target/arm: Implement SVE fp complex multiply add
[qemu/ar7.git] / qemu-img.texi
blobaeb1b9e66cfd922a36f8eead5df8fe9ac37519e6
1 @example
2 @c man begin SYNOPSIS
3 @command{qemu-img} [@var{standard} @var{options}] @var{command} [@var{command} @var{options}]
4 @c man end
5 @end example
7 @c man begin DESCRIPTION
8 qemu-img allows you to create, convert and modify images offline. It can handle
9 all image formats supported by QEMU.
11 @b{Warning:} Never use qemu-img to modify images in use by a running virtual
12 machine or any other process; this may destroy the image. Also, be aware that
13 querying an image that is being modified by another process may encounter
14 inconsistent state.
15 @c man end
17 @c man begin OPTIONS
19 Standard options:
20 @table @option
21 @item -h, --help
22 Display this help and exit
23 @item -V, --version
24 Display version information and exit
25 @item -T, --trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
26 @findex --trace
27 @include qemu-option-trace.texi
28 @end table
30 The following commands are supported:
32 @include qemu-img-cmds.texi
34 Command parameters:
35 @table @var
37 @item filename
38 is a disk image filename
40 @item fmt
41 is the disk image format. It is guessed automatically in most cases. See below
42 for a description of the supported disk formats.
44 @item size
45 is the disk image size in bytes. Optional suffixes @code{k} or @code{K}
46 (kilobyte, 1024) @code{M} (megabyte, 1024k) and @code{G} (gigabyte, 1024M)
47 and T (terabyte, 1024G) are supported.  @code{b} is ignored.
49 @item output_filename
50 is the destination disk image filename
52 @item output_fmt
53 is the destination format
55 @item options
56 is a comma separated list of format specific options in a
57 name=value format. Use @code{-o ?} for an overview of the options supported
58 by the used format or see the format descriptions below for details.
60 @item snapshot_param
61 is param used for internal snapshot, format is
62 'snapshot.id=[ID],snapshot.name=[NAME]' or '[ID_OR_NAME]'
64 @end table
66 @table @option
68 @item --object @var{objectdef}
69 is a QEMU user creatable object definition. See the @code{qemu(1)} manual
70 page for a description of the object properties. The most common object
71 type is a @code{secret}, which is used to supply passwords and/or encryption
72 keys.
74 @item --image-opts
75 Indicates that the source @var{filename} parameter is to be interpreted as a
76 full option string, not a plain filename. This parameter is mutually
77 exclusive with the @var{-f} parameter.
79 @item --target-image-opts
80 Indicates that the @var{output_filename} parameter(s) are to be interpreted as
81 a full option string, not a plain filename. This parameter is mutually
82 exclusive with the @var{-O} parameters. It is currently required to also use
83 the @var{-n} parameter to skip image creation. This restriction may be relaxed
84 in a future release.
86 @item --force-share (-U)
87 If specified, @code{qemu-img} will open the image in shared mode, allowing
88 other QEMU processes to open it in write mode. For example, this can be used to
89 get the image information (with 'info' subcommand) when the image is used by a
90 running guest.  Note that this could produce inconsistent results because of
91 concurrent metadata changes, etc. This option is only allowed when opening
92 images in read-only mode.
94 @item --backing-chain
95 will enumerate information about backing files in a disk image chain. Refer
96 below for further description.
98 @item -c
99 indicates that target image must be compressed (qcow format only)
101 @item -h
102 with or without a command shows help and lists the supported formats
104 @item -p
105 display progress bar (compare, convert and rebase commands only).
106 If the @var{-p} option is not used for a command that supports it, the
107 progress is reported when the process receives a @code{SIGUSR1} or
108 @code{SIGINFO} signal.
110 @item -q
111 Quiet mode - do not print any output (except errors). There's no progress bar
112 in case both @var{-q} and @var{-p} options are used.
114 @item -S @var{size}
115 indicates the consecutive number of bytes that must contain only zeros
116 for qemu-img to create a sparse image during conversion. This value is rounded
117 down to the nearest 512 bytes. You may use the common size suffixes like
118 @code{k} for kilobytes.
