acpi unit-test: do not fail on asl mismatch
[qemu/ar7.git] / block / qed.c
blob694e6e2ee0ee8d144ee0503783759068e94eb23c
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
33 static const AIOCBInfo qed_aiocb_info = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
41 const QEDHeader *header = (const QEDHeader *)buf;
43 if (buf_size < sizeof(*header)) {
44 return 0;
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
49 return 100;
52 /**
53 * Check whether an image format is raw
55 * @fmt: Backing file format, may be NULL
57 static bool qed_fmt_is_raw(const char *fmt)
59 return fmt && strcmp(fmt, "raw") == 0;
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
92 int qed_write_header_sync(BDRVQEDState *s)
94 QEDHeader le;
95 int ret;
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
102 return 0;
105 typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112 } QEDWriteHeaderCB;
114 static void qed_write_header_cb(void *opaque, int ret)
116 QEDWriteHeaderCB *write_header_cb = opaque;
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
122 static void qed_write_header_read_cb(void *opaque, int ret)
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
141 * Update header in-place (does not rewrite backing filename or other strings)
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147 void *opaque)
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156 BDRV_SECTOR_SIZE;
157 size_t len = nsectors * BDRV_SECTOR_SIZE;
158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159 cb, opaque);
161 write_header_cb->s = s;
162 write_header_cb->nsectors = nsectors;
163 write_header_cb->buf = qemu_blockalign(s->bs, len);
164 write_header_cb->iov.iov_base = write_header_cb->buf;
165 write_header_cb->iov.iov_len = len;
166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169 qed_write_header_read_cb, write_header_cb);
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
174 uint64_t table_entries;
175 uint64_t l2_size;
177 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178 l2_size = table_entries * cluster_size;
180 return l2_size * table_entries;
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
185 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186 cluster_size > QED_MAX_CLUSTER_SIZE) {
187 return false;
189 if (cluster_size & (cluster_size - 1)) {
190 return false; /* not power of 2 */
192 return true;
195 static bool qed_is_table_size_valid(uint32_t table_size)
197 if (table_size < QED_MIN_TABLE_SIZE ||
198 table_size > QED_MAX_TABLE_SIZE) {
199 return false;
201 if (table_size & (table_size - 1)) {
202 return false; /* not power of 2 */
204 return true;
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208 uint32_t table_size)
210 if (image_size % BDRV_SECTOR_SIZE != 0) {
211 return false; /* not multiple of sector size */
213 if (image_size > qed_max_image_size(cluster_size, table_size)) {
214 return false; /* image is too large */
216 return true;
220 * Read a string of known length from the image file
222 * @file: Image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
229 * The string is NUL-terminated.
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232 char *buf, size_t buflen)
234 int ret;
235 if (n >= buflen) {
236 return -EINVAL;
238 ret = bdrv_pread(file, offset, buf, n);
239 if (ret < 0) {
240 return ret;
242 buf[n] = '\0';
243 return 0;
247 * Allocate new clusters
249 * @s: QED state
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
255 * file.
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
259 uint64_t offset = s->file_size;
260 s->file_size += n * s->header.cluster_size;
261 return offset;
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s->bs,
268 s->header.cluster_size * s->header.table_size);
272 * Allocate a new zeroed L2 table
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
278 l2_table->table = qed_alloc_table(s);
279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
281 memset(l2_table->table->offsets, 0,
282 s->header.cluster_size * s->header.table_size);
283 return l2_table;
286 static void qed_aio_next_io(void *opaque, int ret);
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
290 assert(!s->allocating_write_reqs_plugged);
292 s->allocating_write_reqs_plugged = true;
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
297 QEDAIOCB *acb;
299 assert(s->allocating_write_reqs_plugged);
301 s->allocating_write_reqs_plugged = false;
303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304 if (acb) {
305 qed_aio_next_io(acb, 0);
309 static void qed_finish_clear_need_check(void *opaque, int ret)
311 /* Do nothing */
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
316 BDRVQEDState *s = opaque;
318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s);
324 static void qed_clear_need_check(void *opaque, int ret)
326 BDRVQEDState *s = opaque;
328 if (ret) {
329 qed_unplug_allocating_write_reqs(s);
330 return;
333 s->header.features &= ~QED_F_NEED_CHECK;
334 qed_write_header(s, qed_flush_after_clear_need_check, s);
337 static void qed_need_check_timer_cb(void *opaque)
339 BDRVQEDState *s = opaque;
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
344 trace_qed_need_check_timer_cb(s);
346 qed_plug_allocating_write_reqs(s);
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
352 static void qed_start_need_check_timer(BDRVQEDState *s)
354 trace_qed_start_need_check_timer(s);
356 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357 * migration.
