docs: add Orange Pi PC document
[qemu/ar7.git] / target / i386 / gdbstub.c
blob572ead641caad29491003998347fefbcad28e110
1 /*
2 * x86 gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 * Copyright (c) 2013 SUSE LINUX Products GmbH
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
24 #ifdef TARGET_X86_64
25 static const int gpr_map[16] = {
26 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
27 8, 9, 10, 11, 12, 13, 14, 15
29 #else
30 #define gpr_map gpr_map32
31 #endif
32 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
35 * Keep these in sync with assignment to
36 * gdb_num_core_regs in target/i386/cpu.c
37 * and with the machine description
41 * SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base
45 * general regs -----> 8 or 16
47 #define IDX_NB_IP 1
48 #define IDX_NB_FLAGS 1
49 #define IDX_NB_SEG (6 + 3)
50 #define IDX_NB_CTL 6
51 #define IDX_NB_FP 16
53 * fpu regs ----------> 8 or 16
55 #define IDX_NB_MXCSR 1
57 * total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66
60 #define IDX_IP_REG CPU_NB_REGS
61 #define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP)
62 #define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS)
63 #define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG)
64 #define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL)
65 #define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP)
66 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
68 #define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0)
69 #define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1)
70 #define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2)
71 #define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3)
72 #define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4)
73 #define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5)
75 #ifdef TARGET_X86_64
76 #define GDB_FORCE_64 1
77 #else
78 #define GDB_FORCE_64 0
79 #endif
82 int x86_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
84 X86CPU *cpu = X86_CPU(cs);
85 CPUX86State *env = &cpu->env;
87 uint64_t tpr;
89 /* N.B. GDB can't deal with changes in registers or sizes in the middle
90 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
91 as if we're on a 64-bit cpu. */
93 if (n < CPU_NB_REGS) {
94 if (TARGET_LONG_BITS == 64) {
95 if (env->hflags & HF_CS64_MASK) {
96 return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]);
97 } else if (n < CPU_NB_REGS32) {
98 return gdb_get_reg64(mem_buf,
99 env->regs[gpr_map[n]] & 0xffffffffUL);
100 } else {
101 memset(mem_buf, 0, sizeof(target_ulong));
102 return sizeof(target_ulong);
104 } else {
105 return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]);
107 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
108 #ifdef USE_X86LDOUBLE
109 /* FIXME: byteswap float values - after fixing fpregs layout. */
110 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
111 #else
112 memset(mem_buf, 0, 10);
113 #endif
114 return 10;
115 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
116 n -= IDX_XMM_REGS;
117 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
118 stq_p(mem_buf, env->xmm_regs[n].ZMM_Q(0));
119 stq_p(mem_buf + 8, env->xmm_regs[n].ZMM_Q(1));
120 return 16;
122 } else {
123 switch (n) {
124 case IDX_IP_REG:
125 if (TARGET_LONG_BITS == 64) {
126 if (env->hflags & HF_CS64_MASK) {
127 return gdb_get_reg64(mem_buf, env->eip);
128 } else {
129 return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL);
131 } else {
132 return gdb_get_reg32(mem_buf, env->eip);
134 case IDX_FLAGS_REG:
135 return gdb_get_reg32(mem_buf, env->eflags);
137 case IDX_SEG_REGS:
138 return gdb_get_reg32(mem_buf, env->segs[R_CS].selector);
139 case IDX_SEG_REGS + 1:
140 return gdb_get_reg32(mem_buf, env->segs[R_SS].selector);
141 case IDX_SEG_REGS + 2:
142 return gdb_get_reg32(mem_buf, env->segs[R_DS].selector);
143 case IDX_SEG_REGS + 3:
144 return gdb_get_reg32(mem_buf, env->segs[R_ES].selector);
145 case IDX_SEG_REGS + 4:
146 return gdb_get_reg32(mem_buf, env->segs[R_FS].selector);