120 @item -t @var{cache}
121 specifies the cache mode that should be used with the (destination) file. See
122 the documentation of the emulator's @code{-drive cache=...} option for allowed
123 values.
125 @item -T @var{src_cache}
126 specifies the cache mode that should be used with the source file(s). See
127 the documentation of the emulator's @code{-drive cache=...} option for allowed
128 values.
130 @end table
132 Parameters to snapshot subcommand:
134 @table @option
136 @item snapshot
137 is the name of the snapshot to create, apply or delete
138 @item -a
139 applies a snapshot (revert disk to saved state)
140 @item -c
141 creates a snapshot
142 @item -d
143 deletes a snapshot
144 @item -l
145 lists all snapshots in the given image
146 @end table
148 Parameters to compare subcommand:
150 @table @option
152 @item -f
153 First image format
154 @item -F
155 Second image format
156 @item -s
157 Strict mode - fail on different image size or sector allocation
158 @end table
160 Parameters to convert subcommand:
162 @table @option
164 @item -n
165 Skip the creation of the target volume
166 @item -m
167 Number of parallel coroutines for the convert process
168 @item -W
169 Allow out-of-order writes to the destination. This option improves performance,
170 but is only recommended for preallocated devices like host devices or other
171 raw block devices.
172 @end table
174 Parameters to dd subcommand:
176 @table @option
178 @item bs=@var{block_size}
179 defines the block size
180 @item count=@var{blocks}
181 sets the number of input blocks to copy
182 @item if=@var{input}
183 sets the input file
184 @item of=@var{output}
185 sets the output file
186 @item skip=@var{blocks}
187 sets the number of input blocks to skip
188 @end table
190 Command description:
192 @table @option
194 @item amend [--object @var{objectdef}] [--image-opts] [-p] [-p] [-f @var{fmt}] [-t @var{cache}] -o @var{options} @var{filename}
196 Amends the image format specific @var{options} for the image file
197 @var{filename}. Not all file formats support this operation.
199 @item bench [-c @var{count}] [-d @var{depth}] [-f @var{fmt}] [--flush-interval=@var{flush_interval}] [-n] [--no-drain] [-o @var{offset}] [--pattern=@var{pattern}] [-q] [-s @var{buffer_size}] [-S @var{step_size}] [-t @var{cache}] [-w] [-U] @var{filename}
201 Run a simple sequential I/O benchmark on the specified image. If @code{-w} is
202 specified, a write test is performed, otherwise a read test is performed.
204 A total number of @var{count} I/O requests is performed, each @var{buffer_size}
205 bytes in size, and with @var{depth} requests in parallel. The first request
206 starts at the position given by @var{offset}, each following request increases
207 the current position by @var{step_size}. If @var{step_size} is not given,
208 @var{buffer_size} is used for its value.
210 If @var{flush_interval} is specified for a write test, the request queue is
211 drained and a flush is issued before new writes are made whenever the number of
212 remaining requests is a multiple of @var{flush_interval}. If additionally
213 @code{--no-drain} is specified, a flush is issued without draining the request
214 queue first.
216 If @code{-n} is specified, the native AIO backend is used if possible. On
217 Linux, this option only works if @code{-t none} or @code{-t directsync} is
218 specified as well.
220 For write tests, by default a buffer filled with zeros is written. This can be
221 overridden with a pattern byte specified by @var{pattern}.
223 @item check [--object @var{objectdef}] [--image-opts] [-q] [-f @var{fmt}] [--output=@var{ofmt}] [-r [leaks | all]] [-T @var{src_cache}] [-U] @var{filename}
225 Perform a consistency check on the disk image @var{filename}. The command can
226 output in the format @var{ofmt} which is either @code{human} or @code{json}.
228 If @code{-r} is specified, qemu-img tries to repair any inconsistencies found
229 during the check. @code{-r leaks} repairs only cluster leaks, whereas
230 @code{-r all} fixes all kinds of errors, with a higher risk of choosing the
231 wrong fix or hiding corruption that has already occurred.
233 Only the formats @code{qcow2}, @code{qed} and @code{vdi} support
234 consistency checks.