359 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
366 trace_qed_cancel_need_check_timer(s);
367 timer_del(s->need_check_timer);
370 static void bdrv_qed_rebind(BlockDriverState *bs)
372 BDRVQEDState *s = bs->opaque;
373 s->bs = bs;
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
377 Error **errp)
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
391 qed_header_le_to_cpu(&le_header, &s->header);
393 if (s->header.magic != QED_MAGIC) {
394 return -EMEDIUMTYPE;
396 if (s->header.features & ~QED_FEATURE_MASK) {
397 /* image uses unsupported feature bits */
398 char buf[64];
399 snprintf(buf, sizeof(buf), "%" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
401 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
402 bs->device_name, "QED", buf);
403 return -ENOTSUP;
405 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
406 return -EINVAL;
409 /* Round down file size to the last cluster */
410 file_size = bdrv_getlength(bs->file);
411 if (file_size < 0) {
412 return file_size;
414 s->file_size = qed_start_of_cluster(s, file_size);
416 if (!qed_is_table_size_valid(s->header.table_size)) {
417 return -EINVAL;
419 if (!qed_is_image_size_valid(s->header.image_size,
420 s->header.cluster_size,
421 s->header.table_size)) {
422 return -EINVAL;
424 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
425 return -EINVAL;
428 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
429 sizeof(uint64_t);
430 s->l2_shift = ffs(s->header.cluster_size) - 1;
431 s->l2_mask = s->table_nelems - 1;
432 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434 if ((s->header.features & QED_F_BACKING_FILE)) {
435 if ((uint64_t)s->header.backing_filename_offset +
436 s->header.backing_filename_size >
437 s->header.cluster_size * s->header.header_size) {
438 return -EINVAL;
441 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
442 s->header.backing_filename_size, bs->backing_file,
443 sizeof(bs->backing_file));
444 if (ret < 0) {
445 return ret;
448 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
449 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
453 /* Reset unknown autoclear feature bits. This is a backwards
454 * compatibility mechanism that allows images to be opened by older
455 * programs, which "knock out" unknown feature bits. When an image is
456 * opened by a newer program again it can detect that the autoclear
457 * feature is no longer valid.
459 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
460 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
461 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463 ret = qed_write_header_sync(s);
464 if (ret) {
465 return ret;
468 /* From here on only known autoclear feature bits are valid */
469 bdrv_flush(bs->file);
472 s->l1_table = qed_alloc_table(s);
473 qed_init_l2_cache(&s->l2_cache);
475 ret = qed_read_l1_table_sync(s);
476 if (ret) {
477 goto out;
480 /* If image was not closed cleanly, check consistency */
481 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
482 /* Read-only images cannot be fixed. There is no risk of corruption
483 * since write operations are not possible. Therefore, allow
484 * potentially inconsistent images to be opened read-only. This can
485 * aid data recovery from an otherwise inconsistent image.
487 if (!bdrv_is_read_only(bs->file) &&
488 !(flags & BDRV_O_INCOMING)) {
489 BdrvCheckResult result = {0};
491 ret = qed_check(s, &result, true);
492 if (ret) {
493 goto out;
498 s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
499 qed_need_check_timer_cb, s);
501 out:
502 if (ret) {
503 qed_free_l2_cache(&s->l2_cache);
504 qemu_vfree(s->l1_table);
506 return ret;
509 static int bdrv_qed_refresh_limits(BlockDriverState *bs)
511 BDRVQEDState *s = bs->opaque;
513 bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
515 return 0;
518 /* We have nothing to do for QED reopen, stubs just return
519 * success */
520 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
521 BlockReopenQueue *queue, Error **errp)
523 return 0;
526 static void bdrv_qed_close(BlockDriverState *bs)
528 BDRVQEDState *s = bs->opaque;
530 qed_cancel_need_check_timer(s);
531 timer_free(s->need_check_timer);
533 /* Ensure writes reach stable storage */
534 bdrv_flush(bs->file);
536 /* Clean shutdown, no check required on next open */
537 if (s->header.features & QED_F_NEED_CHECK) {
538 s->header.features &= ~QED_F_NEED_CHECK;
539 qed_write_header_sync(s);
542 qed_free_l2_cache(&s->l2_cache);
543 qemu_vfree(s->l1_table);
546 static int qed_create(const char *filename, uint32_t cluster_size,
547 uint64_t image_size, uint32_t table_size,
548 const char *backing_file, const char *backing_fmt)
550 QEDHeader header = {
551 .magic = QED_MAGIC,
552 .cluster_size = cluster_size,
553 .table_size = table_size,
554 .header_size = 1,
555 .features = 0,
556 .compat_features = 0,
557 .l1_table_offset = cluster_size,
558 .image_size = image_size,
560 QEDHeader le_header;
561 uint8_t *l1_table = NULL;
