s390x: bump ADAPTER_ROUTES_MAX_GSI
[qemu/ar7.git] / block / qed.c
blob0b62c7799e2a8ddbd5d6f19073eae7c327caaec4
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "migration/migration.h"
23 #include "sysemu/block-backend.h"
25 static const AIOCBInfo qed_aiocb_info = {
26 .aiocb_size = sizeof(QEDAIOCB),
29 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
30 const char *filename)
32 const QEDHeader *header = (const QEDHeader *)buf;
34 if (buf_size < sizeof(*header)) {
35 return 0;
37 if (le32_to_cpu(header->magic) != QED_MAGIC) {
38 return 0;
40 return 100;
43 /**
44 * Check whether an image format is raw
46 * @fmt: Backing file format, may be NULL
48 static bool qed_fmt_is_raw(const char *fmt)
50 return fmt && strcmp(fmt, "raw") == 0;
53 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
55 cpu->magic = le32_to_cpu(le->magic);
56 cpu->cluster_size = le32_to_cpu(le->cluster_size);
57 cpu->table_size = le32_to_cpu(le->table_size);
58 cpu->header_size = le32_to_cpu(le->header_size);
59 cpu->features = le64_to_cpu(le->features);
60 cpu->compat_features = le64_to_cpu(le->compat_features);
61 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
62 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
63 cpu->image_size = le64_to_cpu(le->image_size);
64 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
65 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
68 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
70 le->magic = cpu_to_le32(cpu->magic);
71 le->cluster_size = cpu_to_le32(cpu->cluster_size);
72 le->table_size = cpu_to_le32(cpu->table_size);
73 le->header_size = cpu_to_le32(cpu->header_size);
74 le->features = cpu_to_le64(cpu->features);
75 le->compat_features = cpu_to_le64(cpu->compat_features);
76 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
77 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
78 le->image_size = cpu_to_le64(cpu->image_size);
79 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
80 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
83 int qed_write_header_sync(BDRVQEDState *s)
85 QEDHeader le;
86 int ret;
88 qed_header_cpu_to_le(&s->header, &le);
89 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
90 if (ret != sizeof(le)) {
91 return ret;
93 return 0;
96 typedef struct {
97 GenericCB gencb;
98 BDRVQEDState *s;
99 struct iovec iov;
100 QEMUIOVector qiov;
101 int nsectors;
102 uint8_t *buf;
103 } QEDWriteHeaderCB;
105 static void qed_write_header_cb(void *opaque, int ret)
107 QEDWriteHeaderCB *write_header_cb = opaque;
109 qemu_vfree(write_header_cb->buf);
110 gencb_complete(write_header_cb, ret);
113 static void qed_write_header_read_cb(void *opaque, int ret)
115 QEDWriteHeaderCB *write_header_cb = opaque;
116 BDRVQEDState *s = write_header_cb->s;
118 if (ret) {
119 qed_write_header_cb(write_header_cb, ret);
120 return;
123 /* Update header */
124 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
126 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
127 write_header_cb->nsectors, qed_write_header_cb,
128 write_header_cb);
132 * Update header in-place (does not rewrite backing filename or other strings)
134 * This function only updates known header fields in-place and does not affect
135 * extra data after the QED header.
137 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
138 void *opaque)
140 /* We must write full sectors for O_DIRECT but cannot necessarily generate
141 * the data following the header if an unrecognized compat feature is
142 * active. Therefore, first read the sectors containing the header, update
143 * them, and write back.
146 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
147 size_t len = nsectors * BDRV_SECTOR_SIZE;
148 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
149 cb, opaque);
151 write_header_cb->s = s;
152 write_header_cb->nsectors = nsectors;
153 write_header_cb->buf = qemu_blockalign(s->bs, len);
154 write_header_cb->iov.iov_base = write_header_cb->buf;
155 write_header_cb->iov.iov_len = len;
156 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
158 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
159 qed_write_header_read_cb, write_header_cb);
162 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
164 uint64_t table_entries;
165 uint64_t l2_size;
167 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
168 l2_size = table_entries * cluster_size;
170 return l2_size * table_entries;
173 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
175 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
176 cluster_size > QED_MAX_CLUSTER_SIZE) {
177 return false;
179 if (cluster_size & (cluster_size - 1)) {
180 return false; /* not power of 2 */
182 return true;
185 static bool qed_is_table_size_valid(uint32_t table_size)
187 if (table_size < QED_MIN_TABLE_SIZE ||
188 table_size > QED_MAX_TABLE_SIZE) {
189 return false;
191 if (table_size & (table_size - 1)) {
192 return false; /* not power of 2 */
194 return true;
197 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
198 uint32_t table_size)
200 if (image_size % BDRV_SECTOR_SIZE != 0) {
201 return false; /* not multiple of sector size */
203 if (image_size > qed_max_image_size(cluster_size, table_size)) {
204 return false; /* image is too large */
206 return true;
210 * Read a string of known length from the image file
212 * @file: Image file
213 * @offset: File offset to start of string, in bytes
214 * @n: String length in bytes
215 * @buf: Destination buffer
216 * @buflen: Destination buffer length in bytes
217 * @ret: 0 on success, -errno on failure
219 * The string is NUL-terminated.
