4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
32 #include "monitor/monitor.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
47 uint8_t *buf
, int len
, int is_write
)
49 return cpu_memory_rw_debug(env
, addr
, buf
, len
, is_write
);
52 /* target_memory_rw_debug() defined in cpu.h */
64 GDB_SIGNAL_UNKNOWN
= 143
67 #ifdef CONFIG_USER_ONLY
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
74 static int gdb_signal_table
[] = {
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
242 static int gdb_signal_table
[] = {
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig
)
256 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
257 if (gdb_signal_table
[i
] == sig
)
259 return GDB_SIGNAL_UNKNOWN
;
263 static int gdb_signal_to_target (int sig
)
265 if (sig
< ARRAY_SIZE (gdb_signal_table
))
266 return gdb_signal_table
[sig
];
273 typedef struct GDBRegisterState
{
279 struct GDBRegisterState
*next
;
289 typedef struct GDBState
{
290 CPUArchState
*c_cpu
; /* current CPU for step/continue ops */
291 CPUArchState
*g_cpu
; /* current CPU for other ops */
292 CPUArchState
*query_cpu
; /* for q{f|s}ThreadInfo */
293 enum RSState state
; /* parsing state */
294 char line_buf
[MAX_PACKET_LENGTH
];
297 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
300 #ifdef CONFIG_USER_ONLY
304 CharDriverState
*chr
;
305 CharDriverState
*mon_chr
;
307 char syscall_buf
[256];
308 gdb_syscall_complete_cb current_syscall_cb
;
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
314 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
316 static GDBState
*gdbserver_state
;
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml
;
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd
= -1;
327 static int get_char(GDBState
*s
)
333 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
335 if (errno
== ECONNRESET
)
337 if (errno
!= EINTR
&& errno
!= EAGAIN
)
339 } else if (ret
== 0) {
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
362 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
365 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState
*s
)
371 #ifdef CONFIG_USER_ONLY
372 s
->running_state
= 1;
374 if (runstate_check(RUN_STATE_GUEST_PANICKED
)) {
375 runstate_set(RUN_STATE_DEBUG
);
377 if (!runstate_needs_reset()) {
383 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
385 #ifdef CONFIG_USER_ONLY
389 ret
= send(s
->fd
, buf
, len
, 0);
391 if (errno
!= EINTR
&& errno
!= EAGAIN
)
399 qemu_chr_fe_write(s
->chr
, buf
, len
);
403 static inline int fromhex(int v
)
405 if (v
>= '0' && v
<= '9')
407 else if (v
>= 'A' && v
<= 'F')
409 else if (v
>= 'a' && v
<= 'f')
415 static inline int tohex(int v
)
423 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
428 for(i
= 0; i
< len
; i
++) {
430 *q
++ = tohex(c
>> 4);
431 *q
++ = tohex(c
& 0xf);
436 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
440 for(i
= 0; i
< len
; i
++) {
441 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
446 /* return -1 if error, 0 if OK */
447 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
458 for(i
= 0; i
< len
; i
++) {
462 *(p
++) = tohex((csum
>> 4) & 0xf);
463 *(p
++) = tohex((csum
) & 0xf);
465 s
->last_packet_len
= p
- s
->last_packet
;
466 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
468 #ifdef CONFIG_USER_ONLY
481 /* return -1 if error, 0 if OK */
482 static int put_packet(GDBState
*s
, const char *buf
)
485 printf("reply='%s'\n", buf
);
488 return put_packet_binary(s
, buf
, strlen(buf
));
491 /* The GDB remote protocol transfers values in target byte order. This means
492 we can use the raw memory access routines to access the value buffer.
493 Conveniently, these also handle the case where the buffer is mis-aligned.
495 #define GET_REG8(val) do { \
496 stb_p(mem_buf, val); \
499 #define GET_REG16(val) do { \
500 stw_p(mem_buf, val); \
503 #define GET_REG32(val) do { \
504 stl_p(mem_buf, val); \
507 #define GET_REG64(val) do { \
508 stq_p(mem_buf, val); \
512 #if TARGET_LONG_BITS == 64
513 #define GET_REGL(val) GET_REG64(val)
514 #define ldtul_p(addr) ldq_p(addr)
516 #define GET_REGL(val) GET_REG32(val)
517 #define ldtul_p(addr) ldl_p(addr)
520 #if defined(TARGET_I386)
523 static const int gpr_map
[16] = {
524 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
525 8, 9, 10, 11, 12, 13, 14, 15
528 #define gpr_map gpr_map32
530 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
532 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
534 #define IDX_IP_REG CPU_NB_REGS
535 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
536 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
537 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
538 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
539 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
541 static int cpu_gdb_read_register(CPUX86State
*env
, uint8_t *mem_buf
, int n
)
543 if (n
< CPU_NB_REGS
) {
544 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
545 GET_REG64(env
->regs
[gpr_map
[n
]]);
546 } else if (n
< CPU_NB_REGS32
) {
547 GET_REG32(env
->regs
[gpr_map32
[n
]]);
549 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
550 #ifdef USE_X86LDOUBLE
551 /* FIXME: byteswap float values - after fixing fpregs layout. */
552 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
554 memset(mem_buf
, 0, 10);
557 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
559 if (n
< CPU_NB_REGS32
||
560 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
561 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
562 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
568 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
573 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
575 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
576 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
577 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
578 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
579 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
580 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
582 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
583 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
584 (env
->fpstt
& 0x7) << 11);
585 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
586 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
587 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
588 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
589 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
590 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
592 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
598 static int cpu_x86_gdb_load_seg(CPUX86State
*env
, int sreg
, uint8_t *mem_buf
)
600 uint16_t selector
= ldl_p(mem_buf
);
602 if (selector
!= env
->segs
[sreg
].selector
) {
603 #if defined(CONFIG_USER_ONLY)
604 cpu_x86_load_seg(env
, sreg
, selector
);
606 unsigned int limit
, flags
;
609 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