562 size_t l1_size = header.cluster_size * header.table_size;
563 Error *local_err = NULL;
564 int ret = 0;
565 BlockDriverState *bs = NULL;
567 ret = bdrv_create_file(filename, NULL, &local_err);
568 if (ret < 0) {
569 qerror_report_err(local_err);
570 error_free(local_err);
571 return ret;
574 ret = bdrv_file_open(&bs, filename, NULL, NULL,
575 BDRV_O_RDWR | BDRV_O_CACHE_WB, &local_err);
576 if (ret < 0) {
577 qerror_report_err(local_err);
578 error_free(local_err);
579 return ret;
582 /* File must start empty and grow, check truncate is supported */
583 ret = bdrv_truncate(bs, 0);
584 if (ret < 0) {
585 goto out;
588 if (backing_file) {
589 header.features |= QED_F_BACKING_FILE;
590 header.backing_filename_offset = sizeof(le_header);
591 header.backing_filename_size = strlen(backing_file);
593 if (qed_fmt_is_raw(backing_fmt)) {
594 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
598 qed_header_cpu_to_le(&header, &le_header);
599 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
600 if (ret < 0) {
601 goto out;
603 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
604 header.backing_filename_size);
605 if (ret < 0) {
606 goto out;
609 l1_table = g_malloc0(l1_size);
610 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
611 if (ret < 0) {
612 goto out;
615 ret = 0; /* success */
616 out:
617 g_free(l1_table);
618 bdrv_unref(bs);
619 return ret;
622 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options,
623 Error **errp)
625 uint64_t image_size = 0;
626 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
627 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
628 const char *backing_file = NULL;
629 const char *backing_fmt = NULL;
631 while (options && options->name) {
632 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
633 image_size = options->value.n;
634 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
635 backing_file = options->value.s;
636 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
637 backing_fmt = options->value.s;
638 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
639 if (options->value.n) {
640 cluster_size = options->value.n;
642 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
643 if (options->value.n) {
644 table_size = options->value.n;
647 options++;
650 if (!qed_is_cluster_size_valid(cluster_size)) {
651 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
652 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
653 return -EINVAL;
655 if (!qed_is_table_size_valid(table_size)) {
656 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
657 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
658 return -EINVAL;
660 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
661 fprintf(stderr, "QED image size must be a non-zero multiple of "
662 "cluster size and less than %" PRIu64 " bytes\n",
663 qed_max_image_size(cluster_size, table_size));
664 return -EINVAL;
667 return qed_create(filename, cluster_size, image_size, table_size,
668 backing_file, backing_fmt);
671 typedef struct {
672 BlockDriverState *bs;
673 Coroutine *co;
674 uint64_t pos;
675 int64_t status;
676 int *pnum;
677 } QEDIsAllocatedCB;
679 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
681 QEDIsAllocatedCB *cb = opaque;
682 BDRVQEDState *s = cb->bs->opaque;
683 *cb->pnum = len / BDRV_SECTOR_SIZE;
684 switch (ret) {
685 case QED_CLUSTER_FOUND:
686 offset |= qed_offset_into_cluster(s, cb->pos);
687 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
688 break;
689 case QED_CLUSTER_ZERO:
690 cb->status = BDRV_BLOCK_ZERO;
691 break;
692 case QED_CLUSTER_L2:
693 case QED_CLUSTER_L1:
694 cb->status = 0;
695 break;
696 default:
697 assert(ret < 0);
698 cb->status = ret;
699 break;
702 if (cb->co) {
703 qemu_coroutine_enter(cb->co, NULL);
707 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
708 int64_t sector_num,
709 int nb_sectors, int *pnum)
711 BDRVQEDState *s = bs->opaque;
712 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
713 QEDIsAllocatedCB cb = {
714 .bs = bs,
715 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
716 .status = BDRV_BLOCK_OFFSET_MASK,
717 .pnum = pnum,
719 QEDRequest request = { .l2_table = NULL };
721 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
723 /* Now sleep if the callback wasn't invoked immediately */
724 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
725 cb.co = qemu_coroutine_self();
726 qemu_coroutine_yield();
729 qed_unref_l2_cache_entry(request.l2_table);
731 return cb.status;
734 static int bdrv_qed_make_empty(BlockDriverState *bs)
736 return -ENOTSUP;
739 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
741 return acb->common.bs->opaque;
745 * Read from the backing file or zero-fill if no backing file
747 * @s: QED state
748 * @pos: Byte position in device
749 * @qiov: Destination I/O vector
750 * @cb: Completion function
751 * @opaque: User data for completion function
753 * This function reads qiov->size bytes starting at pos from the backing file.
