 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2893 .access = PL0_R, .type = ARM_CP_NO_RAW,
2894 .readfn = aa64_dczid_read },
2895 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2896 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2897 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2898 #ifndef CONFIG_USER_ONLY
2899 /* Avoid overhead of an access check that always passes in user-mode */
2900 .accessfn = aa64_zva_access,
2901 #endif
2903 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2904 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2905 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2906 /* Cache ops: all NOPs since we don't emulate caches */
2907 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2908 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2909 .access = PL1_W, .type = ARM_CP_NOP },
2910 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2911 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2912 .access = PL1_W, .type = ARM_CP_NOP },
2913 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2914 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2915 .access = PL0_W, .type = ARM_CP_NOP,
2916 .accessfn = aa64_cacheop_access },
2917 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2918 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2919 .access = PL1_W, .type = ARM_CP_NOP },
2920 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2921 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2922 .access = PL1_W, .type = ARM_CP_NOP },
2923 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2924 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2925 .access = PL0_W, .type = ARM_CP_NOP,
2926 .accessfn = aa64_cacheop_access },
2927 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2928 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2929 .access = PL1_W, .type = ARM_CP_NOP },
2930 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2931 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2932 .access = PL0_W, .type = ARM_CP_NOP,
2933 .accessfn = aa64_cacheop_access },
2934 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2935 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2936 .access = PL0_W, .type = ARM_CP_NOP,
2937 .accessfn = aa64_cacheop_access },
2938 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2939 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2940 .access = PL1_W, .type = ARM_CP_NOP },
2941 /* TLBI operations */
2942 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2943 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2944 .access = PL1_W, .type = ARM_CP_NO_RAW,
2945 .writefn = tlbi_aa64_vmalle1is_write },
2946 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2947 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2948 .access = PL1_W, .type = ARM_CP_NO_RAW,
2949 .writefn = tlbi_aa64_vae1is_write },
2950 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2951 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2952 .access = PL1_W, .type = ARM_CP_NO_RAW,
2953 .writefn = tlbi_aa64_vmalle1is_write },
2954 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2955 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2956 .access = PL1_W, .type = ARM_CP_NO_RAW,
2957 .writefn = tlbi_aa64_vae1is_write },
2958 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2959 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2960 .access = PL1_W, .type = ARM_CP_NO_RAW,
2961 .writefn = tlbi_aa64_vae1is_write },
2962 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2963 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2964 .access = PL1_W, .type = ARM_CP_NO_RAW,
2965 .writefn = tlbi_aa64_vae1is_write },
2966 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2967 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2968 .access = PL1_W, .type = ARM_CP_NO_RAW,
2969 .writefn = tlbi_aa64_vmalle1_write },
2970 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2972 .access = PL1_W, .type = ARM_CP_NO_RAW,
2973 .writefn = tlbi_aa64_vae1_write },
2974 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2976 .access = PL1_W, .type = ARM_CP_NO_RAW,
2977 .writefn = tlbi_aa64_vmalle1_write },
2978 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2979 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2980 .access = PL1_W, .type = ARM_CP_NO_RAW,
2981 .writefn = tlbi_aa64_vae1_write },
2982 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2983 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2984 .access = PL1_W, .type = ARM_CP_NO_RAW,
2985 .writefn = tlbi_aa64_vae1_write },
2986 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2987 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2988 .access = PL1_W, .type = ARM_CP_NO_RAW,
2989 .writefn = tlbi_aa64_vae1_write },
2990 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
2991 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
2992 .access = PL2_W, .type = ARM_CP_NO_RAW,
2993 .writefn = tlbi_aa64_ipas2e1is_write },
2994 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
2995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
2996 .access = PL2_W, .type = ARM_CP_NO_RAW,
2997 .writefn = tlbi_aa64_ipas2e1is_write },
2998 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
2999 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3000 .access = PL2_W, .type = ARM_CP_NO_RAW,
3001 .writefn = tlbi_aa64_alle1is_write },
3002 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3003 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3004 .access = PL2_W, .type = ARM_CP_NO_RAW,
3005 .writefn = tlbi_aa64_alle1is_write },
3006 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3007 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3008 .access = PL2_W, .type = ARM_CP_NO_RAW,
3009 .writefn = tlbi_aa64_ipas2e1_write },
3010 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3011 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3012 .access = PL2_W, .type = ARM_CP_NO_RAW,
3013 .writefn = tlbi_aa64_ipas2e1_write },
3014 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3015 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3016 .access = PL2_W, .type = ARM_CP_NO_RAW,
3017 .writefn = tlbi_aa64_alle1_write },
3018 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3019 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3020 .access = PL2_W, .type = ARM_CP_NO_RAW,
3021 .writefn = tlbi_aa64_alle1is_write },
3022 #ifndef CONFIG_USER_ONLY
3023 /* 64 bit address translation operations */
3024 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3025 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3026 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3027 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3028 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3029 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3030 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3031 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3032 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3033 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3034 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3035 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3036 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3037 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3038 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3039 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3040 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3041 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3042 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3043 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3044 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3045 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3046 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3047 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3048 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3049 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3050 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3051 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3052 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3053 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3054 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3055 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3056 .type = ARM_CP_ALIAS,
3057 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3058 .access = PL1_RW, .resetvalue = 0,
3059 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3060 .writefn = par_write },
3061 #endif
3062 /* TLB invalidate last level of translation table walk */
3063 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3064 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3065 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3066 .type = ARM_CP_NO_RAW, .access = PL1_W,
3067 .writefn = tlbimvaa_is_write },
3068 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3069 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3070 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3071 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3072 /* 32 bit cache operations */
3073 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3074 .type = ARM_CP_NOP, .access = PL1_W },
3075 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3076 .type = ARM_CP_NOP, .access = PL1_W },
3077 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3078 .type = ARM_CP_NOP, .access = PL1_W },
3079 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3080 .type = ARM_CP_NOP, .access = PL1_W },
3081 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3082 .type = ARM_CP_NOP, .access = PL1_W },
3083 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3084 .type = ARM_CP_NOP, .access = PL1_W },
3085 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3086 .type = ARM_CP_NOP, .access = PL1_W },
3087 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3088 .type = ARM_CP_NOP, .access = PL1_W },
3089 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3090 .type = ARM_CP_NOP, .access = PL1_W },
3091 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3092 .type = ARM_CP_NOP, .access = PL1_W },
3093 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3094 .type = ARM_CP_NOP, .access = PL1_W },
3095 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3096 .type = ARM_CP_NOP, .access = PL1_W },
3097 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3098 .type = ARM_CP_NOP, .access = PL1_W },
3099 /* MMU Domain access control / MPU write buffer control */
3100 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3101 .access = PL1_RW, .resetvalue = 0,
3102 .writefn = dacr_write, .raw_writefn = raw_write,
3103 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3104 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3105 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3106 .type = ARM_CP_ALIAS,
3107 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3108 .access = PL1_RW,
3109 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3110 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3111 .type = ARM_CP_ALIAS,
3112 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3113 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
3114 /* We rely on the access checks not allowing the guest to write to the
3115 * state field when SPSel indicates that it's being used as the stack
3116 * pointer.
3118 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3119 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3120 .access = PL1_RW, .accessfn = sp_el0_access,
3121 .type = ARM_CP_ALIAS,
3122 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3123 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3124 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3125 .access = PL2_RW, .type = ARM_CP_ALIAS,
3126 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3127 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3128 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3129 .type = ARM_CP_NO_RAW,
3130 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3131 REGINFO_SENTINEL
3134 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3135 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3136 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3137 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3138 .access = PL2_RW,
3139 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3140 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3141 .type = ARM_CP_NO_RAW,
3142 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3143 .access = PL2_RW,
3144 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3145 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3146 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3147 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3148 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3149 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3150 .access = PL2_RW, .type = ARM_CP_CONST,
3151 .resetvalue = 0 },
3152 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3153 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3154 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3155 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3156 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3157 .access = PL2_RW, .type = ARM_CP_CONST,
3158 .resetvalue = 0 },
3159 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3160 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3161 .access = PL2_RW, .type = ARM_CP_CONST,
3162 .resetvalue = 0 },
3163 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3164 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3165 .access = PL2_RW, .type = ARM_CP_CONST,
3166 .resetvalue = 0 },
3167 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3168 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3169 .access = PL2_RW, .type = ARM_CP_CONST,
3170 .resetvalue = 0 },
3171 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3172 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3173 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3174 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3175 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3176 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3177 .type = ARM_CP_CONST, .resetvalue = 0 },
3178 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3179 .cp = 15, .opc1 = 6, .crm = 2,
3180 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3181 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3182 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3183 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3184 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3185 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3186 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3187 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3188 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3189 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3191 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3192 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3193 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3194 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3195 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3196 .resetvalue = 0 },
3197 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3198 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3199 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3200 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3201 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3203 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3204 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3205 .resetvalue = 0 },
3206 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3207 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3208 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3209 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3210 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3211 .resetvalue = 0 },
3212 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3213 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3214 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3215 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3216 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3217 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3218 REGINFO_SENTINEL
3221 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3223 ARMCPU *cpu = arm_env_get_cpu(env);
3224 uint64_t valid_mask = HCR_MASK;
3226 if (arm_feature(env, ARM_FEATURE_EL3)) {
3227 valid_mask &= ~HCR_HCD;
3228 } else {
3229 valid_mask &= ~HCR_TSC;
3232 /* Clear RES0 bits. */
3233 value &= valid_mask;
3235 /* These bits change the MMU setup:
3236 * HCR_VM enables stage 2 translation
3237 * HCR_PTW forbids certain page-table setups
3238 * HCR_DC Disables stage1 and enables stage2 translation
3240 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3241 tlb_flush(CPU(cpu), 1);
3243 raw_write(env, ri, value);
3246 static const ARMCPRegInfo el2_cp_reginfo[] = {
3247 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3248 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3249 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3250 .writefn = hcr_write },
3251 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3252 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3253 .access = PL2_RW, .resetvalue = 0,
3254 .writefn = dacr_write, .raw_writefn = raw_write,
3255 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3256 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3257 .type = ARM_CP_ALIAS,
3258 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3259 .access = PL2_RW,
3260 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3261 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3262 .type = ARM_CP_ALIAS,
3263 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3264 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3265 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3266 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3267 .access = PL2_RW, .resetvalue = 0,
3268 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3269 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3270 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3271 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3272 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3273 .type = ARM_CP_ALIAS,
3274 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3275 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
3276 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3277 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3278 .access = PL2_RW, .writefn = vbar_write,
3279 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3280 .resetvalue = 0 },
3281 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3282 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3283 .access = PL3_RW, .type = ARM_CP_ALIAS,
3284 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3285 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3286 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3287 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3288 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3289 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3290 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3291 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3292 .resetvalue = 0 },
3293 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3294 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3295 .access = PL2_RW, .type = ARM_CP_ALIAS,
3296 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3297 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3298 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3299 .access = PL2_RW, .type = ARM_CP_CONST,
3300 .resetvalue = 0 },
3301 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3302 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3303 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3304 .access = PL2_RW, .type = ARM_CP_CONST,
3305 .resetvalue = 0 },
3306 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3307 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3308 .access = PL2_RW, .type = ARM_CP_CONST,
3309 .resetvalue = 0 },
3310 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3311 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3312 .access = PL2_RW, .type = ARM_CP_CONST,
3313 .resetvalue = 0 },
3314 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3315 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3316 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3317 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3318 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3319 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3320 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3321 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3322 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3323 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3325 .access = PL2_RW, .type = ARM_CP_ALIAS,
3326 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3327 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3328 .cp = 15, .opc1 = 6, .crm = 2,
3329 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3330 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3331 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3332 .writefn = vttbr_write },
3333 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3334 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3335 .access = PL2_RW, .writefn = vttbr_write,
3336 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3337 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3338 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3339 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3340 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3341 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3342 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3343 .access = PL2_RW, .resetvalue = 0,
3344 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3345 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3347 .access = PL2_RW, .resetvalue = 0,
3348 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3349 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3350 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3351 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3352 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3354 .type = ARM_CP_NO_RAW, .access = PL2_W,
3355 .writefn = tlbi_aa64_alle2_write },
3356 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3358 .type = ARM_CP_NO_RAW, .access = PL2_W,
3359 .writefn = tlbi_aa64_vae2_write },
3360 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3361 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3362 .access = PL2_W, .type = ARM_CP_NO_RAW,
3363 .writefn = tlbi_aa64_vae2_write },
3364 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3365 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3366 .access = PL2_W, .type = ARM_CP_NO_RAW,
3367 .writefn = tlbi_aa64_alle2is_write },
3368 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3369 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3370 .type = ARM_CP_NO_RAW, .access = PL2_W,
3371 .writefn = tlbi_aa64_vae2is_write },
3372 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3373 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3374 .access = PL2_W, .type = ARM_CP_NO_RAW,
3375 .writefn = tlbi_aa64_vae2is_write },
3376 #ifndef CONFIG_USER_ONLY
3377 /* Unlike the other EL2-related AT operations, these must
3378 * UNDEF from EL3 if EL2 is not implemented, which is why we
3379 * define them here rather than with the rest of the AT ops.
3381 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3382 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3383 .access = PL2_W, .accessfn = at_s1e2_access,
3384 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3385 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3386 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3387 .access = PL2_W, .accessfn = at_s1e2_access,
3388 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3389 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3390 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3391 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3392 * to behave as if SCR.NS was 1.
3394 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3395 .access = PL2_W,
3396 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3397 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3398 .access = PL2_W,
3399 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3400 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3401 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3402 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3403 * reset values as IMPDEF. We choose to reset to 3 to comply with
3404 * both ARMv7 and ARMv8.
3406 .access = PL2_RW, .resetvalue = 3,
3407 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3408 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3410 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3411 .writefn = gt_cntvoff_write,
3412 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3413 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3414 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3415 .writefn = gt_cntvoff_write,
3416 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3417 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3418 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3419 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3420 .type = ARM_CP_IO, .access = PL2_RW,
3421 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3422 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3423 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3424 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3425 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3426 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3427 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3428 .type = ARM_CP_IO, .access = PL2_RW,
3429 .resetfn = gt_hyp_timer_reset,
3430 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3431 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3432 .type = ARM_CP_IO,
3433 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3434 .access = PL2_RW,
3435 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3436 .resetvalue = 0,
3437 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3438 #endif
3439 REGINFO_SENTINEL
3442 static const ARMCPRegInfo el3_cp_reginfo[] = {
3443 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3444 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3445 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3446 .resetvalue = 0, .writefn = scr_write },
3447 { .name = "SCR", .type = ARM_CP_ALIAS,
3448 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3449 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3450 .writefn = scr_write },
3451 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3452 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3453 .access = PL3_RW, .resetvalue = 0,
3454 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3455 { .name = "SDER",
3456 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3457 .access = PL3_RW, .resetvalue = 0,
3458 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3459 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3460 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
3461 .access = PL3_W | PL1_R, .resetvalue = 0,
3462 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
3463 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3464 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
3465 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3466 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3467 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3468 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3469 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3470 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
3471 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3472 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3473 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3474 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3475 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3476 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3477 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3478 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3479 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3480 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3481 .type = ARM_CP_ALIAS,
3482 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3483 .access = PL3_RW,
3484 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3485 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3486 .type = ARM_CP_ALIAS,
3487 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3488 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3489 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3490 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3491 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3492 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3493 .type = ARM_CP_ALIAS,
3494 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3495 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
3496 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3497 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3498 .access = PL3_RW, .writefn = vbar_write,
3499 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3500 .resetvalue = 0 },
3501 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3502 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3503 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3504 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3505 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3506 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3507 .access = PL3_RW, .resetvalue = 0,
3508 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3509 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3510 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3511 .access = PL3_RW, .type = ARM_CP_CONST,
3512 .resetvalue = 0 },
3513 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3514 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3515 .access = PL3_RW, .type = ARM_CP_CONST,
3516 .resetvalue = 0 },
3517 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3518 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3519 .access = PL3_RW, .type = ARM_CP_CONST,
3520 .resetvalue = 0 },
3521 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3522 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3523 .access = PL3_W, .type = ARM_CP_NO_RAW,
3524 .writefn = tlbi_aa64_alle3is_write },
3525 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3526 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3527 .access = PL3_W, .type = ARM_CP_NO_RAW,
3528 .writefn = tlbi_aa64_vae3is_write },
3529 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3530 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3531 .access = PL3_W, .type = ARM_CP_NO_RAW,
3532 .writefn = tlbi_aa64_vae3is_write },
3533 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3534 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3535 .access = PL3_W, .type = ARM_CP_NO_RAW,
3536 .writefn = tlbi_aa64_alle3_write },
3537 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3538 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3539 .access = PL3_W, .type = ARM_CP_NO_RAW,
3540 .writefn = tlbi_aa64_vae3_write },
3541 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3542 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3543 .access = PL3_W, .type = ARM_CP_NO_RAW,
3544 .writefn = tlbi_aa64_vae3_write },
3545 REGINFO_SENTINEL
3548 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
3550 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3551 * but the AArch32 CTR has its own reginfo struct)
3553 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3554 return CP_ACCESS_TRAP;
3556 return CP_ACCESS_OK;
3559 static const ARMCPRegInfo debug_cp_reginfo[] = {
3560 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3561 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3562 * unlike DBGDRAR it is never accessible from EL0.
3563 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3564 * accessor.
3566 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3567 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3568 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3569 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3570 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3571 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3572 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3573 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3574 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3575 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3576 .access = PL1_RW,
3577 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3578 .resetvalue = 0 },
3579 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3580 * We don't implement the configurable EL0 access.
3582 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3583 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3584 .type = ARM_CP_ALIAS,
3585 .access = PL1_R,
3586 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3587 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
3588 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3589 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3590 .access = PL1_W, .type = ARM_CP_NOP },
3591 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3592 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3593 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3594 .access = PL1_RW, .type = ARM_CP_NOP },
3595 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3596 * implement vector catch debug events yet.
3598 { .name = "DBGVCR",
3599 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3600 .access = PL1_RW, .type = ARM_CP_NOP },
3601 REGINFO_SENTINEL
3604 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3605 /* 64 bit access versions of the (dummy) debug registers */
3606 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3607 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3608 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3609 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3610 REGINFO_SENTINEL
3613 void hw_watchpoint_update(ARMCPU *cpu, int n)
3615 CPUARMState *env = &cpu->env;
3616 vaddr len = 0;
3617 vaddr wvr = env->cp15.dbgwvr[n];
3618 uint64_t wcr = env->cp15.dbgwcr[n];
3619 int mask;
3620 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3622 if (env->cpu_watchpoint[n]) {
3623 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3624 env->cpu_watchpoint[n] = NULL;
3627 if (!extract64(wcr, 0, 1)) {
3628 /* E bit clear : watchpoint disabled */
3629 return;
3632 switch (extract64(wcr, 3, 2)) {
3633 case 0:
3634 /* LSC 00 is reserved and must behave as if the wp is disabled */
3635 return;
3636 case 1:
3637 flags |= BP_MEM_READ;
3638 break;
3639 case 2:
3640 flags |= BP_MEM_WRITE;
3641 break;
3642 case 3:
3643 flags |= BP_MEM_ACCESS;
3644 break;
3647 /* Attempts to use both MASK and BAS fields simultaneously are
3648 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3649 * thus generating a watchpoint for every byte in the masked region.