610 base
= selector
<< 4;
614 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
617 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
623 static int cpu_gdb_write_register(CPUX86State
*env
, uint8_t *mem_buf
, int n
)
627 if (n
< CPU_NB_REGS
) {
628 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
629 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
630 return sizeof(target_ulong
);
631 } else if (n
< CPU_NB_REGS32
) {
633 env
->regs
[n
] &= ~0xffffffffUL
;
634 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
637 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
638 #ifdef USE_X86LDOUBLE
639 /* FIXME: byteswap float values - after fixing fpregs layout. */
640 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
643 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
645 if (n
< CPU_NB_REGS32
||
646 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
647 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
648 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
654 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
655 env
->eip
= ldq_p(mem_buf
);
658 env
->eip
&= ~0xffffffffUL
;
659 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
663 env
->eflags
= ldl_p(mem_buf
);
666 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
667 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
668 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
669 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
670 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
671 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
673 case IDX_FP_REGS
+ 8:
674 env
->fpuc
= ldl_p(mem_buf
);
676 case IDX_FP_REGS
+ 9:
677 tmp
= ldl_p(mem_buf
);
678 env
->fpstt
= (tmp
>> 11) & 7;
679 env
->fpus
= tmp
& ~0x3800;
681 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
682 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
683 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
684 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
685 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
686 case IDX_FP_REGS
+ 15: /* fop */ return 4;
689 env
->mxcsr
= ldl_p(mem_buf
);
693 /* Unrecognised register. */
697 #elif defined (TARGET_PPC)
699 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
700 expects whatever the target description contains. Due to a
701 historical mishap the FP registers appear in between core integer
702 regs and PC, MSR, CR, and so forth. We hack round this by giving the
703 FP regs zero size when talking to a newer gdb. */
704 #define NUM_CORE_REGS 71
705 #if defined (TARGET_PPC64)
706 #define GDB_CORE_XML "power64-core.xml"
708 #define GDB_CORE_XML "power-core.xml"
711 static int cpu_gdb_read_register(CPUPPCState
*env
, uint8_t *mem_buf
, int n
)
715 GET_REGL(env
->gpr
[n
]);
720 stfq_p(mem_buf
, env
->fpr
[n
-32]);
724 case 64: GET_REGL(env
->nip
);
725 case 65: GET_REGL(env
->msr
);
730 for (i
= 0; i
< 8; i
++)
731 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
734 case 67: GET_REGL(env
->lr
);
735 case 68: GET_REGL(env
->ctr
);
736 case 69: GET_REGL(env
->xer
);
741 GET_REG32(env
->fpscr
);
748 static int cpu_gdb_write_register(CPUPPCState
*env
, uint8_t *mem_buf
, int n
)
752 env
->gpr
[n
] = ldtul_p(mem_buf
);
753 return sizeof(target_ulong
);
758 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
763 env
->nip
= ldtul_p(mem_buf
);
764 return sizeof(target_ulong
);
766 ppc_store_msr(env
, ldtul_p(mem_buf
));
767 return sizeof(target_ulong
);
770 uint32_t cr
= ldl_p(mem_buf
);
772 for (i
= 0; i
< 8; i
++)
773 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
777 env
->lr
= ldtul_p(mem_buf
);
778 return sizeof(target_ulong
);
780 env
->ctr
= ldtul_p(mem_buf
);
781 return sizeof(target_ulong
);
783 env
->xer
= ldtul_p(mem_buf
);
784 return sizeof(target_ulong
);
789 store_fpscr(env
, ldtul_p(mem_buf
), 0xffffffff);
790 return sizeof(target_ulong
);
796 #elif defined (TARGET_SPARC)
798 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
799 #define NUM_CORE_REGS 86
801 #define NUM_CORE_REGS 72
805 #define GET_REGA(val) GET_REG32(val)
807 #define GET_REGA(val) GET_REGL(val)
810 static int cpu_gdb_read_register(CPUSPARCState
*env
, uint8_t *mem_buf
, int n
)
814 GET_REGA(env
->gregs
[n
]);
817 /* register window */
818 GET_REGA(env
->regwptr
[n
- 8]);
820 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
824 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
826 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
829 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
831 case 64: GET_REGA(env
->y
);
832 case 65: GET_REGA(cpu_get_psr(env
));
833 case 66: GET_REGA(env
->wim
);
834 case 67: GET_REGA(env
->tbr
);
835 case 68: GET_REGA(env
->pc
);
836 case 69: GET_REGA(env
->npc
);
837 case 70: GET_REGA(env
->fsr
);
838 case 71: GET_REGA(0); /* csr */
839 default: GET_REGA(0);
845 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
847 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
851 /* f32-f62 (double width, even numbers only) */
852 GET_REG64(env
->fpr
[(n
- 32) / 2].ll
);
855 case 80: GET_REGL(env
->pc
);
856 case 81: GET_REGL(env
->npc
);
857 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
858 ((env
->asi
& 0xff) << 24) |
859 ((env
->pstate
& 0xfff) << 8) |
861 case 83: GET_REGL(env
->fsr
);
862 case 84: GET_REGL(env
->fprs
);
863 case 85: GET_REGL(env
->y
);
869 static int cpu_gdb_write_register(CPUSPARCState
*env
, uint8_t *mem_buf
, int n
)
871 #if defined(TARGET_ABI32)
874 tmp
= ldl_p(mem_buf
);
878 tmp
= ldtul_p(mem_buf
);
885 /* register window */
886 env
->regwptr
[n
- 8] = tmp
;
888 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
893 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
895 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
898 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
900 case 64: env
->y
= tmp
; break;
901 case 65: cpu_put_psr(env
, tmp
); break;
902 case 66: env
->wim
= tmp
; break;
903 case 67: env
->tbr
= tmp
; break;
904 case 68: env
->pc
= tmp
; break;
905 case 69: env
->npc
= tmp
; break;
906 case 70: env
->fsr
= tmp
; break;
914 tmp
= ldl_p(mem_buf
);
916 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
918 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
922 /* f32-f62 (double width, even numbers only) */
923 env
->fpr
[(n
- 32) / 2].ll
= tmp
;
926 case 80: env
->pc
= tmp
; break;
927 case 81: env
->npc
= tmp
; break;
929 cpu_put_ccr(env
, tmp
>> 32);
930 env
->asi
= (tmp
>> 24) & 0xff;
931 env
->pstate
= (tmp
>> 8) & 0xfff;
932 cpu_put_cwp64(env
, tmp
& 0xff);
934 case 83: env
->fsr
= tmp
; break;
935 case 84: env
->fprs
= tmp
; break;
936 case 85: env
->y
= tmp
; break;
943 #elif defined (TARGET_ARM)
945 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
946 whatever the target description contains. Due to a historical mishap
947 the FPA registers appear in between core integer regs and the CPSR.