221 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
222 char *buf, size_t buflen)
224 int ret;
225 if (n >= buflen) {
226 return -EINVAL;
228 ret = bdrv_pread(file, offset, buf, n);
229 if (ret < 0) {
230 return ret;
232 buf[n] = '\0';
233 return 0;
237 * Allocate new clusters
239 * @s: QED state
240 * @n: Number of contiguous clusters to allocate
241 * @ret: Offset of first allocated cluster
243 * This function only produces the offset where the new clusters should be
244 * written. It updates BDRVQEDState but does not make any changes to the image
245 * file.
247 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
249 uint64_t offset = s->file_size;
250 s->file_size += n * s->header.cluster_size;
251 return offset;
254 QEDTable *qed_alloc_table(BDRVQEDState *s)
256 /* Honor O_DIRECT memory alignment requirements */
257 return qemu_blockalign(s->bs,
258 s->header.cluster_size * s->header.table_size);
262 * Allocate a new zeroed L2 table
264 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
266 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
268 l2_table->table = qed_alloc_table(s);
269 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
271 memset(l2_table->table->offsets, 0,
272 s->header.cluster_size * s->header.table_size);
273 return l2_table;
276 static void qed_aio_next_io(QEDAIOCB *acb, int ret);
278 static void qed_aio_start_io(QEDAIOCB *acb)
280 qed_aio_next_io(acb, 0);
283 static void qed_aio_next_io_cb(void *opaque, int ret)
285 QEDAIOCB *acb = opaque;
287 qed_aio_next_io(acb, ret);
290 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
292 assert(!s->allocating_write_reqs_plugged);
294 s->allocating_write_reqs_plugged = true;
297 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
299 QEDAIOCB *acb;
301 assert(s->allocating_write_reqs_plugged);
303 s->allocating_write_reqs_plugged = false;
305 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
306 if (acb) {
307 qed_aio_start_io(acb);
311 static void qed_finish_clear_need_check(void *opaque, int ret)
313 /* Do nothing */
316 static void qed_flush_after_clear_need_check(void *opaque, int ret)
318 BDRVQEDState *s = opaque;
320 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
322 /* No need to wait until flush completes */
323 qed_unplug_allocating_write_reqs(s);
326 static void qed_clear_need_check(void *opaque, int ret)
328 BDRVQEDState *s = opaque;
330 if (ret) {
331 qed_unplug_allocating_write_reqs(s);
332 return;
335 s->header.features &= ~QED_F_NEED_CHECK;
336 qed_write_header(s, qed_flush_after_clear_need_check, s);
339 static void qed_need_check_timer_cb(void *opaque)
341 BDRVQEDState *s = opaque;
343 /* The timer should only fire when allocating writes have drained */
344 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
346 trace_qed_need_check_timer_cb(s);
348 qed_acquire(s);
349 qed_plug_allocating_write_reqs(s);
351 /* Ensure writes are on disk before clearing flag */
352 bdrv_aio_flush(s->bs->file->bs, qed_clear_need_check, s);
353 qed_release(s);
356 void qed_acquire(BDRVQEDState *s)
358 aio_context_acquire(bdrv_get_aio_context(s->bs));
361 void qed_release(BDRVQEDState *s)
363 aio_context_release(bdrv_get_aio_context(s->bs));
366 static void qed_start_need_check_timer(BDRVQEDState *s)
368 trace_qed_start_need_check_timer(s);
370 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
371 * migration.
373 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
374 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
377 /* It's okay to call this multiple times or when no timer is started */
378 static void qed_cancel_need_check_timer(BDRVQEDState *s)
380 trace_qed_cancel_need_check_timer(s);
381 timer_del(s->need_check_timer);
384 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
386 BDRVQEDState *s = bs->opaque;
388 qed_cancel_need_check_timer(s);
389 timer_free(s->need_check_timer);
392 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
393 AioContext *new_context)
395 BDRVQEDState *s = bs->opaque;
397 s->need_check_timer = aio_timer_new(new_context,
398 QEMU_CLOCK_VIRTUAL, SCALE_NS,
399 qed_need_check_timer_cb, s);
400 if (s->header.features & QED_F_NEED_CHECK) {
401 qed_start_need_check_timer(s);
405 static void bdrv_qed_drain(BlockDriverState *bs)
407 BDRVQEDState *s = bs->opaque;
409 /* Fire the timer immediately in order to start doing I/O as soon as the
410 * header is flushed.
412 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
413 qed_cancel_need_check_timer(s);
414 qed_need_check_timer_cb(s);
418 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
419 Error **errp)
421 BDRVQEDState *s = bs->opaque;
422 QEDHeader le_header;
423 int64_t file_size;
424 int ret;
426 s->bs = bs;
427 QSIMPLEQ_INIT(&s->allocating_write_reqs);
429 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
430 if (ret < 0) {
431 return ret;
433 qed_header_le_to_cpu(&le_header, &s->header);
435 if (s->header.magic != QED_MAGIC) {
436 error_setg(errp, "Image not in QED format");
437 return -EINVAL;
439 if (s->header.features & ~QED_FEATURE_MASK) {
440 /* image uses unsupported feature bits */
441 error_setg(errp, "Unsupported QED features: %" PRIx64,
442 s->header.features & ~QED_FEATURE_MASK);
443 return -ENOTSUP;
445 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
446 return -EINVAL;
449 /* Round down file size to the last cluster */
450 file_size = bdrv_getlength(bs->file->bs);
451 if (file_size < 0) {
452 return file_size;
454 s->file_size = qed_start_of_cluster(s, file_size);
456 if (!qed_is_table_size_valid(s->header.table_size)) {
457 return -EINVAL;
459 if (!qed_is_image_size_valid(s->header.image_size,
460 s->header.cluster_size,
461 s->header.table_size)) {
462 return -EINVAL;
464 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
465 return -EINVAL;
468 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
469 sizeof(uint64_t);
470 s->l2_shift = ctz32(s->header.cluster_size);
471 s->l2_mask = s->table_nelems - 1;
472 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
474 /* Header size calculation must not overflow uint32_t */
475 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
476 return -EINVAL;
479 if ((s->header.features & QED_F_BACKING_FILE)) {
480 if ((uint64_t)s->header.backing_filename_offset +
481 s->header.backing_filename_size >
482 s->header.cluster_size * s->header.header_size) {
483 return -EINVAL;
486 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
487 s->header.backing_filename_size, bs->backing_file,
488 sizeof(bs->backing_file));
489 if (ret < 0) {
490 return ret;
493 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
494 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
498 /* Reset unknown autoclear feature bits. This is a backwards
499 * compatibility mechanism that allows images to be opened by older
500 * programs, which "knock out" unknown feature bits. When an image is
501 * opened by a newer program again it can detect that the autoclear
502 * feature is no longer valid.