236 In case the image does not have any inconsistencies, check exits with @code{0}.
237 Other exit codes indicate the kind of inconsistency found or if another error
238 occurred. The following table summarizes all exit codes of the check subcommand:
240 @table @option
242 @item 0
243 Check completed, the image is (now) consistent
244 @item 1
245 Check not completed because of internal errors
246 @item 2
247 Check completed, image is corrupted
248 @item 3
249 Check completed, image has leaked clusters, but is not corrupted
250 @item 63
251 Checks are not supported by the image format
253 @end table
255 If @code{-r} is specified, exit codes representing the image state refer to the
256 state after (the attempt at) repairing it. That is, a successful @code{-r all}
257 will yield the exit code 0, independently of the image state before.
259 @item commit [--object @var{objectdef}] [--image-opts] [-q] [-f @var{fmt}] [-t @var{cache}] [-b @var{base}] [-d] [-p] @var{filename}
261 Commit the changes recorded in @var{filename} in its base image or backing file.
262 If the backing file is smaller than the snapshot, then the backing file will be
263 resized to be the same size as the snapshot.  If the snapshot is smaller than
264 the backing file, the backing file will not be truncated.  If you want the
265 backing file to match the size of the smaller snapshot, you can safely truncate
266 it yourself once the commit operation successfully completes.
268 The image @var{filename} is emptied after the operation has succeeded. If you do
269 not need @var{filename} afterwards and intend to drop it, you may skip emptying
270 @var{filename} by specifying the @code{-d} flag.
272 If the backing chain of the given image file @var{filename} has more than one
273 layer, the backing file into which the changes will be committed may be
274 specified as @var{base} (which has to be part of @var{filename}'s backing
275 chain). If @var{base} is not specified, the immediate backing file of the top
276 image (which is @var{filename}) will be used. Note that after a commit operation
277 all images between @var{base} and the top image will be invalid and may return
278 garbage data when read. For this reason, @code{-b} implies @code{-d} (so that
279 the top image stays valid).
281 @item compare [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [-F @var{fmt}] [-T @var{src_cache}] [-p] [-q] [-s] [-U] @var{filename1} @var{filename2}
283 Check if two images have the same content. You can compare images with
284 different format or settings.
286 The format is probed unless you specify it by @var{-f} (used for
287 @var{filename1}) and/or @var{-F} (used for @var{filename2}) option.
289 By default, images with different size are considered identical if the larger
290 image contains only unallocated and/or zeroed sectors in the area after the end
291 of the other image. In addition, if any sector is not allocated in one image
292 and contains only zero bytes in the second one, it is evaluated as equal. You
293 can use Strict mode by specifying the @var{-s} option. When compare runs in
294 Strict mode, it fails in case image size differs or a sector is allocated in
295 one image and is not allocated in the second one.
297 By default, compare prints out a result message. This message displays
298 information that both images are same or the position of the first different
299 byte. In addition, result message can report different image size in case
300 Strict mode is used.
302 Compare exits with @code{0} in case the images are equal and with @code{1}
303 in case the images differ. Other exit codes mean an error occurred during
304 execution and standard error output should contain an error message.
305 The following table sumarizes all exit codes of the compare subcommand:
307 @table @option
309 @item 0
310 Images are identical
311 @item 1
312 Images differ
313 @item 2
314 Error on opening an image
315 @item 3
316 Error on checking a sector allocation
317 @item 4
318 Error on reading data
320 @end table
322 @item convert [--object @var{objectdef}] [--image-opts] [--target-image-opts] [-U] [-c] [-p] [-q] [-n] [-f @var{fmt}] [-t @var{cache}] [-T @var{src_cache}] [-O @var{output_fmt}] [-B @var{backing_file}] [-o @var{options}] [-l @var{snapshot_param}] [-S @var{sparse_size}] [-m @var{num_coroutines}] [-W] @var{filename} [@var{filename2} [...]] @var{output_filename}
324 Convert the disk image @var{filename} or a snapshot @var{snapshot_param}
325 to disk image @var{output_filename} using format @var{output_fmt}. It can be optionally compressed (@code{-c}
326 option) or use any format specific options like encryption (@code{-o} option).