948 We hack round this by giving the FPA regs zero size when talking to a
950 #define NUM_CORE_REGS 26
951 #define GDB_CORE_XML "arm-core.xml"
953 static int cpu_gdb_read_register(CPUARMState
*env
, uint8_t *mem_buf
, int n
)
956 /* Core integer register. */
957 GET_REG32(env
->regs
[n
]);
963 memset(mem_buf
, 0, 12);
968 /* FPA status register. */
974 GET_REG32(cpsr_read(env
));
976 /* Unknown register. */
980 static int cpu_gdb_write_register(CPUARMState
*env
, uint8_t *mem_buf
, int n
)
984 tmp
= ldl_p(mem_buf
);
986 /* Mask out low bit of PC to workaround gdb bugs. This will probably
987 cause problems if we ever implement the Jazelle DBX extensions. */
992 /* Core integer register. */
996 if (n
< 24) { /* 16-23 */
997 /* FPA registers (ignored). */
1004 /* FPA status register (ignored). */
1010 cpsr_write (env
, tmp
, 0xffffffff);
1013 /* Unknown register. */
1017 #elif defined (TARGET_M68K)
1019 #define NUM_CORE_REGS 18
1021 #define GDB_CORE_XML "cf-core.xml"
1023 static int cpu_gdb_read_register(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
1027 GET_REG32(env
->dregs
[n
]);
1028 } else if (n
< 16) {
1030 GET_REG32(env
->aregs
[n
- 8]);
1033 case 16: GET_REG32(env
->sr
);
1034 case 17: GET_REG32(env
->pc
);
1037 /* FP registers not included here because they vary between
1038 ColdFire and m68k. Use XML bits for these. */
1042 static int cpu_gdb_write_register(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
1046 tmp
= ldl_p(mem_buf
);
1050 env
->dregs
[n
] = tmp
;
1051 } else if (n
< 16) {
1053 env
->aregs
[n
- 8] = tmp
;
1056 case 16: env
->sr
= tmp
; break;
1057 case 17: env
->pc
= tmp
; break;
1063 #elif defined (TARGET_MIPS)
1065 #define NUM_CORE_REGS 73
1067 static int cpu_gdb_read_register(CPUMIPSState
*env
, uint8_t *mem_buf
, int n
)
1070 GET_REGL(env
->active_tc
.gpr
[n
]);
1072 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1073 if (n
>= 38 && n
< 70) {
1074 if (env
->CP0_Status
& (1 << CP0St_FR
))
1075 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1077 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1080 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1081 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1085 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1086 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1087 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1088 case 35: GET_REGL(env
->CP0_BadVAddr
);
1089 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1090 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1091 case 72: GET_REGL(0); /* fp */
1092 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1094 if (n
>= 73 && n
<= 88) {
1095 /* 16 embedded regs. */
1102 /* convert MIPS rounding mode in FCR31 to IEEE library */
1103 static unsigned int ieee_rm
[] =
1105 float_round_nearest_even
,
1106 float_round_to_zero
,
1110 #define RESTORE_ROUNDING_MODE \
1111 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1113 static int cpu_gdb_write_register(CPUMIPSState
*env
, uint8_t *mem_buf
, int n
)
1117 tmp
= ldtul_p(mem_buf
);
1120 env
->active_tc
.gpr
[n
] = tmp
;
1121 return sizeof(target_ulong
);
1123 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1124 && n
>= 38 && n
< 73) {
1126 if (env
->CP0_Status
& (1 << CP0St_FR
))
1127 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1129 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1133 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1134 /* set rounding mode */
1135 RESTORE_ROUNDING_MODE
;
1137 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1139 return sizeof(target_ulong
);
1142 case 32: env
->CP0_Status
= tmp
; break;
1143 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1144 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1145 case 35: env
->CP0_BadVAddr
= tmp
; break;
1146 case 36: env
->CP0_Cause
= tmp
; break;
1148 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1150 env
->hflags
|= MIPS_HFLAG_M16
;
1152 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1155 case 72: /* fp, ignored */ break;
1159 /* Other registers are readonly. Ignore writes. */
1163 return sizeof(target_ulong
);
1165 #elif defined(TARGET_OPENRISC)
1167 #define NUM_CORE_REGS (32 + 3)
1169 static int cpu_gdb_read_register(CPUOpenRISCState
*env
, uint8_t *mem_buf
, int n
)
1172 GET_REG32(env
->gpr
[n
]);
1176 GET_REG32(env
->ppc
);
1180 GET_REG32(env
->npc
);
1194 static int cpu_gdb_write_register(CPUOpenRISCState
*env
,
1195 uint8_t *mem_buf
, int n
)
1199 if (n
> NUM_CORE_REGS
) {
1203 tmp
= ldl_p(mem_buf
);
1227 #elif defined (TARGET_SH4)
1229 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1230 /* FIXME: We should use XML for this. */
1232 #define NUM_CORE_REGS 59
1234 static int cpu_gdb_read_register(CPUSH4State
*env
, uint8_t *mem_buf
, int n
)
1238 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1239 GET_REGL(env
->gregs
[n
+ 16]);
1241 GET_REGL(env
->gregs
[n
]);
1244 GET_REGL(env
->gregs
[n
]);
1254 GET_REGL(env
->mach
);
1256 GET_REGL(env
->macl
);
1260 GET_REGL(env
->fpul
);
1262 GET_REGL(env
->fpscr
);
1264 if (env
->fpscr
& FPSCR_FR
) {
1265 stfl_p(mem_buf
, env
->fregs
[n
- 9]);
1267 stfl_p(mem_buf
, env
->fregs
[n
- 25]);
1275 GET_REGL(env
->gregs
[n
- 43]);
1277 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1283 static int cpu_gdb_write_register(CPUSH4State
*env
, uint8_t *mem_buf
, int n
)
1287 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1288 env
->gregs
[n
+ 16] = ldl_p(mem_buf
);
1290 env
->gregs
[n
] = ldl_p(mem_buf
);
1294 env
->gregs
[n
] = ldl_p(mem_buf
);
1297 env
->pc
= ldl_p(mem_buf
);
1300 env
->pr
= ldl_p(mem_buf
);
1303 env
->gbr
= ldl_p(mem_buf
);
1306 env
->vbr
= ldl_p(mem_buf
);
1309 env
->mach
= ldl_p(mem_buf
);
1312 env
->macl
= ldl_p(mem_buf
);
1315 env
->sr
= ldl_p(mem_buf
);
1318 env
->fpul
= ldl_p(mem_buf
);
1321 env
->fpscr
= ldl_p(mem_buf
);
1324 if (env
->fpscr
& FPSCR_FR
) {
1325 env
->fregs
[n
- 9] = ldfl_p(mem_buf
);
1327 env
->fregs
[n
- 25] = ldfl_p(mem_buf
);
1331 env
->ssr
= ldl_p(mem_buf
);
1334 env
->spc
= ldl_p(mem_buf
);
1337 env
->gregs
[n
- 43] = ldl_p(mem_buf
);
1340 env
->gregs
[n
- (51 - 16)] = ldl_p(mem_buf
);
1347 #elif defined (TARGET_MICROBLAZE)
1349 #define NUM_CORE_REGS (32 + 5)
1351 static int cpu_gdb_read_register(CPUMBState