504 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
505 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
506 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
508 ret = qed_write_header_sync(s);
509 if (ret) {
510 return ret;
513 /* From here on only known autoclear feature bits are valid */
514 bdrv_flush(bs->file->bs);
517 s->l1_table = qed_alloc_table(s);
518 qed_init_l2_cache(&s->l2_cache);
520 ret = qed_read_l1_table_sync(s);
521 if (ret) {
522 goto out;
525 /* If image was not closed cleanly, check consistency */
526 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
527 /* Read-only images cannot be fixed. There is no risk of corruption
528 * since write operations are not possible. Therefore, allow
529 * potentially inconsistent images to be opened read-only. This can
530 * aid data recovery from an otherwise inconsistent image.
532 if (!bdrv_is_read_only(bs->file->bs) &&
533 !(flags & BDRV_O_INACTIVE)) {
534 BdrvCheckResult result = {0};
536 ret = qed_check(s, &result, true);
537 if (ret) {
538 goto out;
543 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
545 out:
546 if (ret) {
547 qed_free_l2_cache(&s->l2_cache);
548 qemu_vfree(s->l1_table);
550 return ret;
553 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
555 BDRVQEDState *s = bs->opaque;
557 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
560 /* We have nothing to do for QED reopen, stubs just return
561 * success */
562 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
563 BlockReopenQueue *queue, Error **errp)
565 return 0;
568 static void bdrv_qed_close(BlockDriverState *bs)
570 BDRVQEDState *s = bs->opaque;
572 bdrv_qed_detach_aio_context(bs);
574 /* Ensure writes reach stable storage */
575 bdrv_flush(bs->file->bs);
577 /* Clean shutdown, no check required on next open */
578 if (s->header.features & QED_F_NEED_CHECK) {
579 s->header.features &= ~QED_F_NEED_CHECK;
580 qed_write_header_sync(s);
583 qed_free_l2_cache(&s->l2_cache);
584 qemu_vfree(s->l1_table);
587 static int qed_create(const char *filename, uint32_t cluster_size,
588 uint64_t image_size, uint32_t table_size,
589 const char *backing_file, const char *backing_fmt,
590 QemuOpts *opts, Error **errp)
592 QEDHeader header = {
593 .magic = QED_MAGIC,
594 .cluster_size = cluster_size,
595 .table_size = table_size,
596 .header_size = 1,
597 .features = 0,
598 .compat_features = 0,
599 .l1_table_offset = cluster_size,
600 .image_size = image_size,
602 QEDHeader le_header;
603 uint8_t *l1_table = NULL;
604 size_t l1_size = header.cluster_size * header.table_size;
605 Error *local_err = NULL;
606 int ret = 0;
607 BlockBackend *blk;
609 ret = bdrv_create_file(filename, opts, &local_err);
610 if (ret < 0) {
611 error_propagate(errp, local_err);
612 return ret;
615 blk = blk_new_open(filename, NULL, NULL,
616 BDRV_O_RDWR | BDRV_O_PROTOCOL, &local_err);
617 if (blk == NULL) {
618 error_propagate(errp, local_err);
619 return -EIO;
622 blk_set_allow_write_beyond_eof(blk, true);
624 /* File must start empty and grow, check truncate is supported */
625 ret = blk_truncate(blk, 0);
626 if (ret < 0) {
627 goto out;
630 if (backing_file) {
631 header.features |= QED_F_BACKING_FILE;
632 header.backing_filename_offset = sizeof(le_header);
633 header.backing_filename_size = strlen(backing_file);
635 if (qed_fmt_is_raw(backing_fmt)) {
636 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
640 qed_header_cpu_to_le(&header, &le_header);
641 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
642 if (ret < 0) {
643 goto out;
645 ret = blk_pwrite(blk, sizeof(le_header), backing_file,
646 header.backing_filename_size, 0);
647 if (ret < 0) {
648 goto out;
651 l1_table = g_malloc0(l1_size);
652 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
653 if (ret < 0) {
654 goto out;
657 ret = 0; /* success */
658 out:
659 g_free(l1_table);
660 blk_unref(blk);
661 return ret;
664 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
666 uint64_t image_size = 0;
667 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
668 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
669 char *backing_file = NULL;
670 char *backing_fmt = NULL;
671 int ret;
673 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
674 BDRV_SECTOR_SIZE);
675 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
676 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
677 cluster_size = qemu_opt_get_size_del(opts,
678 BLOCK_OPT_CLUSTER_SIZE,
679 QED_DEFAULT_CLUSTER_SIZE);
680 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
681 QED_DEFAULT_TABLE_SIZE);
683 if (!qed_is_cluster_size_valid(cluster_size)) {
684 error_setg(errp, "QED cluster size must be within range [%u, %u] "
685 "and power of 2",
686 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
687 ret = -EINVAL;
688 goto finish;
690 if (!qed_is_table_size_valid(table_size)) {
691 error_setg(errp, "QED table size must be within range [%u, %u] "
692 "and power of 2",
693 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
694 ret = -EINVAL;
695 goto finish;
697 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
698 error_setg(errp, "QED image size must be a non-zero multiple of "
699 "cluster size and less than %" PRIu64 " bytes",
700 qed_max_image_size(cluster_size, table_size));
701 ret = -EINVAL;
702 goto finish;
705 ret = qed_create(filename, cluster_size, image_size, table_size,
706 backing_file, backing_fmt, opts, errp);
708 finish:
709 g_free(backing_file);
710 g_free(backing_fmt);
711 return ret;
714 typedef struct {
715 BlockDriverState *bs;
716 Coroutine *co;
717 uint64_t pos;
