1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
6 #include "qemu/error-report.h"
7 #include "sysemu/kvm.h"
10 #include "migration/cpu.h"
12 static bool vfp_needed(void *opaque
)
15 CPUARMState
*env
= &cpu
->env
;
17 return arm_feature(env
, ARM_FEATURE_VFP
);
20 static int get_fpscr(QEMUFile
*f
, void *opaque
, size_t size
,
24 CPUARMState
*env
= &cpu
->env
;
25 uint32_t val
= qemu_get_be32(f
);
27 vfp_set_fpscr(env
, val
);
31 static int put_fpscr(QEMUFile
*f
, void *opaque
, size_t size
,
32 VMStateField
*field
, QJSON
*vmdesc
)
35 CPUARMState
*env
= &cpu
->env
;
37 qemu_put_be32(f
, vfp_get_fpscr(env
));
41 static const VMStateInfo vmstate_fpscr
= {
47 static const VMStateDescription vmstate_vfp
= {
50 .minimum_version_id
= 3,
52 .fields
= (VMStateField
[]) {
53 /* For compatibility, store Qn out of Zn here. */
54 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[0].d
, ARMCPU
, 0, 2),
55 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[1].d
, ARMCPU
, 0, 2),
56 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[2].d
, ARMCPU
, 0, 2),
57 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[3].d
, ARMCPU
, 0, 2),
58 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[4].d
, ARMCPU
, 0, 2),
59 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[5].d
, ARMCPU
, 0, 2),
60 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[6].d
, ARMCPU
, 0, 2),
61 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[7].d
, ARMCPU
, 0, 2),
62 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[8].d
, ARMCPU
, 0, 2),
63 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[9].d
, ARMCPU
, 0, 2),
64 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[10].d
, ARMCPU
, 0, 2),
65 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[11].d
, ARMCPU
, 0, 2),
66 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[12].d
, ARMCPU
, 0, 2),
67 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[13].d
, ARMCPU
, 0, 2),
68 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[14].d
, ARMCPU
, 0, 2),
69 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[15].d
, ARMCPU
, 0, 2),
70 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[16].d
, ARMCPU
, 0, 2),
71 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[17].d
, ARMCPU
, 0, 2),
72 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[18].d
, ARMCPU
, 0, 2),
73 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[19].d
, ARMCPU
, 0, 2),
74 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[20].d
, ARMCPU
, 0, 2),
75 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[21].d
, ARMCPU
, 0, 2),
76 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[22].d
, ARMCPU
, 0, 2),
77 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[23].d
, ARMCPU
, 0, 2),
78 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[24].d
, ARMCPU
, 0, 2),
79 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[25].d
, ARMCPU
, 0, 2),
80 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[26].d
, ARMCPU
, 0, 2),
81 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[27].d
, ARMCPU
, 0, 2),
82 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[28].d
, ARMCPU
, 0, 2),
83 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[29].d
, ARMCPU
, 0, 2),
84 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[30].d
, ARMCPU
, 0, 2),
85 VMSTATE_UINT64_SUB_ARRAY(env
.vfp
.zregs
[31].d
, ARMCPU
, 0, 2),
87 /* The xregs array is a little awkward because element 1 (FPSCR)
88 * requires a specific accessor, so we have to split it up in
91 VMSTATE_UINT32(env
.vfp
.xregs
[0], ARMCPU
),
92 VMSTATE_UINT32_SUB_ARRAY(env
.vfp
.xregs
, ARMCPU
, 2, 14),
96 .size
= sizeof(uint32_t),
97 .info
= &vmstate_fpscr
,
101 VMSTATE_END_OF_LIST()
105 static bool iwmmxt_needed(void *opaque
)
107 ARMCPU
*cpu
= opaque
;
108 CPUARMState
*env
= &cpu
->env
;
110 return arm_feature(env
, ARM_FEATURE_IWMMXT
);
113 static const VMStateDescription vmstate_iwmmxt
= {
114 .name
= "cpu/iwmmxt",
116 .minimum_version_id
= 1,
117 .needed
= iwmmxt_needed
,
118 .fields
= (VMStateField
[]) {
119 VMSTATE_UINT64_ARRAY(env
.iwmmxt
.regs
, ARMCPU
, 16),
120 VMSTATE_UINT32_ARRAY(env
.iwmmxt
.cregs
, ARMCPU
, 16),
121 VMSTATE_END_OF_LIST()
125 #ifdef TARGET_AARCH64
126 /* The expression ARM_MAX_VQ - 2 is 0 for pure AArch32 build,
127 * and ARMPredicateReg is actively empty. This triggers errors
128 * in the expansion of the VMSTATE macros.