*env
, uint8_t *mem_buf
, int n
)
1354 GET_REG32(env
->regs
[n
]);
1356 GET_REG32(env
->sregs
[n
- 32]);
1361 static int cpu_gdb_write_register(CPUMBState
*env
, uint8_t *mem_buf
, int n
)
1365 if (n
> NUM_CORE_REGS
)
1368 tmp
= ldl_p(mem_buf
);
1373 env
->sregs
[n
- 32] = tmp
;
1377 #elif defined (TARGET_CRIS)
1379 #define NUM_CORE_REGS 49
1382 read_register_crisv10(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1385 GET_REG32(env
->regs
[n
]);
1395 GET_REG8(env
->pregs
[n
- 16]);
1398 GET_REG8(env
->pregs
[n
- 16]);
1402 GET_REG16(env
->pregs
[n
- 16]);
1406 GET_REG32(env
->pregs
[n
- 16]);
1414 static int cpu_gdb_read_register(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1418 if (env
->pregs
[PR_VR
] < 32)
1419 return read_register_crisv10(env
, mem_buf
, n
);
1421 srs
= env
->pregs
[PR_SRS
];
1423 GET_REG32(env
->regs
[n
]);
1426 if (n
>= 21 && n
< 32) {
1427 GET_REG32(env
->pregs
[n
- 16]);
1429 if (n
>= 33 && n
< 49) {
1430 GET_REG32(env
->sregs
[srs
][n
- 33]);
1433 case 16: GET_REG8(env
->pregs
[0]);
1434 case 17: GET_REG8(env
->pregs
[1]);
1435 case 18: GET_REG32(env
->pregs
[2]);
1436 case 19: GET_REG8(srs
);
1437 case 20: GET_REG16(env
->pregs
[4]);
1438 case 32: GET_REG32(env
->pc
);
1444 static int cpu_gdb_write_register(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1451 tmp
= ldl_p(mem_buf
);
1457 if (n
>= 21 && n
< 32) {
1458 env
->pregs
[n
- 16] = tmp
;
1461 /* FIXME: Should support function regs be writable? */
1465 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1468 case 32: env
->pc
= tmp
; break;
1473 #elif defined (TARGET_ALPHA)
1475 #define NUM_CORE_REGS 67
1477 static int cpu_gdb_read_register(CPUAlphaState
*env
, uint8_t *mem_buf
, int n
)
1487 d
.d
= env
->fir
[n
- 32];
1491 val
= cpu_alpha_load_fpcr(env
);
1501 /* 31 really is the zero register; 65 is unassigned in the
1502 gdb protocol, but is still required to occupy 8 bytes. */
1511 static int cpu_gdb_write_register(CPUAlphaState
*env
, uint8_t *mem_buf
, int n
)
1513 target_ulong tmp
= ldtul_p(mem_buf
);
1522 env
->fir
[n
- 32] = d
.d
;
1525 cpu_alpha_store_fpcr(env
, tmp
);
1535 /* 31 really is the zero register; 65 is unassigned in the
1536 gdb protocol, but is still required to occupy 8 bytes. */
1543 #elif defined (TARGET_S390X)
1545 #define NUM_CORE_REGS S390_NUM_REGS
1547 static int cpu_gdb_read_register(CPUS390XState
*env
, uint8_t *mem_buf
, int n
)
1553 case S390_PSWM_REGNUM
:
1554 cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
, env
->cc_vr
);
1555 val
= deposit64(env
->psw
.mask
, 44, 2, cc_op
);
1558 case S390_PSWA_REGNUM
:
1559 GET_REGL(env
->psw
.addr
);
1561 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1562 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]);
1564 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1565 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]);
1567 case S390_FPC_REGNUM
:
1568 GET_REG32(env
->fpc
);
1570 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1571 GET_REG64(env
->fregs
[n
-S390_F0_REGNUM
].ll
);
1578 static int cpu_gdb_write_register(CPUS390XState
*env
, uint8_t *mem_buf
, int n
)
1583 tmpl
= ldtul_p(mem_buf
);
1584 tmp32
= ldl_p(mem_buf
);
1587 case S390_PSWM_REGNUM
:
1588 env
->psw
.mask
= tmpl
;
1589 env
->cc_op
= extract64(tmpl
, 44, 2);
1591 case S390_PSWA_REGNUM
:
1592 env
->psw
.addr
= tmpl
;
1594 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1595 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
;
1597 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1598 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
;
1601 case S390_FPC_REGNUM
:
1605 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1606 env
->fregs
[n
-S390_F0_REGNUM
].ll
= tmpl
;
1613 #elif defined (TARGET_LM32)
1615 #include "hw/lm32/lm32_pic.h"
1616 #define NUM_CORE_REGS (32 + 7)
1618 static int cpu_gdb_read_register(CPULM32State
*env
, uint8_t *mem_buf
, int n
)
1621 GET_REG32(env
->regs
[n
]);
1627 /* FIXME: put in right exception ID */
1632 GET_REG32(env
->eba
);
1635 GET_REG32(env
->deba
);
1641 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1644 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1651 static int cpu_gdb_write_register(CPULM32State
*env
, uint8_t *mem_buf
, int n
)
1655 if (n
> NUM_CORE_REGS
) {
1659 tmp
= ldl_p(mem_buf
);
1678 lm32_pic_set_im(env
->pic_state
, tmp
);
1681 lm32_pic_set_ip(env
->pic_state
, tmp
);
1687 #elif defined(TARGET_XTENSA)
1689 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1690 * Use num_regs to see all registers. gdb modification is required for that:
1691 * reset bit 0 in the 'flags' field of the registers definitions in the
1692 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1694 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1695 #define num_g_regs NUM_CORE_REGS
1697 static int cpu_gdb_read_register(CPUXtensaState
*env
, uint8_t *mem_buf
, int n
)
1699 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1701 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1705 switch (reg
->type
) {
1711 xtensa_sync_phys_from_window(env
);
1712 GET_REG32(env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
]);
1716 GET_REG32(env
->sregs
[reg
->targno
& 0xff]);
1720 GET_REG32(env
->uregs
[reg
->targno
& 0xff]);
1724 GET_REG32(float32_val(env
->fregs
[reg
->targno
& 0x0f]));
1728 GET_REG32(env
->regs
[reg
->targno
& 0x0f]);
1732 qemu_log("%s from reg %d of unsupported type %d\n",
1733 __func__
, n
, reg
->type
);
1738 static int cpu_gdb_write_register(CPUXtensaState
*env
, uint8_t *mem_buf
, int n
)
1741 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1743 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1747 tmp
= ldl_p(mem_buf
);
1749 switch (reg
->type
) {
1755 env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
] = tmp
;
1756 xtensa_sync_window_from_phys(env
);
1760 env
->sregs
[reg
->targno
& 0xff] = tmp
;
1764 env
->uregs
[reg
->targno
& 0xff] = tmp
;
1768 env
->fregs
[reg
->targno
& 0x0f] = make_float32(tmp
);
1772 env
->regs
[reg
->targno
& 0x0f] = tmp
;
1776 qemu_log("%s to reg %d of unsupported type %d\n",
1777 __func__
, n
, reg
->type
);
1785 #define NUM_CORE_REGS 0
1787 static int cpu_gdb_read_register(CPUArchState
*env
, uint8_t *mem_buf
, int n
)
1792 static int cpu_gdb_write_register(CPUArchState