718 int64_t status;
719 int *pnum;
720 BlockDriverState **file;
721 } QEDIsAllocatedCB;
723 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
725 QEDIsAllocatedCB *cb = opaque;
726 BDRVQEDState *s = cb->bs->opaque;
727 *cb->pnum = len / BDRV_SECTOR_SIZE;
728 switch (ret) {
729 case QED_CLUSTER_FOUND:
730 offset |= qed_offset_into_cluster(s, cb->pos);
731 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
732 *cb->file = cb->bs->file->bs;
733 break;
734 case QED_CLUSTER_ZERO:
735 cb->status = BDRV_BLOCK_ZERO;
736 break;
737 case QED_CLUSTER_L2:
738 case QED_CLUSTER_L1:
739 cb->status = 0;
740 break;
741 default:
742 assert(ret < 0);
743 cb->status = ret;
744 break;
747 if (cb->co) {
748 aio_co_wake(cb->co);
752 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
753 int64_t sector_num,
754 int nb_sectors, int *pnum,
755 BlockDriverState **file)
757 BDRVQEDState *s = bs->opaque;
758 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
759 QEDIsAllocatedCB cb = {
760 .bs = bs,
761 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
762 .status = BDRV_BLOCK_OFFSET_MASK,
763 .pnum = pnum,
764 .file = file,
766 QEDRequest request = { .l2_table = NULL };
768 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
770 /* Now sleep if the callback wasn't invoked immediately */
771 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
772 cb.co = qemu_coroutine_self();
773 qemu_coroutine_yield();
776 qed_unref_l2_cache_entry(request.l2_table);
778 return cb.status;
781 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
783 return acb->common.bs->opaque;
787 * Read from the backing file or zero-fill if no backing file
789 * @s: QED state
790 * @pos: Byte position in device
791 * @qiov: Destination I/O vector
792 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
793 * @cb: Completion function
794 * @opaque: User data for completion function
796 * This function reads qiov->size bytes starting at pos from the backing file.
797 * If there is no backing file then zeroes are read.
799 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
800 QEMUIOVector *qiov,
801 QEMUIOVector **backing_qiov,
802 BlockCompletionFunc *cb, void *opaque)
804 uint64_t backing_length = 0;
805 size_t size;
807 /* If there is a backing file, get its length. Treat the absence of a
808 * backing file like a zero length backing file.
810 if (s->bs->backing) {
811 int64_t l = bdrv_getlength(s->bs->backing->bs);
812 if (l < 0) {
813 cb(opaque, l);
814 return;
816 backing_length = l;
819 /* Zero all sectors if reading beyond the end of the backing file */
820 if (pos >= backing_length ||
821 pos + qiov->size > backing_length) {
822 qemu_iovec_memset(qiov, 0, 0, qiov->size);
825 /* Complete now if there are no backing file sectors to read */
826 if (pos >= backing_length) {
827 cb(opaque, 0);
828 return;
831 /* If the read straddles the end of the backing file, shorten it */
832 size = MIN((uint64_t)backing_length - pos, qiov->size);
834 assert(*backing_qiov == NULL);
835 *backing_qiov = g_new(QEMUIOVector, 1);
836 qemu_iovec_init(*backing_qiov, qiov->niov);
837 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
839 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
840 bdrv_aio_readv(s->bs->backing, pos / BDRV_SECTOR_SIZE,
841 *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
844 typedef struct {
845 GenericCB gencb;
846 BDRVQEDState *s;
847 QEMUIOVector qiov;
848 QEMUIOVector *backing_qiov;
849 struct iovec iov;
850 uint64_t offset;
851 } CopyFromBackingFileCB;
853 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
855 CopyFromBackingFileCB *copy_cb = opaque;
856 qemu_vfree(copy_cb->iov.iov_base);
857 gencb_complete(&copy_cb->gencb, ret);
860 static void qed_copy_from_backing_file_write(void *opaque, int ret)
862 CopyFromBackingFileCB *copy_cb = opaque;
863 BDRVQEDState *s = copy_cb->s;
865 if (copy_cb->backing_qiov) {
866 qemu_iovec_destroy(copy_cb->backing_qiov);
867 g_free(copy_cb->backing_qiov);
868 copy_cb->backing_qiov = NULL;
871 if (ret) {
872 qed_copy_from_backing_file_cb(copy_cb, ret);
873 return;
876 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
877 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
878 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
879 qed_copy_from_backing_file_cb, copy_cb);
883 * Copy data from backing file into the image
885 * @s: QED state
886 * @pos: Byte position in device
887 * @len: Number of bytes
888 * @offset: Byte offset in image file
889 * @cb: Completion function
890 * @opaque: User data for completion function
892 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
893 uint64_t len, uint64_t offset,
894 BlockCompletionFunc *cb,
895 void *opaque)
897 CopyFromBackingFileCB *copy_cb;
899 /* Skip copy entirely if there is no work to do */
900 if (len == 0) {
901 cb(opaque, 0);
902 return;
905 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
906 copy_cb->s = s;
907 copy_cb->offset = offset;
908 copy_cb->backing_qiov = NULL;
909 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
910 copy_cb->iov.iov_len = len;
911 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
913 qed_read_backing_file(s, pos, &copy_cb->qiov, &copy_cb->backing_qiov,
914 qed_copy_from_backing_file_write, copy_cb);
918 * Link one or more contiguous clusters into a table
920 * @s: QED state
921 * @table: L2 table
922 * @index: First cluster index
923 * @n: Number of contiguous clusters
924 * @cluster: First cluster offset
926 * The cluster offset may be an allocated byte offset in the image file, the
927 * zero cluster marker, or the unallocated cluster marker.