131 static bool sve_needed(void *opaque
)
133 ARMCPU
*cpu
= opaque
;
134 CPUARMState
*env
= &cpu
->env
;
136 return arm_feature(env
, ARM_FEATURE_SVE
);
139 /* The first two words of each Zreg is stored in VFP state. */
140 static const VMStateDescription vmstate_zreg_hi_reg
= {
141 .name
= "cpu/sve/zreg_hi",
143 .minimum_version_id
= 1,
144 .fields
= (VMStateField
[]) {
145 VMSTATE_UINT64_SUB_ARRAY(d
, ARMVectorReg
, 2, ARM_MAX_VQ
- 2),
146 VMSTATE_END_OF_LIST()
150 static const VMStateDescription vmstate_preg_reg
= {
151 .name
= "cpu/sve/preg",
153 .minimum_version_id
= 1,
154 .fields
= (VMStateField
[]) {
155 VMSTATE_UINT64_ARRAY(p
, ARMPredicateReg
, 2 * ARM_MAX_VQ
/ 8),
156 VMSTATE_END_OF_LIST()
160 static const VMStateDescription vmstate_sve
= {
163 .minimum_version_id
= 1,
164 .needed
= sve_needed
,
165 .fields
= (VMStateField
[]) {
166 VMSTATE_STRUCT_ARRAY(env
.vfp
.zregs
, ARMCPU
, 32, 0,
167 vmstate_zreg_hi_reg
, ARMVectorReg
),
168 VMSTATE_STRUCT_ARRAY(env
.vfp
.pregs
, ARMCPU
, 17, 0,
169 vmstate_preg_reg
, ARMPredicateReg
),
170 VMSTATE_END_OF_LIST()
175 static bool m_needed(void *opaque
)
177 ARMCPU
*cpu
= opaque
;
178 CPUARMState
*env
= &cpu
->env
;
180 return arm_feature(env
, ARM_FEATURE_M
);
183 static const VMStateDescription vmstate_m_faultmask_primask
= {
184 .name
= "cpu/m/faultmask-primask",
186 .minimum_version_id
= 1,
188 .fields
= (VMStateField
[]) {
189 VMSTATE_UINT32(env
.v7m
.faultmask
[M_REG_NS
], ARMCPU
),
190 VMSTATE_UINT32(env
.v7m
.primask
[M_REG_NS
], ARMCPU
),
191 VMSTATE_END_OF_LIST()
195 /* CSSELR is in a subsection because we didn't implement it previously.
196 * Migration from an old implementation will leave it at zero, which
197 * is OK since the only CPUs in the old implementation make the
199 * Since there was no version of QEMU which implemented the CSSELR for
200 * just non-secure, we transfer both banks here rather than putting
201 * the secure banked version in the m-security subsection.
203 static bool csselr_vmstate_validate(void *opaque
, int version_id
)
205 ARMCPU
*cpu
= opaque
;
207 return cpu
->env
.v7m
.csselr
[M_REG_NS
] <= R_V7M_CSSELR_INDEX_MASK
208 && cpu
->env
.v7m
.csselr
[M_REG_S
] <= R_V7M_CSSELR_INDEX_MASK
;
211 static bool m_csselr_needed(void *opaque
)
213 ARMCPU
*cpu
= opaque
;
215 return !arm_v7m_csselr_razwi(cpu
);
218 static const VMStateDescription vmstate_m_csselr
= {
219 .name
= "cpu/m/csselr",
221 .minimum_version_id
= 1,
222 .needed
= m_csselr_needed
,
223 .fields
= (VMStateField
[]) {
224 VMSTATE_UINT32_ARRAY(env
.v7m
.csselr
, ARMCPU
, M_REG_NUM_BANKS
),
225 VMSTATE_VALIDATE("CSSELR is valid", csselr_vmstate_validate
),
226 VMSTATE_END_OF_LIST()
230 static const VMStateDescription vmstate_m_scr
= {
233 .minimum_version_id
= 1,
235 .fields
= (VMStateField
[]) {
236 VMSTATE_UINT32(env
.v7m
.scr
[M_REG_NS
], ARMCPU
),
237 VMSTATE_END_OF_LIST()
241 static const VMStateDescription vmstate_m_other_sp
= {
242 .name
= "cpu/m/other-sp",
244 .minimum_version_id
= 1,
246 .fields
= (VMStateField
[]) {
247 VMSTATE_UINT32(env
.v7m
.other_sp
, ARMCPU
),
248 VMSTATE_END_OF_LIST()