3651 mask = extract64(wcr, 24, 4);
3652 if (mask == 1 || mask == 2) {
3653 /* Reserved values of MASK; we must act as if the mask value was
3654 * some non-reserved value, or as if the watchpoint were disabled.
3655 * We choose the latter.
3657 return;
3658 } else if (mask) {
3659 /* Watchpoint covers an aligned area up to 2GB in size */
3660 len = 1ULL << mask;
3661 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3662 * whether the watchpoint fires when the unmasked bits match; we opt
3663 * to generate the exceptions.
3665 wvr &= ~(len - 1);
3666 } else {
3667 /* Watchpoint covers bytes defined by the byte address select bits */
3668 int bas = extract64(wcr, 5, 8);
3669 int basstart;
3671 if (bas == 0) {
3672 /* This must act as if the watchpoint is disabled */
3673 return;
3676 if (extract64(wvr, 2, 1)) {
3677 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3678 * ignored, and BAS[3:0] define which bytes to watch.
3680 bas &= 0xf;
3682 /* The BAS bits are supposed to be programmed to indicate a contiguous
3683 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3684 * we fire for each byte in the word/doubleword addressed by the WVR.
3685 * We choose to ignore any non-zero bits after the first range of 1s.
3687 basstart = ctz32(bas);
3688 len = cto32(bas >> basstart);
3689 wvr += basstart;
3692 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3693 &env->cpu_watchpoint[n]);
3696 void hw_watchpoint_update_all(ARMCPU *cpu)
3698 int i;
3699 CPUARMState *env = &cpu->env;
3701 /* Completely clear out existing QEMU watchpoints and our array, to
3702 * avoid possible stale entries following migration load.
3704 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3705 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3707 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3708 hw_watchpoint_update(cpu, i);
3712 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3713 uint64_t value)
3715 ARMCPU *cpu = arm_env_get_cpu(env);
3716 int i = ri->crm;
3718 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3719 * register reads and behaves as if values written are sign extended.
3720 * Bits [1:0] are RES0.
3722 value = sextract64(value, 0, 49) & ~3ULL;
3724 raw_write(env, ri, value);
3725 hw_watchpoint_update(cpu, i);
3728 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3729 uint64_t value)
3731 ARMCPU *cpu = arm_env_get_cpu(env);
3732 int i = ri->crm;
3734 raw_write(env, ri, value);
3735 hw_watchpoint_update(cpu, i);
3738 void hw_breakpoint_update(ARMCPU *cpu, int n)
3740 CPUARMState *env = &cpu->env;
3741 uint64_t bvr = env->cp15.dbgbvr[n];
3742 uint64_t bcr = env->cp15.dbgbcr[n];
3743 vaddr addr;
3744 int bt;
3745 int flags = BP_CPU;
3747 if (env->cpu_breakpoint[n]) {
3748 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
3749 env->cpu_breakpoint[n] = NULL;
3752 if (!extract64(bcr, 0, 1)) {
3753 /* E bit clear : watchpoint disabled */
3754 return;
3757 bt = extract64(bcr, 20, 4);
3759 switch (bt) {
3760 case 4: /* unlinked address mismatch (reserved if AArch64) */
3761 case 5: /* linked address mismatch (reserved if AArch64) */
3762 qemu_log_mask(LOG_UNIMP,
3763 "arm: address mismatch breakpoint types not implemented");
3764 return;
3765 case 0: /* unlinked address match */
3766 case 1: /* linked address match */
3768 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3769 * we behave as if the register was sign extended. Bits [1:0] are
3770 * RES0. The BAS field is used to allow setting breakpoints on 16
3771 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3772 * a bp will fire if the addresses covered by the bp and the addresses
3773 * covered by the insn overlap but the insn doesn't start at the
3774 * start of the bp address range. We choose to require the insn and
3775 * the bp to have the same address. The constraints on writing to
3776 * BAS enforced in dbgbcr_write mean we have only four cases:
3777 * 0b0000 => no breakpoint
3778 * 0b0011 => breakpoint on addr
3779 * 0b1100 => breakpoint on addr + 2
3780 * 0b1111 => breakpoint on addr
3781 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3783 int bas = extract64(bcr, 5, 4);
3784 addr = sextract64(bvr, 0, 49) & ~3ULL;
3785 if (bas == 0) {
3786 return;
3788 if (bas == 0xc) {
3789 addr += 2;
3791 break;
3793 case 2: /* unlinked context ID match */
3794 case 8: /* unlinked VMID match (reserved if no EL2) */
3795 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3796 qemu_log_mask(LOG_UNIMP,
3797 "arm: unlinked context breakpoint types not implemented");
3798 return;
3799 case 9: /* linked VMID match (reserved if no EL2) */
3800 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3801 case 3: /* linked context ID match */
3802 default:
3803 /* We must generate no events for Linked context matches (unless
3804 * they are linked to by some other bp/wp, which is handled in
3805 * updates for the linking bp/wp). We choose to also generate no events
3806 * for reserved values.
3808 return;
3811 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3814 void hw_breakpoint_update_all(ARMCPU *cpu)
3816 int i;
3817 CPUARMState *env = &cpu->env;
3819 /* Completely clear out existing QEMU breakpoints and our array, to
3820 * avoid possible stale entries following migration load.
3822 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3823 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3825 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3826 hw_breakpoint_update(cpu, i);
3830 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3831 uint64_t value)
3833 ARMCPU *cpu = arm_env_get_cpu(env);
3834 int i = ri->crm;
3836 raw_write(env, ri, value);
3837 hw_breakpoint_update(cpu, i);
3840 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3841 uint64_t value)
3843 ARMCPU *cpu = arm_env_get_cpu(env);
3844 int i = ri->crm;
3846 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3847 * copy of BAS[0].
3849 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3850 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3852 raw_write(env, ri, value);
3853 hw_breakpoint_update(cpu, i);
3856 static void define_debug_regs(ARMCPU *cpu)
3858 /* Define v7 and v8 architectural debug registers.
3859 * These are just dummy implementations for now.
3861 int i;
3862 int wrps, brps, ctx_cmps;
3863 ARMCPRegInfo dbgdidr = {
3864 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3865 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3868 /* Note that all these register fields hold "number of Xs minus 1". */
3869 brps = extract32(cpu->dbgdidr, 24, 4);
3870 wrps = extract32(cpu->dbgdidr, 28, 4);
3871 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3873 assert(ctx_cmps <= brps);
3875 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3876 * of the debug registers such as number of breakpoints;
3877 * check that if they both exist then they agree.
3879 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3880 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3881 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3882 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3885 define_one_arm_cp_reg(cpu, &dbgdidr);
3886 define_arm_cp_regs(cpu, debug_cp_reginfo);
3888 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3889 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3892 for (i = 0; i < brps + 1; i++) {
3893 ARMCPRegInfo dbgregs[] = {
3894 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3895 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3896 .access = PL1_RW,
3897 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3898 .writefn = dbgbvr_write, .raw_writefn = raw_write
3900 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3901 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3902 .access = PL1_RW,
3903 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3904 .writefn = dbgbcr_write, .raw_writefn = raw_write
3906 REGINFO_SENTINEL
3908 define_arm_cp_regs(cpu, dbgregs);
3911 for (i = 0; i < wrps + 1; i++) {
3912 ARMCPRegInfo dbgregs[] = {
3913 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3914 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3915 .access = PL1_RW,
3916 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3917 .writefn = dbgwvr_write, .raw_writefn = raw_write
3919 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3920 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3921 .access = PL1_RW,
3922 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3923 .writefn = dbgwcr_write, .raw_writefn = raw_write
3925 REGINFO_SENTINEL
3927 define_arm_cp_regs(cpu, dbgregs);
3931 void register_cp_regs_for_features(ARMCPU *cpu)
3933 /* Register all the coprocessor registers based on feature bits */
3934 CPUARMState *env = &cpu->env;
3935 if (arm_feature(env, ARM_FEATURE_M)) {
3936 /* M profile has no coprocessor registers */
3937 return;
3940 define_arm_cp_regs(cpu, cp_reginfo);
3941 if (!arm_feature(env, ARM_FEATURE_V8)) {
3942 /* Must go early as it is full of wildcards that may be
3943 * overridden by later definitions.
3945 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3948 if (arm_feature(env, ARM_FEATURE_V6)) {
3949 /* The ID registers all have impdef reset values */
3950 ARMCPRegInfo v6_idregs[] = {
3951 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3953 .access = PL1_R, .type = ARM_CP_CONST,
3954 .resetvalue = cpu->id_pfr0 },
3955 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3957 .access = PL1_R, .type = ARM_CP_CONST,
3958 .resetvalue = cpu->id_pfr1 },
3959 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3961 .access = PL1_R, .type = ARM_CP_CONST,
3962 .resetvalue = cpu->id_dfr0 },
3963 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3964 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3965 .access = PL1_R, .type = ARM_CP_CONST,
3966 .resetvalue = cpu->id_afr0 },
3967 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3969 .access = PL1_R, .type = ARM_CP_CONST,
3970 .resetvalue = cpu->id_mmfr0 },
3971 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3973 .access = PL1_R, .type = ARM_CP_CONST,
3974 .resetvalue = cpu->id_mmfr1 },
3975 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3977 .access = PL1_R, .type = ARM_CP_CONST,
3978 .resetvalue = cpu->id_mmfr2 },
3979 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3981 .access = PL1_R, .type = ARM_CP_CONST,
3982 .resetvalue = cpu->id_mmfr3 },
3983 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3985 .access = PL1_R, .type = ARM_CP_CONST,
3986 .resetvalue = cpu->id_isar0 },
3987 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3989 .access = PL1_R, .type = ARM_CP_CONST,
3990 .resetvalue = cpu->id_isar1 },
3991 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3993 .access = PL1_R, .type = ARM_CP_CONST,
3994 .resetvalue = cpu->id_isar2 },
3995 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3997 .access = PL1_R, .type = ARM_CP_CONST,
3998 .resetvalue = cpu->id_isar3 },
3999 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4001 .access = PL1_R, .type = ARM_CP_CONST,
4002 .resetvalue = cpu->id_isar4 },
4003 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4005 .access = PL1_R, .type = ARM_CP_CONST,
4006 .resetvalue = cpu->id_isar5 },
4007 /* 6..7 are as yet unallocated and must RAZ */
4008 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
4009 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
4010 .resetvalue = 0 },
4011 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
4012 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
4013 .resetvalue = 0 },
4014 REGINFO_SENTINEL
4016 define_arm_cp_regs(cpu, v6_idregs);
4017 define_arm_cp_regs(cpu, v6_cp_reginfo);
4018 } else {
4019 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4021 if (arm_feature(env, ARM_FEATURE_V6K)) {
4022 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4024 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4025 !arm_feature(env, ARM_FEATURE_MPU)) {
4026 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4028 if (arm_feature(env, ARM_FEATURE_V7)) {
4029 /* v7 performance monitor control register: same implementor
4030 * field as main ID register, and we implement only the cycle
4031 * count register.
4033 #ifndef CONFIG_USER_ONLY
4034 ARMCPRegInfo pmcr = {
4035 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4036 .access = PL0_RW,
4037 .type = ARM_CP_IO | ARM_CP_ALIAS,
4038 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4039 .accessfn = pmreg_access, .writefn = pmcr_write,
4040 .raw_writefn = raw_write,
4042 ARMCPRegInfo pmcr64 = {
4043 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4044 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4045 .access = PL0_RW, .accessfn = pmreg_access,
4046 .type = ARM_CP_IO,
4047 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4048 .resetvalue = cpu->midr & 0xff000000,
4049 .writefn = pmcr_write, .raw_writefn = raw_write,
4051 define_one_arm_cp_reg(cpu, &pmcr);
4052 define_one_arm_cp_reg(cpu, &pmcr64);
4053 #endif
4054 ARMCPRegInfo clidr = {
4055 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4056 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4057 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4059 define_one_arm_cp_reg(cpu, &clidr);
4060 define_arm_cp_regs(cpu, v7_cp_reginfo);
4061 define_debug_regs(cpu);
4062 } else {
4063 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4065 if (arm_feature(env, ARM_FEATURE_V8)) {
4066 /* AArch64 ID registers, which all have impdef reset values */
4067 ARMCPRegInfo v8_idregs[] = {
4068 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4070 .access = PL1_R, .type = ARM_CP_CONST,
4071 .resetvalue = cpu->id_aa64pfr0 },
4072 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4074 .access = PL1_R, .type = ARM_CP_CONST,
4075 .resetvalue = cpu->id_aa64pfr1},
4076 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4078 .access = PL1_R, .type = ARM_CP_CONST,
4079 /* We mask out the PMUVer field, because we don't currently
4080 * implement the PMU. Not advertising it prevents the guest
4081 * from trying to use it and getting UNDEFs on registers we
4082 * don't implement.
4084 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4085 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4087 .access = PL1_R, .type = ARM_CP_CONST,
4088 .resetvalue = cpu->id_aa64dfr1 },
4089 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4091 .access = PL1_R, .type = ARM_CP_CONST,
4092 .resetvalue = cpu->id_aa64afr0 },
4093 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4095 .access = PL1_R, .type = ARM_CP_CONST,
4096 .resetvalue = cpu->id_aa64afr1 },
4097 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4099 .access = PL1_R, .type = ARM_CP_CONST,
4100 .resetvalue = cpu->id_aa64isar0 },
4101 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4103 .access = PL1_R, .type = ARM_CP_CONST,
4104 .resetvalue = cpu->id_aa64isar1 },
4105 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4107 .access = PL1_R, .type = ARM_CP_CONST,
4108 .resetvalue = cpu->id_aa64mmfr0 },
4109 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4111 .access = PL1_R, .type = ARM_CP_CONST,
4112 .resetvalue = cpu->id_aa64mmfr1 },
4113 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4115 .access = PL1_R, .type = ARM_CP_CONST,
4116 .resetvalue = cpu->mvfr0 },
4117 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4118 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4119 .access = PL1_R, .type = ARM_CP_CONST,
4120 .resetvalue = cpu->mvfr1 },
4121 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4123 .access = PL1_R, .type = ARM_CP_CONST,
4124 .resetvalue = cpu->mvfr2 },
4125 REGINFO_SENTINEL
4127 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4128 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4129 !arm_feature(env, ARM_FEATURE_EL2)) {
4130 ARMCPRegInfo rvbar = {
4131 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4132 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4133 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4135 define_one_arm_cp_reg(cpu, &rvbar);
4137 define_arm_cp_regs(cpu, v8_idregs);
4138 define_arm_cp_regs(cpu, v8_cp_reginfo);
4140 if (arm_feature(env, ARM_FEATURE_EL2)) {
4141 ARMCPRegInfo vpidr_regs[] = {
4142 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4143 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4144 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4145 .resetvalue = cpu->midr,
4146 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4147 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4148 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4149 .access = PL2_RW, .resetvalue = cpu->midr,
4150 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4151 REGINFO_SENTINEL
4153 define_arm_cp_regs(cpu, vpidr_regs);
4154 define_arm_cp_regs(cpu, el2_cp_reginfo);
4155 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4156 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4157 ARMCPRegInfo rvbar = {
4158 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4159 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4160 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4162 define_one_arm_cp_reg(cpu, &rvbar);
4164 } else {
4165 /* If EL2 is missing but higher ELs are enabled, we need to
4166 * register the no_el2 reginfos.
4168 if (arm_feature(env, ARM_FEATURE_EL3)) {
4169 /* When EL3 exists but not EL2, VPIDR takes the value
4170 * of MIDR_EL1.
4172 ARMCPRegInfo vpidr_regs[] = {
4173 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4174 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4175 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4176 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4177 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4178 REGINFO_SENTINEL
4180 define_arm_cp_regs(cpu, vpidr_regs);
4181 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4184 if (arm_feature(env, ARM_FEATURE_EL3)) {
4185 define_arm_cp_regs(cpu, el3_cp_reginfo);
4186 ARMCPRegInfo rvbar = {
4187 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4188 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4189 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
4191 define_one_arm_cp_reg(cpu, &rvbar);
4193 if (arm_feature(env, ARM_FEATURE_MPU)) {
4194 if (arm_feature(env, ARM_FEATURE_V6)) {
4195 /* PMSAv6 not implemented */
4196 assert(arm_feature(env, ARM_FEATURE_V7));
4197 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4198 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4199 } else {
4200 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4202 } else {
4203 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4204 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4206 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4207 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4209 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4210 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4212 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4213 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4215 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4216 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4218 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4219 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4221 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4222 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4224 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4225 define_arm_cp_regs(cpu, omap_cp_reginfo);
4227 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4228 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4230 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4231 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4233 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4234 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4236 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4237 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4239 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4240 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4241 * be read-only (ie write causes UNDEF exception).
4244 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4245 /* Pre-v8 MIDR space.
4246 * Note that the MIDR isn't a simple constant register because
4247 * of the TI925 behaviour where writes to another register can
4248 * cause the MIDR value to change.
4250 * Unimplemented registers in the c15 0 0 0 space default to
4251 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4252 * and friends override accordingly.
4254 { .name = "MIDR",
4255 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4256 .access = PL1_R, .resetvalue = cpu->midr,
4257 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4258 .readfn = midr_read,
4259 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4260 .type = ARM_CP_OVERRIDE },
4261 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4262 { .name = "DUMMY",
4263 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4264 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4265 { .name = "DUMMY",
4266 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4267 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4268 { .name = "DUMMY",
4269 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4270 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4271 { .name = "DUMMY",
4272 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4273 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4274 { .name = "DUMMY",
4275 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4276 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4277 REGINFO_SENTINEL
4279 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4280 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4282 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4283 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4284 .readfn = midr_read },
4285 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4286 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4287 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4288 .access = PL1_R, .resetvalue = cpu->midr },
4289 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4290 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4291 .access = PL1_R, .resetvalue = cpu->midr },
4292 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4294 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4295 REGINFO_SENTINEL
4297 ARMCPRegInfo id_cp_reginfo[] = {
4298 /* These are common to v8 and pre-v8 */
4299 { .name = "CTR",
4300 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4301 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4302 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4303 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4304 .access = PL0_R, .accessfn = ctr_el0_access,
4305 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4306 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4307 { .name = "TCMTR",
4308 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4309 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4310 REGINFO_SENTINEL
4312 /* TLBTR is specific to VMSA */
4313 ARMCPRegInfo id_tlbtr_reginfo = {
4314 .name = "TLBTR",
4315 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4316 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4318 /* MPUIR is specific to PMSA V6+ */
4319 ARMCPRegInfo id_mpuir_reginfo = {
4320 .name = "MPUIR",
4321 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4322 .access = PL1_R, .type = ARM_CP_CONST,
4323 .resetvalue = cpu->pmsav7_dregion << 8
4325 ARMCPRegInfo crn0_wi_reginfo = {
4326 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4327 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4328 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4330 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4331 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4332 ARMCPRegInfo *r;
4333 /* Register the blanket "writes ignored" value first to cover the
4334 * whole space. Then update the specific ID registers to allow write
4335 * access, so that they ignore writes rather than causing them to
4336 * UNDEF.