*env
, uint8_t *mem_buf
, int n
)
1799 #if !defined(TARGET_XTENSA)
1800 static int num_g_regs
= NUM_CORE_REGS
;
1804 /* Encode data using the encoding for 'x' packets. */
1805 static int memtox(char *buf
, const char *mem
, int len
)
1813 case '#': case '$': case '*': case '}':
1825 static const char *get_feature_xml(const char *p
, const char **newp
)
1830 static char target_xml
[1024];
1833 while (p
[len
] && p
[len
] != ':')
1838 if (strncmp(p
, "target.xml", len
) == 0) {
1839 /* Generate the XML description for this CPU. */
1840 if (!target_xml
[0]) {
1841 GDBRegisterState
*r
;
1843 snprintf(target_xml
, sizeof(target_xml
),
1844 "<?xml version=\"1.0\"?>"
1845 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1847 "<xi:include href=\"%s\"/>",
1850 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1851 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1852 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1853 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1855 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1859 for (i
= 0; ; i
++) {
1860 name
= xml_builtin
[i
][0];
1861 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1864 return name
? xml_builtin
[i
][1] : NULL
;
1868 static int gdb_read_register(CPUArchState
*env
, uint8_t *mem_buf
, int reg
)
1870 GDBRegisterState
*r
;
1872 if (reg
< NUM_CORE_REGS
)
1873 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1875 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1876 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1877 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1883 static int gdb_write_register(CPUArchState
*env
, uint8_t *mem_buf
, int reg
)
1885 GDBRegisterState
*r
;
1887 if (reg
< NUM_CORE_REGS
)
1888 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1890 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1891 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1892 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1898 #if !defined(TARGET_XTENSA)
1899 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1900 specifies the first register number and these registers are included in
1901 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1902 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1905 void gdb_register_coprocessor(CPUArchState
* env
,
1906 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1907 int num_regs
, const char *xml
, int g_pos
)
1909 GDBRegisterState
*s
;
1910 GDBRegisterState
**p
;
1911 static int last_reg
= NUM_CORE_REGS
;
1915 /* Check for duplicates. */
1916 if (strcmp((*p
)->xml
, xml
) == 0)
1921 s
= g_new0(GDBRegisterState
, 1);
1922 s
->base_reg
= last_reg
;
1923 s
->num_regs
= num_regs
;
1924 s
->get_reg
= get_reg
;
1925 s
->set_reg
= set_reg
;
1928 /* Add to end of list. */
1929 last_reg
+= num_regs
;
1932 if (g_pos
!= s
->base_reg
) {
1933 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1934 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1936 num_g_regs
= last_reg
;
1942 #ifndef CONFIG_USER_ONLY
1943 static const int xlat_gdb_type
[] = {
1944 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1945 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1946 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1950 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1956 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1959 case GDB_BREAKPOINT_SW
:
1960 case GDB_BREAKPOINT_HW
:
1961 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1962 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1967 #ifndef CONFIG_USER_ONLY
1968 case GDB_WATCHPOINT_WRITE
:
1969 case GDB_WATCHPOINT_READ
:
1970 case GDB_WATCHPOINT_ACCESS
:
1971 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1972 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1984 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1990 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1993 case GDB_BREAKPOINT_SW
:
1994 case GDB_BREAKPOINT_HW
:
1995 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1996 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
2001 #ifndef CONFIG_USER_ONLY
2002 case GDB_WATCHPOINT_WRITE
:
2003 case GDB_WATCHPOINT_READ
:
2004 case GDB_WATCHPOINT_ACCESS
:
2005 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2006 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
2017 static void gdb_breakpoint_remove_all(void)
2021 if (kvm_enabled()) {
2022 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
2026 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2027 cpu_breakpoint_remove_all(env
, BP_GDB
);
2028 #ifndef CONFIG_USER_ONLY
2029 cpu_watchpoint_remove_all(env
, BP_GDB
);
2034 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
2036 cpu_synchronize_state(s
->c_cpu
);
2037 #if defined(TARGET_I386)
2039 #elif defined (TARGET_PPC)
2041 #elif defined (TARGET_SPARC)
2043 s
->c_cpu
->npc
= pc
+ 4;
2044 #elif defined (TARGET_ARM)
2045 s
->c_cpu
->regs
[15] = pc
;
2046 #elif defined (TARGET_SH4)
2048 #elif defined (TARGET_MIPS)
2049 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
2051 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
2053 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
2055 #elif defined (TARGET_MICROBLAZE)
2056 s
->c_cpu
->sregs
[SR_PC
] = pc
;
2057 #elif defined(TARGET_OPENRISC)
2059 #elif defined (TARGET_CRIS)
2061 #elif defined (TARGET_ALPHA)
2063 #elif defined (TARGET_S390X)
2064 s
->c_cpu
->psw
.addr
= pc
;
2065 #elif defined (TARGET_LM32)
2067 #elif defined(TARGET_XTENSA)
2072 static CPUArchState
*find_cpu(uint32_t thread_id
)
2077 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2078 cpu
= ENV_GET_CPU(env
);
2079 if (cpu_index(cpu
) == thread_id
) {
2087 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
2092 int ch
, reg_size
, type
, res
;
2093 char buf
[MAX_PACKET_LENGTH
];
2094 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
2096 target_ulong addr
, len
;
2099 printf("command='%s'\n", line_buf
);
2105 /* TODO: Make this return the correct value for user-mode. */
2106 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
2107 cpu_index(ENV_GET_CPU(s
->c_cpu
)));
2109 /* Remove all the breakpoints when this query is issued,
2110 * because gdb is doing and initial connect and the state
2111 * should be cleaned up.