754 * If there is no backing file then zeroes are read.
756 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
757 QEMUIOVector *qiov,
758 BlockDriverCompletionFunc *cb, void *opaque)
760 uint64_t backing_length = 0;
761 size_t size;
763 /* If there is a backing file, get its length. Treat the absence of a
764 * backing file like a zero length backing file.
766 if (s->bs->backing_hd) {
767 int64_t l = bdrv_getlength(s->bs->backing_hd);
768 if (l < 0) {
769 cb(opaque, l);
770 return;
772 backing_length = l;
775 /* Zero all sectors if reading beyond the end of the backing file */
776 if (pos >= backing_length ||
777 pos + qiov->size > backing_length) {
778 qemu_iovec_memset(qiov, 0, 0, qiov->size);
781 /* Complete now if there are no backing file sectors to read */
782 if (pos >= backing_length) {
783 cb(opaque, 0);
784 return;
787 /* If the read straddles the end of the backing file, shorten it */
788 size = MIN((uint64_t)backing_length - pos, qiov->size);
790 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
791 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
792 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
795 typedef struct {
796 GenericCB gencb;
797 BDRVQEDState *s;
798 QEMUIOVector qiov;
799 struct iovec iov;
800 uint64_t offset;
801 } CopyFromBackingFileCB;
803 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
805 CopyFromBackingFileCB *copy_cb = opaque;
806 qemu_vfree(copy_cb->iov.iov_base);
807 gencb_complete(&copy_cb->gencb, ret);
810 static void qed_copy_from_backing_file_write(void *opaque, int ret)
812 CopyFromBackingFileCB *copy_cb = opaque;
813 BDRVQEDState *s = copy_cb->s;
815 if (ret) {
816 qed_copy_from_backing_file_cb(copy_cb, ret);
817 return;
820 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
821 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
822 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
823 qed_copy_from_backing_file_cb, copy_cb);
827 * Copy data from backing file into the image
829 * @s: QED state
830 * @pos: Byte position in device
831 * @len: Number of bytes
832 * @offset: Byte offset in image file
833 * @cb: Completion function
834 * @opaque: User data for completion function
836 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
837 uint64_t len, uint64_t offset,
838 BlockDriverCompletionFunc *cb,
839 void *opaque)
841 CopyFromBackingFileCB *copy_cb;
843 /* Skip copy entirely if there is no work to do */
844 if (len == 0) {
845 cb(opaque, 0);
846 return;
849 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
850 copy_cb->s = s;
851 copy_cb->offset = offset;
852 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
853 copy_cb->iov.iov_len = len;
854 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
856 qed_read_backing_file(s, pos, &copy_cb->qiov,
857 qed_copy_from_backing_file_write, copy_cb);
861 * Link one or more contiguous clusters into a table
863 * @s: QED state
864 * @table: L2 table
865 * @index: First cluster index
866 * @n: Number of contiguous clusters
867 * @cluster: First cluster offset
869 * The cluster offset may be an allocated byte offset in the image file, the
870 * zero cluster marker, or the unallocated cluster marker.
872 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
873 unsigned int n, uint64_t cluster)
875 int i;
876 for (i = index; i < index + n; i++) {
877 table->offsets[i] = cluster;
878 if (!qed_offset_is_unalloc_cluster(cluster) &&
879 !qed_offset_is_zero_cluster(cluster)) {
880 cluster += s->header.cluster_size;
885 static void qed_aio_complete_bh(void *opaque)
887 QEDAIOCB *acb = opaque;
888 BlockDriverCompletionFunc *cb = acb->common.cb;
889 void *user_opaque = acb->common.opaque;
890 int ret = acb->bh_ret;
891 bool *finished = acb->finished;
893 qemu_bh_delete(acb->bh);
894 qemu_aio_release(acb);
896 /* Invoke callback */
897 cb(user_opaque, ret);
899 /* Signal cancel completion */
900 if (finished) {
901 *finished = true;
905 static void qed_aio_complete(QEDAIOCB *acb, int ret)
907 BDRVQEDState *s = acb_to_s(acb);
909 trace_qed_aio_complete(s, acb, ret);
911 /* Free resources */
912 qemu_iovec_destroy(&acb->cur_qiov);
913 qed_unref_l2_cache_entry(acb->request.l2_table);
915 /* Free the buffer we may have allocated for zero writes */
916 if (acb->flags & QED_AIOCB_ZERO) {
917 qemu_vfree(acb->qiov->iov[0].iov_base);
918 acb->qiov->iov[0].iov_base = NULL;
921 /* Arrange for a bh to invoke the completion function */
922 acb->bh_ret = ret;
923 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
924 qemu_bh_schedule(acb->bh);
926 /* Start next allocating write request waiting behind this one. Note that
927 * requests enqueue themselves when they first hit an unallocated cluster
928 * but they wait until the entire request is finished before waking up the
929 * next request in the queue. This ensures that we don't cycle through
930 * requests multiple times but rather finish one at a time completely.
