target/i386/tcg: Reorg push/pop within seg_helper.c
[qemu/ar7.git] / target / avr / helper.c
blob345708a1b39fb07a6ed12d272575413746e503fd
1 /*
2 * QEMU AVR CPU helpers
4 * Copyright (c) 2016-2020 Michael Rolnik
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu/error-report.h"
24 #include "cpu.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "exec/exec-all.h"
27 #include "exec/page-protection.h"
28 #include "exec/cpu_ldst.h"
29 #include "exec/address-spaces.h"
30 #include "exec/helper-proto.h"
32 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
34 CPUAVRState *env = cpu_env(cs);
37 * We cannot separate a skip from the next instruction,
38 * as the skip would not be preserved across the interrupt.
39 * Separating the two insn normally only happens at page boundaries.
41 if (env->skip) {
42 return false;
45 if (interrupt_request & CPU_INTERRUPT_RESET) {
46 if (cpu_interrupts_enabled(env)) {
47 cs->exception_index = EXCP_RESET;
48 avr_cpu_do_interrupt(cs);
50 cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
51 return true;
54 if (interrupt_request & CPU_INTERRUPT_HARD) {
55 if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
56 int index = ctz64(env->intsrc);
57 cs->exception_index = EXCP_INT(index);
58 avr_cpu_do_interrupt(cs);
60 env->intsrc &= env->intsrc - 1; /* clear the interrupt */
61 if (!env->intsrc) {
62 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
64 return true;
67 return false;
70 void avr_cpu_do_interrupt(CPUState *cs)
72 CPUAVRState *env = cpu_env(cs);
74 uint32_t ret = env->pc_w;
75 int vector = 0;
76 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
77 int base = 0;
79 if (cs->exception_index == EXCP_RESET) {
80 vector = 0;
81 } else if (env->intsrc != 0) {
82 vector = ctz64(env->intsrc) + 1;
85 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
86 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
87 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
88 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
89 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
90 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
91 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
92 } else {
93 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
96 env->pc_w = base + vector * size;
97 env->sregI = 0; /* clear Global Interrupt Flag */
99 cs->exception_index = -1;
102 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
104 return addr; /* I assume 1:1 address correspondence */
107 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
108 MMUAccessType access_type, int mmu_idx,
109 bool probe, uintptr_t retaddr)
111 int prot, page_size = TARGET_PAGE_SIZE;
112 uint32_t paddr;
114 address &= TARGET_PAGE_MASK;
116 if (mmu_idx == MMU_CODE_IDX) {
117 /* Access to code in flash. */
118 paddr = OFFSET_CODE + address;
119 prot = PAGE_READ | PAGE_EXEC;
120 if (paddr >= OFFSET_DATA) {
122 * This should not be possible via any architectural operations.
123 * There is certainly not an exception that we can deliver.
124 * Accept probing that might come from generic code.
126 if (probe) {
127 return false;
129 error_report("execution left flash memory");
130 abort();
132 } else {
133 /* Access to memory. */
134 paddr = OFFSET_DATA + address;
135 prot = PAGE_READ | PAGE_WRITE;
136 if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
138 * Access to CPU registers, exit and rebuilt this TB to use
139 * full access in case it touches specially handled registers
140 * like SREG or SP. For probing, set page_size = 1, in order
141 * to force tlb_fill to be called for the next access.
143 if (probe) {
144 page_size = 1;
145 } else {
146 cpu_env(cs)->fullacc = 1;
147 cpu_loop_exit_restore(cs, retaddr);
152 tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
153 return true;
157 * helpers
160 void helper_sleep(CPUAVRState *env)
162 CPUState *cs = env_cpu(env);
164 cs->exception_index = EXCP_HLT;
165 cpu_loop_exit(cs);
168 void helper_unsupported(CPUAVRState *env)
170 CPUState *cs = env_cpu(env);
173 * I count not find what happens on the real platform, so
174 * it's EXCP_DEBUG for meanwhile
176 cs->exception_index = EXCP_DEBUG;
177 if (qemu_loglevel_mask(LOG_UNIMP)) {
178 qemu_log("UNSUPPORTED\n");
179 cpu_dump_state(cs, stderr, 0);
181 cpu_loop_exit(cs);
184 void helper_debug(CPUAVRState *env)
186 CPUState *cs = env_cpu(env);
188 cs->exception_index = EXCP_DEBUG;
189 cpu_loop_exit(cs);
192 void helper_break(CPUAVRState *env)
194 CPUState *cs = env_cpu(env);
196 cs->exception_index = EXCP_DEBUG;
197 cpu_loop_exit(cs);
200 void helper_wdr(CPUAVRState *env)
202 qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
206 * This function implements IN instruction
208 * It does the following
209 * a. if an IO register belongs to CPU, its value is read and returned
210 * b. otherwise io address is translated to mem address and physical memory
211 * is read.