929 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
930 unsigned int n, uint64_t cluster)
932 int i;
933 for (i = index; i < index + n; i++) {
934 table->offsets[i] = cluster;
935 if (!qed_offset_is_unalloc_cluster(cluster) &&
936 !qed_offset_is_zero_cluster(cluster)) {
937 cluster += s->header.cluster_size;
942 static void qed_aio_complete_bh(void *opaque)
944 QEDAIOCB *acb = opaque;
945 BDRVQEDState *s = acb_to_s(acb);
946 BlockCompletionFunc *cb = acb->common.cb;
947 void *user_opaque = acb->common.opaque;
948 int ret = acb->bh_ret;
950 qemu_aio_unref(acb);
952 /* Invoke callback */
953 qed_acquire(s);
954 cb(user_opaque, ret);
955 qed_release(s);
958 static void qed_aio_complete(QEDAIOCB *acb, int ret)
960 BDRVQEDState *s = acb_to_s(acb);
962 trace_qed_aio_complete(s, acb, ret);
964 /* Free resources */
965 qemu_iovec_destroy(&acb->cur_qiov);
966 qed_unref_l2_cache_entry(acb->request.l2_table);
968 /* Free the buffer we may have allocated for zero writes */
969 if (acb->flags & QED_AIOCB_ZERO) {
970 qemu_vfree(acb->qiov->iov[0].iov_base);
971 acb->qiov->iov[0].iov_base = NULL;
974 /* Arrange for a bh to invoke the completion function */
975 acb->bh_ret = ret;
976 aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
977 qed_aio_complete_bh, acb);
979 /* Start next allocating write request waiting behind this one. Note that
980 * requests enqueue themselves when they first hit an unallocated cluster
981 * but they wait until the entire request is finished before waking up the
982 * next request in the queue. This ensures that we don't cycle through
983 * requests multiple times but rather finish one at a time completely.
985 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
986 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
987 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
988 if (acb) {
989 qed_aio_start_io(acb);
990 } else if (s->header.features & QED_F_NEED_CHECK) {
991 qed_start_need_check_timer(s);
997 * Commit the current L2 table to the cache
999 static void qed_commit_l2_update(void *opaque, int ret)
1001 QEDAIOCB *acb = opaque;
1002 BDRVQEDState *s = acb_to_s(acb);
1003 CachedL2Table *l2_table = acb->request.l2_table;
1004 uint64_t l2_offset = l2_table->offset;
1006 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1008 /* This is guaranteed to succeed because we just committed the entry to the
1009 * cache.
1011 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1012 assert(acb->request.l2_table != NULL);
1014 qed_aio_next_io(acb, ret);
1018 * Update L1 table with new L2 table offset and write it out
1020 static void qed_aio_write_l1_update(void *opaque, int ret)
1022 QEDAIOCB *acb = opaque;
1023 BDRVQEDState *s = acb_to_s(acb);
1024 int index;
1026 if (ret) {
1027 qed_aio_complete(acb, ret);
1028 return;
1031 index = qed_l1_index(s, acb->cur_pos);
1032 s->l1_table->offsets[index] = acb->request.l2_table->offset;
1034 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1038 * Update L2 table with new cluster offsets and write them out
1040 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1042 BDRVQEDState *s = acb_to_s(acb);
1043 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1044 int index;
1046 if (ret) {
1047 goto err;
1050 if (need_alloc) {
1051 qed_unref_l2_cache_entry(acb->request.l2_table);
1052 acb->request.l2_table = qed_new_l2_table(s);
1055 index = qed_l2_index(s, acb->cur_pos);
1056 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1057 offset);
1059 if (need_alloc) {
1060 /* Write out the whole new L2 table */
1061 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1062 qed_aio_write_l1_update, acb);
1063 } else {
1064 /* Write out only the updated part of the L2 table */
1065 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1066 qed_aio_next_io_cb, acb);
1068 return;
1070 err:
1071 qed_aio_complete(acb, ret);
1074 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1076 QEDAIOCB *acb = opaque;
1077 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1081 * Flush new data clusters before updating the L2 table
1083 * This flush is necessary when a backing file is in use. A crash during an
1084 * allocating write could result in empty clusters in the image. If the write
1085 * only touched a subregion of the cluster, then backing image sectors have
1086 * been lost in the untouched region. The solution is to flush after writing a
1087 * new data cluster and before updating the L2 table.