932 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
933 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
934 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
935 if (acb) {
936 qed_aio_next_io(acb, 0);
937 } else if (s->header.features & QED_F_NEED_CHECK) {
938 qed_start_need_check_timer(s);
944 * Commit the current L2 table to the cache
946 static void qed_commit_l2_update(void *opaque, int ret)
948 QEDAIOCB *acb = opaque;
949 BDRVQEDState *s = acb_to_s(acb);
950 CachedL2Table *l2_table = acb->request.l2_table;
951 uint64_t l2_offset = l2_table->offset;
953 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
955 /* This is guaranteed to succeed because we just committed the entry to the
956 * cache.
958 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
959 assert(acb->request.l2_table != NULL);
961 qed_aio_next_io(opaque, ret);
965 * Update L1 table with new L2 table offset and write it out
967 static void qed_aio_write_l1_update(void *opaque, int ret)
969 QEDAIOCB *acb = opaque;
970 BDRVQEDState *s = acb_to_s(acb);
971 int index;
973 if (ret) {
974 qed_aio_complete(acb, ret);
975 return;
978 index = qed_l1_index(s, acb->cur_pos);
979 s->l1_table->offsets[index] = acb->request.l2_table->offset;
981 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
985 * Update L2 table with new cluster offsets and write them out
987 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
989 BDRVQEDState *s = acb_to_s(acb);
990 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
991 int index;
993 if (ret) {
994 goto err;
997 if (need_alloc) {
998 qed_unref_l2_cache_entry(acb->request.l2_table);
999 acb->request.l2_table = qed_new_l2_table(s);
1002 index = qed_l2_index(s, acb->cur_pos);
1003 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1004 offset);
1006 if (need_alloc) {
1007 /* Write out the whole new L2 table */
1008 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1009 qed_aio_write_l1_update, acb);
1010 } else {
1011 /* Write out only the updated part of the L2 table */
1012 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1013 qed_aio_next_io, acb);
1015 return;
1017 err:
1018 qed_aio_complete(acb, ret);
1021 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1023 QEDAIOCB *acb = opaque;
1024 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1028 * Flush new data clusters before updating the L2 table
1030 * This flush is necessary when a backing file is in use. A crash during an
1031 * allocating write could result in empty clusters in the image. If the write
1032 * only touched a subregion of the cluster, then backing image sectors have
1033 * been lost in the untouched region. The solution is to flush after writing a
1034 * new data cluster and before updating the L2 table.
1036 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1038 QEDAIOCB *acb = opaque;
1039 BDRVQEDState *s = acb_to_s(acb);
1041 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1042 qed_aio_complete(acb, -EIO);
1047 * Write data to the image file
1049 static void qed_aio_write_main(void *opaque, int ret)
1051 QEDAIOCB *acb = opaque;
1052 BDRVQEDState *s = acb_to_s(acb);
1053 uint64_t offset = acb->cur_cluster +
1054 qed_offset_into_cluster(s, acb->cur_pos);
1055 BlockDriverCompletionFunc *next_fn;
1057 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1059 if (ret) {
1060 qed_aio_complete(acb, ret);
1061 return;
1064 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1065 next_fn = qed_aio_next_io;
1066 } else {
1067 if (s->bs->backing_hd) {
1068 next_fn = qed_aio_write_flush_before_l2_update;
1069 } else {
1070 next_fn = qed_aio_write_l2_update_cb;
1074 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1075 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1076 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1077 next_fn, acb);
1081 * Populate back untouched region of new data cluster
1083 static void qed_aio_write_postfill(void *opaque, int ret)
1085 QEDAIOCB *acb = opaque;
1086 BDRVQEDState *s = acb_to_s(acb);
1087 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1088 uint64_t len =
1089 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1090 uint64_t offset = acb->cur_cluster +
1091 qed_offset_into_cluster(s, acb->cur_pos) +
1092 acb->cur_qiov.size;
1094 if (ret) {
1095 qed_aio_complete(acb, ret);
1096 return;
1099 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1100 qed_copy_from_backing_file(s, start, len, offset,
1101 qed_aio_write_main, acb);
1105 * Populate front untouched region of new data cluster
1107 static void qed_aio_write_prefill(void *opaque, int ret)
1109 QEDAIOCB *acb = opaque;
1110 BDRVQEDState *s = acb_to_s(acb);
1111 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1112 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1114 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1115 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1116 qed_aio_write_postfill, acb);
1120 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1122 static bool qed_should_set_need_check(BDRVQEDState *s)
1124 /* The flush before L2 update path ensures consistency */
1125 if (s->bs->backing_hd) {
1126 return false;
1129 return !(s->header.features & QED_F_NEED_CHECK);
1132 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1134 QEDAIOCB *acb = opaque;
1136 if (ret) {
1137 qed_aio_complete(acb, ret);
1138 return;
1141 qed_aio_write_l2_update(acb, 0, 1);
1145 * Write new data cluster
1147 * @acb: Write request
1148 * @len: Length in bytes
1150 * This path is taken when writing to previously unallocated clusters.