4338 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4339 for (r = id_pre_v8_midr_cp_reginfo;
4340 r->type != ARM_CP_SENTINEL; r++) {
4341 r->access = PL1_RW;
4343 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4344 r->access = PL1_RW;
4346 id_tlbtr_reginfo.access = PL1_RW;
4347 id_tlbtr_reginfo.access = PL1_RW;
4349 if (arm_feature(env, ARM_FEATURE_V8)) {
4350 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4351 } else {
4352 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4354 define_arm_cp_regs(cpu, id_cp_reginfo);
4355 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4356 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4357 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4358 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4362 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4363 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4366 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4367 ARMCPRegInfo auxcr_reginfo[] = {
4368 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4369 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4370 .access = PL1_RW, .type = ARM_CP_CONST,
4371 .resetvalue = cpu->reset_auxcr },
4372 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4373 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4374 .access = PL2_RW, .type = ARM_CP_CONST,
4375 .resetvalue = 0 },
4376 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4377 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4378 .access = PL3_RW, .type = ARM_CP_CONST,
4379 .resetvalue = 0 },
4380 REGINFO_SENTINEL
4382 define_arm_cp_regs(cpu, auxcr_reginfo);
4385 if (arm_feature(env, ARM_FEATURE_CBAR)) {
4386 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4387 /* 32 bit view is [31:18] 0...0 [43:32]. */
4388 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4389 | extract64(cpu->reset_cbar, 32, 12);
4390 ARMCPRegInfo cbar_reginfo[] = {
4391 { .name = "CBAR",
4392 .type = ARM_CP_CONST,
4393 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4394 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4395 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4396 .type = ARM_CP_CONST,
4397 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4398 .access = PL1_R, .resetvalue = cbar32 },
4399 REGINFO_SENTINEL
4401 /* We don't implement a r/w 64 bit CBAR currently */
4402 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4403 define_arm_cp_regs(cpu, cbar_reginfo);
4404 } else {
4405 ARMCPRegInfo cbar = {
4406 .name = "CBAR",
4407 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4408 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4409 .fieldoffset = offsetof(CPUARMState,
4410 cp15.c15_config_base_address)
4412 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4413 cbar.access = PL1_R;
4414 cbar.fieldoffset = 0;
4415 cbar.type = ARM_CP_CONST;
4417 define_one_arm_cp_reg(cpu, &cbar);
4421 /* Generic registers whose values depend on the implementation */
4423 ARMCPRegInfo sctlr = {
4424 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4425 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4426 .access = PL1_RW,
4427 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4428 offsetof(CPUARMState, cp15.sctlr_ns) },
4429 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4430 .raw_writefn = raw_write,
4432 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4433 /* Normally we would always end the TB on an SCTLR write, but Linux
4434 * arch/arm/mach-pxa/sleep.S expects two instructions following
4435 * an MMU enable to execute from cache. Imitate this behaviour.
4437 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4439 define_one_arm_cp_reg(cpu, &sctlr);
4443 ARMCPU *cpu_arm_init(const char *cpu_model)
4445 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4448 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4450 CPUState *cs = CPU(cpu);
4451 CPUARMState *env = &cpu->env;
4453 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4454 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4455 aarch64_fpu_gdb_set_reg,
4456 34, "aarch64-fpu.xml", 0);
4457 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4458 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4459 51, "arm-neon.xml", 0);
4460 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4461 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4462 35, "arm-vfp3.xml", 0);
4463 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4464 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4465 19, "arm-vfp.xml", 0);
4469 /* Sort alphabetically by type name, except for "any". */
4470 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
4472 ObjectClass *class_a = (ObjectClass *)a;
4473 ObjectClass *class_b = (ObjectClass *)b;
4474 const char *name_a, *name_b;
4476 name_a = object_class_get_name(class_a);
4477 name_b = object_class_get_name(class_b);
4478 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4479 return 1;
4480 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4481 return -1;
4482 } else {
4483 return strcmp(name_a, name_b);
4487 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
4489 ObjectClass *oc = data;
4490 CPUListState *s = user_data;
4491 const char *typename;
4492 char *name;
4494 typename = object_class_get_name(oc);
4495 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4496 (*s->cpu_fprintf)(s->file, " %s\n",
4497 name);
4498 g_free(name);
4501 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4503 CPUListState s = {
4504 .file = f,
4505 .cpu_fprintf = cpu_fprintf,
4507 GSList *list;
4509 list = object_class_get_list(TYPE_ARM_CPU, false);
4510 list = g_slist_sort(list, arm_cpu_list_compare);
4511 (*cpu_fprintf)(f, "Available CPUs:\n");
4512 g_slist_foreach(list, arm_cpu_list_entry, &s);
4513 g_slist_free(list);
4514 #ifdef CONFIG_KVM
4515 /* The 'host' CPU type is dynamically registered only if KVM is
4516 * enabled, so we have to special-case it here:
4518 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4519 #endif
4522 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4524 ObjectClass *oc = data;
4525 CpuDefinitionInfoList **cpu_list = user_data;
4526 CpuDefinitionInfoList *entry;
4527 CpuDefinitionInfo *info;
4528 const char *typename;
4530 typename = object_class_get_name(oc);
4531 info = g_malloc0(sizeof(*info));
4532 info->name = g_strndup(typename,
4533 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4535 entry = g_malloc0(sizeof(*entry));
4536 entry->value = info;
4537 entry->next = *cpu_list;
4538 *cpu_list = entry;
4541 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4543 CpuDefinitionInfoList *cpu_list = NULL;
4544 GSList *list;
4546 list = object_class_get_list(TYPE_ARM_CPU, false);
4547 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4548 g_slist_free(list);
4550 return cpu_list;
4553 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
4554 void *opaque, int state, int secstate,
4555 int crm, int opc1, int opc2)
4557 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4558 * add a single reginfo struct to the hash table.
4560 uint32_t *key = g_new(uint32_t, 1);
4561 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4562 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
4563 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4565 /* Reset the secure state to the specific incoming state. This is
4566 * necessary as the register may have been defined with both states.
4568 r2->secure = secstate;
4570 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4571 /* Register is banked (using both entries in array).
4572 * Overwriting fieldoffset as the array is only used to define
4573 * banked registers but later only fieldoffset is used.
4575 r2->fieldoffset = r->bank_fieldoffsets[ns];
4578 if (state == ARM_CP_STATE_AA32) {
4579 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4580 /* If the register is banked then we don't need to migrate or
4581 * reset the 32-bit instance in certain cases:
4583 * 1) If the register has both 32-bit and 64-bit instances then we
4584 * can count on the 64-bit instance taking care of the
4585 * non-secure bank.
4586 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4587 * taking care of the secure bank. This requires that separate
4588 * 32 and 64-bit definitions are provided.
4590 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4591 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
4592 r2->type |= ARM_CP_ALIAS;
4594 } else if ((secstate != r->secure) && !ns) {
4595 /* The register is not banked so we only want to allow migration of
4596 * the non-secure instance.
4598 r2->type |= ARM_CP_ALIAS;
4601 if (r->state == ARM_CP_STATE_BOTH) {
4602 /* We assume it is a cp15 register if the .cp field is left unset.
4604 if (r2->cp == 0) {
4605 r2->cp = 15;
4608 #ifdef HOST_WORDS_BIGENDIAN
4609 if (r2->fieldoffset) {
4610 r2->fieldoffset += sizeof(uint32_t);
4612 #endif
4615 if (state == ARM_CP_STATE_AA64) {
4616 /* To allow abbreviation of ARMCPRegInfo
4617 * definitions, we treat cp == 0 as equivalent to
4618 * the value for "standard guest-visible sysreg".
4619 * STATE_BOTH definitions are also always "standard
4620 * sysreg" in their AArch64 view (the .cp value may
4621 * be non-zero for the benefit of the AArch32 view).
4623 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
4624 r2->cp = CP_REG_ARM64_SYSREG_CP;
4626 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4627 r2->opc0, opc1, opc2);
4628 } else {
4629 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
4631 if (opaque) {
4632 r2->opaque = opaque;
4634 /* reginfo passed to helpers is correct for the actual access,
4635 * and is never ARM_CP_STATE_BOTH:
4637 r2->state = state;
4638 /* Make sure reginfo passed to helpers for wildcarded regs
4639 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4641 r2->crm = crm;
4642 r2->opc1 = opc1;
4643 r2->opc2 = opc2;
4644 /* By convention, for wildcarded registers only the first
4645 * entry is used for migration; the others are marked as
4646 * ALIAS so we don't try to transfer the register
4647 * multiple times. Special registers (ie NOP/WFI) are
4648 * never migratable and not even raw-accessible.
4650 if ((r->type & ARM_CP_SPECIAL)) {
4651 r2->type |= ARM_CP_NO_RAW;
4653 if (((r->crm == CP_ANY) && crm != 0) ||
4654 ((r->opc1 == CP_ANY) && opc1 != 0) ||
4655 ((r->opc2 == CP_ANY) && opc2 != 0)) {
4656 r2->type |= ARM_CP_ALIAS;
4659 /* Check that raw accesses are either forbidden or handled. Note that
4660 * we can't assert this earlier because the setup of fieldoffset for
4661 * banked registers has to be done first.
4663 if (!(r2->type & ARM_CP_NO_RAW)) {
4664 assert(!raw_accessors_invalid(r2));
4667 /* Overriding of an existing definition must be explicitly
4668 * requested.
4670 if (!(r->type & ARM_CP_OVERRIDE)) {
4671 ARMCPRegInfo *oldreg;
4672 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
4673 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
4674 fprintf(stderr, "Register redefined: cp=%d %d bit "
4675 "crn=%d crm=%d opc1=%d opc2=%d, "
4676 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
4677 r2->crn, r2->crm, r2->opc1, r2->opc2,
4678 oldreg->name, r2->name);
4679 g_assert_not_reached();
4682 g_hash_table_insert(cpu->cp_regs, key, r2);
4686 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
4687 const ARMCPRegInfo *r, void *opaque)
4689 /* Define implementations of coprocessor registers.
4690 * We store these in a hashtable because typically
4691 * there are less than 150 registers in a space which
4692 * is 16*16*16*8*8 = 262144 in size.
4693 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4694 * If a register is defined twice then the second definition is
4695 * used, so this can be used to define some generic registers and
4696 * then override them with implementation specific variations.
4697 * At least one of the original and the second definition should
4698 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4699 * against accidental use.
4701 * The state field defines whether the register is to be
4702 * visible in the AArch32 or AArch64 execution state. If the
4703 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4704 * reginfo structure for the AArch32 view, which sees the lower
4705 * 32 bits of the 64 bit register.
4707 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4708 * be wildcarded. AArch64 registers are always considered to be 64
4709 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4710 * the register, if any.
4712 int crm, opc1, opc2, state;
4713 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
4714 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
4715 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
4716 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
4717 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
4718 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
4719 /* 64 bit registers have only CRm and Opc1 fields */
4720 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
4721 /* op0 only exists in the AArch64 encodings */
4722 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
4723 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4724 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
4725 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4726 * encodes a minimum access level for the register. We roll this
4727 * runtime check into our general permission check code, so check
4728 * here that the reginfo's specified permissions are strict enough
4729 * to encompass the generic architectural permission check.
4731 if (r->state != ARM_CP_STATE_AA32) {
4732 int mask = 0;
4733 switch (r->opc1) {
4734 case 0: case 1: case 2:
4735 /* min_EL EL1 */
4736 mask = PL1_RW;
4737 break;
4738 case 3:
4739 /* min_EL EL0 */
4740 mask = PL0_RW;
4741 break;
4742 case 4:
4743 /* min_EL EL2 */
4744 mask = PL2_RW;
4745 break;
4746 case 5:
4747 /* unallocated encoding, so not possible */
4748 assert(false);
4749 break;
4750 case 6:
4751 /* min_EL EL3 */
4752 mask = PL3_RW;
4753 break;
4754 case 7:
4755 /* min_EL EL1, secure mode only (we don't check the latter) */
4756 mask = PL1_RW;
4757 break;
4758 default:
4759 /* broken reginfo with out-of-range opc1 */
4760 assert(false);
4761 break;
4763 /* assert our permissions are not too lax (stricter is fine) */
4764 assert((r->access & ~mask) == 0);
4767 /* Check that the register definition has enough info to handle
4768 * reads and writes if they are permitted.
4770 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
4771 if (r->access & PL3_R) {
4772 assert((r->fieldoffset ||
4773 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4774 r->readfn);
4776 if (r->access & PL3_W) {
4777 assert((r->fieldoffset ||
4778 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4779 r->writefn);
4782 /* Bad type field probably means missing sentinel at end of reg list */
4783 assert(cptype_valid(r->type));
4784 for (crm = crmmin; crm <= crmmax; crm++) {
4785 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
4786 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
4787 for (state = ARM_CP_STATE_AA32;
4788 state <= ARM_CP_STATE_AA64; state++) {
4789 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4790 continue;
4792 if (state == ARM_CP_STATE_AA32) {
4793 /* Under AArch32 CP registers can be common
4794 * (same for secure and non-secure world) or banked.
4796 switch (r->secure) {
4797 case ARM_CP_SECSTATE_S:
4798 case ARM_CP_SECSTATE_NS:
4799 add_cpreg_to_hashtable(cpu, r, opaque, state,
4800 r->secure, crm, opc1, opc2);
4801 break;
4802 default:
4803 add_cpreg_to_hashtable(cpu, r, opaque, state,
4804 ARM_CP_SECSTATE_S,
4805 crm, opc1, opc2);
4806 add_cpreg_to_hashtable(cpu, r, opaque, state,
4807 ARM_CP_SECSTATE_NS,
4808 crm, opc1, opc2);
4809 break;
4811 } else {
4812 /* AArch64 registers get mapped to non-secure instance
4813 * of AArch32 */
4814 add_cpreg_to_hashtable(cpu, r, opaque, state,
4815 ARM_CP_SECSTATE_NS,
4816 crm, opc1, opc2);
4824 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4825 const ARMCPRegInfo *regs, void *opaque)
4827 /* Define a whole list of registers */
4828 const ARMCPRegInfo *r;
4829 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4830 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4834 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4836 return g_hash_table_lookup(cpregs, &encoded_cp);
4839 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4840 uint64_t value)
4842 /* Helper coprocessor write function for write-ignore registers */
4845 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4847 /* Helper coprocessor write function for read-as-zero registers */
4848 return 0;
4851 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4853 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4856 static int bad_mode_switch(CPUARMState *env, int mode)
4858 /* Return true if it is not valid for us to switch to
4859 * this CPU mode (ie all the UNPREDICTABLE cases in
4860 * the ARM ARM CPSRWriteByInstr pseudocode).
4862 switch (mode) {
4863 case ARM_CPU_MODE_USR:
4864 case ARM_CPU_MODE_SYS:
4865 case ARM_CPU_MODE_SVC:
4866 case ARM_CPU_MODE_ABT:
4867 case ARM_CPU_MODE_UND:
4868 case ARM_CPU_MODE_IRQ:
4869 case ARM_CPU_MODE_FIQ:
4870 return 0;
4871 case ARM_CPU_MODE_MON:
4872 return !arm_is_secure(env);
4873 default:
4874 return 1;
4878 uint32_t cpsr_read(CPUARMState *env)
4880 int ZF;
4881 ZF = (env->ZF == 0);
4882 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4883 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4884 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4885 | ((env->condexec_bits & 0xfc) << 8)
4886 | (env->GE << 16) | (env->daif & CPSR_AIF);
4889 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4891 uint32_t changed_daif;
4893 if (mask & CPSR_NZCV) {
4894 env->ZF = (~val) & CPSR_Z;
4895 env->NF = val;
4896 env->CF = (val >> 29) & 1;
4897 env->VF = (val << 3) & 0x80000000;
4899 if (mask & CPSR_Q)
4900 env->QF = ((val & CPSR_Q) != 0);
4901 if (mask & CPSR_T)
4902 env->thumb = ((val & CPSR_T) != 0);
4903 if (mask & CPSR_IT_0_1) {
4904 env->condexec_bits &= ~3;
4905 env->condexec_bits |= (val >> 25) & 3;
4907 if (mask & CPSR_IT_2_7) {
4908 env->condexec_bits &= 3;
4909 env->condexec_bits |= (val >> 8) & 0xfc;
4911 if (mask & CPSR_GE) {
4912 env->GE = (val >> 16) & 0xf;
4915 /* In a V7 implementation that includes the security extensions but does
4916 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4917 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4918 * bits respectively.
4920 * In a V8 implementation, it is permitted for privileged software to
4921 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4923 if (!arm_feature(env, ARM_FEATURE_V8) &&
4924 arm_feature(env, ARM_FEATURE_EL3) &&
4925 !arm_feature(env, ARM_FEATURE_EL2) &&
4926 !arm_is_secure(env)) {
4928 changed_daif = (env->daif ^ val) & mask;
4930 if (changed_daif & CPSR_A) {
4931 /* Check to see if we are allowed to change the masking of async
4932 * abort exceptions from a non-secure state.
4934 if (!(env->cp15.scr_el3 & SCR_AW)) {
4935 qemu_log_mask(LOG_GUEST_ERROR,
4936 "Ignoring attempt to switch CPSR_A flag from "
4937 "non-secure world with SCR.AW bit clear\n");
4938 mask &= ~CPSR_A;
4942 if (changed_daif & CPSR_F) {
4943 /* Check to see if we are allowed to change the masking of FIQ
4944 * exceptions from a non-secure state.
4946 if (!(env->cp15.scr_el3 & SCR_FW)) {
4947 qemu_log_mask(LOG_GUEST_ERROR,
4948 "Ignoring attempt to switch CPSR_F flag from "
4949 "non-secure world with SCR.FW bit clear\n");
4950 mask &= ~CPSR_F;
4953 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4954 * If this bit is set software is not allowed to mask
4955 * FIQs, but is allowed to set CPSR_F to 0.
4957 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4958 (val & CPSR_F)) {
4959 qemu_log_mask(LOG_GUEST_ERROR,
4960 "Ignoring attempt to enable CPSR_F flag "
4961 "(non-maskable FIQ [NMFI] support enabled)\n");
4962 mask &= ~CPSR_F;
4967 env->daif &= ~(CPSR_AIF & mask);
4968 env->daif |= val & CPSR_AIF & mask;
4970 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4971 if (bad_mode_switch(env, val & CPSR_M)) {
4972 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4973 * We choose to ignore the attempt and leave the CPSR M field
4974 * untouched.