2113 gdb_breakpoint_remove_all();
2117 addr
= strtoull(p
, (char **)&p
, 16);
2118 gdb_set_cpu_pc(s
, addr
);
2124 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
2125 if (s
->signal
== -1)
2130 if (strncmp(p
, "Cont", 4) == 0) {
2131 int res_signal
, res_thread
;
2135 put_packet(s
, "vCont;c;C;s;S");
2150 if (action
== 'C' || action
== 'S') {
2151 signal
= strtoul(p
, (char **)&p
, 16);
2152 } else if (action
!= 'c' && action
!= 's') {
2158 thread
= strtoull(p
+1, (char **)&p
, 16);
2160 action
= tolower(action
);
2161 if (res
== 0 || (res
== 'c' && action
== 's')) {
2163 res_signal
= signal
;
2164 res_thread
= thread
;
2168 if (res_thread
!= -1 && res_thread
!= 0) {
2169 env
= find_cpu(res_thread
);
2171 put_packet(s
, "E22");
2177 cpu_single_step(s
->c_cpu
, sstep_flags
);
2179 s
->signal
= res_signal
;
2185 goto unknown_command
;
2188 #ifdef CONFIG_USER_ONLY
2189 /* Kill the target */
2190 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
2195 gdb_breakpoint_remove_all();
2196 gdb_syscall_mode
= GDB_SYS_DISABLED
;
2198 put_packet(s
, "OK");
2202 addr
= strtoull(p
, (char **)&p
, 16);
2203 gdb_set_cpu_pc(s
, addr
);
2205 cpu_single_step(s
->c_cpu
, sstep_flags
);
2213 ret
= strtoull(p
, (char **)&p
, 16);
2216 err
= strtoull(p
, (char **)&p
, 16);
2223 if (s
->current_syscall_cb
) {
2224 s
->current_syscall_cb(s
->c_cpu
, ret
, err
);
2225 s
->current_syscall_cb
= NULL
;
2228 put_packet(s
, "T02");
2235 cpu_synchronize_state(s
->g_cpu
);
2238 for (addr
= 0; addr
< num_g_regs
; addr
++) {
2239 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2242 memtohex(buf
, mem_buf
, len
);
2246 cpu_synchronize_state(s
->g_cpu
);
2248 registers
= mem_buf
;
2249 len
= strlen(p
) / 2;
2250 hextomem((uint8_t *)registers
, p
, len
);
2251 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2252 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2254 registers
+= reg_size
;
2256 put_packet(s
, "OK");
2259 addr
= strtoull(p
, (char **)&p
, 16);
2262 len
= strtoull(p
, NULL
, 16);
2263 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2264 put_packet (s
, "E14");
2266 memtohex(buf
, mem_buf
, len
);
2271 addr
= strtoull(p
, (char **)&p
, 16);
2274 len
= strtoull(p
, (char **)&p
, 16);
2277 hextomem(mem_buf
, p
, len
);
2278 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0) {
2279 put_packet(s
, "E14");
2281 put_packet(s
, "OK");
2285 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2286 This works, but can be very slow. Anything new enough to
2287 understand XML also knows how to use this properly. */
2289 goto unknown_command
;
2290 addr
= strtoull(p
, (char **)&p
, 16);
2291 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2293 memtohex(buf
, mem_buf
, reg_size
);
2296 put_packet(s
, "E14");
2301 goto unknown_command
;
2302 addr
= strtoull(p
, (char **)&p
, 16);
2305 reg_size
= strlen(p
) / 2;
2306 hextomem(mem_buf
, p
, reg_size
);
2307 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2308 put_packet(s
, "OK");
2312 type
= strtoul(p
, (char **)&p
, 16);
2315 addr
= strtoull(p
, (char **)&p
, 16);
2318 len
= strtoull(p
, (char **)&p
, 16);
2320 res
= gdb_breakpoint_insert(addr
, len
, type
);
2322 res
= gdb_breakpoint_remove(addr
, len
, type
);
2324 put_packet(s
, "OK");
2325 else if (res
== -ENOSYS
)
2328 put_packet(s
, "E22");
2332 thread
= strtoull(p
, (char **)&p
, 16);
2333 if (thread
== -1 || thread
== 0) {
2334 put_packet(s
, "OK");
2337 env
= find_cpu(thread
);
2339 put_packet(s
, "E22");
2345 put_packet(s
, "OK");
2349 put_packet(s
, "OK");
2352 put_packet(s
, "E22");
2357 thread
= strtoull(p
, (char **)&p
, 16);
2358 env
= find_cpu(thread
);
2361 put_packet(s
, "OK");
2363 put_packet(s
, "E22");
2368 /* parse any 'q' packets here */
2369 if (!strcmp(p
,"qemu.sstepbits")) {
2370 /* Query Breakpoint bit definitions */
2371 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2377 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2378 /* Display or change the sstep_flags */
2381 /* Display current setting */
2382 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2387 type
= strtoul(p
, (char **)&p
, 16);
2389 put_packet(s
, "OK");
2391 } else if (strcmp(p
,"C") == 0) {
2392 /* "Current thread" remains vague in the spec, so always return
2393 * the first CPU (gdb returns the first thread). */
2394 put_packet(s
, "QC1");
2396 } else if (strcmp(p
,"fThreadInfo") == 0) {
2397 s
->query_cpu
= first_cpu
;
2398 goto report_cpuinfo
;
2399 } else if (strcmp(p
,"sThreadInfo") == 0) {
2402 snprintf(buf
, sizeof(buf
), "m%x",
2403 cpu_index(ENV_GET_CPU(s
->query_cpu
)));
2405 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2409 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2410 thread
= strtoull(p
+16, (char **)&p
, 16);
2411 env
= find_cpu(thread
);
2413 CPUState
*cpu
= ENV_GET_CPU(env
);
2414 cpu_synchronize_state(env
);
2415 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2416 "CPU#%d [%s]", cpu
->cpu_index
,
2417 cpu
->halted
? "halted " : "running");
2418 memtohex(buf
, mem_buf
, len
);
2423 #ifdef CONFIG_USER_ONLY
2424 else if (strncmp(p
, "Offsets", 7) == 0) {
2425 TaskState
*ts
= s
->c_cpu
->opaque
;
2427 snprintf(buf
, sizeof(buf
),
2428 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2429 ";Bss=" TARGET_ABI_FMT_lx
,
2430 ts
->info
->code_offset
,
2431 ts
->info
->data_offset
,
2432 ts
->info
->data_offset