1152 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1154 BDRVQEDState *s = acb_to_s(acb);
1155 BlockDriverCompletionFunc *cb;
1157 /* Cancel timer when the first allocating request comes in */
1158 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1159 qed_cancel_need_check_timer(s);
1162 /* Freeze this request if another allocating write is in progress */
1163 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1164 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1166 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1167 s->allocating_write_reqs_plugged) {
1168 return; /* wait for existing request to finish */
1171 acb->cur_nclusters = qed_bytes_to_clusters(s,
1172 qed_offset_into_cluster(s, acb->cur_pos) + len);
1173 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1175 if (acb->flags & QED_AIOCB_ZERO) {
1176 /* Skip ahead if the clusters are already zero */
1177 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1178 qed_aio_next_io(acb, 0);
1179 return;
1182 cb = qed_aio_write_zero_cluster;
1183 } else {
1184 cb = qed_aio_write_prefill;
1185 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1188 if (qed_should_set_need_check(s)) {
1189 s->header.features |= QED_F_NEED_CHECK;
1190 qed_write_header(s, cb, acb);
1191 } else {
1192 cb(acb, 0);
1197 * Write data cluster in place
1199 * @acb: Write request
1200 * @offset: Cluster offset in bytes
1201 * @len: Length in bytes
1203 * This path is taken when writing to already allocated clusters.
1205 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1207 /* Allocate buffer for zero writes */
1208 if (acb->flags & QED_AIOCB_ZERO) {
1209 struct iovec *iov = acb->qiov->iov;
1211 if (!iov->iov_base) {
1212 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1213 memset(iov->iov_base, 0, iov->iov_len);
1217 /* Calculate the I/O vector */
1218 acb->cur_cluster = offset;
1219 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1221 /* Do the actual write */
1222 qed_aio_write_main(acb, 0);
1226 * Write data cluster
1228 * @opaque: Write request
1229 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1230 * or -errno
1231 * @offset: Cluster offset in bytes
1232 * @len: Length in bytes
1234 * Callback from qed_find_cluster().
1236 static void qed_aio_write_data(void *opaque, int ret,
1237 uint64_t offset, size_t len)
1239 QEDAIOCB *acb = opaque;
1241 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1243 acb->find_cluster_ret = ret;
1245 switch (ret) {
1246 case QED_CLUSTER_FOUND:
1247 qed_aio_write_inplace(acb, offset, len);
1248 break;
1250 case QED_CLUSTER_L2:
1251 case QED_CLUSTER_L1:
1252 case QED_CLUSTER_ZERO:
1253 qed_aio_write_alloc(acb, len);
1254 break;
1256 default:
1257 qed_aio_complete(acb, ret);
1258 break;
1263 * Read data cluster
1265 * @opaque: Read request
1266 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1267 * or -errno
1268 * @offset: Cluster offset in bytes
1269 * @len: Length in bytes
1271 * Callback from qed_find_cluster().