4976 mask &= ~CPSR_M;
4977 } else {
4978 switch_mode(env, val & CPSR_M);
4981 mask &= ~CACHED_CPSR_BITS;
4982 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
4985 /* Sign/zero extend */
4986 uint32_t HELPER(sxtb16)(uint32_t x)
4988 uint32_t res;
4989 res = (uint16_t)(int8_t)x;
4990 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4991 return res;
4994 uint32_t HELPER(uxtb16)(uint32_t x)
4996 uint32_t res;
4997 res = (uint16_t)(uint8_t)x;
4998 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4999 return res;
5002 uint32_t HELPER(clz)(uint32_t x)
5004 return clz32(x);
5007 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5009 if (den == 0)
5010 return 0;
5011 if (num == INT_MIN && den == -1)
5012 return INT_MIN;
5013 return num / den;
5016 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5018 if (den == 0)
5019 return 0;
5020 return num / den;
5023 uint32_t HELPER(rbit)(uint32_t x)
5025 x = ((x & 0xff000000) >> 24)
5026 | ((x & 0x00ff0000) >> 8)
5027 | ((x & 0x0000ff00) << 8)
5028 | ((x & 0x000000ff) << 24);
5029 x = ((x & 0xf0f0f0f0) >> 4)
5030 | ((x & 0x0f0f0f0f) << 4);
5031 x = ((x & 0x88888888) >> 3)
5032 | ((x & 0x44444444) >> 1)
5033 | ((x & 0x22222222) << 1)
5034 | ((x & 0x11111111) << 3);
5035 return x;
5038 #if defined(CONFIG_USER_ONLY)
5040 /* These should probably raise undefined insn exceptions. */
5041 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5043 ARMCPU *cpu = arm_env_get_cpu(env);
5045 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5048 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5050 ARMCPU *cpu = arm_env_get_cpu(env);
5052 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5053 return 0;
5056 void switch_mode(CPUARMState *env, int mode)
5058 ARMCPU *cpu = arm_env_get_cpu(env);
5060 if (mode != ARM_CPU_MODE_USR) {
5061 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5065 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5067 ARMCPU *cpu = arm_env_get_cpu(env);
5069 cpu_abort(CPU(cpu), "banked r13 write\n");
5072 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5074 ARMCPU *cpu = arm_env_get_cpu(env);
5076 cpu_abort(CPU(cpu), "banked r13 read\n");
5077 return 0;
5080 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5081 uint32_t cur_el, bool secure)
5083 return 1;
5086 void aarch64_sync_64_to_32(CPUARMState *env)
5088 g_assert_not_reached();
5091 #else
5093 /* Map CPU modes onto saved register banks. */
5094 int bank_number(int mode)
5096 switch (mode) {
5097 case ARM_CPU_MODE_USR:
5098 case ARM_CPU_MODE_SYS:
5099 return 0;
5100 case ARM_CPU_MODE_SVC:
5101 return 1;
5102 case ARM_CPU_MODE_ABT:
5103 return 2;
5104 case ARM_CPU_MODE_UND:
5105 return 3;
5106 case ARM_CPU_MODE_IRQ:
5107 return 4;
5108 case ARM_CPU_MODE_FIQ:
5109 return 5;
5110 case ARM_CPU_MODE_HYP:
5111 return 6;
5112 case ARM_CPU_MODE_MON:
5113 return 7;
5115 g_assert_not_reached();
5118 void switch_mode(CPUARMState *env, int mode)
5120 int old_mode;
5121 int i;
5123 old_mode = env->uncached_cpsr & CPSR_M;
5124 if (mode == old_mode)
5125 return;
5127 if (old_mode == ARM_CPU_MODE_FIQ) {
5128 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5129 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5130 } else if (mode == ARM_CPU_MODE_FIQ) {
5131 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5132 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5135 i = bank_number(old_mode);
5136 env->banked_r13[i] = env->regs[13];
5137 env->banked_r14[i] = env->regs[14];
5138 env->banked_spsr[i] = env->spsr;
5140 i = bank_number(mode);
5141 env->regs[13] = env->banked_r13[i];
5142 env->regs[14] = env->banked_r14[i];
5143 env->spsr = env->banked_spsr[i];
5146 /* Physical Interrupt Target EL Lookup Table
5148 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5150 * The below multi-dimensional table is used for looking up the target
5151 * exception level given numerous condition criteria. Specifically, the
5152 * target EL is based on SCR and HCR routing controls as well as the
5153 * currently executing EL and secure state.
5155 * Dimensions:
5156 * target_el_table[2][2][2][2][2][4]
5157 * | | | | | +--- Current EL
5158 * | | | | +------ Non-secure(0)/Secure(1)
5159 * | | | +--------- HCR mask override
5160 * | | +------------ SCR exec state control
5161 * | +--------------- SCR mask override
5162 * +------------------ 32-bit(0)/64-bit(1) EL3
5164 * The table values are as such:
5165 * 0-3 = EL0-EL3
5166 * -1 = Cannot occur
5168 * The ARM ARM target EL table includes entries indicating that an "exception
5169 * is not taken". The two cases where this is applicable are:
5170 * 1) An exception is taken from EL3 but the SCR does not have the exception
5171 * routed to EL3.
5172 * 2) An exception is taken from EL2 but the HCR does not have the exception
5173 * routed to EL2.
5174 * In these two cases, the below table contain a target of EL1. This value is
5175 * returned as it is expected that the consumer of the table data will check
5176 * for "target EL >= current EL" to ensure the exception is not taken.
5178 * SCR HCR
5179 * 64 EA AMO From
5180 * BIT IRQ IMO Non-secure Secure
5181 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5183 const int8_t target_el_table[2][2][2][2][2][4] = {
5184 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5185 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5186 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5187 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5188 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5189 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5190 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5191 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5192 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5193 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5194 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5195 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5196 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5197 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5198 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5199 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5203 * Determine the target EL for physical exceptions
5205 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5206 uint32_t cur_el, bool secure)
5208 CPUARMState *env = cs->env_ptr;
5209 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5210 int scr;
5211 int hcr;
5212 int target_el;
5213 int is64 = arm_el_is_aa64(env, 3);
5215 switch (excp_idx) {
5216 case EXCP_IRQ:
5217 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5218 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5219 break;
5220 case EXCP_FIQ:
5221 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5222 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5223 break;
5224 default:
5225 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5226 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5227 break;
5230 /* If HCR.TGE is set then HCR is treated as being 1 */
5231 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5233 /* Perform a table-lookup for the target EL given the current state */
5234 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5236 assert(target_el > 0);
5238 return target_el;
5241 static void v7m_push(CPUARMState *env, uint32_t val)
5243 CPUState *cs = CPU(arm_env_get_cpu(env));
5245 env->regs[13] -= 4;
5246 stl_phys(cs->as, env->regs[13], val);
5249 static uint32_t v7m_pop(CPUARMState *env)
5251 CPUState *cs = CPU(arm_env_get_cpu(env));
5252 uint32_t val;
5254 val = ldl_phys(cs->as, env->regs[13]);
5255 env->regs[13] += 4;
5256 return val;
5259 /* Switch to V7M main or process stack pointer. */
5260 static void switch_v7m_sp(CPUARMState *env, int process)
5262 uint32_t tmp;
5263 if (env->v7m.current_sp != process) {
5264 tmp = env->v7m.other_sp;
5265 env->v7m.other_sp = env->regs[13];
5266 env->regs[13] = tmp;
5267 env->v7m.current_sp = process;
5271 static void do_v7m_exception_exit(CPUARMState *env)
5273 uint32_t type;
5274 uint32_t xpsr;
5276 type = env->regs[15];
5277 if (env->v7m.exception != 0)
5278 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5280 /* Switch to the target stack. */
5281 switch_v7m_sp(env, (type & 4) != 0);
5282 /* Pop registers. */
5283 env->regs[0] = v7m_pop(env);
5284 env->regs[1] = v7m_pop(env);
5285 env->regs[2] = v7m_pop(env);
5286 env->regs[3] = v7m_pop(env);
5287 env->regs[12] = v7m_pop(env);
5288 env->regs[14] = v7m_pop(env);
5289 env->regs[15] = v7m_pop(env);
5290 if (env->regs[15] & 1) {
5291 qemu_log_mask(LOG_GUEST_ERROR,
5292 "M profile return from interrupt with misaligned "
5293 "PC is UNPREDICTABLE\n");
5294 /* Actual hardware seems to ignore the lsbit, and there are several
5295 * RTOSes out there which incorrectly assume the r15 in the stack
5296 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5298 env->regs[15] &= ~1U;
5300 xpsr = v7m_pop(env);
5301 xpsr_write(env, xpsr, 0xfffffdff);
5302 /* Undo stack alignment. */
5303 if (xpsr & 0x200)
5304 env->regs[13] |= 4;
5305 /* ??? The exception return type specifies Thread/Handler mode. However
5306 this is also implied by the xPSR value. Not sure what to do
5307 if there is a mismatch. */
5308 /* ??? Likewise for mismatches between the CONTROL register and the stack
5309 pointer. */
5312 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5314 ARMCPU *cpu = ARM_CPU(cs);
5315 CPUARMState *env = &cpu->env;
5316 uint32_t xpsr = xpsr_read(env);
5317 uint32_t lr;
5318 uint32_t addr;
5320 arm_log_exception(cs->exception_index);
5322 lr = 0xfffffff1;
5323 if (env->v7m.current_sp)
5324 lr |= 4;
5325 if (env->v7m.exception == 0)
5326 lr |= 8;
5328 /* For exceptions we just mark as pending on the NVIC, and let that
5329 handle it. */
5330 /* TODO: Need to escalate if the current priority is higher than the
5331 one we're raising. */
5332 switch (cs->exception_index) {
5333 case EXCP_UDEF:
5334 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
5335 return;
5336 case EXCP_SWI:
5337 /* The PC already points to the next instruction. */
5338 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
5339 return;
5340 case EXCP_PREFETCH_ABORT:
5341 case EXCP_DATA_ABORT:
5342 /* TODO: if we implemented the MPU registers, this is where we
5343 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5345 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
5346 return;
5347 case EXCP_BKPT:
5348 if (semihosting_enabled()) {
5349 int nr;
5350 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5351 if (nr == 0xab) {
5352 env->regs[15] += 2;
5353 qemu_log_mask(CPU_LOG_INT,
5354 "...handling as semihosting call 0x%x\n",
5355 env->regs[0]);
5356 env->regs[0] = do_arm_semihosting(env);
5357 return;
5360 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
5361 return;
5362 case EXCP_IRQ:
5363 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
5364 break;
5365 case EXCP_EXCEPTION_EXIT:
5366 do_v7m_exception_exit(env);
5367 return;
5368 default:
5369 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5370 return; /* Never happens. Keep compiler happy. */
5373 /* Align stack pointer. */
5374 /* ??? Should only do this if Configuration Control Register
5375 STACKALIGN bit is set. */
5376 if (env->regs[13] & 4) {
5377 env->regs[13] -= 4;
5378 xpsr |= 0x200;
5380 /* Switch to the handler mode. */
5381 v7m_push(env, xpsr);
5382 v7m_push(env, env->regs[15]);
5383 v7m_push(env, env->regs[14]);
5384 v7m_push(env, env->regs[12]);
5385 v7m_push(env, env->regs[3]);
5386 v7m_push(env, env->regs[2]);
5387 v7m_push(env, env->regs[1]);
5388 v7m_push(env, env->regs[0]);
5389 switch_v7m_sp(env, 0);
5390 /* Clear IT bits */
5391 env->condexec_bits = 0;
5392 env->regs[14] = lr;
5393 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
5394 env->regs[15] = addr & 0xfffffffe;
5395 env->thumb = addr & 1;
5398 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5399 * register set. This is necessary when switching between AArch32 and AArch64
5400 * execution state.
5402 void aarch64_sync_32_to_64(CPUARMState *env)
5404 int i;
5405 uint32_t mode = env->uncached_cpsr & CPSR_M;
5407 /* We can blanket copy R[0:7] to X[0:7] */
5408 for (i = 0; i < 8; i++) {
5409 env->xregs[i] = env->regs[i];
5412 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5413 * Otherwise, they come from the banked user regs.
5415 if (mode == ARM_CPU_MODE_FIQ) {
5416 for (i = 8; i < 13; i++) {
5417 env->xregs[i] = env->usr_regs[i - 8];
5419 } else {
5420 for (i = 8; i < 13; i++) {
5421 env->xregs[i] = env->regs[i];
5425 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5426 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5427 * from the mode banked register.
5429 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5430 env->xregs[13] = env->regs[13];
5431 env->xregs[14] = env->regs[14];
5432 } else {
5433 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5434 /* HYP is an exception in that it is copied from r14 */
5435 if (mode == ARM_CPU_MODE_HYP) {
5436 env->xregs[14] = env->regs[14];
5437 } else {
5438 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5442 if (mode == ARM_CPU_MODE_HYP) {
5443 env->xregs[15] = env->regs[13];
5444 } else {
5445 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5448 if (mode == ARM_CPU_MODE_IRQ) {
5449 env->xregs[16] = env->regs[14];
5450 env->xregs[17] = env->regs[13];
5451 } else {
5452 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5453 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5456 if (mode == ARM_CPU_MODE_SVC) {
5457 env->xregs[18] = env->regs[14];
5458 env->xregs[19] = env->regs[13];
5459 } else {
5460 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5461 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5464 if (mode == ARM_CPU_MODE_ABT) {
5465 env->xregs[20] = env->regs[14];
5466 env->xregs[21] = env->regs[13];
5467 } else {
5468 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5469 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5472 if (mode == ARM_CPU_MODE_UND) {
5473 env->xregs[22] = env->regs[14];
5474 env->xregs[23] = env->regs[13];
5475 } else {
5476 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5477 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5480 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5481 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5482 * FIQ bank for r8-r14.
5484 if (mode == ARM_CPU_MODE_FIQ) {
5485 for (i = 24; i < 31; i++) {
5486 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5488 } else {
5489 for (i = 24; i < 29; i++) {
5490 env->xregs[i] = env->fiq_regs[i - 24];
5492 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5493 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5496 env->pc = env->regs[15];
5499 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5500 * register set. This is necessary when switching between AArch32 and AArch64
5501 * execution state.
5503 void aarch64_sync_64_to_32(CPUARMState *env)
5505 int i;
5506 uint32_t mode = env->uncached_cpsr & CPSR_M;
5508 /* We can blanket copy X[0:7] to R[0:7] */
5509 for (i = 0; i < 8; i++) {
5510 env->regs[i] = env->xregs[i];
5513 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5514 * Otherwise, we copy x8-x12 into the banked user regs.
5516 if (mode == ARM_CPU_MODE_FIQ) {
5517 for (i = 8; i < 13; i++) {
5518 env->usr_regs[i - 8] = env->xregs[i];
5520 } else {
5521 for (i = 8; i < 13; i++) {
5522 env->regs[i] = env->xregs[i];
5526 /* Registers r13 & r14 depend on the current mode.
5527 * If we are in a given mode, we copy the corresponding x registers to r13
5528 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5529 * for the mode.
5531 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5532 env->regs[13] = env->xregs[13];
5533 env->regs[14] = env->xregs[14];
5534 } else {
5535 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5537 /* HYP is an exception in that it does not have its own banked r14 but
5538 * shares the USR r14
5540 if (mode == ARM_CPU_MODE_HYP) {
5541 env->regs[14] = env->xregs[14];
5542 } else {
5543 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5547 if (mode == ARM_CPU_MODE_HYP) {
5548 env->regs[13] = env->xregs[15];
5549 } else {
5550 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5553 if (mode == ARM_CPU_MODE_IRQ) {
5554 env->regs[14] = env->xregs[16];
5555 env->regs[13] = env->xregs[17];
5556 } else {
5557 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5558 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
5561 if (mode == ARM_CPU_MODE_SVC) {
5562 env->regs[14] = env->xregs[18];
5563 env->regs[13] = env->xregs[19];
5564 } else {
5565 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5566 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
5569 if (mode == ARM_CPU_MODE_ABT) {
5570 env->regs[14] = env->xregs[20];
5571 env->regs[13] = env->xregs[21];
5572 } else {
5573 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5574 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
5577 if (mode == ARM_CPU_MODE_UND) {
5578 env->regs[14] = env->xregs[22];
5579 env->regs[13] = env->xregs[23];
5580 } else {
5581 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5582 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
5585 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5586 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5587 * FIQ bank for r8-r14.
5589 if (mode == ARM_CPU_MODE_FIQ) {
5590 for (i = 24; i < 31; i++) {
5591 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5593 } else {
5594 for (i = 24; i < 29; i++) {
5595 env->fiq_regs[i - 24] = env->xregs[i];
5597 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5598 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5601 env->regs[15] = env->pc;
5604 /* Handle a CPU exception. */
5605 void arm_cpu_do_interrupt(CPUState *cs)
5607 ARMCPU *cpu = ARM_CPU(cs);
5608 CPUARMState *env = &cpu->env;
5609 uint32_t addr;
5610 uint32_t mask;
5611 int new_mode;
5612 uint32_t offset;
5613 uint32_t moe;
5615 assert(!IS_M(env));
5617 arm_log_exception(cs->exception_index);
5619 if (arm_is_psci_call(cpu, cs->exception_index)) {
5620 arm_handle_psci_call(cpu);
5621 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
5622 return;
5625 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5626 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5627 case EC_BREAKPOINT:
5628 case EC_BREAKPOINT_SAME_EL:
5629 moe = 1;
5630 break;
5631 case EC_WATCHPOINT:
5632 case EC_WATCHPOINT_SAME_EL:
5633 moe = 10;
5634 break;
5635 case EC_AA32_BKPT:
5636 moe = 3;
5637 break;
5638 case EC_VECTORCATCH:
5639 moe = 5;
5640 break;
5641 default:
5642 moe = 0;
5643 break;
5646 if (moe) {
5647 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5650 /* TODO: Vectored interrupt controller. */
5651 switch (cs->exception_index) {
5652 case EXCP_UDEF:
5653 new_mode = ARM_CPU_MODE_UND;
5654 addr = 0x04;
5655 mask = CPSR_I;
5656 if (env->thumb)
5657 offset = 2;
5658 else
5659 offset = 4;
5660 break;
5661 case EXCP_SWI:
5662 if (semihosting_enabled()) {
5663 /* Check for semihosting interrupt. */
5664 if (env->thumb) {
5665 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
5666 & 0xff;
5667 } else {
5668 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
5669 & 0xffffff;
5671 /* Only intercept calls from privileged modes, to provide some
5672 semblance of security. */
5673 if (((mask == 0x123456 && !env->thumb)
5674 || (mask == 0xab && env->thumb))
5675 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5676 qemu_log_mask(CPU_LOG_INT,
5677 "...handling as semihosting call 0x%x\n",
5678 env->regs[0]);
5679 env->regs[0] = do_arm_semihosting(env);
5680 return;
5683 new_mode = ARM_CPU_MODE_SVC;
5684 addr = 0x08;
5685 mask = CPSR_I;
5686 /* The PC already points to the next instruction. */
5687 offset = 0;
5688 break;
5689 case EXCP_BKPT:
5690 /* See if this is a semihosting syscall. */
5691 if (env->thumb && semihosting_enabled()) {
5692 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5693 if (mask == 0xab
5694 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5695 env->regs[15] += 2;
5696 qemu_log_mask(CPU_LOG_INT,
5697 "...handling as semihosting call 0x%x\n",
5698 env->regs[0]);
5699 env->regs[0] = do_arm_semihosting(env);
5700 return;
5703 env->exception.fsr = 2;
5704 /* Fall through to prefetch abort. */
5705 case EXCP_PREFETCH_ABORT:
5706 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
5707 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
5708 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
5709 env->exception.fsr, (uint32_t)env->exception.vaddress);
5710 new_mode = ARM_CPU_MODE_ABT;
5711 addr = 0x0c;
5712 mask = CPSR_A | CPSR_I;
5713 offset = 4;
5714 break;
5715 case EXCP_DATA_ABORT:
5716 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
5717 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
5718 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
5719 env->exception.fsr,
5720 (uint32_t)env->exception.vaddress);
5721 new_mode = ARM_CPU_MODE_ABT;
5722 addr = 0x10;
5723 mask = CPSR_A | CPSR_I;
5724 offset = 8;
5725 break;
5726 case EXCP_IRQ:
5727 new_mode = ARM_CPU_MODE_IRQ;
5728 addr = 0x18;
5729 /* Disable IRQ and imprecise data aborts. */
5730 mask = CPSR_A | CPSR_I;
5731 offset = 4;
5732 if (env->cp15.scr_el3 & SCR_IRQ) {
5733 /* IRQ routed to monitor mode */
5734 new_mode = ARM_CPU_MODE_MON;
5735 mask |= CPSR_F;
5737 break;
5738 case EXCP_FIQ:
5739 new_mode = ARM_CPU_MODE_FIQ;
5740 addr = 0x1c;
5741 /* Disable FIQ, IRQ and imprecise data aborts. */
5742 mask = CPSR_A | CPSR_I | CPSR_F;
5743 if (env->cp15.scr_el3 & SCR_FIQ) {
5744 /* FIQ routed to monitor mode */
5745 new_mode = ARM_CPU_MODE_MON;
5747 offset = 4;
5748 break;
5749 case EXCP_SMC:
5750 new_mode = ARM_CPU_MODE_MON;
5751 addr = 0x08;
5752 mask = CPSR_A | CPSR_I | CPSR_F;
5753 offset = 0;
5754 break;
5755 default:
5756 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5757 return; /* Never happens. Keep compiler happy. */
5760 if (new_mode == ARM_CPU_MODE_MON) {
5761 addr += env->cp15.mvbar;
5762 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
5763 /* High vectors. When enabled, base address cannot be remapped. */
5764 addr += 0xffff0000;
5765 } else {
5766 /* ARM v7 architectures provide a vector base address register to remap
5767 * the interrupt vector table.