);
2436 #else /* !CONFIG_USER_ONLY */
2437 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2438 int len
= strlen(p
+ 5);
2440 if ((len
% 2) != 0) {
2441 put_packet(s
, "E01");
2444 hextomem(mem_buf
, p
+ 5, len
);
2447 qemu_chr_be_write(s
->mon_chr
, mem_buf
, len
);
2448 put_packet(s
, "OK");
2451 #endif /* !CONFIG_USER_ONLY */
2452 if (strncmp(p
, "Supported", 9) == 0) {
2453 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2455 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2461 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2463 target_ulong total_len
;
2467 xml
= get_feature_xml(p
, &p
);
2469 snprintf(buf
, sizeof(buf
), "E00");
2476 addr
= strtoul(p
, (char **)&p
, 16);
2479 len
= strtoul(p
, (char **)&p
, 16);
2481 total_len
= strlen(xml
);
2482 if (addr
> total_len
) {
2483 snprintf(buf
, sizeof(buf
), "E00");
2487 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2488 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2489 if (len
< total_len
- addr
) {
2491 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2494 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2496 put_packet_binary(s
, buf
, len
+ 1);
2500 /* Unrecognised 'q' command. */
2501 goto unknown_command
;
2505 /* put empty packet */
2513 void gdb_set_stop_cpu(CPUArchState
*env
)
2515 gdbserver_state
->c_cpu
= env
;
2516 gdbserver_state
->g_cpu
= env
;
2519 #ifndef CONFIG_USER_ONLY
2520 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2522 GDBState
*s
= gdbserver_state
;
2523 CPUArchState
*env
= s
->c_cpu
;
2524 CPUState
*cpu
= ENV_GET_CPU(env
);
2529 if (running
|| s
->state
== RS_INACTIVE
) {
2532 /* Is there a GDB syscall waiting to be sent? */
2533 if (s
->current_syscall_cb
) {
2534 put_packet(s
, s
->syscall_buf
);
2538 case RUN_STATE_DEBUG
:
2539 if (env
->watchpoint_hit
) {
2540 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2551 snprintf(buf
, sizeof(buf
),
2552 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2553 GDB_SIGNAL_TRAP
, cpu_index(cpu
), type
,
2554 env
->watchpoint_hit
->vaddr
);
2555 env
->watchpoint_hit
= NULL
;
2559 ret
= GDB_SIGNAL_TRAP
;
2561 case RUN_STATE_PAUSED
:
2562 ret
= GDB_SIGNAL_INT
;
2564 case RUN_STATE_SHUTDOWN
:
2565 ret
= GDB_SIGNAL_QUIT
;
2567 case RUN_STATE_IO_ERROR
:
2568 ret
= GDB_SIGNAL_IO
;
2570 case RUN_STATE_WATCHDOG
:
2571 ret
= GDB_SIGNAL_ALRM
;
2573 case RUN_STATE_INTERNAL_ERROR
:
2574 ret
= GDB_SIGNAL_ABRT
;
2576 case RUN_STATE_SAVE_VM
:
2577 case RUN_STATE_RESTORE_VM
:
2579 case RUN_STATE_FINISH_MIGRATE
:
2580 ret
= GDB_SIGNAL_XCPU
;
2583 ret
= GDB_SIGNAL_UNKNOWN
;
2586 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, cpu_index(cpu
));
2591 /* disable single step if it was enabled */
2592 cpu_single_step(env
, 0);
2596 /* Send a gdb syscall request.
2597 This accepts limited printf-style format specifiers, specifically:
2598 %x - target_ulong argument printed in hex.
2599 %lx - 64-bit argument printed in hex.
2600 %s - string pointer (target_ulong) and length (int) pair. */
2601 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2610 s
= gdbserver_state
;
2613 s
->current_syscall_cb
= cb
;
2614 #ifndef CONFIG_USER_ONLY
2615 vm_stop(RUN_STATE_DEBUG
);
2619 p_end
= &s
->syscall_buf
[sizeof(s
->syscall_buf
)];
2626 addr
= va_arg(va
, target_ulong
);
2627 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
, addr
);
2630 if (*(fmt
++) != 'x')
2632 i64
= va_arg(va
, uint64_t);
2633 p
+= snprintf(p
, p_end
- p
, "%" PRIx64
, i64
);
2636 addr
= va_arg(va
, target_ulong
);
2637 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
"/%x",
2638 addr
, va_arg(va
, int));
2642 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2652 #ifdef CONFIG_USER_ONLY
2653 put_packet(s
, s
->syscall_buf
);
2654 gdb_handlesig(s
->c_cpu
, 0);
2656 /* In this case wait to send the syscall packet until notification that
2657 the CPU has stopped. This must be done because if the packet is sent
2658 now the reply from the syscall request could be received while the CPU
2659 is still in the running state, which can cause packets to be dropped
2660 and state transition 'T' packets to be sent while the syscall is still
2666 static void gdb_read_byte(GDBState
*s
, int ch
)
2671 #ifndef CONFIG_USER_ONLY
2672 if (s
->last_packet_len
) {
2673 /* Waiting for a response to the last packet. If we see the start
2674 of a new command then abandon the previous response. */
2677 printf("Got NACK, retransmitting\n");
2679 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2683 printf("Got ACK\n");
2685 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2687 if (ch
== '+' || ch
== '$')
2688 s
->last_packet_len
= 0;
2692 if (runstate_is_running()) {
2693 /* when the CPU is running, we cannot do anything except stop
2694 it when receiving a char */
2695 vm_stop(RUN_STATE_PAUSED
);
2702 s
->line_buf_index
= 0;
2703 s
->state
= RS_GETLINE
;
2708 s
->state
= RS_CHKSUM1
;
2709 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2712 s
->line_buf
[s
->line_buf_index
++] = ch
;
2716 s
->line_buf
[s
->line_buf_index
] = '\0';
2717 s
->line_csum
= fromhex(ch
) << 4;
2718 s
->state
= RS_CHKSUM2
;
2721 s
->line_csum
|= fromhex(ch
);
2723 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2724 csum
+= s
->line_buf
[i
];
2726 if (s
->line_csum
!= (csum
& 0xff)) {
2728 put_buffer(s
, &reply
, 1);
2732 put_buffer(s
, &reply