252 static bool m_v8m_needed(void *opaque
)
254 ARMCPU
*cpu
= opaque
;
255 CPUARMState
*env
= &cpu
->env
;
257 return arm_feature(env
, ARM_FEATURE_M
) && arm_feature(env
, ARM_FEATURE_V8
);
260 static const VMStateDescription vmstate_m_v8m
= {
263 .minimum_version_id
= 1,
264 .needed
= m_v8m_needed
,
265 .fields
= (VMStateField
[]) {
266 VMSTATE_UINT32_ARRAY(env
.v7m
.msplim
, ARMCPU
, M_REG_NUM_BANKS
),
267 VMSTATE_UINT32_ARRAY(env
.v7m
.psplim
, ARMCPU
, M_REG_NUM_BANKS
),
268 VMSTATE_END_OF_LIST()
272 static const VMStateDescription vmstate_m
= {
275 .minimum_version_id
= 4,
277 .fields
= (VMStateField
[]) {
278 VMSTATE_UINT32(env
.v7m
.vecbase
[M_REG_NS
], ARMCPU
),
279 VMSTATE_UINT32(env
.v7m
.basepri
[M_REG_NS
], ARMCPU
),
280 VMSTATE_UINT32(env
.v7m
.control
[M_REG_NS
], ARMCPU
),
281 VMSTATE_UINT32(env
.v7m
.ccr
[M_REG_NS
], ARMCPU
),
282 VMSTATE_UINT32(env
.v7m
.cfsr
[M_REG_NS
], ARMCPU
),
283 VMSTATE_UINT32(env
.v7m
.hfsr
, ARMCPU
),
284 VMSTATE_UINT32(env
.v7m
.dfsr
, ARMCPU
),
285 VMSTATE_UINT32(env
.v7m
.mmfar
[M_REG_NS
], ARMCPU
),
286 VMSTATE_UINT32(env
.v7m
.bfar
, ARMCPU
),
287 VMSTATE_UINT32(env
.v7m
.mpu_ctrl
[M_REG_NS
], ARMCPU
),
288 VMSTATE_INT32(env
.v7m
.exception
, ARMCPU
),
289 VMSTATE_END_OF_LIST()
291 .subsections
= (const VMStateDescription
*[]) {
292 &vmstate_m_faultmask_primask
,
301 static bool thumb2ee_needed(void *opaque
)
303 ARMCPU
*cpu
= opaque
;
304 CPUARMState
*env
= &cpu
->env
;
306 return arm_feature(env
, ARM_FEATURE_THUMB2EE
);
309 static const VMStateDescription vmstate_thumb2ee
= {
310 .name
= "cpu/thumb2ee",
312 .minimum_version_id
= 1,
313 .needed
= thumb2ee_needed
,
314 .fields
= (VMStateField
[]) {
315 VMSTATE_UINT32(env
.teecr
, ARMCPU
),
316 VMSTATE_UINT32(env
.teehbr
, ARMCPU
),
317 VMSTATE_END_OF_LIST()
321 static bool pmsav7_needed(void *opaque
)
323 ARMCPU
*cpu
= opaque
;
324 CPUARMState
*env
= &cpu
->env
;
326 return arm_feature(env
, ARM_FEATURE_PMSA
) &&
327 arm_feature(env
, ARM_FEATURE_V7
) &&
328 !arm_feature(env
, ARM_FEATURE_V8
);
331 static bool pmsav7_rgnr_vmstate_validate(void *opaque
, int version_id
)
333 ARMCPU
*cpu
= opaque
;
335 return cpu
->env
.pmsav7
.rnr
[M_REG_NS
] < cpu
->pmsav7_dregion
;
338 static const VMStateDescription vmstate_pmsav7
= {
339 .name
= "cpu/pmsav7",
341 .minimum_version_id
= 1,
342 .needed
= pmsav7_needed
,
343 .fields
= (VMStateField
[]) {
344 VMSTATE_VARRAY_UINT32(env
.pmsav7
.drbar
, ARMCPU
, pmsav7_dregion
, 0,
345 vmstate_info_uint32
, uint32_t),
346 VMSTATE_VARRAY_UINT32(env
.pmsav7
.drsr
, ARMCPU
, pmsav7_dregion
, 0,
347 vmstate_info_uint32
, uint32_t),
348 VMSTATE_VARRAY_UINT32(env
.pmsav7
.dracr
, ARMCPU
, pmsav7_dregion
, 0,
349 vmstate_info_uint32
, uint32_t),
350 VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate
),
351 VMSTATE_END_OF_LIST()
355 static bool pmsav7_rnr_needed(void *opaque
)
357 ARMCPU
*cpu
= opaque
;
358 CPUARMState
*env
= &cpu
->env
;
360 /* For R profile cores pmsav7.rnr is migrated via the cpreg
361 * "RGNR" definition in helper.h. For M profile we have to
362 * migrate it separately.