328 Only the formats @code{qcow} and @code{qcow2} support compression. The
329 compression is read-only. It means that if a compressed sector is
330 rewritten, then it is rewritten as uncompressed data.
332 Image conversion is also useful to get smaller image when using a
333 growable format such as @code{qcow}: the empty sectors are detected and
334 suppressed from the destination image.
336 @var{sparse_size} indicates the consecutive number of bytes (defaults to 4k)
337 that must contain only zeros for qemu-img to create a sparse image during
338 conversion. If @var{sparse_size} is 0, the source will not be scanned for
339 unallocated or zero sectors, and the destination image will always be
340 fully allocated.
342 You can use the @var{backing_file} option to force the output image to be
343 created as a copy on write image of the specified base image; the
344 @var{backing_file} should have the same content as the input's base image,
345 however the path, image format, etc may differ.
347 If a relative path name is given, the backing file is looked up relative to
348 the directory containing @var{output_filename}.
350 If the @code{-n} option is specified, the target volume creation will be
351 skipped. This is useful for formats such as @code{rbd} if the target
352 volume has already been created with site specific options that cannot
353 be supplied through qemu-img.
355 Out of order writes can be enabled with @code{-W} to improve performance.
356 This is only recommended for preallocated devices like host devices or other
357 raw block devices. Out of order write does not work in combination with
358 creating compressed images.
360 @var{num_coroutines} specifies how many coroutines work in parallel during
361 the convert process (defaults to 8).
363 @item create [--object @var{objectdef}] [-q] [-f @var{fmt}] [-b @var{backing_file}] [-F @var{backing_fmt}] [-u] [-o @var{options}] @var{filename} [@var{size}]
365 Create the new disk image @var{filename} of size @var{size} and format
366 @var{fmt}. Depending on the file format, you can add one or more @var{options}
367 that enable additional features of this format.
369 If the option @var{backing_file} is specified, then the image will record
370 only the differences from @var{backing_file}. No size needs to be specified in
371 this case. @var{backing_file} will never be modified unless you use the
372 @code{commit} monitor command (or qemu-img commit).
374 If a relative path name is given, the backing file is looked up relative to
375 the directory containing @var{filename}.
377 Note that a given backing file will be opened to check that it is valid. Use
378 the @code{-u} option to enable unsafe backing file mode, which means that the
379 image will be created even if the associated backing file cannot be opened. A
380 matching backing file must be created or additional options be used to make the
381 backing file specification valid when you want to use an image created this
382 way.
384 The size can also be specified using the @var{size} option with @code{-o},
385 it doesn't need to be specified separately in this case.
387 @item dd [--image-opts] [-U] [-f @var{fmt}] [-O @var{output_fmt}] [bs=@var{block_size}] [count=@var{blocks}] [skip=@var{blocks}] if=@var{input} of=@var{output}
389 Dd copies from @var{input} file to @var{output} file converting it from
390 @var{fmt} format to @var{output_fmt} format.
392 The data is by default read and written using blocks of 512 bytes but can be
393 modified by specifying @var{block_size}. If count=@var{blocks} is specified
394 dd will stop reading input after reading @var{blocks} input blocks.
396 The size syntax is similar to dd(1)'s size syntax.
398 @item info [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [--output=@var{ofmt}] [--backing-chain] [-U] @var{filename}
400 Give information about the disk image @var{filename}. Use it in
401 particular to know the size reserved on disk which can be different
402 from the displayed size. If VM snapshots are stored in the disk image,
403 they are displayed too. The command can output in the format @var{ofmt}
404 which is either @code{human} or @code{json}.
406 If a disk image has a backing file chain, information about each disk image in
407 the chain can be recursively enumerated by using the option @code{--backing-chain}.
409 For instance, if you have an image chain like:
411 @example
412 base.qcow2 <- snap1.qcow2 <- snap2.qcow2
413 @end example
415 To enumerate information about each disk image in the above chain, starting from top to base, do:
417 @example
418 qemu-img info --backing-chain snap2.qcow2
419 @end example
421 @item map [-f @var{fmt}] [--output=@var{ofmt}] @var{filename}
423 Dump the metadata of image @var{filename} and its backing file chain.
424 In particular, this commands dumps the allocation state of every sector
425 of @var{filename}, together with the topmost file that allocates it in
426 the backing file chain.