, 1);
2733 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2742 /* Tell the remote gdb that the process has exited. */
2743 void gdb_exit(CPUArchState
*env
, int code
)
2748 s
= gdbserver_state
;
2752 #ifdef CONFIG_USER_ONLY
2753 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2758 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2761 #ifndef CONFIG_USER_ONLY
2763 qemu_chr_delete(s
->chr
);
2768 #ifdef CONFIG_USER_ONLY
2774 s
= gdbserver_state
;
2776 if (gdbserver_fd
< 0 || s
->fd
< 0)
2783 gdb_handlesig (CPUArchState
*env
, int sig
)
2789 s
= gdbserver_state
;
2790 if (gdbserver_fd
< 0 || s
->fd
< 0)
2793 /* disable single step if it was enabled */
2794 cpu_single_step(env
, 0);
2799 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2802 /* put_packet() might have detected that the peer terminated the
2809 s
->running_state
= 0;
2810 while (s
->running_state
== 0) {
2811 n
= read (s
->fd
, buf
, 256);
2816 for (i
= 0; i
< n
; i
++)
2817 gdb_read_byte (s
, buf
[i
]);
2819 else if (n
== 0 || errno
!= EAGAIN
)
2821 /* XXX: Connection closed. Should probably wait for another
2822 connection before continuing. */
2831 /* Tell the remote gdb that the process has exited due to SIG. */
2832 void gdb_signalled(CPUArchState
*env
, int sig
)
2837 s
= gdbserver_state
;
2838 if (gdbserver_fd
< 0 || s
->fd
< 0)
2841 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2845 static void gdb_accept(void)
2848 struct sockaddr_in sockaddr
;
2853 len
= sizeof(sockaddr
);
2854 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2855 if (fd
< 0 && errno
!= EINTR
) {
2858 } else if (fd
>= 0) {
2860 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2866 /* set short latency */
2867 socket_set_nodelay(fd
);
2869 s
= g_malloc0(sizeof(GDBState
));
2870 s
->c_cpu
= first_cpu
;
2871 s
->g_cpu
= first_cpu
;
2875 gdbserver_state
= s
;
2877 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2880 static int gdbserver_open(int port
)
2882 struct sockaddr_in sockaddr
;
2885 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2891 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2894 /* allow fast reuse */
2896 qemu_setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, &val
, sizeof(val
));
2898 sockaddr
.sin_family
= AF_INET
;
2899 sockaddr
.sin_port
= htons(port
);
2900 sockaddr
.sin_addr
.s_addr
= 0;
2901 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2907 ret
= listen(fd
, 0);
2916 int gdbserver_start(int port
)
2918 gdbserver_fd
= gdbserver_open(port
);
2919 if (gdbserver_fd
< 0)
2921 /* accept connections */
2926 /* Disable gdb stub for child processes. */
2927 void gdbserver_fork(CPUArchState
*env
)
2929 GDBState
*s
= gdbserver_state
;
2930 if (gdbserver_fd
< 0 || s
->fd
< 0)
2934 cpu_breakpoint_remove_all(env
, BP_GDB
);
2935 cpu_watchpoint_remove_all(env
, BP_GDB
);
2938 static int gdb_chr_can_receive(void *opaque
)
2940 /* We can handle an arbitrarily large amount of data.
2941 Pick the maximum packet size, which is as good as anything. */
2942 return MAX_PACKET_LENGTH
;
2945 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2949 for (i
= 0; i
< size
; i
++) {
2950 gdb_read_byte(gdbserver_state
, buf
[i
]);
2954 static void gdb_chr_event(void *opaque
, int event
)
2957 case CHR_EVENT_OPENED
:
2958 vm_stop(RUN_STATE_PAUSED
);
2966 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2968 char buf
[MAX_PACKET_LENGTH
];
2971 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2972 len
= (MAX_PACKET_LENGTH
/2) - 1;
2973 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2977 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2979 const char *p
= (const char *)buf
;
2982 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2984 if (len
<= max_sz
) {
2985 gdb_monitor_output(gdbserver_state
, p
, len
);
2988 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2996 static void gdb_sigterm_handler(int signal
)
2998 if (runstate_is_running()) {
2999 vm_stop(RUN_STATE_PAUSED
);
3004 int gdbserver_start(const char *device
)
3007 char gdbstub_device_name
[128];
3008 CharDriverState
*chr
= NULL
;
3009 CharDriverState
*mon_chr
;
3013 if (strcmp(device
, "none") != 0) {
3014 if (strstart(device
, "tcp:", NULL
)) {
3015 /* enforce required TCP attributes */
3016 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
3017 "%s,nowait,nodelay,server", device
);
3018 device
= gdbstub_device_name
;
3021 else if (strcmp(device
, "stdio") == 0) {
3022 struct sigaction act
;
3024 memset(&act
, 0, sizeof(act
));
3025 act
.sa_handler
= gdb_sigterm_handler
;
3026 sigaction(SIGINT
, &act
, NULL
);
3029 chr
= qemu_chr_new("gdb", device
, NULL
);
3033 qemu_chr_fe_claim_no_fail(chr
);
3034 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
3035 gdb_chr_event
, NULL
);
3038 s
= gdbserver_state
;
3040 s
= g_malloc0(sizeof(GDBState
));
3041 gdbserver_state
= s
;
3043 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
3045 /* Initialize a monitor terminal for gdb */
3046 mon_chr
= g_malloc0(sizeof(*mon_chr
));
3047 mon_chr
->chr_write
= gdb_monitor_write
;
3048 monitor_init(mon_chr
, 0);
3051 qemu_chr_delete(s
->chr
);
3052 mon_chr
= s
->mon_chr
;
3053 memset(s
, 0, sizeof(GDBState
));
3055 s
->c_cpu
= first_cpu
;
3056 s
->g_cpu
= first_cpu
;
3058 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
3059 s
->mon_chr
= mon_chr
;
3060 s
->current_syscall_cb
= NULL
;