364 return arm_feature(env
, ARM_FEATURE_M
);
367 static const VMStateDescription vmstate_pmsav7_rnr
= {
368 .name
= "cpu/pmsav7-rnr",
370 .minimum_version_id
= 1,
371 .needed
= pmsav7_rnr_needed
,
372 .fields
= (VMStateField
[]) {
373 VMSTATE_UINT32(env
.pmsav7
.rnr
[M_REG_NS
], ARMCPU
),
374 VMSTATE_END_OF_LIST()
378 static bool pmsav8_needed(void *opaque
)
380 ARMCPU
*cpu
= opaque
;
381 CPUARMState
*env
= &cpu
->env
;
383 return arm_feature(env
, ARM_FEATURE_PMSA
) &&
384 arm_feature(env
, ARM_FEATURE_V8
);
387 static const VMStateDescription vmstate_pmsav8
= {
388 .name
= "cpu/pmsav8",
390 .minimum_version_id
= 1,
391 .needed
= pmsav8_needed
,
392 .fields
= (VMStateField
[]) {
393 VMSTATE_VARRAY_UINT32(env
.pmsav8
.rbar
[M_REG_NS
], ARMCPU
, pmsav7_dregion
,
394 0, vmstate_info_uint32
, uint32_t),
395 VMSTATE_VARRAY_UINT32(env
.pmsav8
.rlar
[M_REG_NS
], ARMCPU
, pmsav7_dregion
,
396 0, vmstate_info_uint32
, uint32_t),
397 VMSTATE_UINT32(env
.pmsav8
.mair0
[M_REG_NS
], ARMCPU
),
398 VMSTATE_UINT32(env
.pmsav8
.mair1
[M_REG_NS
], ARMCPU
),
399 VMSTATE_END_OF_LIST()
403 static bool s_rnr_vmstate_validate(void *opaque
, int version_id
)
405 ARMCPU
*cpu
= opaque
;
407 return cpu
->env
.pmsav7
.rnr
[M_REG_S
] < cpu
->pmsav7_dregion
;
410 static bool sau_rnr_vmstate_validate(void *opaque
, int version_id
)
412 ARMCPU
*cpu
= opaque
;
414 return cpu
->env
.sau
.rnr
< cpu
->sau_sregion
;
417 static bool m_security_needed(void *opaque
)
419 ARMCPU
*cpu
= opaque
;
420 CPUARMState
*env
= &cpu
->env
;
422 return arm_feature(env
, ARM_FEATURE_M_SECURITY
);
425 static const VMStateDescription vmstate_m_security
= {
426 .name
= "cpu/m-security",
428 .minimum_version_id
= 1,
429 .needed
= m_security_needed
,
430 .fields
= (VMStateField
[]) {
431 VMSTATE_UINT32(env
.v7m
.secure
, ARMCPU
),
432 VMSTATE_UINT32(env
.v7m
.other_ss_msp
, ARMCPU
),
433 VMSTATE_UINT32(env
.v7m
.other_ss_psp
, ARMCPU
),
434 VMSTATE_UINT32(env
.v7m
.basepri
[M_REG_S
], ARMCPU
),
435 VMSTATE_UINT32(env
.v7m
.primask
[M_REG_S
], ARMCPU
),
436 VMSTATE_UINT32(env
.v7m
.faultmask
[M_REG_S
], ARMCPU
),
437 VMSTATE_UINT32(env
.v7m
.control
[M_REG_S
], ARMCPU
),
438 VMSTATE_UINT32(env
.v7m
.vecbase
[M_REG_S
], ARMCPU
),
439 VMSTATE_UINT32(env
.pmsav8
.mair0
[M_REG_S
], ARMCPU
),
440 VMSTATE_UINT32(env
.pmsav8
.mair1
[M_REG_S
], ARMCPU
),
441 VMSTATE_VARRAY_UINT32(env
.pmsav8
.rbar
[M_REG_S
], ARMCPU
, pmsav7_dregion
,
442 0, vmstate_info_uint32
, uint32_t),
443 VMSTATE_VARRAY_UINT32(env
.pmsav8
.rlar
[M_REG_S
], ARMCPU
, pmsav7_dregion
,
444 0, vmstate_info_uint32
, uint32_t),
445 VMSTATE_UINT32(env
.pmsav7
.rnr
[M_REG_S
], ARMCPU
),
446 VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate
),
447 VMSTATE_UINT32(env
.v7m
.mpu_ctrl
[M_REG_S
], ARMCPU
),
448 VMSTATE_UINT32(env
.v7m
.ccr
[M_REG_S
], ARMCPU
),
449 VMSTATE_UINT32(env
.v7m
.mmfar
[M_REG_S
], ARMCPU
),
450 VMSTATE_UINT32(env
.v7m
.cfsr
[M_REG_S
], ARMCPU
),
451 VMSTATE_UINT32(env