5768 * This register is only followed in non-monitor mode, and is banked.
5769 * Note: only bits 31:5 are valid.
5771 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
5774 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
5775 env->cp15.scr_el3 &= ~SCR_NS;
5778 switch_mode (env, new_mode);
5779 /* For exceptions taken to AArch32 we must clear the SS bit in both
5780 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5782 env->uncached_cpsr &= ~PSTATE_SS;
5783 env->spsr = cpsr_read(env);
5784 /* Clear IT bits. */
5785 env->condexec_bits = 0;
5786 /* Switch to the new mode, and to the correct instruction set. */
5787 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
5788 env->daif |= mask;
5789 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5790 * and we should just guard the thumb mode on V4 */
5791 if (arm_feature(env, ARM_FEATURE_V4T)) {
5792 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
5794 env->regs[14] = env->regs[15] + offset;
5795 env->regs[15] = addr;
5796 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
5800 /* Return the exception level which controls this address translation regime */
5801 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
5803 switch (mmu_idx) {
5804 case ARMMMUIdx_S2NS:
5805 case ARMMMUIdx_S1E2:
5806 return 2;
5807 case ARMMMUIdx_S1E3:
5808 return 3;
5809 case ARMMMUIdx_S1SE0:
5810 return arm_el_is_aa64(env, 3) ? 1 : 3;
5811 case ARMMMUIdx_S1SE1:
5812 case ARMMMUIdx_S1NSE0:
5813 case ARMMMUIdx_S1NSE1:
5814 return 1;
5815 default:
5816 g_assert_not_reached();
5820 /* Return true if this address translation regime is secure */
5821 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
5823 switch (mmu_idx) {
5824 case ARMMMUIdx_S12NSE0:
5825 case ARMMMUIdx_S12NSE1:
5826 case ARMMMUIdx_S1NSE0:
5827 case ARMMMUIdx_S1NSE1:
5828 case ARMMMUIdx_S1E2:
5829 case ARMMMUIdx_S2NS:
5830 return false;
5831 case ARMMMUIdx_S1E3:
5832 case ARMMMUIdx_S1SE0:
5833 case ARMMMUIdx_S1SE1:
5834 return true;
5835 default:
5836 g_assert_not_reached();
5840 /* Return the SCTLR value which controls this address translation regime */
5841 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
5843 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
5846 /* Return true if the specified stage of address translation is disabled */
5847 static inline bool regime_translation_disabled(CPUARMState *env,
5848 ARMMMUIdx mmu_idx)
5850 if (mmu_idx == ARMMMUIdx_S2NS) {
5851 return (env->cp15.hcr_el2 & HCR_VM) == 0;
5853 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
5856 /* Return the TCR controlling this translation regime */
5857 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
5859 if (mmu_idx == ARMMMUIdx_S2NS) {
5860 return &env->cp15.vtcr_el2;
5862 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
5865 /* Return the TTBR associated with this translation regime */
5866 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
5867 int ttbrn)
5869 if (mmu_idx == ARMMMUIdx_S2NS) {
5870 return env->cp15.vttbr_el2;
5872 if (ttbrn == 0) {
5873 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
5874 } else {
5875 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5879 /* Return true if the translation regime is using LPAE format page tables */
5880 static inline bool regime_using_lpae_format(CPUARMState *env,
5881 ARMMMUIdx mmu_idx)
5883 int el = regime_el(env, mmu_idx);
5884 if (el == 2 || arm_el_is_aa64(env, el)) {
5885 return true;
5887 if (arm_feature(env, ARM_FEATURE_LPAE)
5888 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5889 return true;
5891 return false;
5894 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5896 switch (mmu_idx) {
5897 case ARMMMUIdx_S1SE0:
5898 case ARMMMUIdx_S1NSE0:
5899 return true;
5900 default:
5901 return false;
5902 case ARMMMUIdx_S12NSE0:
5903 case ARMMMUIdx_S12NSE1:
5904 g_assert_not_reached();
5908 /* Translate section/page access permissions to page
5909 * R/W protection flags
5911 * @env: CPUARMState
5912 * @mmu_idx: MMU index indicating required translation regime
5913 * @ap: The 3-bit access permissions (AP[2:0])
5914 * @domain_prot: The 2-bit domain access permissions
5916 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5917 int ap, int domain_prot)
5919 bool is_user = regime_is_user(env, mmu_idx);
5921 if (domain_prot == 3) {
5922 return PAGE_READ | PAGE_WRITE;
5925 switch (ap) {
5926 case 0:
5927 if (arm_feature(env, ARM_FEATURE_V7)) {
5928 return 0;
5930 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5931 case SCTLR_S:
5932 return is_user ? 0 : PAGE_READ;
5933 case SCTLR_R:
5934 return PAGE_READ;
5935 default:
5936 return 0;
5938 case 1:
5939 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5940 case 2:
5941 if (is_user) {
5942 return PAGE_READ;
5943 } else {
5944 return PAGE_READ | PAGE_WRITE;
5946 case 3:
5947 return PAGE_READ | PAGE_WRITE;
5948 case 4: /* Reserved. */
5949 return 0;
5950 case 5:
5951 return is_user ? 0 : PAGE_READ;
5952 case 6:
5953 return PAGE_READ;
5954 case 7:
5955 if (!arm_feature(env, ARM_FEATURE_V6K)) {
5956 return 0;
5958 return PAGE_READ;
5959 default:
5960 g_assert_not_reached();
5964 /* Translate section/page access permissions to page
5965 * R/W protection flags.
5967 * @ap: The 2-bit simple AP (AP[2:1])
5968 * @is_user: TRUE if accessing from PL0
5970 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5972 switch (ap) {
5973 case 0:
5974 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5975 case 1:
5976 return PAGE_READ | PAGE_WRITE;
5977 case 2:
5978 return is_user ? 0 : PAGE_READ;
5979 case 3:
5980 return PAGE_READ;
5981 default:
5982 g_assert_not_reached();
5986 static inline int
5987 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5989 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5992 /* Translate section/page access permissions to protection flags
5994 * @env: CPUARMState
5995 * @mmu_idx: MMU index indicating required translation regime
5996 * @is_aa64: TRUE if AArch64
5997 * @ap: The 2-bit simple AP (AP[2:1])
5998 * @ns: NS (non-secure) bit
5999 * @xn: XN (execute-never) bit
6000 * @pxn: PXN (privileged execute-never) bit
6002 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6003 int ap, int ns, int xn, int pxn)
6005 bool is_user = regime_is_user(env, mmu_idx);
6006 int prot_rw, user_rw;
6007 bool have_wxn;
6008 int wxn = 0;
6010 assert(mmu_idx != ARMMMUIdx_S2NS);
6012 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6013 if (is_user) {
6014 prot_rw = user_rw;
6015 } else {
6016 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6019 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6020 return prot_rw;
6023 /* TODO have_wxn should be replaced with
6024 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6025 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6026 * compatible processors have EL2, which is required for [U]WXN.
6028 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6030 if (have_wxn) {
6031 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6034 if (is_aa64) {
6035 switch (regime_el(env, mmu_idx)) {
6036 case 1:
6037 if (!is_user) {
6038 xn = pxn || (user_rw & PAGE_WRITE);
6040 break;
6041 case 2:
6042 case 3:
6043 break;
6045 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6046 switch (regime_el(env, mmu_idx)) {
6047 case 1:
6048 case 3:
6049 if (is_user) {
6050 xn = xn || !(user_rw & PAGE_READ);
6051 } else {
6052 int uwxn = 0;
6053 if (have_wxn) {
6054 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6056 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6057 (uwxn && (user_rw & PAGE_WRITE));
6059 break;
6060 case 2:
6061 break;
6063 } else {
6064 xn = wxn = 0;
6067 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6068 return prot_rw;
6070 return prot_rw | PAGE_EXEC;
6073 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6074 uint32_t *table, uint32_t address)
6076 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6077 TCR *tcr = regime_tcr(env, mmu_idx);
6079 if (address & tcr->mask) {
6080 if (tcr->raw_tcr & TTBCR_PD1) {
6081 /* Translation table walk disabled for TTBR1 */
6082 return false;
6084 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6085 } else {
6086 if (tcr->raw_tcr & TTBCR_PD0) {
6087 /* Translation table walk disabled for TTBR0 */
6088 return false;
6090 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6092 *table |= (address >> 18) & 0x3ffc;
6093 return true;
6096 /* All loads done in the course of a page table walk go through here.
6097 * TODO: rather than ignoring errors from physical memory reads (which
6098 * are external aborts in ARM terminology) we should propagate this
6099 * error out so that we can turn it into a Data Abort if this walk
6100 * was being done for a CPU load/store or an address translation instruction
6101 * (but not if it was for a debug access).
6103 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
6105 MemTxAttrs attrs = {};
6107 attrs.secure = is_secure;
6108 return address_space_ldl(cs->as, addr, attrs, NULL);
6111 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
6113 MemTxAttrs attrs = {};
6115 attrs.secure = is_secure;
6116 return address_space_ldq(cs->as, addr, attrs, NULL);
6119 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6120 int access_type, ARMMMUIdx mmu_idx,
6121 hwaddr *phys_ptr, int *prot,
6122 target_ulong *page_size, uint32_t *fsr)
6124 CPUState *cs = CPU(arm_env_get_cpu(env));
6125 int code;
6126 uint32_t table;
6127 uint32_t desc;
6128 int type;
6129 int ap;
6130 int domain = 0;
6131 int domain_prot;
6132 hwaddr phys_addr;
6133 uint32_t dacr;
6135 /* Pagetable walk. */
6136 /* Lookup l1 descriptor. */
6137 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6138 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6139 code = 5;
6140 goto do_fault;
6142 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6143 type = (desc & 3);
6144 domain = (desc >> 5) & 0x0f;
6145 if (regime_el(env, mmu_idx) == 1) {
6146 dacr = env->cp15.dacr_ns;
6147 } else {
6148 dacr = env->cp15.dacr_s;
6150 domain_prot = (dacr >> (domain * 2)) & 3;
6151 if (type == 0) {
6152 /* Section translation fault. */
6153 code = 5;
6154 goto do_fault;
6156 if (domain_prot == 0 || domain_prot == 2) {
6157 if (type == 2)
6158 code = 9; /* Section domain fault. */
6159 else
6160 code = 11; /* Page domain fault. */
6161 goto do_fault;
6163 if (type == 2) {
6164 /* 1Mb section. */
6165 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6166 ap = (desc >> 10) & 3;
6167 code = 13;
6168 *page_size = 1024 * 1024;
6169 } else {
6170 /* Lookup l2 entry. */
6171 if (type == 1) {
6172 /* Coarse pagetable. */
6173 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6174 } else {
6175 /* Fine pagetable. */
6176 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6178 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6179 switch (desc & 3) {
6180 case 0: /* Page translation fault. */
6181 code = 7;
6182 goto do_fault;
6183 case 1: /* 64k page. */
6184 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6185 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
6186 *page_size = 0x10000;
6187 break;
6188 case 2: /* 4k page. */
6189 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6190 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
6191 *page_size = 0x1000;
6192 break;
6193 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6194 if (type == 1) {
6195 /* ARMv6/XScale extended small page format */
6196 if (arm_feature(env, ARM_FEATURE_XSCALE)
6197 || arm_feature(env, ARM_FEATURE_V6)) {
6198 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6199 *page_size = 0x1000;
6200 } else {
6201 /* UNPREDICTABLE in ARMv5; we choose to take a
6202 * page translation fault.
6204 code = 7;
6205 goto do_fault;
6207 } else {
6208 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
6209 *page_size = 0x400;
6211 ap = (desc >> 4) & 3;
6212 break;
6213 default:
6214 /* Never happens, but compiler isn't smart enough to tell. */
6215 abort();
6217 code = 15;
6219 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6220 *prot |= *prot ? PAGE_EXEC : 0;
6221 if (!(*prot & (1 << access_type))) {
6222 /* Access permission fault. */
6223 goto do_fault;
6225 *phys_ptr = phys_addr;
6226 return false;
6227 do_fault:
6228 *fsr = code | (domain << 4);
6229 return true;
6232 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
6233 int access_type, ARMMMUIdx mmu_idx,
6234 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6235 target_ulong *page_size, uint32_t *fsr)
6237 CPUState *cs = CPU(arm_env_get_cpu(env));
6238 int code;
6239 uint32_t table;
6240 uint32_t desc;
6241 uint32_t xn;
6242 uint32_t pxn = 0;
6243 int type;
6244 int ap;
6245 int domain = 0;
6246 int domain_prot;
6247 hwaddr phys_addr;
6248 uint32_t dacr;
6249 bool ns;
6251 /* Pagetable walk. */
6252 /* Lookup l1 descriptor. */
6253 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6254 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6255 code = 5;
6256 goto do_fault;
6258 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6259 type = (desc & 3);
6260 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
6261 /* Section translation fault, or attempt to use the encoding
6262 * which is Reserved on implementations without PXN.
6264 code = 5;
6265 goto do_fault;
6267 if ((type == 1) || !(desc & (1 << 18))) {
6268 /* Page or Section. */
6269 domain = (desc >> 5) & 0x0f;
6271 if (regime_el(env, mmu_idx) == 1) {
6272 dacr = env->cp15.dacr_ns;
6273 } else {
6274 dacr = env->cp15.dacr_s;
6276 domain_prot = (dacr >> (domain * 2)) & 3;
6277 if (domain_prot == 0 || domain_prot == 2) {
6278 if (type != 1) {
6279 code = 9; /* Section domain fault. */
6280 } else {
6281 code = 11; /* Page domain fault. */
6283 goto do_fault;
6285 if (type != 1) {
6286 if (desc & (1 << 18)) {
6287 /* Supersection. */
6288 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
6289 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
6290 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
6291 *page_size = 0x1000000;
6292 } else {
6293 /* Section. */
6294 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6295 *page_size = 0x100000;
6297 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
6298 xn = desc & (1 << 4);
6299 pxn = desc & 1;
6300 code = 13;
6301 ns = extract32(desc, 19, 1);
6302 } else {
6303 if (arm_feature(env, ARM_FEATURE_PXN)) {
6304 pxn = (desc >> 2) & 1;
6306 ns = extract32(desc, 3, 1);
6307 /* Lookup l2 entry. */
6308 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6309 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6310 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
6311 switch (desc & 3) {
6312 case 0: /* Page translation fault. */
6313 code = 7;
6314 goto do_fault;
6315 case 1: /* 64k page. */
6316 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6317 xn = desc & (1 << 15);
6318 *page_size = 0x10000;
6319 break;
6320 case 2: case 3: /* 4k page. */
6321 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6322 xn = desc & 1;
6323 *page_size = 0x1000;
6324 break;
6325 default:
6326 /* Never happens, but compiler isn't smart enough to tell. */
6327 abort();
6329 code = 15;
6331 if (domain_prot == 3) {
6332 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6333 } else {
6334 if (pxn && !regime_is_user(env, mmu_idx)) {
6335 xn = 1;
6337 if (xn && access_type == 2)
6338 goto do_fault;
6340 if (arm_feature(env, ARM_FEATURE_V6K) &&
6341 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
6342 /* The simplified model uses AP[0] as an access control bit. */
6343 if ((ap & 1) == 0) {
6344 /* Access flag fault. */
6345 code = (code == 15) ? 6 : 3;
6346 goto do_fault;
6348 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6349 } else {
6350 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6352 if (*prot && !xn) {
6353 *prot |= PAGE_EXEC;
6355 if (!(*prot & (1 << access_type))) {
6356 /* Access permission fault. */
6357 goto do_fault;
6360 if (ns) {
6361 /* The NS bit will (as required by the architecture) have no effect if
6362 * the CPU doesn't support TZ or this is a non-secure translation
6363 * regime, because the attribute will already be non-secure.
6365 attrs->secure = false;
6367 *phys_ptr = phys_addr;
6368 return false;
6369 do_fault:
6370 *fsr = code | (domain << 4);
6371 return true;
6374 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6375 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6377 typedef enum {
6378 translation_fault = 1,
6379 access_fault = 2,
6380 permission_fault = 3,
6381 } MMUFaultType;
6383 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
6384 int access_type, ARMMMUIdx mmu_idx,
6385 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
6386 target_ulong *page_size_ptr, uint32_t *fsr)
6388 CPUState *cs = CPU(arm_env_get_cpu(env));
6389 /* Read an LPAE long-descriptor translation table. */
6390 MMUFaultType fault_type = translation_fault;
6391 uint32_t level = 1;
6392 uint32_t epd = 0;
6393 int32_t tsz;
6394 uint32_t tg;
6395 uint64_t ttbr;
6396 int ttbr_select;
6397 hwaddr descaddr, descmask;
6398 uint32_t tableattrs;
6399 target_ulong page_size;
6400 uint32_t attrs;
6401 int32_t granule_sz = 9;
6402 int32_t va_size = 32;
6403 int32_t tbi = 0;
6404 TCR *tcr = regime_tcr(env, mmu_idx);
6405 int ap, ns, xn, pxn;
6406 uint32_t el = regime_el(env, mmu_idx);
6407 bool ttbr1_valid = true;
6409 /* TODO:
6410 * This code does not handle the different format TCR for VTCR_EL2.