1273 static void qed_aio_read_data(void *opaque, int ret,
1274 uint64_t offset, size_t len)
1276 QEDAIOCB *acb = opaque;
1277 BDRVQEDState *s = acb_to_s(acb);
1278 BlockDriverState *bs = acb->common.bs;
1280 /* Adjust offset into cluster */
1281 offset += qed_offset_into_cluster(s, acb->cur_pos);
1283 trace_qed_aio_read_data(s, acb, ret, offset, len);
1285 if (ret < 0) {
1286 goto err;
1289 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1291 /* Handle zero cluster and backing file reads */
1292 if (ret == QED_CLUSTER_ZERO) {
1293 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1294 qed_aio_next_io(acb, 0);
1295 return;
1296 } else if (ret != QED_CLUSTER_FOUND) {
1297 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1298 qed_aio_next_io, acb);
1299 return;
1302 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1303 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1304 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1305 qed_aio_next_io, acb);
1306 return;
1308 err:
1309 qed_aio_complete(acb, ret);
1313 * Begin next I/O or complete the request
1315 static void qed_aio_next_io(void *opaque, int ret)
1317 QEDAIOCB *acb = opaque;
1318 BDRVQEDState *s = acb_to_s(acb);
1319 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1320 qed_aio_write_data : qed_aio_read_data;
1322 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1324 /* Handle I/O error */
1325 if (ret) {
1326 qed_aio_complete(acb, ret);
1327 return;
1330 acb->qiov_offset += acb->cur_qiov.size;
1331 acb->cur_pos += acb->cur_qiov.size;
1332 qemu_iovec_reset(&acb->cur_qiov);
1334 /* Complete request */
1335 if (acb->cur_pos >= acb->end_pos) {
1336 qed_aio_complete(acb, 0);
1337 return;
1340 /* Find next cluster and start I/O */
1341 qed_find_cluster(s, &acb->request,
1342 acb->cur_pos, acb->end_pos - acb->cur_pos,
1343 io_fn, acb);
1346 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1347 int64_t sector_num,
1348 QEMUIOVector *qiov, int nb_sectors,
1349 BlockDriverCompletionFunc *cb,
1350 void *opaque, int flags)
1352 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1354 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1355 opaque, flags);
1357 acb->flags = flags;
1358 acb->finished = NULL;
1359 acb->qiov = qiov;
1360 acb->qiov_offset = 0;
1361 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1362 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1363 acb->request.l2_table = NULL;
1364 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1366 /* Start request */
1367 qed_aio_next_io(acb, 0);
1368 return &acb->common;
1371 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1372 int64_t sector_num,
1373 QEMUIOVector *qiov, int nb_sectors,
1374 BlockDriverCompletionFunc *cb,
1375 void *opaque)
1377 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1380 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1381 int64_t sector_num,
1382 QEMUIOVector *qiov, int nb_sectors,
1383 BlockDriverCompletionFunc *cb,
1384 void *opaque)
1386 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1387 opaque, QED_AIOCB_WRITE);
1390 typedef struct {
1391 Coroutine *co;
1392 int ret;
1393 bool done;
1394 } QEDWriteZeroesCB;
1396 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1398 QEDWriteZeroesCB *cb = opaque;
1400 cb->done = true;
1401 cb->ret = ret;
1402 if (cb->co) {
1403 qemu_coroutine_enter(cb->co, NULL);
1407 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1408 int64_t sector_num,
1409 int nb_sectors,
1410 BdrvRequestFlags flags)
1412 BlockDriverAIOCB *blockacb;
1413 BDRVQEDState *s = bs->opaque;
1414 QEDWriteZeroesCB cb = { .done = false };
1415 QEMUIOVector qiov;
1416 struct iovec iov;
1418 /* Refuse if there are untouched backing file sectors */
1419 if (bs->backing_hd) {
1420 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1421 return -ENOTSUP;
1423 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1424 return -ENOTSUP;
1428 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1429 * then it will be allocated during request processing.
1431 iov.iov_base = NULL,
1432 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1434 qemu_iovec_init_external(&qiov, &iov, 1);
1435 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1436 qed_co_write_zeroes_cb, &cb,
1437 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1438 if (!blockacb) {
1439 return -EIO;
1441 if (!cb.done) {
1442 cb.co = qemu_coroutine_self();
1443 qemu_coroutine_yield();
1445 assert(cb.done);
1446 return cb.ret;
1449 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1451 BDRVQEDState *s = bs->opaque;
1452 uint64_t old_image_size;
1453 int ret;
1455 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1456 s->header.table_size)) {
1457 return -EINVAL;
1460 /* Shrinking is currently not supported */
1461 if ((uint64_t)offset < s->header.image_size) {
1462 return -ENOTSUP;
1465 old_image_size = s->header.image_size;
1466 s->header.image_size = offset;
1467 ret = qed_write_header_sync(s);
1468 if (ret < 0) {
1469 s->header.image_size = old_image_size;
1471 return ret;
1474 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1476 BDRVQEDState *s = bs->opaque;
1477 return s->header.image_size;
1480 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1482 BDRVQEDState *s = bs->opaque;
1484 memset(bdi, 0, sizeof(*bdi));
1485 bdi->cluster_size = s->header.cluster_size;
1486 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1487 bdi->unallocated_blocks_are_zero = true;
1488 bdi->can_write_zeroes_with_unmap = true;
1489 return 0;
1492 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1493 const char *backing_file,
1494 const char *backing_fmt)
1496 BDRVQEDState *s = bs->opaque;
1497 QEDHeader new_header, le_header;
1498 void *buffer;
1499 size_t buffer_len, backing_file_len;
1500 int ret;
1502 /* Refuse to set backing filename if unknown compat feature bits are
1503 * active. If the image uses an unknown compat feature then we may not
1504 * know the layout of data following the header structure and cannot safely
1505 * add a new string.