428 Two option formats are possible.  The default format (@code{human})
429 only dumps known-nonzero areas of the file.  Known-zero parts of the
430 file are omitted altogether, and likewise for parts that are not allocated
431 throughout the chain.  @command{qemu-img} output will identify a file
432 from where the data can be read, and the offset in the file.  Each line
433 will include four fields, the first three of which are hexadecimal
434 numbers.  For example the first line of:
435 @example
436 Offset          Length          Mapped to       File
437 0               0x20000         0x50000         /tmp/overlay.qcow2
438 0x100000        0x10000         0x95380000      /tmp/backing.qcow2
439 @end example
440 @noindent
441 means that 0x20000 (131072) bytes starting at offset 0 in the image are
442 available in /tmp/overlay.qcow2 (opened in @code{raw} format) starting
443 at offset 0x50000 (327680).  Data that is compressed, encrypted, or
444 otherwise not available in raw format will cause an error if @code{human}
445 format is in use.  Note that file names can include newlines, thus it is
446 not safe to parse this output format in scripts.
448 The alternative format @code{json} will return an array of dictionaries
449 in JSON format.  It will include similar information in
450 the @code{start}, @code{length}, @code{offset} fields;
451 it will also include other more specific information:
452 @itemize @minus
453 @item
454 whether the sectors contain actual data or not (boolean field @code{data};
455 if false, the sectors are either unallocated or stored as optimized
456 all-zero clusters);
458 @item
459 whether the data is known to read as zero (boolean field @code{zero});
461 @item
462 in order to make the output shorter, the target file is expressed as
463 a @code{depth}; for example, a depth of 2 refers to the backing file
464 of the backing file of @var{filename}.
465 @end itemize
467 In JSON format, the @code{offset} field is optional; it is absent in
468 cases where @code{human} format would omit the entry or exit with an error.
469 If @code{data} is false and the @code{offset} field is present, the
470 corresponding sectors in the file are not yet in use, but they are
471 preallocated.
473 For more information, consult @file{include/block/block.h} in QEMU's
474 source code.
476 @item measure [--output=@var{ofmt}] [-O @var{output_fmt}] [-o @var{options}] [--size @var{N} | [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [-l @var{snapshot_param}] @var{filename}]
478 Calculate the file size required for a new image.  This information can be used
479 to size logical volumes or SAN LUNs appropriately for the image that will be
480 placed in them.  The values reported are guaranteed to be large enough to fit
481 the image.  The command can output in the format @var{ofmt} which is either
482 @code{human} or @code{json}.
484 If the size @var{N} is given then act as if creating a new empty image file
485 using @command{qemu-img create}.  If @var{filename} is given then act as if
486 converting an existing image file using @command{qemu-img convert}.  The format
487 of the new file is given by @var{output_fmt} while the format of an existing
488 file is given by @var{fmt}.
490 A snapshot in an existing image can be specified using @var{snapshot_param}.
492 The following fields are reported:
493 @example
494 required size: 524288
495 fully allocated size: 1074069504
496 @end example
498 The @code{required size} is the file size of the new image.  It may be smaller
499 than the virtual disk size if the image format supports compact representation.
501 The @code{fully allocated size} is the file size of the new image once data has
502 been written to all sectors.  This is the maximum size that the image file can
503 occupy with the exception of internal snapshots, dirty bitmaps, vmstate data,
504 and other advanced image format features.
506 @item snapshot [--object @var{objectdef}] [--image-opts] [-U] [-q] [-l | -a @var{snapshot} | -c @var{snapshot} | -d @var{snapshot}] @var{filename}
508 List, apply, create or delete snapshots in image @var{filename}.
510 @item rebase [--object @var{objectdef}] [--image-opts] [-U] [-q] [-f @var{fmt}] [-t @var{cache}] [-T @var{src_cache}] [-p] [-u] -b @var{backing_file} [-F @var{backing_fmt}] @var{filename}
512 Changes the backing file of an image. Only the formats @code{qcow2} and
513 @code{qed} support changing the backing file.