6411 * This code also does not support shareability levels.
6412 * Attribute and permission bit handling should also be checked when adding
6413 * support for those page table walks.
6415 if (arm_el_is_aa64(env, el)) {
6416 va_size = 64;
6417 if (el > 1) {
6418 if (mmu_idx != ARMMMUIdx_S2NS) {
6419 tbi = extract64(tcr->raw_tcr, 20, 1);
6421 } else {
6422 if (extract64(address, 55, 1)) {
6423 tbi = extract64(tcr->raw_tcr, 38, 1);
6424 } else {
6425 tbi = extract64(tcr->raw_tcr, 37, 1);
6428 tbi *= 8;
6430 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6431 * invalid.
6433 if (el > 1) {
6434 ttbr1_valid = false;
6436 } else {
6437 /* There is no TTBR1 for EL2 */
6438 if (el == 2) {
6439 ttbr1_valid = false;
6443 /* Determine whether this address is in the region controlled by
6444 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6445 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6446 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6448 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
6449 if (va_size == 64) {
6450 t0sz = MIN(t0sz, 39);
6451 t0sz = MAX(t0sz, 16);
6453 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
6454 if (va_size == 64) {
6455 t1sz = MIN(t1sz, 39);
6456 t1sz = MAX(t1sz, 16);
6458 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
6459 /* there is a ttbr0 region and we are in it (high bits all zero) */
6460 ttbr_select = 0;
6461 } else if (ttbr1_valid && t1sz &&
6462 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
6463 /* there is a ttbr1 region and we are in it (high bits all one) */
6464 ttbr_select = 1;
6465 } else if (!t0sz) {
6466 /* ttbr0 region is "everything not in the ttbr1 region" */
6467 ttbr_select = 0;
6468 } else if (!t1sz && ttbr1_valid) {
6469 /* ttbr1 region is "everything not in the ttbr0 region" */
6470 ttbr_select = 1;
6471 } else {
6472 /* in the gap between the two regions, this is a Translation fault */
6473 fault_type = translation_fault;
6474 goto do_fault;
6477 /* Note that QEMU ignores shareability and cacheability attributes,
6478 * so we don't need to do anything with the SH, ORGN, IRGN fields
6479 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6480 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6481 * implement any ASID-like capability so we can ignore it (instead
6482 * we will always flush the TLB any time the ASID is changed).
6484 if (ttbr_select == 0) {
6485 ttbr = regime_ttbr(env, mmu_idx, 0);
6486 if (el < 2) {
6487 epd = extract32(tcr->raw_tcr, 7, 1);
6489 tsz = t0sz;
6491 tg = extract32(tcr->raw_tcr, 14, 2);
6492 if (tg == 1) { /* 64KB pages */
6493 granule_sz = 13;
6495 if (tg == 2) { /* 16KB pages */
6496 granule_sz = 11;
6498 } else {
6499 /* We should only be here if TTBR1 is valid */
6500 assert(ttbr1_valid);
6502 ttbr = regime_ttbr(env, mmu_idx, 1);
6503 epd = extract32(tcr->raw_tcr, 23, 1);
6504 tsz = t1sz;
6506 tg = extract32(tcr->raw_tcr, 30, 2);
6507 if (tg == 3) { /* 64KB pages */
6508 granule_sz = 13;
6510 if (tg == 1) { /* 16KB pages */
6511 granule_sz = 11;
6515 /* Here we should have set up all the parameters for the translation:
6516 * va_size, ttbr, epd, tsz, granule_sz, tbi
6519 if (epd) {
6520 /* Translation table walk disabled => Translation fault on TLB miss
6521 * Note: This is always 0 on 64-bit EL2 and EL3.
6523 goto do_fault;
6526 /* The starting level depends on the virtual address size (which can be
6527 * up to 48 bits) and the translation granule size. It indicates the number
6528 * of strides (granule_sz bits at a time) needed to consume the bits
6529 * of the input address. In the pseudocode this is:
6530 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6531 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6532 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6533 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6534 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6535 * = 4 - (va_size - tsz - 4) / granule_sz;
6537 level = 4 - (va_size - tsz - 4) / granule_sz;
6539 /* Clear the vaddr bits which aren't part of the within-region address,
6540 * so that we don't have to special case things when calculating the
6541 * first descriptor address.
6543 if (tsz) {
6544 address &= (1ULL << (va_size - tsz)) - 1;
6547 descmask = (1ULL << (granule_sz + 3)) - 1;
6549 /* Now we can extract the actual base address from the TTBR */
6550 descaddr = extract64(ttbr, 0, 48);
6551 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
6553 /* Secure accesses start with the page table in secure memory and
6554 * can be downgraded to non-secure at any step. Non-secure accesses
6555 * remain non-secure. We implement this by just ORing in the NSTable/NS
6556 * bits at each step.
6558 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
6559 for (;;) {
6560 uint64_t descriptor;
6561 bool nstable;
6563 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
6564 descaddr &= ~7ULL;
6565 nstable = extract32(tableattrs, 4, 1);
6566 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
6567 if (!(descriptor & 1) ||
6568 (!(descriptor & 2) && (level == 3))) {
6569 /* Invalid, or the Reserved level 3 encoding */
6570 goto do_fault;
6572 descaddr = descriptor & 0xfffffff000ULL;
6574 if ((descriptor & 2) && (level < 3)) {
6575 /* Table entry. The top five bits are attributes which may
6576 * propagate down through lower levels of the table (and
6577 * which are all arranged so that 0 means "no effect", so
6578 * we can gather them up by ORing in the bits at each level).
6580 tableattrs |= extract64(descriptor, 59, 5);
6581 level++;
6582 continue;
6584 /* Block entry at level 1 or 2, or page entry at level 3.
6585 * These are basically the same thing, although the number
6586 * of bits we pull in from the vaddr varies.
6588 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
6589 descaddr |= (address & (page_size - 1));
6590 /* Extract attributes from the descriptor and merge with table attrs */
6591 attrs = extract64(descriptor, 2, 10)
6592 | (extract64(descriptor, 52, 12) << 10);
6593 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
6594 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
6595 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6596 * means "force PL1 access only", which means forcing AP[1] to 0.
6598 if (extract32(tableattrs, 2, 1)) {
6599 attrs &= ~(1 << 4);
6601 attrs |= nstable << 3; /* NS */
6602 break;
6604 /* Here descaddr is the final physical address, and attributes
6605 * are all in attrs.
6607 fault_type = access_fault;
6608 if ((attrs & (1 << 8)) == 0) {
6609 /* Access flag */
6610 goto do_fault;
6613 ap = extract32(attrs, 4, 2);
6614 ns = extract32(attrs, 3, 1);
6615 xn = extract32(attrs, 12, 1);
6616 pxn = extract32(attrs, 11, 1);
6618 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
6620 fault_type = permission_fault;
6621 if (!(*prot & (1 << access_type))) {
6622 goto do_fault;
6625 if (ns) {
6626 /* The NS bit will (as required by the architecture) have no effect if
6627 * the CPU doesn't support TZ or this is a non-secure translation
6628 * regime, because the attribute will already be non-secure.
6630 txattrs->secure = false;
6632 *phys_ptr = descaddr;
6633 *page_size_ptr = page_size;
6634 return false;
6636 do_fault:
6637 /* Long-descriptor format IFSR/DFSR value */
6638 *fsr = (1 << 9) | (fault_type << 2) | level;
6639 return true;
6642 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
6643 ARMMMUIdx mmu_idx,
6644 int32_t address, int *prot)
6646 *prot = PAGE_READ | PAGE_WRITE;
6647 switch (address) {
6648 case 0xF0000000 ... 0xFFFFFFFF:
6649 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
6650 *prot |= PAGE_EXEC;
6652 break;
6653 case 0x00000000 ... 0x7FFFFFFF:
6654 *prot |= PAGE_EXEC;
6655 break;
6660 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
6661 int access_type, ARMMMUIdx mmu_idx,
6662 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6664 ARMCPU *cpu = arm_env_get_cpu(env);
6665 int n;
6666 bool is_user = regime_is_user(env, mmu_idx);
6668 *phys_ptr = address;
6669 *prot = 0;
6671 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
6672 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6673 } else { /* MPU enabled */
6674 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
6675 /* region search */
6676 uint32_t base = env->pmsav7.drbar[n];
6677 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
6678 uint32_t rmask;
6679 bool srdis = false;
6681 if (!(env->pmsav7.drsr[n] & 0x1)) {
6682 continue;
6685 if (!rsize) {
6686 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
6687 continue;
6689 rsize++;
6690 rmask = (1ull << rsize) - 1;
6692 if (base & rmask) {
6693 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
6694 "to DRSR region size, mask = %" PRIx32,
6695 base, rmask);
6696 continue;
6699 if (address < base || address > base + rmask) {
6700 continue;
6703 /* Region matched */
6705 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
6706 int i, snd;
6707 uint32_t srdis_mask;
6709 rsize -= 3; /* sub region size (power of 2) */
6710 snd = ((address - base) >> rsize) & 0x7;
6711 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
6713 srdis_mask = srdis ? 0x3 : 0x0;
6714 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
6715 /* This will check in groups of 2, 4 and then 8, whether
6716 * the subregion bits are consistent. rsize is incremented
6717 * back up to give the region size, considering consistent
6718 * adjacent subregions as one region. Stop testing if rsize
6719 * is already big enough for an entire QEMU page.
6721 int snd_rounded = snd & ~(i - 1);
6722 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
6723 snd_rounded + 8, i);
6724 if (srdis_mask ^ srdis_multi) {
6725 break;
6727 srdis_mask = (srdis_mask << i) | srdis_mask;
6728 rsize++;
6731 if (rsize < TARGET_PAGE_BITS) {
6732 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
6733 "alignment of %" PRIu32 " bits. Minimum is %d\n",
6734 rsize, TARGET_PAGE_BITS);
6735 continue;
6737 if (srdis) {
6738 continue;
6740 break;
6743 if (n == -1) { /* no hits */
6744 if (cpu->pmsav7_dregion &&
6745 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
6746 /* background fault */
6747 *fsr = 0;
6748 return true;
6750 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6751 } else { /* a MPU hit! */
6752 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
6754 if (is_user) { /* User mode AP bit decoding */
6755 switch (ap) {
6756 case 0:
6757 case 1:
6758 case 5:
6759 break; /* no access */
6760 case 3:
6761 *prot |= PAGE_WRITE;
6762 /* fall through */
6763 case 2:
6764 case 6:
6765 *prot |= PAGE_READ | PAGE_EXEC;
6766 break;
6767 default:
6768 qemu_log_mask(LOG_GUEST_ERROR,
6769 "Bad value for AP bits in DRACR %"
6770 PRIx32 "\n", ap);
6772 } else { /* Priv. mode AP bits decoding */
6773 switch (ap) {
6774 case 0:
6775 break; /* no access */
6776 case 1:
6777 case 2:
6778 case 3:
6779 *prot |= PAGE_WRITE;
6780 /* fall through */
6781 case 5:
6782 case 6:
6783 *prot |= PAGE_READ | PAGE_EXEC;
6784 break;
6785 default:
6786 qemu_log_mask(LOG_GUEST_ERROR,
6787 "Bad value for AP bits in DRACR %"
6788 PRIx32 "\n", ap);
6792 /* execute never */
6793 if (env->pmsav7.dracr[n] & (1 << 12)) {
6794 *prot &= ~PAGE_EXEC;
6799 *fsr = 0x00d; /* Permission fault */
6800 return !(*prot & (1 << access_type));
6803 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
6804 int access_type, ARMMMUIdx mmu_idx,
6805 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6807 int n;
6808 uint32_t mask;
6809 uint32_t base;
6810 bool is_user = regime_is_user(env, mmu_idx);
6812 *phys_ptr = address;
6813 for (n = 7; n >= 0; n--) {
6814 base = env->cp15.c6_region[n];
6815 if ((base & 1) == 0) {
6816 continue;
6818 mask = 1 << ((base >> 1) & 0x1f);
6819 /* Keep this shift separate from the above to avoid an
6820 (undefined) << 32. */
6821 mask = (mask << 1) - 1;
6822 if (((base ^ address) & ~mask) == 0) {
6823 break;
6826 if (n < 0) {
6827 *fsr = 2;
6828 return true;
6831 if (access_type == 2) {
6832 mask = env->cp15.pmsav5_insn_ap;
6833 } else {
6834 mask = env->cp15.pmsav5_data_ap;
6836 mask = (mask >> (n * 4)) & 0xf;
6837 switch (mask) {
6838 case 0:
6839 *fsr = 1;
6840 return true;
6841 case 1:
6842 if (is_user) {
6843 *fsr = 1;
6844 return true;
6846 *prot = PAGE_READ | PAGE_WRITE;
6847 break;
6848 case 2:
6849 *prot = PAGE_READ;
6850 if (!is_user) {
6851 *prot |= PAGE_WRITE;
6853 break;
6854 case 3:
6855 *prot = PAGE_READ | PAGE_WRITE;
6856 break;
6857 case 5:
6858 if (is_user) {
6859 *fsr = 1;
6860 return true;
6862 *prot = PAGE_READ;
6863 break;
6864 case 6:
6865 *prot = PAGE_READ;
6866 break;
6867 default:
6868 /* Bad permission. */
6869 *fsr = 1;
6870 return true;
6872 *prot |= PAGE_EXEC;
6873 return false;
6876 /* get_phys_addr - get the physical address for this virtual address
6878 * Find the physical address corresponding to the given virtual address,
6879 * by doing a translation table walk on MMU based systems or using the
6880 * MPU state on MPU based systems.
6882 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6883 * prot and page_size may not be filled in, and the populated fsr value provides
6884 * information on why the translation aborted, in the format of a
6885 * DFSR/IFSR fault register, with the following caveats:
6886 * * we honour the short vs long DFSR format differences.
6887 * * the WnR bit is never set (the caller must do this).
6888 * * for PSMAv5 based systems we don't bother to return a full FSR format
6889 * value.
6891 * @env: CPUARMState
6892 * @address: virtual address to get physical address for
6893 * @access_type: 0 for read, 1 for write, 2 for execute
6894 * @mmu_idx: MMU index indicating required translation regime
6895 * @phys_ptr: set to the physical address corresponding to the virtual address
6896 * @attrs: set to the memory transaction attributes to use
6897 * @prot: set to the permissions for the page containing phys_ptr
6898 * @page_size: set to the size of the page containing phys_ptr
6899 * @fsr: set to the DFSR/IFSR value on failure
6901 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
6902 int access_type, ARMMMUIdx mmu_idx,
6903 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6904 target_ulong *page_size, uint32_t *fsr)
6906 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6907 /* TODO: when we support EL2 we should here call ourselves recursively
6908 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6909 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6910 * rather than direct physical memory loads when appropriate.
6911 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6913 assert(!arm_feature(env, ARM_FEATURE_EL2));
6914 mmu_idx += ARMMMUIdx_S1NSE0;
6917 /* The page table entries may downgrade secure to non-secure, but
6918 * cannot upgrade an non-secure translation regime's attributes
6919 * to secure.
6921 attrs->secure = regime_is_secure(env, mmu_idx);
6922 attrs->user = regime_is_user(env, mmu_idx);
6924 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6925 * In v7 and earlier it affects all stage 1 translations.
6927 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
6928 && !arm_feature(env, ARM_FEATURE_V8)) {
6929 if (regime_el(env, mmu_idx) == 3) {
6930 address += env->cp15.fcseidr_s;
6931 } else {
6932 address += env->cp15.fcseidr_ns;
6936 /* pmsav7 has special handling for when MPU is disabled so call it before
6937 * the common MMU/MPU disabled check below.
6939 if (arm_feature(env, ARM_FEATURE_MPU) &&
6940 arm_feature(env, ARM_FEATURE_V7)) {
6941 *page_size = TARGET_PAGE_SIZE;
6942 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
6943 phys_ptr, prot, fsr);
6946 if (regime_translation_disabled(env, mmu_idx)) {
6947 /* MMU/MPU disabled. */
6948 *phys_ptr = address;
6949 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6950 *page_size = TARGET_PAGE_SIZE;
6951 return 0;
6954 if (arm_feature(env, ARM_FEATURE_MPU)) {
6955 /* Pre-v7 MPU */
6956 *page_size = TARGET_PAGE_SIZE;
6957 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
6958 phys_ptr, prot, fsr);
6961 if (regime_using_lpae_format(env, mmu_idx)) {
6962 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
6963 attrs, prot, page_size, fsr);
6964 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
6965 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
6966 attrs, prot, page_size, fsr);
6967 } else {
6968 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
6969 prot, page_size, fsr);
6973 /* Walk the page table and (if the mapping exists) add the page
6974 * to the TLB. Return false on success, or true on failure. Populate
6975 * fsr with ARM DFSR/IFSR fault register format value on failure.