1507 if (backing_file && (s->header.compat_features &
1508 ~QED_COMPAT_FEATURE_MASK)) {
1509 return -ENOTSUP;
1512 memcpy(&new_header, &s->header, sizeof(new_header));
1514 new_header.features &= ~(QED_F_BACKING_FILE |
1515 QED_F_BACKING_FORMAT_NO_PROBE);
1517 /* Adjust feature flags */
1518 if (backing_file) {
1519 new_header.features |= QED_F_BACKING_FILE;
1521 if (qed_fmt_is_raw(backing_fmt)) {
1522 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1526 /* Calculate new header size */
1527 backing_file_len = 0;
1529 if (backing_file) {
1530 backing_file_len = strlen(backing_file);
1533 buffer_len = sizeof(new_header);
1534 new_header.backing_filename_offset = buffer_len;
1535 new_header.backing_filename_size = backing_file_len;
1536 buffer_len += backing_file_len;
1538 /* Make sure we can rewrite header without failing */
1539 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1540 return -ENOSPC;
1543 /* Prepare new header */
1544 buffer = g_malloc(buffer_len);
1546 qed_header_cpu_to_le(&new_header, &le_header);
1547 memcpy(buffer, &le_header, sizeof(le_header));
1548 buffer_len = sizeof(le_header);
1550 if (backing_file) {
1551 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1552 buffer_len += backing_file_len;
1555 /* Write new header */
1556 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1557 g_free(buffer);
1558 if (ret == 0) {
1559 memcpy(&s->header, &new_header, sizeof(new_header));
1561 return ret;
1564 static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1566 BDRVQEDState *s = bs->opaque;
1568 bdrv_qed_close(bs);
1569 memset(s, 0, sizeof(BDRVQEDState));
1570 bdrv_qed_open(bs, NULL, bs->open_flags, NULL);
1573 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1574 BdrvCheckMode fix)
1576 BDRVQEDState *s = bs->opaque;
1578 return qed_check(s, result, !!fix);
1581 static QEMUOptionParameter qed_create_options[] = {
1583 .name = BLOCK_OPT_SIZE,
1584 .type = OPT_SIZE,
1585 .help = "Virtual disk size (in bytes)"
1586 }, {
1587 .name = BLOCK_OPT_BACKING_FILE,
1588 .type = OPT_STRING,
1589 .help = "File name of a base image"
1590 }, {
1591 .name = BLOCK_OPT_BACKING_FMT,
1592 .type = OPT_STRING,
1593 .help = "Image format of the base image"
1594 }, {
1595 .name = BLOCK_OPT_CLUSTER_SIZE,
1596 .type = OPT_SIZE,
1597 .help = "Cluster size (in bytes)",
1598 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1599 }, {
1600 .name = BLOCK_OPT_TABLE_SIZE,
1601 .type = OPT_SIZE,
1602 .help = "L1/L2 table size (in clusters)"
1604 { /* end of list */ }
1607 static BlockDriver bdrv_qed = {
1608 .format_name = "qed",
1609 .instance_size = sizeof(BDRVQEDState),
1610 .create_options = qed_create_options,
1612 .bdrv_probe = bdrv_qed_probe,
1613 .bdrv_rebind = bdrv_qed_rebind,
1614 .bdrv_open = bdrv_qed_open,
1615 .bdrv_close = bdrv_qed_close,
1616 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1617 .bdrv_create = bdrv_qed_create,
1618 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1619 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1620 .bdrv_make_empty = bdrv_qed_make_empty,
1621 .bdrv_aio_readv = bdrv_qed_aio_readv,
1622 .bdrv_aio_writev = bdrv_qed_aio_writev,
1623 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1624 .bdrv_truncate = bdrv_qed_truncate,
1625 .bdrv_getlength = bdrv_qed_getlength,
1626 .bdrv_get_info = bdrv_qed_get_info,
1627 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1628 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1629 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1630 .bdrv_check = bdrv_qed_check,
1633 static void bdrv_qed_init(void)
1635 bdrv_register(&bdrv_qed);
1638 block_init(bdrv_qed_init);