515 The backing file is changed to @var{backing_file} and (if the image format of
516 @var{filename} supports this) the backing file format is changed to
517 @var{backing_fmt}. If @var{backing_file} is specified as ``'' (the empty
518 string), then the image is rebased onto no backing file (i.e. it will exist
519 independently of any backing file).
521 If a relative path name is given, the backing file is looked up relative to
522 the directory containing @var{filename}.
524 @var{cache} specifies the cache mode to be used for @var{filename}, whereas
525 @var{src_cache} specifies the cache mode for reading backing files.
527 There are two different modes in which @code{rebase} can operate:
528 @table @option
529 @item Safe mode
530 This is the default mode and performs a real rebase operation. The new backing
531 file may differ from the old one and qemu-img rebase will take care of keeping
532 the guest-visible content of @var{filename} unchanged.
534 In order to achieve this, any clusters that differ between @var{backing_file}
535 and the old backing file of @var{filename} are merged into @var{filename}
536 before actually changing the backing file.
538 Note that the safe mode is an expensive operation, comparable to converting
539 an image. It only works if the old backing file still exists.
541 @item Unsafe mode
542 qemu-img uses the unsafe mode if @code{-u} is specified. In this mode, only the
543 backing file name and format of @var{filename} is changed without any checks
544 on the file contents. The user must take care of specifying the correct new
545 backing file, or the guest-visible content of the image will be corrupted.
547 This mode is useful for renaming or moving the backing file to somewhere else.
548 It can be used without an accessible old backing file, i.e. you can use it to
549 fix an image whose backing file has already been moved/renamed.
550 @end table
552 You can use @code{rebase} to perform a ``diff'' operation on two
553 disk images.  This can be useful when you have copied or cloned
554 a guest, and you want to get back to a thin image on top of a
555 template or base image.
557 Say that @code{base.img} has been cloned as @code{modified.img} by
558 copying it, and that the @code{modified.img} guest has run so there
559 are now some changes compared to @code{base.img}.  To construct a thin
560 image called @code{diff.qcow2} that contains just the differences, do:
562 @example
563 qemu-img create -f qcow2 -b modified.img diff.qcow2
564 qemu-img rebase -b base.img diff.qcow2
565 @end example
567 At this point, @code{modified.img} can be discarded, since
568 @code{base.img + diff.qcow2} contains the same information.
570 @item resize [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [--preallocation=@var{prealloc}] [-q] [--shrink] @var{filename} [+ | -]@var{size}
572 Change the disk image as if it had been created with @var{size}.
574 Before using this command to shrink a disk image, you MUST use file system and
575 partitioning tools inside the VM to reduce allocated file systems and partition
576 sizes accordingly.  Failure to do so will result in data loss!
578 When shrinking images, the @code{--shrink} option must be given. This informs
579 qemu-img that the user acknowledges all loss of data beyond the truncated
580 image's end.
582 After using this command to grow a disk image, you must use file system and
583 partitioning tools inside the VM to actually begin using the new space on the
584 device.
586 When growing an image, the @code{--preallocation} option may be used to specify
587 how the additional image area should be allocated on the host.  See the format
588 description in the @code{NOTES} section which values are allowed.  Using this
589 option may result in slightly more data being allocated than necessary.
591 @end table
592 @c man end
594 @ignore
595 @c man begin NOTES
596 Supported image file formats:
598 @table @option
599 @item raw
601 Raw disk image format (default). This format has the advantage of
602 being simple and easily exportable to all other emulators. If your
603 file system supports @emph{holes} (for example in ext2 or ext3 on
604 Linux or NTFS on Windows), then only the written sectors will reserve
605 space. Use @code{qemu-img info} to know the real size used by the
606 image or @code{ls -ls} on Unix/Linux.
608 Supported options:
609 @table @code
610 @item preallocation
611 Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
612 @code{falloc} mode preallocates space for image by calling posix_fallocate().
613 @code{full} mode preallocates space for image by writing zeros to underlying
614 storage.
615 @end table
617 @item qcow2
618 QEMU image format, the most versatile format. Use it to have smaller
619 images (useful if your filesystem does not supports holes, for example
620 on Windows), optional AES encryption, zlib based compression and
621 support of multiple VM snapshots.