212 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
215 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
217 target_ulong data = 0;
219 switch (port) {
220 case 0x38: /* RAMPD */
221 data = 0xff & (env->rampD >> 16);
222 break;
223 case 0x39: /* RAMPX */
224 data = 0xff & (env->rampX >> 16);
225 break;
226 case 0x3a: /* RAMPY */
227 data = 0xff & (env->rampY >> 16);
228 break;
229 case 0x3b: /* RAMPZ */
230 data = 0xff & (env->rampZ >> 16);
231 break;
232 case 0x3c: /* EIND */
233 data = 0xff & (env->eind >> 16);
234 break;
235 case 0x3d: /* SPL */
236 data = env->sp & 0x00ff;
237 break;
238 case 0x3e: /* SPH */
239 data = env->sp >> 8;
240 break;
241 case 0x3f: /* SREG */
242 data = cpu_get_sreg(env);
243 break;
244 default:
245 /* not a special register, pass to normal memory access */
246 data = address_space_ldub(&address_space_memory,
247 OFFSET_IO_REGISTERS + port,
248 MEMTXATTRS_UNSPECIFIED, NULL);
251 return data;
255 * This function implements OUT instruction
257 * It does the following
258 * a. if an IO register belongs to CPU, its value is written into the register
259 * b. otherwise io address is translated to mem address and physical memory
260 * is written.
261 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
264 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
266 data &= 0x000000ff;
268 switch (port) {
269 case 0x38: /* RAMPD */
270 if (avr_feature(env, AVR_FEATURE_RAMPD)) {
271 env->rampD = (data & 0xff) << 16;
273 break;
274 case 0x39: /* RAMPX */
275 if (avr_feature(env, AVR_FEATURE_RAMPX)) {
276 env->rampX = (data & 0xff) << 16;
278 break;
279 case 0x3a: /* RAMPY */
280 if (avr_feature(env, AVR_FEATURE_RAMPY)) {
281 env->rampY = (data & 0xff) << 16;
283 break;
284 case 0x3b: /* RAMPZ */
285 if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
286 env->rampZ = (data & 0xff) << 16;
288 break;
289 case 0x3c: /* EIDN */
290 env->eind = (data & 0xff) << 16;
291 break;
292 case 0x3d: /* SPL */
293 env->sp = (env->sp & 0xff00) | (data);
294 break;
295 case 0x3e: /* SPH */
296 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
297 env->sp = (env->sp & 0x00ff) | (data << 8);
299 break;
300 case 0x3f: /* SREG */
301 cpu_set_sreg(env, data);
302 break;
303 default:
304 /* not a special register, pass to normal memory access */
305 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
306 data, MEMTXATTRS_UNSPECIFIED, NULL);
311 * this function implements LD instruction when there is a possibility to read
312 * from a CPU register
314 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
316 uint8_t data;
318 env->fullacc = false;
320 if (addr < NUMBER_OF_CPU_REGISTERS) {
321 /* CPU registers */
322 data = env->r[addr];
323 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
324 /* IO registers */
325 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
326 } else {
327 /* memory */
328 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
329 MEMTXATTRS_UNSPECIFIED, NULL);
331 return data;
335 * this function implements ST instruction when there is a possibility to write
336 * into a CPU register
338 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
340 env->fullacc = false;
342 /* Following logic assumes this: */
343 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
344 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
345 NUMBER_OF_CPU_REGISTERS);
347 if (addr < NUMBER_OF_CPU_REGISTERS) {
348 /* CPU registers */
349 env->r[addr] = data;
350 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
351 /* IO registers */
352 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
353 } else {
354 /* memory */
355 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
356 MEMTXATTRS_UNSPECIFIED, NULL);