6977 bool arm_tlb_fill(CPUState *cs, vaddr address,
6978 int access_type, int mmu_idx, uint32_t *fsr)
6980 ARMCPU *cpu = ARM_CPU(cs);
6981 CPUARMState *env = &cpu->env;
6982 hwaddr phys_addr;
6983 target_ulong page_size;
6984 int prot;
6985 int ret;
6986 MemTxAttrs attrs = {};
6988 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
6989 &attrs, &prot, &page_size, fsr);
6990 if (!ret) {
6991 /* Map a single [sub]page. */
6992 phys_addr &= TARGET_PAGE_MASK;
6993 address &= TARGET_PAGE_MASK;
6994 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
6995 prot, mmu_idx, page_size);
6996 return 0;
6999 return ret;
7002 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
7004 ARMCPU *cpu = ARM_CPU(cs);
7005 CPUARMState *env = &cpu->env;
7006 hwaddr phys_addr;
7007 target_ulong page_size;
7008 int prot;
7009 bool ret;
7010 uint32_t fsr;
7011 MemTxAttrs attrs = {};
7013 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
7014 &attrs, &prot, &page_size, &fsr);
7016 if (ret) {
7017 return -1;
7020 return phys_addr;
7023 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
7025 if ((env->uncached_cpsr & CPSR_M) == mode) {
7026 env->regs[13] = val;
7027 } else {
7028 env->banked_r13[bank_number(mode)] = val;
7032 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
7034 if ((env->uncached_cpsr & CPSR_M) == mode) {
7035 return env->regs[13];
7036 } else {
7037 return env->banked_r13[bank_number(mode)];
7041 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7043 ARMCPU *cpu = arm_env_get_cpu(env);
7045 switch (reg) {
7046 case 0: /* APSR */
7047 return xpsr_read(env) & 0xf8000000;
7048 case 1: /* IAPSR */
7049 return xpsr_read(env) & 0xf80001ff;
7050 case 2: /* EAPSR */
7051 return xpsr_read(env) & 0xff00fc00;
7052 case 3: /* xPSR */
7053 return xpsr_read(env) & 0xff00fdff;
7054 case 5: /* IPSR */
7055 return xpsr_read(env) & 0x000001ff;
7056 case 6: /* EPSR */
7057 return xpsr_read(env) & 0x0700fc00;
7058 case 7: /* IEPSR */
7059 return xpsr_read(env) & 0x0700edff;
7060 case 8: /* MSP */
7061 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7062 case 9: /* PSP */
7063 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
7064 case 16: /* PRIMASK */
7065 return (env->daif & PSTATE_I) != 0;
7066 case 17: /* BASEPRI */
7067 case 18: /* BASEPRI_MAX */
7068 return env->v7m.basepri;
7069 case 19: /* FAULTMASK */
7070 return (env->daif & PSTATE_F) != 0;
7071 case 20: /* CONTROL */
7072 return env->v7m.control;
7073 default:
7074 /* ??? For debugging only. */
7075 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
7076 return 0;
7080 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7082 ARMCPU *cpu = arm_env_get_cpu(env);
7084 switch (reg) {
7085 case 0: /* APSR */
7086 xpsr_write(env, val, 0xf8000000);
7087 break;
7088 case 1: /* IAPSR */
7089 xpsr_write(env, val, 0xf8000000);
7090 break;
7091 case 2: /* EAPSR */
7092 xpsr_write(env, val, 0xfe00fc00);
7093 break;
7094 case 3: /* xPSR */
7095 xpsr_write(env, val, 0xfe00fc00);
7096 break;
7097 case 5: /* IPSR */
7098 /* IPSR bits are readonly. */
7099 break;
7100 case 6: /* EPSR */
7101 xpsr_write(env, val, 0x0600fc00);
7102 break;
7103 case 7: /* IEPSR */
7104 xpsr_write(env, val, 0x0600fc00);
7105 break;
7106 case 8: /* MSP */
7107 if (env->v7m.current_sp)
7108 env->v7m.other_sp = val;
7109 else
7110 env->regs[13] = val;
7111 break;
7112 case 9: /* PSP */
7113 if (env->v7m.current_sp)
7114 env->regs[13] = val;
7115 else
7116 env->v7m.other_sp = val;
7117 break;
7118 case 16: /* PRIMASK */
7119 if (val & 1) {
7120 env->daif |= PSTATE_I;
7121 } else {
7122 env->daif &= ~PSTATE_I;
7124 break;
7125 case 17: /* BASEPRI */
7126 env->v7m.basepri = val & 0xff;
7127 break;
7128 case 18: /* BASEPRI_MAX */
7129 val &= 0xff;
7130 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
7131 env->v7m.basepri = val;
7132 break;
7133 case 19: /* FAULTMASK */
7134 if (val & 1) {
7135 env->daif |= PSTATE_F;
7136 } else {
7137 env->daif &= ~PSTATE_F;
7139 break;
7140 case 20: /* CONTROL */
7141 env->v7m.control = val & 3;
7142 switch_v7m_sp(env, (val & 2) != 0);
7143 break;
7144 default:
7145 /* ??? For debugging only. */
7146 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
7147 return;
7151 #endif
7153 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
7155 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7156 * Note that we do not implement the (architecturally mandated)
7157 * alignment fault for attempts to use this on Device memory
7158 * (which matches the usual QEMU behaviour of not implementing either
7159 * alignment faults or any memory attribute handling).
7162 ARMCPU *cpu = arm_env_get_cpu(env);
7163 uint64_t blocklen = 4 << cpu->dcz_blocksize;
7164 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
7166 #ifndef CONFIG_USER_ONLY
7168 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7169 * the block size so we might have to do more than one TLB lookup.
7170 * We know that in fact for any v8 CPU the page size is at least 4K
7171 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7172 * 1K as an artefact of legacy v5 subpage support being present in the
7173 * same QEMU executable.
7175 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
7176 void *hostaddr[maxidx];
7177 int try, i;
7178 unsigned mmu_idx = cpu_mmu_index(env, false);
7179 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
7181 for (try = 0; try < 2; try++) {
7183 for (i = 0; i < maxidx; i++) {
7184 hostaddr[i] = tlb_vaddr_to_host(env,
7185 vaddr + TARGET_PAGE_SIZE * i,
7186 1, mmu_idx);
7187 if (!hostaddr[i]) {
7188 break;
7191 if (i == maxidx) {
7192 /* If it's all in the TLB it's fair game for just writing to;
7193 * we know we don't need to update dirty status, etc.
7195 for (i = 0; i < maxidx - 1; i++) {
7196 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
7198 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
7199 return;
7201 /* OK, try a store and see if we can populate the tlb. This
7202 * might cause an exception if the memory isn't writable,
7203 * in which case we will longjmp out of here. We must for
7204 * this purpose use the actual register value passed to us
7205 * so that we get the fault address right.
7207 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
7208 /* Now we can populate the other TLB entries, if any */
7209 for (i = 0; i < maxidx; i++) {
7210 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
7211 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
7212 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
7217 /* Slow path (probably attempt to do this to an I/O device or
7218 * similar, or clearing of a block of code we have translations
7219 * cached for). Just do a series of byte writes as the architecture
7220 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7221 * memset(), unmap() sequence here because:
7222 * + we'd need to account for the blocksize being larger than a page
7223 * + the direct-RAM access case is almost always going to be dealt
7224 * with in the fastpath code above, so there's no speed benefit
7225 * + we would have to deal with the map returning NULL because the
7226 * bounce buffer was in use
7228 for (i = 0; i < blocklen; i++) {
7229 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
7232 #else
7233 memset(g2h(vaddr), 0, blocklen);
7234 #endif
7237 /* Note that signed overflow is undefined in C. The following routines are
7238 careful to use unsigned types where modulo arithmetic is required.
7239 Failure to do so _will_ break on newer gcc. */
7241 /* Signed saturating arithmetic. */
7243 /* Perform 16-bit signed saturating addition. */
7244 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
7246 uint16_t res;
7248 res = a + b;
7249 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
7250 if (a & 0x8000)
7251 res = 0x8000;
7252 else
7253 res = 0x7fff;
7255 return res;
7258 /* Perform 8-bit signed saturating addition. */
7259 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
7261 uint8_t res;
7263 res = a + b;
7264 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
7265 if (a & 0x80)
7266 res = 0x80;
7267 else
7268 res = 0x7f;
7270 return res;
7273 /* Perform 16-bit signed saturating subtraction. */
7274 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
7276 uint16_t res;
7278 res = a - b;
7279 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
7280 if (a & 0x8000)
7281 res = 0x8000;
7282 else
7283 res = 0x7fff;
7285 return res;
7288 /* Perform 8-bit signed saturating subtraction. */
7289 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
7291 uint8_t res;
7293 res = a - b;
7294 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
7295 if (a & 0x80)
7296 res = 0x80;
7297 else
7298 res = 0x7f;
7300 return res;
7303 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7304 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7305 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7306 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7307 #define PFX q
7309 #include "op_addsub.h"
7311 /* Unsigned saturating arithmetic. */
7312 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
7314 uint16_t res;
7315 res = a + b;
7316 if (res < a)
7317 res = 0xffff;
7318 return res;
7321 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
7323 if (a > b)
7324 return a - b;
7325 else
7326 return 0;
7329 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
7331 uint8_t res;
7332 res = a + b;
7333 if (res < a)
7334 res = 0xff;
7335 return res;
7338 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
7340 if (a > b)
7341 return a - b;
7342 else
7343 return 0;
7346 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7347 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7348 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7349 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7350 #define PFX uq
7352 #include "op_addsub.h"
7354 /* Signed modulo arithmetic. */
7355 #define SARITH16(a, b, n, op) do { \
7356 int32_t sum; \
7357 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7358 RESULT(sum, n, 16); \
7359 if (sum >= 0) \
7360 ge |= 3 << (n * 2); \
7361 } while(0)
7363 #define SARITH8(a, b, n, op) do { \
7364 int32_t sum; \
7365 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7366 RESULT(sum, n, 8); \
7367 if (sum >= 0) \
7368 ge |= 1 << n; \
7369 } while(0)
7372 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7373 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7374 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7375 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7376 #define PFX s
7377 #define ARITH_GE
7379 #include "op_addsub.h"
7381 /* Unsigned modulo arithmetic. */
7382 #define ADD16(a, b, n) do { \
7383 uint32_t sum; \
7384 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7385 RESULT(sum, n, 16); \
7386 if ((sum >> 16) == 1) \
7387 ge |= 3 << (n * 2); \
7388 } while(0)
7390 #define ADD8(a, b, n) do { \
7391 uint32_t sum; \
7392 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7393 RESULT(sum, n, 8); \
7394 if ((sum >> 8) == 1) \
7395 ge |= 1 << n; \
7396 } while(0)
7398 #define SUB16(a, b, n) do { \
7399 uint32_t sum; \
7400 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7401 RESULT(sum, n, 16); \
7402 if ((sum >> 16) == 0) \
7403 ge |= 3 << (n * 2); \
7404 } while(0)
7406 #define SUB8(a, b, n) do { \
7407 uint32_t sum; \
7408 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7409 RESULT(sum, n, 8); \
7410 if ((sum >> 8) == 0) \
7411 ge |= 1 << n; \
7412 } while(0)
7414 #define PFX u
7415 #define ARITH_GE
7417 #include "op_addsub.h"
7419 /* Halved signed arithmetic. */
7420 #define ADD16(a, b, n) \
7421 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7422 #define SUB16(a, b, n) \
7423 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7424 #define ADD8(a, b, n) \
7425 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7426 #define SUB8(a, b, n) \
7427 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7428 #define PFX sh
7430 #include "op_addsub.h"
7432 /* Halved unsigned arithmetic. */
7433 #define ADD16(a, b, n) \
7434 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7435 #define SUB16(a, b, n) \
7436 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7437 #define ADD8(a, b, n) \
7438 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7439 #define SUB8(a, b, n) \
7440 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7441 #define PFX uh
7443 #include "op_addsub.h"
7445 static inline uint8_t do_usad(uint8_t a, uint8_t b)
7447 if (a > b)
7448 return a - b;
7449 else
7450 return b - a;
7453 /* Unsigned sum of absolute byte differences. */
7454 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
7456 uint32_t sum;
7457 sum = do_usad(a, b);
7458 sum += do_usad(a >> 8, b >> 8);
7459 sum += do_usad(a >> 16, b >>16);
7460 sum += do_usad(a >> 24, b >> 24);
7461 return sum;
7464 /* For ARMv6 SEL instruction. */
7465 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
7467 uint32_t mask;
7469 mask = 0;
7470 if (flags & 1)
7471 mask |= 0xff;
7472 if (flags & 2)
7473 mask |= 0xff00;
7474 if (flags & 4)
7475 mask |= 0xff0000;
7476 if (flags & 8)
7477 mask |= 0xff000000;
7478 return (a & mask) | (b & ~mask);
7481 /* VFP support. We follow the convention used for VFP instructions:
7482 Single precision routines have a "s" suffix, double precision a
7483 "d" suffix. */
7485 /* Convert host exception flags to vfp form. */
7486 static inline int vfp_exceptbits_from_host(int host_bits)
7488 int target_bits = 0;
7490 if (host_bits & float_flag_invalid)
7491 target_bits |= 1;
7492 if (host_bits & float_flag_divbyzero)
7493 target_bits |= 2;
7494 if (host_bits & float_flag_overflow)
7495 target_bits |= 4;
7496 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
7497 target_bits |= 8;
7498 if (host_bits & float_flag_inexact)
7499 target_bits |= 0x10;
7500 if (host_bits & float_flag_input_denormal)
7501 target_bits |= 0x80;
7502 return target_bits;
7505 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
7507 int i;
7508 uint32_t fpscr;
7510 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
7511 | (env->vfp.vec_len << 16)
7512 | (env->vfp.vec_stride << 20);
7513 i = get_float_exception_flags(&env->vfp.fp_status);
7514 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
7515 fpscr |= vfp_exceptbits_from_host(i);
7516 return fpscr;
7519 uint32_t vfp_get_fpscr(CPUARMState *env)
7521 return HELPER(vfp_get_fpscr)(env);
7524 /* Convert vfp exception flags to target form. */
7525 static inline int vfp_exceptbits_to_host(int target_bits)
7527 int host_bits = 0;
7529 if (target_bits & 1)
7530 host_bits |= float_flag_invalid;
7531 if (target_bits & 2)
7532 host_bits |= float_flag_divbyzero;
7533 if (target_bits & 4)
7534 host_bits |= float_flag_overflow;
7535 if (target_bits & 8)
7536 host_bits |= float_flag_underflow;
7537 if (target_bits & 0x10)
7538 host_bits |= float_flag_inexact;
7539 if (target_bits & 0x80)
7540 host_bits |= float_flag_input_denormal;
7541 return host_bits;
7544 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
7546 int i;
7547 uint32_t changed;
7549 changed = env->vfp.xregs[ARM_VFP_FPSCR];
7550 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
7551 env->vfp.vec_len = (val >> 16) & 7;
7552 env->vfp.vec_stride = (val >> 20) & 3;
7554 changed ^= val;
7555 if (changed & (3 << 22)) {
7556 i = (val >> 22) & 3;
7557 switch (i) {
7558 case FPROUNDING_TIEEVEN:
7559 i = float_round_nearest_even;
7560 break;
7561 case FPROUNDING_POSINF:
7562 i = float_round_up;
7563 break;
7564 case FPROUNDING_NEGINF:
7565 i = float_round_down;
7566 break;
7567 case FPROUNDING_ZERO:
7568 i = float_round_to_zero;
7569 break;
7571 set_float_rounding_mode(i, &env->vfp.fp_status);
7573 if (changed & (1 << 24)) {
7574 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7575 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7577 if (changed & (1 << 25))
7578 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
7580 i = vfp_exceptbits_to_host(val);
7581 set_float_exception_flags(i, &env->vfp.fp_status);
7582 set_float_exception_flags(0, &env->vfp.standard_fp_status);
7585 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
7587 HELPER(vfp_set_fpscr)(env, val);
7590 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7592 #define VFP_BINOP(name) \
7593 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7595 float_status *fpst = fpstp; \
7596 return float32_ ## name(a, b, fpst); \
7598 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7600 float_status *fpst = fpstp; \
7601 return float64_ ## name(a, b, fpst); \
7603 VFP_BINOP(add)
7604 VFP_BINOP(sub)
7605 VFP_BINOP(mul)
7606 VFP_BINOP(div)
7607 VFP_BINOP(min)
7608 VFP_BINOP(max)
7609 VFP_BINOP(minnum)
7610 VFP_BINOP(maxnum)
7611 #undef VFP_BINOP
7613 float32 VFP_HELPER(neg, s)(float32 a)
7615 return float32_chs(a);
7618 float64 VFP_HELPER(neg, d)(float64 a)
7620 return float64_chs(a);
7623 float32 VFP_HELPER(abs, s)(float32 a)
7625 return float32_abs(a);
7628 float64 VFP_HELPER(abs, d)(float64 a)
7630 return float64_abs(a);
7633 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
7635 return float32_sqrt(a, &env->vfp.fp_status);
7638 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
7640 return float64_sqrt(a, &env->vfp.fp_status);
7643 /* XXX: check quiet/signaling case */
7644 #define DO_VFP_cmp(p, type) \
7645 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7647 uint32_t flags; \
7648 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7649 case 0: flags = 0x6; break; \
7650 case -1: flags = 0x8; break; \
7651 case 1: flags = 0x2; break; \
7652 default: case 2: flags = 0x3; break; \
7654 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7655 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7657 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7659 uint32_t flags; \
7660 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7661 case 0: flags = 0x6; break; \
7662 case -1: flags = 0x8; break; \
7663 case 1: flags = 0x2; break; \
7664 default: case 2: flags = 0x3; break; \
7666 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7667 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7669 DO_VFP_cmp(s, float32)
7670 DO_VFP_cmp(d, float64)
7671 #undef DO_VFP_cmp
7673 /* Integer to float and float to integer conversions */
7675 #define CONV_ITOF(name, fsz, sign) \
7676 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7678 float_status *fpst = fpstp; \
7679 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
7682 #define CONV_FTOI(name, fsz, sign, round) \
7683 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7685 float_status *fpst = fpstp; \
7686 if (float##fsz##_is_any_nan(x)) { \
7687 float_raise(float_flag_invalid, fpst); \
7688 return 0; \
7690 return float##fsz##_to_##sign##int32##round(x, fpst); \
7693 #define FLOAT_CONVS(name, p, fsz, sign) \
7694 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7695 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7696 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
7698 FLOAT_CONVS(si, s, 32, )
7699 FLOAT_CONVS(si, d, 64, )
7700 FLOAT_CONVS(ui, s, 32, u)
7701 FLOAT_CONVS(ui, d, 64, u)
7703 #undef CONV_ITOF
7704 #undef CONV_FTOI
7705 #undef FLOAT_CONVS
7707 /* floating point conversion */
7708 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
7710 float64 r = float32_to_float64(x, &env->vfp.fp_status);
7711 /* ARM requires that S<->D conversion of any kind of NaN generates
7712 * a quiet NaN by forcing the most significant frac bit to 1.
7714 return float64_maybe_silence_nan(r);
7717 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
7719 float32 r = float64_to_float32(x, &env->vfp.fp_status);
7720 /* ARM requires that S<->D conversion of any kind of NaN generates
7721 * a quiet NaN by forcing the most significant frac bit to 1.
7723 return float32_maybe_silence_nan(r);
7726 /* VFP3 fixed point conversion. */
7727 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7728 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7729 void *fpstp) \
7731 float_status *fpst = fpstp; \
7732 float##fsz tmp; \
7733 tmp = itype##_to_##float##fsz(x, fpst); \
7734 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7737 /* Notice that we want only input-denormal exception flags from the
7738 * scalbn operation: the other possible flags (overflow+inexact if
7739 * we overflow to infinity, output-denormal) aren't correct for the
7740 * complete scale-and-convert operation.
7742 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7743 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7744 uint32_t shift, \
7745 void *fpstp) \
7747 float_status *fpst = fpstp; \
7748 int old_exc_flags = get_float_exception_flags(fpst); \
7749 float##fsz tmp; \
7750 if (float##fsz##_is_any_nan(x)) { \
7751 float_raise(float_flag_invalid, fpst); \
7752 return 0; \
7754 tmp = float##fsz##_scalbn(x, shift, fpst); \
7755 old_exc_flags |= get_float_exception_flags(fpst) \
7756 & float_flag_input_denormal; \
7757 set_float_exception_flags(old_exc_flags, fpst); \
7758 return float##fsz##_to_##itype##round(tmp, fpst); \
7761 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7762 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7763 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7764 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7766 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7767 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7768 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7770 VFP_CONV_FIX(sh, d, 64, 64, int16)
7771 VFP_CONV_FIX(sl, d, 64, 64, int32)
7772 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
7773 VFP_CONV_FIX(uh, d, 64, 64, uint16)
7774 VFP_CONV_FIX(ul, d, 64, 64, uint32)
7775 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
7776 VFP_CONV_FIX(sh, s, 32, 32, int16)
7777 VFP_CONV_FIX(sl, s, 32, 32, int32)
7778 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
7779 VFP_CONV_FIX(uh, s, 32, 32, uint16)
7780 VFP_CONV_FIX(ul, s, 32, 32, uint32)
7781 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
7782 #undef VFP_CONV_FIX
7783 #undef VFP_CONV_FIX_FLOAT
7784 #undef VFP_CONV_FLOAT_FIX_ROUND
7786 /* Set the current fp rounding mode and return the old one.