1089 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1091 QEDAIOCB *acb = opaque;
1092 BDRVQEDState *s = acb_to_s(acb);
1094 if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) {
1095 qed_aio_complete(acb, -EIO);
1100 * Write data to the image file
1102 static void qed_aio_write_main(void *opaque, int ret)
1104 QEDAIOCB *acb = opaque;
1105 BDRVQEDState *s = acb_to_s(acb);
1106 uint64_t offset = acb->cur_cluster +
1107 qed_offset_into_cluster(s, acb->cur_pos);
1108 BlockCompletionFunc *next_fn;
1110 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1112 if (ret) {
1113 qed_aio_complete(acb, ret);
1114 return;
1117 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1118 next_fn = qed_aio_next_io_cb;
1119 } else {
1120 if (s->bs->backing) {
1121 next_fn = qed_aio_write_flush_before_l2_update;
1122 } else {
1123 next_fn = qed_aio_write_l2_update_cb;
1127 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1128 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1129 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1130 next_fn, acb);
1134 * Populate back untouched region of new data cluster
1136 static void qed_aio_write_postfill(void *opaque, int ret)
1138 QEDAIOCB *acb = opaque;
1139 BDRVQEDState *s = acb_to_s(acb);
1140 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1141 uint64_t len =
1142 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1143 uint64_t offset = acb->cur_cluster +
1144 qed_offset_into_cluster(s, acb->cur_pos) +
1145 acb->cur_qiov.size;
1147 if (ret) {
1148 qed_aio_complete(acb, ret);
1149 return;
1152 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1153 qed_copy_from_backing_file(s, start, len, offset,
1154 qed_aio_write_main, acb);
1158 * Populate front untouched region of new data cluster
1160 static void qed_aio_write_prefill(void *opaque, int ret)
1162 QEDAIOCB *acb = opaque;
1163 BDRVQEDState *s = acb_to_s(acb);
1164 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1165 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1167 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1168 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1169 qed_aio_write_postfill, acb);
1173 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1175 static bool qed_should_set_need_check(BDRVQEDState *s)
1177 /* The flush before L2 update path ensures consistency */
1178 if (s->bs->backing) {
1179 return false;
1182 return !(s->header.features & QED_F_NEED_CHECK);
1185 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1187 QEDAIOCB *acb = opaque;
1189 if (ret) {
1190 qed_aio_complete(acb, ret);
1191 return;
1194 qed_aio_write_l2_update(acb, 0, 1);
1198 * Write new data cluster
1200 * @acb: Write request
1201 * @len: Length in bytes
1203 * This path is taken when writing to previously unallocated clusters.
1205 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1207 BDRVQEDState *s = acb_to_s(acb);
1208 BlockCompletionFunc *cb;
1210 /* Cancel timer when the first allocating request comes in */
1211 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1212 qed_cancel_need_check_timer(s);
1215 /* Freeze this request if another allocating write is in progress */
1216 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1217 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1219 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1220 s->allocating_write_reqs_plugged) {
1221 return; /* wait for existing request to finish */
1224 acb->cur_nclusters = qed_bytes_to_clusters(s,
1225 qed_offset_into_cluster(s, acb->cur_pos) + len);
1226 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1228 if (acb->flags & QED_AIOCB_ZERO) {
1229 /* Skip ahead if the clusters are already zero */
1230 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1231 qed_aio_start_io(acb);
1232 return;
1235 cb = qed_aio_write_zero_cluster;
1236 } else {
1237 cb = qed_aio_write_prefill;
1238 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1241 if (qed_should_set_need_check(s)) {
1242 s->header.features |= QED_F_NEED_CHECK;
1243 qed_write_header(s, cb, acb);
1244 } else {
1245 cb(acb, 0);
1250 * Write data cluster in place
1252 * @acb: Write request
1253 * @offset: Cluster offset in bytes
1254 * @len: Length in bytes
1256 * This path is taken when writing to already allocated clusters.
1258 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1260 /* Allocate buffer for zero writes */
1261 if (acb->flags & QED_AIOCB_ZERO) {
1262 struct iovec *iov = acb->qiov->iov;
1264 if (!iov->iov_base) {
1265 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1266 if (iov->iov_base == NULL) {
1267 qed_aio_complete(acb, -ENOMEM);
1268 return;
1270 memset(iov->iov_base, 0, iov->iov_len);
1274 /* Calculate the I/O vector */
1275 acb->cur_cluster = offset;
1276 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1278 /* Do the actual write */
1279 qed_aio_write_main(acb, 0);
1283 * Write data cluster
1285 * @opaque: Write request
1286 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1287 * or -errno
1288 * @offset: Cluster offset in bytes
1289 * @len: Length in bytes
1291 * Callback from qed_find_cluster().