147 case IDX_SEG_REGS + 5:
148 return gdb_get_reg32(mem_buf, env->segs[R_GS].selector);
150 case IDX_SEG_REGS + 6:
151 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
152 return gdb_get_reg64(mem_buf, env->segs[R_FS].base);
154 return gdb_get_reg32(mem_buf, env->segs[R_FS].base);
156 case IDX_SEG_REGS + 7:
157 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
158 return gdb_get_reg64(mem_buf, env->segs[R_GS].base);
160 return gdb_get_reg32(mem_buf, env->segs[R_GS].base);
162 case IDX_SEG_REGS + 8:
163 #ifdef TARGET_X86_64
164 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
165 return gdb_get_reg64(mem_buf, env->kernelgsbase);
167 return gdb_get_reg32(mem_buf, env->kernelgsbase);
168 #else
169 return gdb_get_reg32(mem_buf, 0);
170 #endif
172 case IDX_FP_REGS + 8:
173 return gdb_get_reg32(mem_buf, env->fpuc);
174 case IDX_FP_REGS + 9:
175 return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) |
176 (env->fpstt & 0x7) << 11);
177 case IDX_FP_REGS + 10:
178 return gdb_get_reg32(mem_buf, 0); /* ftag */
179 case IDX_FP_REGS + 11:
180 return gdb_get_reg32(mem_buf, 0); /* fiseg */
181 case IDX_FP_REGS + 12:
182 return gdb_get_reg32(mem_buf, 0); /* fioff */
183 case IDX_FP_REGS + 13:
184 return gdb_get_reg32(mem_buf, 0); /* foseg */
185 case IDX_FP_REGS + 14:
186 return gdb_get_reg32(mem_buf, 0); /* fooff */
187 case IDX_FP_REGS + 15:
188 return gdb_get_reg32(mem_buf, 0); /* fop */
190 case IDX_MXCSR_REG:
191 return gdb_get_reg32(mem_buf, env->mxcsr);
193 case IDX_CTL_CR0_REG:
194 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
195 return gdb_get_reg64(mem_buf, env->cr[0]);
197 return gdb_get_reg32(mem_buf, env->cr[0]);
199 case IDX_CTL_CR2_REG:
200 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
201 return gdb_get_reg64(mem_buf, env->cr[2]);
203 return gdb_get_reg32(mem_buf, env->cr[2]);
205 case IDX_CTL_CR3_REG:
206 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
207 return gdb_get_reg64(mem_buf, env->cr[3]);
209 return gdb_get_reg32(mem_buf, env->cr[3]);
211 case IDX_CTL_CR4_REG:
212 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
213 return gdb_get_reg64(mem_buf, env->cr[4]);
215 return gdb_get_reg32(mem_buf, env->cr[4]);
217 case IDX_CTL_CR8_REG:
218 #ifdef CONFIG_SOFTMMU
219 tpr = cpu_get_apic_tpr(cpu->apic_state);
220 #else
221 tpr = 0;
222 #endif
223 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
224 return gdb_get_reg64(mem_buf, tpr);
226 return gdb_get_reg32(mem_buf, tpr);
228 case IDX_CTL_EFER_REG:
229 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
230 return gdb_get_reg64(mem_buf, env->efer);
232 return gdb_get_reg32(mem_buf, env->efer);
235 return 0;
238 static int x86_cpu_gdb_load_seg(X86CPU *cpu, int sreg, uint8_t *mem_buf)
240 CPUX86State *env = &cpu->env;
241 uint16_t selector = ldl_p(mem_buf);
243 if (selector != env->segs[sreg].selector) {
244 #if defined(CONFIG_USER_ONLY)
245 cpu_x86_load_seg(env, sreg, selector);
246 #else
247 unsigned int limit, flags;
248 target_ulong base;
250 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
251 int dpl = (env->eflags & VM_MASK) ? 3 : 0;
252 base = selector << 4;
253 limit = 0xffff;
254 flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
255 DESC_A_MASK | (dpl << DESC_DPL_SHIFT);
256 } else {
257 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit,
258 &flags)) {
259 return 4;
262 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
263 #endif
265 return 4;
268 int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
270 X86CPU *cpu = X86_CPU(cs);
271 CPUX86State *env = &cpu->env;
272 uint32_t tmp;
274 /* N.B. GDB can't deal with changes in registers or sizes in the middle
275 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
276 as if we're on a 64-bit cpu. */
278 if (n < CPU_NB_REGS) {
279 if (TARGET_LONG_BITS == 64) {
280 if (env->hflags & HF_CS64_MASK) {
281 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
282 } else if (n < CPU_NB_REGS32) {
283 env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL;