7787 * The argument is a softfloat float_round_ value.
7789 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
7791 float_status *fp_status = &env->vfp.fp_status;
7793 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7794 set_float_rounding_mode(rmode, fp_status);
7796 return prev_rmode;
7799 /* Set the current fp rounding mode in the standard fp status and return
7800 * the old one. This is for NEON instructions that need to change the
7801 * rounding mode but wish to use the standard FPSCR values for everything
7802 * else. Always set the rounding mode back to the correct value after
7803 * modifying it.
7804 * The argument is a softfloat float_round_ value.
7806 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
7808 float_status *fp_status = &env->vfp.standard_fp_status;
7810 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7811 set_float_rounding_mode(rmode, fp_status);
7813 return prev_rmode;
7816 /* Half precision conversions. */
7817 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
7819 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7820 float32 r = float16_to_float32(make_float16(a), ieee, s);
7821 if (ieee) {
7822 return float32_maybe_silence_nan(r);
7824 return r;
7827 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
7829 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7830 float16 r = float32_to_float16(a, ieee, s);
7831 if (ieee) {
7832 r = float16_maybe_silence_nan(r);
7834 return float16_val(r);
7837 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7839 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
7842 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7844 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
7847 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7849 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
7852 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7854 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
7857 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
7859 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7860 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
7861 if (ieee) {
7862 return float64_maybe_silence_nan(r);
7864 return r;
7867 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
7869 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7870 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
7871 if (ieee) {
7872 r = float16_maybe_silence_nan(r);
7874 return float16_val(r);
7877 #define float32_two make_float32(0x40000000)
7878 #define float32_three make_float32(0x40400000)
7879 #define float32_one_point_five make_float32(0x3fc00000)
7881 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
7883 float_status *s = &env->vfp.standard_fp_status;
7884 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7885 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7886 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7887 float_raise(float_flag_input_denormal, s);
7889 return float32_two;
7891 return float32_sub(float32_two, float32_mul(a, b, s), s);
7894 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
7896 float_status *s = &env->vfp.standard_fp_status;
7897 float32 product;
7898 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7899 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7900 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7901 float_raise(float_flag_input_denormal, s);
7903 return float32_one_point_five;
7905 product = float32_mul(a, b, s);
7906 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
7909 /* NEON helpers. */
7911 /* Constants 256 and 512 are used in some helpers; we avoid relying on
7912 * int->float conversions at run-time. */
7913 #define float64_256 make_float64(0x4070000000000000LL)
7914 #define float64_512 make_float64(0x4080000000000000LL)
7915 #define float32_maxnorm make_float32(0x7f7fffff)
7916 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7918 /* Reciprocal functions
7920 * The algorithm that must be used to calculate the estimate
7921 * is specified by the ARM ARM, see FPRecipEstimate()
7924 static float64 recip_estimate(float64 a, float_status *real_fp_status)
7926 /* These calculations mustn't set any fp exception flags,
7927 * so we use a local copy of the fp_status.
7929 float_status dummy_status = *real_fp_status;
7930 float_status *s = &dummy_status;
7931 /* q = (int)(a * 512.0) */
7932 float64 q = float64_mul(float64_512, a, s);
7933 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7935 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7936 q = int64_to_float64(q_int, s);
7937 q = float64_add(q, float64_half, s);
7938 q = float64_div(q, float64_512, s);
7939 q = float64_div(float64_one, q, s);
7941 /* s = (int)(256.0 * r + 0.5) */
7942 q = float64_mul(q, float64_256, s);
7943 q = float64_add(q, float64_half, s);
7944 q_int = float64_to_int64_round_to_zero(q, s);
7946 /* return (double)s / 256.0 */
7947 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7950 /* Common wrapper to call recip_estimate */
7951 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
7953 uint64_t val64 = float64_val(num);
7954 uint64_t frac = extract64(val64, 0, 52);
7955 int64_t exp = extract64(val64, 52, 11);
7956 uint64_t sbit;
7957 float64 scaled, estimate;
7959 /* Generate the scaled number for the estimate function */
7960 if (exp == 0) {
7961 if (extract64(frac, 51, 1) == 0) {
7962 exp = -1;
7963 frac = extract64(frac, 0, 50) << 2;
7964 } else {
7965 frac = extract64(frac, 0, 51) << 1;
7969 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7970 scaled = make_float64((0x3feULL << 52)
7971 | extract64(frac, 44, 8) << 44);
7973 estimate = recip_estimate(scaled, fpst);
7975 /* Build new result */
7976 val64 = float64_val(estimate);
7977 sbit = 0x8000000000000000ULL & val64;
7978 exp = off - exp;
7979 frac = extract64(val64, 0, 52);
7981 if (exp == 0) {
7982 frac = 1ULL << 51 | extract64(frac, 1, 51);
7983 } else if (exp == -1) {
7984 frac = 1ULL << 50 | extract64(frac, 2, 50);
7985 exp = 0;
7988 return make_float64(sbit | (exp << 52) | frac);
7991 static bool round_to_inf(float_status *fpst, bool sign_bit)
7993 switch (fpst->float_rounding_mode) {
7994 case float_round_nearest_even: /* Round to Nearest */
7995 return true;
7996 case float_round_up: /* Round to +Inf */
7997 return !sign_bit;
7998 case float_round_down: /* Round to -Inf */
7999 return sign_bit;
8000 case float_round_to_zero: /* Round to Zero */
8001 return false;
8004 g_assert_not_reached();
8007 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8009 float_status *fpst = fpstp;
8010 float32 f32 = float32_squash_input_denormal(input, fpst);
8011 uint32_t f32_val = float32_val(f32);
8012 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8013 int32_t f32_exp = extract32(f32_val, 23, 8);
8014 uint32_t f32_frac = extract32(f32_val, 0, 23);
8015 float64 f64, r64;
8016 uint64_t r64_val;
8017 int64_t r64_exp;
8018 uint64_t r64_frac;
8020 if (float32_is_any_nan(f32)) {
8021 float32 nan = f32;
8022 if (float32_is_signaling_nan(f32)) {
8023 float_raise(float_flag_invalid, fpst);
8024 nan = float32_maybe_silence_nan(f32);
8026 if (fpst->default_nan_mode) {
8027 nan = float32_default_nan;
8029 return nan;
8030 } else if (float32_is_infinity(f32)) {
8031 return float32_set_sign(float32_zero, float32_is_neg(f32));
8032 } else if (float32_is_zero(f32)) {
8033 float_raise(float_flag_divbyzero, fpst);
8034 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8035 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
8036 /* Abs(value) < 2.0^-128 */
8037 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8038 if (round_to_inf(fpst, f32_sbit)) {
8039 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8040 } else {
8041 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
8043 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
8044 float_raise(float_flag_underflow, fpst);
8045 return float32_set_sign(float32_zero, float32_is_neg(f32));
8049 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8050 r64 = call_recip_estimate(f64, 253, fpst);
8051 r64_val = float64_val(r64);
8052 r64_exp = extract64(r64_val, 52, 11);
8053 r64_frac = extract64(r64_val, 0, 52);
8055 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8056 return make_float32(f32_sbit |
8057 (r64_exp & 0xff) << 23 |
8058 extract64(r64_frac, 29, 24));
8061 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8063 float_status *fpst = fpstp;
8064 float64 f64 = float64_squash_input_denormal(input, fpst);
8065 uint64_t f64_val = float64_val(f64);
8066 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
8067 int64_t f64_exp = extract64(f64_val, 52, 11);
8068 float64 r64;
8069 uint64_t r64_val;
8070 int64_t r64_exp;
8071 uint64_t r64_frac;
8073 /* Deal with any special cases */
8074 if (float64_is_any_nan(f64)) {
8075 float64 nan = f64;
8076 if (float64_is_signaling_nan(f64)) {
8077 float_raise(float_flag_invalid, fpst);
8078 nan = float64_maybe_silence_nan(f64);
8080 if (fpst->default_nan_mode) {
8081 nan = float64_default_nan;
8083 return nan;
8084 } else if (float64_is_infinity(f64)) {
8085 return float64_set_sign(float64_zero, float64_is_neg(f64));
8086 } else if (float64_is_zero(f64)) {
8087 float_raise(float_flag_divbyzero, fpst);
8088 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8089 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
8090 /* Abs(value) < 2.0^-1024 */
8091 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8092 if (round_to_inf(fpst, f64_sbit)) {
8093 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8094 } else {
8095 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
8097 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
8098 float_raise(float_flag_underflow, fpst);
8099 return float64_set_sign(float64_zero, float64_is_neg(f64));
8102 r64 = call_recip_estimate(f64, 2045, fpst);
8103 r64_val = float64_val(r64);
8104 r64_exp = extract64(r64_val, 52, 11);
8105 r64_frac = extract64(r64_val, 0, 52);
8107 /* result = sign : result_exp<10:0> : fraction<51:0> */
8108 return make_float64(f64_sbit |
8109 ((r64_exp & 0x7ff) << 52) |
8110 r64_frac);
8113 /* The algorithm that must be used to calculate the estimate
8114 * is specified by the ARM ARM.
8116 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
8118 /* These calculations mustn't set any fp exception flags,
8119 * so we use a local copy of the fp_status.
8121 float_status dummy_status = *real_fp_status;
8122 float_status *s = &dummy_status;
8123 float64 q;
8124 int64_t q_int;
8126 if (float64_lt(a, float64_half, s)) {
8127 /* range 0.25 <= a < 0.5 */
8129 /* a in units of 1/512 rounded down */
8130 /* q0 = (int)(a * 512.0); */
8131 q = float64_mul(float64_512, a, s);
8132 q_int = float64_to_int64_round_to_zero(q, s);
8134 /* reciprocal root r */
8135 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8136 q = int64_to_float64(q_int, s);
8137 q = float64_add(q, float64_half, s);
8138 q = float64_div(q, float64_512, s);
8139 q = float64_sqrt(q, s);
8140 q = float64_div(float64_one, q, s);
8141 } else {
8142 /* range 0.5 <= a < 1.0 */
8144 /* a in units of 1/256 rounded down */
8145 /* q1 = (int)(a * 256.0); */
8146 q = float64_mul(float64_256, a, s);
8147 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8149 /* reciprocal root r */
8150 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8151 q = int64_to_float64(q_int, s);
8152 q = float64_add(q, float64_half, s);
8153 q = float64_div(q, float64_256, s);
8154 q = float64_sqrt(q, s);
8155 q = float64_div(float64_one, q, s);
8157 /* r in units of 1/256 rounded to nearest */
8158 /* s = (int)(256.0 * r + 0.5); */
8160 q = float64_mul(q, float64_256,s );
8161 q = float64_add(q, float64_half, s);
8162 q_int = float64_to_int64_round_to_zero(q, s);
8164 /* return (double)s / 256.0;*/
8165 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8168 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
8170 float_status *s = fpstp;
8171 float32 f32 = float32_squash_input_denormal(input, s);
8172 uint32_t val = float32_val(f32);
8173 uint32_t f32_sbit = 0x80000000 & val;
8174 int32_t f32_exp = extract32(val, 23, 8);
8175 uint32_t f32_frac = extract32(val, 0, 23);
8176 uint64_t f64_frac;
8177 uint64_t val64;
8178 int result_exp;
8179 float64 f64;
8181 if (float32_is_any_nan(f32)) {
8182 float32 nan = f32;
8183 if (float32_is_signaling_nan(f32)) {
8184 float_raise(float_flag_invalid, s);
8185 nan = float32_maybe_silence_nan(f32);
8187 if (s->default_nan_mode) {
8188 nan = float32_default_nan;
8190 return nan;
8191 } else if (float32_is_zero(f32)) {
8192 float_raise(float_flag_divbyzero, s);
8193 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8194 } else if (float32_is_neg(f32)) {
8195 float_raise(float_flag_invalid, s);
8196 return float32_default_nan;
8197 } else if (float32_is_infinity(f32)) {
8198 return float32_zero;
8201 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8202 * preserving the parity of the exponent. */
8204 f64_frac = ((uint64_t) f32_frac) << 29;
8205 if (f32_exp == 0) {
8206 while (extract64(f64_frac, 51, 1) == 0) {
8207 f64_frac = f64_frac << 1;
8208 f32_exp = f32_exp-1;
8210 f64_frac = extract64(f64_frac, 0, 51) << 1;
8213 if (extract64(f32_exp, 0, 1) == 0) {
8214 f64 = make_float64(((uint64_t) f32_sbit) << 32
8215 | (0x3feULL << 52)
8216 | f64_frac);
8217 } else {
8218 f64 = make_float64(((uint64_t) f32_sbit) << 32
8219 | (0x3fdULL << 52)
8220 | f64_frac);
8223 result_exp = (380 - f32_exp) / 2;
8225 f64 = recip_sqrt_estimate(f64, s);
8227 val64 = float64_val(f64);
8229 val = ((result_exp & 0xff) << 23)
8230 | ((val64 >> 29) & 0x7fffff);
8231 return make_float32(val);
8234 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
8236 float_status *s = fpstp;
8237 float64 f64 = float64_squash_input_denormal(input, s);
8238 uint64_t val = float64_val(f64);
8239 uint64_t f64_sbit = 0x8000000000000000ULL & val;
8240 int64_t f64_exp = extract64(val, 52, 11);
8241 uint64_t f64_frac = extract64(val, 0, 52);
8242 int64_t result_exp;
8243 uint64_t result_frac;
8245 if (float64_is_any_nan(f64)) {
8246 float64 nan = f64;
8247 if (float64_is_signaling_nan(f64)) {
8248 float_raise(float_flag_invalid, s);
8249 nan = float64_maybe_silence_nan(f64);
8251 if (s->default_nan_mode) {
8252 nan = float64_default_nan;
8254 return nan;
8255 } else if (float64_is_zero(f64)) {
8256 float_raise(float_flag_divbyzero, s);
8257 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8258 } else if (float64_is_neg(f64)) {
8259 float_raise(float_flag_invalid, s);
8260 return float64_default_nan;
8261 } else if (float64_is_infinity(f64)) {
8262 return float64_zero;
8265 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8266 * preserving the parity of the exponent. */
8268 if (f64_exp == 0) {
8269 while (extract64(f64_frac, 51, 1) == 0) {
8270 f64_frac = f64_frac << 1;
8271 f64_exp = f64_exp - 1;
8273 f64_frac = extract64(f64_frac, 0, 51) << 1;
8276 if (extract64(f64_exp, 0, 1) == 0) {
8277 f64 = make_float64(f64_sbit
8278 | (0x3feULL << 52)
8279 | f64_frac);
8280 } else {
8281 f64 = make_float64(f64_sbit
8282 | (0x3fdULL << 52)
8283 | f64_frac);
8286 result_exp = (3068 - f64_exp) / 2;
8288 f64 = recip_sqrt_estimate(f64, s);
8290 result_frac = extract64(float64_val(f64), 0, 52);
8292 return make_float64(f64_sbit |
8293 ((result_exp & 0x7ff) << 52) |
8294 result_frac);
8297 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
8299 float_status *s = fpstp;
8300 float64 f64;
8302 if ((a & 0x80000000) == 0) {
8303 return 0xffffffff;
8306 f64 = make_float64((0x3feULL << 52)
8307 | ((int64_t)(a & 0x7fffffff) << 21));
8309 f64 = recip_estimate(f64, s);
8311 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8314 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
8316 float_status *fpst = fpstp;
8317 float64 f64;
8319 if ((a & 0xc0000000) == 0) {
8320 return 0xffffffff;
8323 if (a & 0x80000000) {
8324 f64 = make_float64((0x3feULL << 52)
8325 | ((uint64_t)(a & 0x7fffffff) << 21));
8326 } else { /* bits 31-30 == '01' */
8327 f64 = make_float64((0x3fdULL << 52)
8328 | ((uint64_t)(a & 0x3fffffff) << 22));
8331 f64 = recip_sqrt_estimate(f64, fpst);
8333 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8336 /* VFPv4 fused multiply-accumulate */
8337 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
8339 float_status *fpst = fpstp;
8340 return float32_muladd(a, b, c, 0, fpst);
8343 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
8345 float_status *fpst = fpstp;
8346 return float64_muladd(a, b, c, 0, fpst);
8349 /* ARMv8 round to integral */
8350 float32 HELPER(rints_exact)(float32 x, void *fp_status)
8352 return float32_round_to_int(x, fp_status);
8355 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
8357 return float64_round_to_int(x, fp_status);
8360 float32 HELPER(rints)(float32 x, void *fp_status)
8362 int old_flags = get_float_exception_flags(fp_status), new_flags;
8363 float32 ret;
8365 ret = float32_round_to_int(x, fp_status);
8367 /* Suppress any inexact exceptions the conversion produced */
8368 if (!(old_flags & float_flag_inexact)) {
8369 new_flags = get_float_exception_flags(fp_status);
8370 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8373 return ret;
8376 float64 HELPER(rintd)(float64 x, void *fp_status)
8378 int old_flags = get_float_exception_flags(fp_status), new_flags;
8379 float64 ret;
8381 ret = float64_round_to_int(x, fp_status);
8383 new_flags = get_float_exception_flags(fp_status);
8385 /* Suppress any inexact exceptions the conversion produced */
8386 if (!(old_flags & float_flag_inexact)) {
8387 new_flags = get_float_exception_flags(fp_status);
8388 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8391 return ret;
8394 /* Convert ARM rounding mode to softfloat */
8395 int arm_rmode_to_sf(int rmode)
8397 switch (rmode) {
8398 case FPROUNDING_TIEAWAY:
8399 rmode = float_round_ties_away;
8400 break;
8401 case FPROUNDING_ODD:
8402 /* FIXME: add support for TIEAWAY and ODD */
8403 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
8404 rmode);
8405 case FPROUNDING_TIEEVEN:
8406 default:
8407 rmode = float_round_nearest_even;
8408 break;
8409 case FPROUNDING_POSINF:
8410 rmode = float_round_up;
8411 break;
8412 case FPROUNDING_NEGINF:
8413 rmode = float_round_down;
8414 break;
8415 case FPROUNDING_ZERO:
8416 rmode = float_round_to_zero;
8417 break;
8419 return rmode;
8422 /* CRC helpers.
8423 * The upper bytes of val (above the number specified by 'bytes') must have
8424 * been zeroed out by the caller.
8426 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
8428 uint8_t buf[4];
8430 stl_le_p(buf, val);
8432 /* zlib crc32 converts the accumulator and output to one's complement. */
8433 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
8436 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
8438 uint8_t buf[4];
8440 stl_le_p(buf, val);
8442 /* Linux crc32c converts the output to one's complement. */
8443 return crc32c(acc, buf, bytes) ^ 0xffffffff;