1293 static void qed_aio_write_data(void *opaque, int ret,
1294 uint64_t offset, size_t len)
1296 QEDAIOCB *acb = opaque;
1298 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1300 acb->find_cluster_ret = ret;
1302 switch (ret) {
1303 case QED_CLUSTER_FOUND:
1304 qed_aio_write_inplace(acb, offset, len);
1305 break;
1307 case QED_CLUSTER_L2:
1308 case QED_CLUSTER_L1:
1309 case QED_CLUSTER_ZERO:
1310 qed_aio_write_alloc(acb, len);
1311 break;
1313 default:
1314 qed_aio_complete(acb, ret);
1315 break;
1320 * Read data cluster
1322 * @opaque: Read request
1323 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1324 * or -errno
1325 * @offset: Cluster offset in bytes
1326 * @len: Length in bytes
1328 * Callback from qed_find_cluster().
1330 static void qed_aio_read_data(void *opaque, int ret,
1331 uint64_t offset, size_t len)
1333 QEDAIOCB *acb = opaque;
1334 BDRVQEDState *s = acb_to_s(acb);
1335 BlockDriverState *bs = acb->common.bs;
1337 /* Adjust offset into cluster */
1338 offset += qed_offset_into_cluster(s, acb->cur_pos);
1340 trace_qed_aio_read_data(s, acb, ret, offset, len);
1342 if (ret < 0) {
1343 goto err;
1346 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1348 /* Handle zero cluster and backing file reads */
1349 if (ret == QED_CLUSTER_ZERO) {
1350 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1351 qed_aio_start_io(acb);
1352 return;
1353 } else if (ret != QED_CLUSTER_FOUND) {
1354 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1355 &acb->backing_qiov, qed_aio_next_io_cb, acb);
1356 return;
1359 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1360 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1361 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1362 qed_aio_next_io_cb, acb);
1363 return;
1365 err:
1366 qed_aio_complete(acb, ret);
1370 * Begin next I/O or complete the request
1372 static void qed_aio_next_io(QEDAIOCB *acb, int ret)
1374 BDRVQEDState *s = acb_to_s(acb);
1375 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1376 qed_aio_write_data : qed_aio_read_data;
1378 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1380 if (acb->backing_qiov) {
1381 qemu_iovec_destroy(acb->backing_qiov);
1382 g_free(acb->backing_qiov);
1383 acb->backing_qiov = NULL;
1386 /* Handle I/O error */
1387 if (ret) {
1388 qed_aio_complete(acb, ret);
1389 return;
1392 acb->qiov_offset += acb->cur_qiov.size;
1393 acb->cur_pos += acb->cur_qiov.size;
1394 qemu_iovec_reset(&acb->cur_qiov);
1396 /* Complete request */
1397 if (acb->cur_pos >= acb->end_pos) {
1398 qed_aio_complete(acb, 0);
1399 return;
1402 /* Find next cluster and start I/O */
1403 qed_find_cluster(s, &acb->request,
1404 acb->cur_pos, acb->end_pos - acb->cur_pos,
1405 io_fn, acb);
1408 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1409 int64_t sector_num,
1410 QEMUIOVector *qiov, int nb_sectors,
1411 BlockCompletionFunc *cb,
1412 void *opaque, int flags)
1414 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1416 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1417 opaque, flags);
1419 acb->flags = flags;
1420 acb->qiov = qiov;
1421 acb->qiov_offset = 0;
1422 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1423 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1424 acb->backing_qiov = NULL;
1425 acb->request.l2_table = NULL;
1426 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1428 /* Start request */
1429 qed_aio_start_io(acb);
1430 return &acb->common;
1433 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1434 int64_t sector_num,
1435 QEMUIOVector *qiov, int nb_sectors,
1436 BlockCompletionFunc *cb,
1437 void *opaque)
1439 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1442 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1443 int64_t sector_num,
1444 QEMUIOVector *qiov, int nb_sectors,
1445 BlockCompletionFunc *cb,
1446 void *opaque)
1448 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1449 opaque, QED_AIOCB_WRITE);
1452 typedef struct {
1453 Coroutine *co;
1454 int ret;
1455 bool done;
1456 } QEDWriteZeroesCB;
1458 static void coroutine_fn qed_co_pwrite_zeroes_cb(void *opaque, int ret)
1460 QEDWriteZeroesCB *cb = opaque;
1462 cb->done = true;
1463 cb->ret = ret;
1464 if (cb->co) {
1465 aio_co_wake(cb->co);
1469 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1470 int64_t offset,
1471 int count,
1472 BdrvRequestFlags flags)
1474 BlockAIOCB *blockacb;
1475 BDRVQEDState *s = bs->opaque;
1476 QEDWriteZeroesCB cb = { .done = false };
1477 QEMUIOVector qiov;
1478 struct iovec iov;
1480 /* Fall back if the request is not aligned */
1481 if (qed_offset_into_cluster(s, offset) ||
1482 qed_offset_into_cluster(s, count)) {
1483 return -ENOTSUP;
1486 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1487 * then it will be allocated during request processing.