623 Supported options:
624 @table @code
625 @item compat
626 Determines the qcow2 version to use. @code{compat=0.10} uses the
627 traditional image format that can be read by any QEMU since 0.10.
628 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
629 newer understand (this is the default). Amongst others, this includes zero
630 clusters, which allow efficient copy-on-read for sparse images.
632 @item backing_file
633 File name of a base image (see @option{create} subcommand)
634 @item backing_fmt
635 Image format of the base image
636 @item encryption
637 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
639 The use of encryption in qcow and qcow2 images is considered to be flawed by
640 modern cryptography standards, suffering from a number of design problems:
642 @itemize @minus
643 @item
644 The AES-CBC cipher is used with predictable initialization vectors based
645 on the sector number. This makes it vulnerable to chosen plaintext attacks
646 which can reveal the existence of encrypted data.
647 @item
648 The user passphrase is directly used as the encryption key. A poorly
649 chosen or short passphrase will compromise the security of the encryption.
650 @item
651 In the event of the passphrase being compromised there is no way to
652 change the passphrase to protect data in any qcow images. The files must
653 be cloned, using a different encryption passphrase in the new file. The
654 original file must then be securely erased using a program like shred,
655 though even this is ineffective with many modern storage technologies.
656 @item
657 Initialization vectors used to encrypt sectors are based on the
658 guest virtual sector number, instead of the host physical sector. When
659 a disk image has multiple internal snapshots this means that data in
660 multiple physical sectors is encrypted with the same initialization
661 vector. With the CBC mode, this opens the possibility of watermarking
662 attacks if the attack can collect multiple sectors encrypted with the
663 same IV and some predictable data. Having multiple qcow2 images with
664 the same passphrase also exposes this weakness since the passphrase
665 is directly used as the key.
666 @end itemize
668 Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
669 recommended to use an alternative encryption technology such as the
670 Linux dm-crypt / LUKS system.
672 @item cluster_size
673 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
674 sizes can improve the image file size whereas larger cluster sizes generally
675 provide better performance.
677 @item preallocation
678 Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
679 @code{full}). An image with preallocated metadata is initially larger but can
680 improve performance when the image needs to grow. @code{falloc} and @code{full}
681 preallocations are like the same options of @code{raw} format, but sets up
682 metadata also.
684 @item lazy_refcounts
685 If this option is set to @code{on}, reference count updates are postponed with
686 the goal of avoiding metadata I/O and improving performance. This is
687 particularly interesting with @option{cache=writethrough} which doesn't batch
688 metadata updates. The tradeoff is that after a host crash, the reference count
689 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
690 check -r all} is required, which may take some time.
692 This option can only be enabled if @code{compat=1.1} is specified.
694 @item nocow
695 If this option is set to @code{on}, it will turn off COW of the file. It's only
696 valid on btrfs, no effect on other file systems.
698 Btrfs has low performance when hosting a VM image file, even more when the guest
699 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
700 this bad performance. Generally there are two ways to turn off COW on btrfs:
701 a) Disable it by mounting with nodatacow, then all newly created files will be
702 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
703 does.
705 Note: this option is only valid to new or empty files. If there is an existing
706 file which is COW and has data blocks already, it couldn't be changed to NOCOW
707 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
708 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
710 @end table
712 @item Other
713 QEMU also supports various other image file formats for compatibility with
714 older QEMU versions or other hypervisors, including VMDK, VDI, VHD (vpc), VHDX,
715 qcow1 and QED. For a full list of supported formats see @code{qemu-img --help}.
716 For a more detailed description of these formats, see the QEMU Emulation User
717 Documentation.
719 The main purpose of the block drivers for these formats is image conversion.
720 For running VMs, it is recommended to convert the disk images to either raw or
721 qcow2 in order to achieve good performance.
722 @end table
725 @c man end
727 @setfilename qemu-img
728 @settitle QEMU disk image utility
730 @c man begin SEEALSO
731 The HTML documentation of QEMU for more precise information and Linux
732 user mode emulator invocation.
733 @c man end
735 @c man begin AUTHOR
736 Fabrice Bellard
737 @c man end
739 @end ignore