285 return sizeof(target_ulong);
286 } else if (n < CPU_NB_REGS32) {
287 n = gpr_map32[n];
288 env->regs[n] &= ~0xffffffffUL;
289 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
290 return 4;
292 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
293 #ifdef USE_X86LDOUBLE
294 /* FIXME: byteswap float values - after fixing fpregs layout. */
295 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
296 #endif
297 return 10;
298 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
299 n -= IDX_XMM_REGS;
300 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
301 env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf);
302 env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8);
303 return 16;
305 } else {
306 switch (n) {
307 case IDX_IP_REG:
308 if (TARGET_LONG_BITS == 64) {
309 if (env->hflags & HF_CS64_MASK) {
310 env->eip = ldq_p(mem_buf);
311 } else {
312 env->eip = ldq_p(mem_buf) & 0xffffffffUL;
314 return 8;
315 } else {
316 env->eip &= ~0xffffffffUL;
317 env->eip |= (uint32_t)ldl_p(mem_buf);
318 return 4;
320 case IDX_FLAGS_REG:
321 env->eflags = ldl_p(mem_buf);
322 return 4;
324 case IDX_SEG_REGS:
325 return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
326 case IDX_SEG_REGS + 1:
327 return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
328 case IDX_SEG_REGS + 2:
329 return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
330 case IDX_SEG_REGS + 3:
331 return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
332 case IDX_SEG_REGS + 4:
333 return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
334 case IDX_SEG_REGS + 5:
335 return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);
337 case IDX_SEG_REGS + 6:
338 if (env->hflags & HF_CS64_MASK) {
339 env->segs[R_FS].base = ldq_p(mem_buf);
340 return 8;
342 env->segs[R_FS].base = ldl_p(mem_buf);
343 return 4;
345 case IDX_SEG_REGS + 7:
346 if (env->hflags & HF_CS64_MASK) {
347 env->segs[R_GS].base = ldq_p(mem_buf);
348 return 8;
350 env->segs[R_GS].base = ldl_p(mem_buf);
351 return 4;
353 case IDX_SEG_REGS + 8:
354 #ifdef TARGET_X86_64
355 if (env->hflags & HF_CS64_MASK) {
356 env->kernelgsbase = ldq_p(mem_buf);
357 return 8;
359 env->kernelgsbase = ldl_p(mem_buf);
360 #endif
361 return 4;
363 case IDX_FP_REGS + 8:
364 cpu_set_fpuc(env, ldl_p(mem_buf));
365 return 4;
366 case IDX_FP_REGS + 9:
367 tmp = ldl_p(mem_buf);
368 env->fpstt = (tmp >> 11) & 7;
369 env->fpus = tmp & ~0x3800;
370 return 4;
371 case IDX_FP_REGS + 10: /* ftag */
372 return 4;
373 case IDX_FP_REGS + 11: /* fiseg */
374 return 4;
375 case IDX_FP_REGS + 12: /* fioff */
376 return 4;
377 case IDX_FP_REGS + 13: /* foseg */
378 return 4;
379 case IDX_FP_REGS + 14: /* fooff */
380 return 4;
381 case IDX_FP_REGS + 15: /* fop */
382 return 4;
384 case IDX_MXCSR_REG:
385 cpu_set_mxcsr(env, ldl_p(mem_buf));
386 return 4;
388 case IDX_CTL_CR0_REG:
389 if (env->hflags & HF_CS64_MASK) {
390 cpu_x86_update_cr0(env, ldq_p(mem_buf));
391 return 8;
393 cpu_x86_update_cr0(env, ldl_p(mem_buf));
394 return 4;
396 case IDX_CTL_CR2_REG:
397 if (env->hflags & HF_CS64_MASK) {
398 env->cr[2] = ldq_p(mem_buf);
399 return 8;
401 env->cr[2] = ldl_p(mem_buf);
402 return 4;
404 case IDX_CTL_CR3_REG:
405 if (env->hflags & HF_CS64_MASK) {
406 cpu_x86_update_cr3(env, ldq_p(mem_buf));
407 return 8;
409 cpu_x86_update_cr3(env, ldl_p(mem_buf));
410 return 4;
412 case IDX_CTL_CR4_REG:
413 if (env->hflags & HF_CS64_MASK) {
414 cpu_x86_update_cr4(env, ldq_p(mem_buf));
415 return 8;
417 cpu_x86_update_cr4(env, ldl_p(mem_buf));
418 return 4;
420 case IDX_CTL_CR8_REG:
421 if (env->hflags & HF_CS64_MASK) {
422 #ifdef CONFIG_SOFTMMU
423 cpu_set_apic_tpr(cpu->apic_state, ldq_p(mem_buf));
424 #endif
425 return 8;
427 #ifdef CONFIG_SOFTMMU
428 cpu_set_apic_tpr(cpu->apic_state, ldl_p(mem_buf));
429 #endif
430 return 4;
432 case IDX_CTL_EFER_REG:
433 if (env->hflags & HF_CS64_MASK) {
434 cpu_load_efer(env, ldq_p(mem_buf));
435 return 8;
437 cpu_load_efer(env, ldl_p(mem_buf));
438 return 4;
442 /* Unrecognised register. */
443 return 0;