1489 iov.iov_base = NULL;
1490 iov.iov_len = count;
1492 qemu_iovec_init_external(&qiov, &iov, 1);
1493 blockacb = qed_aio_setup(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1494 count >> BDRV_SECTOR_BITS,
1495 qed_co_pwrite_zeroes_cb, &cb,
1496 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1497 if (!blockacb) {
1498 return -EIO;
1500 if (!cb.done) {
1501 cb.co = qemu_coroutine_self();
1502 qemu_coroutine_yield();
1504 assert(cb.done);
1505 return cb.ret;
1508 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1510 BDRVQEDState *s = bs->opaque;
1511 uint64_t old_image_size;
1512 int ret;
1514 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1515 s->header.table_size)) {
1516 return -EINVAL;
1519 /* Shrinking is currently not supported */
1520 if ((uint64_t)offset < s->header.image_size) {
1521 return -ENOTSUP;
1524 old_image_size = s->header.image_size;
1525 s->header.image_size = offset;
1526 ret = qed_write_header_sync(s);
1527 if (ret < 0) {
1528 s->header.image_size = old_image_size;
1530 return ret;
1533 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1535 BDRVQEDState *s = bs->opaque;
1536 return s->header.image_size;
1539 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1541 BDRVQEDState *s = bs->opaque;
1543 memset(bdi, 0, sizeof(*bdi));
1544 bdi->cluster_size = s->header.cluster_size;
1545 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1546 bdi->unallocated_blocks_are_zero = true;
1547 bdi->can_write_zeroes_with_unmap = true;
1548 return 0;
1551 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1552 const char *backing_file,
1553 const char *backing_fmt)
1555 BDRVQEDState *s = bs->opaque;
1556 QEDHeader new_header, le_header;
1557 void *buffer;
1558 size_t buffer_len, backing_file_len;
1559 int ret;
1561 /* Refuse to set backing filename if unknown compat feature bits are
1562 * active. If the image uses an unknown compat feature then we may not
1563 * know the layout of data following the header structure and cannot safely
1564 * add a new string.
1566 if (backing_file && (s->header.compat_features &
1567 ~QED_COMPAT_FEATURE_MASK)) {
1568 return -ENOTSUP;
1571 memcpy(&new_header, &s->header, sizeof(new_header));
1573 new_header.features &= ~(QED_F_BACKING_FILE |
1574 QED_F_BACKING_FORMAT_NO_PROBE);
1576 /* Adjust feature flags */
1577 if (backing_file) {
1578 new_header.features |= QED_F_BACKING_FILE;
1580 if (qed_fmt_is_raw(backing_fmt)) {
1581 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1585 /* Calculate new header size */
1586 backing_file_len = 0;
1588 if (backing_file) {
1589 backing_file_len = strlen(backing_file);
1592 buffer_len = sizeof(new_header);
1593 new_header.backing_filename_offset = buffer_len;
1594 new_header.backing_filename_size = backing_file_len;
1595 buffer_len += backing_file_len;
1597 /* Make sure we can rewrite header without failing */
1598 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1599 return -ENOSPC;
1602 /* Prepare new header */
1603 buffer = g_malloc(buffer_len);
1605 qed_header_cpu_to_le(&new_header, &le_header);
1606 memcpy(buffer, &le_header, sizeof(le_header));
1607 buffer_len = sizeof(le_header);
1609 if (backing_file) {
1610 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1611 buffer_len += backing_file_len;
1614 /* Write new header */
1615 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1616 g_free(buffer);
1617 if (ret == 0) {
1618 memcpy(&s->header, &new_header, sizeof(new_header));
1620 return ret;
1623 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1625 BDRVQEDState *s = bs->opaque;
1626 Error *local_err = NULL;
1627 int ret;
1629 bdrv_qed_close(bs);
1631 memset(s, 0, sizeof(BDRVQEDState));
1632 ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1633 if (local_err) {
1634 error_propagate(errp, local_err);
1635 error_prepend(errp, "Could not reopen qed layer: ");
1636 return;
1637 } else if (ret < 0) {
1638 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1639 return;
1643 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1644 BdrvCheckMode fix)
1646 BDRVQEDState *s = bs->opaque;
1648 return qed_check(s, result, !!fix);
1651 static QemuOptsList qed_create_opts = {
1652 .name = "qed-create-opts",
1653 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1654 .desc = {
1656 .name = BLOCK_OPT_SIZE,
1657 .type = QEMU_OPT_SIZE,
1658 .help = "Virtual disk size"
1661 .name = BLOCK_OPT_BACKING_FILE,
1662 .type = QEMU_OPT_STRING,
1663 .help = "File name of a base image"
1666 .name = BLOCK_OPT_BACKING_FMT,
1667 .type = QEMU_OPT_STRING,
1668 .help = "Image format of the base image"
1671 .name = BLOCK_OPT_CLUSTER_SIZE,
1672 .type = QEMU_OPT_SIZE,
1673 .help = "Cluster size (in bytes)",
1674 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1677 .name = BLOCK_OPT_TABLE_SIZE,
1678 .type = QEMU_OPT_SIZE,
1679 .help = "L1/L2 table size (in clusters)"
1681 { /* end of list */ }
1685 static BlockDriver bdrv_qed = {
1686 .format_name = "qed",
1687 .instance_size = sizeof(BDRVQEDState),
1688 .create_opts = &qed_create_opts,
1689 .supports_backing = true,
1691 .bdrv_probe = bdrv_qed_probe,
1692 .bdrv_open = bdrv_qed_open,
1693 .bdrv_close = bdrv_qed_close,
1694 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1695 .bdrv_create = bdrv_qed_create,
1696 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1697 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1698 .bdrv_aio_readv = bdrv_qed_aio_readv,
1699 .bdrv_aio_writev = bdrv_qed_aio_writev,
1700 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1701 .bdrv_truncate = bdrv_qed_truncate,
1702 .bdrv_getlength = bdrv_qed_getlength,
1703 .bdrv_get_info = bdrv_qed_get_info,
1704 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1705 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1706 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1707 .bdrv_check = bdrv_qed_check,
1708 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1709 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1710 .bdrv_drain = bdrv_qed_drain,
1713 static void bdrv_qed_init(void)
1715 bdrv_register(&bdrv_qed);
1718 block_init(bdrv_qed_init);