.v7m
.sfsr
, ARMCPU
),
452 VMSTATE_UINT32(env
.v7m
.sfar
, ARMCPU
),
453 VMSTATE_VARRAY_UINT32(env
.sau
.rbar
, ARMCPU
, sau_sregion
, 0,
454 vmstate_info_uint32
, uint32_t),
455 VMSTATE_VARRAY_UINT32(env
.sau
.rlar
, ARMCPU
, sau_sregion
, 0,
456 vmstate_info_uint32
, uint32_t),
457 VMSTATE_UINT32(env
.sau
.rnr
, ARMCPU
),
458 VMSTATE_VALIDATE("SAU_RNR is valid", sau_rnr_vmstate_validate
),
459 VMSTATE_UINT32(env
.sau
.ctrl
, ARMCPU
),
460 VMSTATE_UINT32(env
.v7m
.scr
[M_REG_S
], ARMCPU
),
461 /* AIRCR is not secure-only, but our implementation is R/O if the
462 * security extension is unimplemented, so we migrate it here.
464 VMSTATE_UINT32(env
.v7m
.aircr
, ARMCPU
),
465 VMSTATE_END_OF_LIST()
469 static int get_cpsr(QEMUFile
*f
, void *opaque
, size_t size
,
472 ARMCPU
*cpu
= opaque
;
473 CPUARMState
*env
= &cpu
->env
;
474 uint32_t val
= qemu_get_be32(f
);
476 if (arm_feature(env
, ARM_FEATURE_M
)) {
477 if (val
& XPSR_EXCP
) {
478 /* This is a CPSR format value from an older QEMU. (We can tell
479 * because values transferred in XPSR format always have zero
480 * for the EXCP field, and CPSR format will always have bit 4
481 * set in CPSR_M.) Rearrange it into XPSR format. The significant
482 * differences are that the T bit is not in the same place, the
483 * primask/faultmask info may be in the CPSR I and F bits, and
484 * we do not want the mode bits.
485 * We know that this cleanup happened before v8M, so there
486 * is no complication with banked primask/faultmask.
488 uint32_t newval
= val
;
490 assert(!arm_feature(env
, ARM_FEATURE_M_SECURITY
));
492 newval
&= (CPSR_NZCV
| CPSR_Q
| CPSR_IT
| CPSR_GE
);
496 /* If the I or F bits are set then this is a migration from
497 * an old QEMU which still stored the M profile FAULTMASK
498 * and PRIMASK in env->daif. For a new QEMU, the data is
499 * transferred using the vmstate_m_faultmask_primask subsection.
502 env
->v7m
.faultmask
[M_REG_NS
] = 1;
505 env
->v7m
.primask
[M_REG_NS
] = 1;
509 /* Ignore the low bits, they are handled by vmstate_m. */
510 xpsr_write(env
, val
, ~XPSR_EXCP
);
514 env
->aarch64
= ((val
& PSTATE_nRW
) == 0);
517 pstate_write(env
, val
);
521 cpsr_write(env
, val
, 0xffffffff, CPSRWriteRaw
);
525 static int put_cpsr(QEMUFile
*f
, void *opaque
, size_t size
,
526 VMStateField
*field
, QJSON
*vmdesc
)
528 ARMCPU
*cpu
= opaque
;
529 CPUARMState
*env
= &cpu
->env
;
532 if (arm_feature(env
, ARM_FEATURE_M
)) {
533 /* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
534 val
= xpsr_read(env
) & ~XPSR_EXCP
;
535 } else if (is_a64(env
)) {
536 val
= pstate_read(env
);
538 val
= cpsr_read(env
);
541 qemu_put_be32(f
, val
);
545 static const VMStateInfo vmstate_cpsr
= {
551 static int get_power(QEMUFile
*f
, void *opaque
, size_t size
,
554 ARMCPU
*cpu
= opaque
;
555 bool powered_off
= qemu_get_byte(f
);
556 cpu
->power_state
= powered_off
? PSCI_OFF
: PSCI_ON
;
560 static int put_power(QEMUFile
*f
, void *opaque
, size_t size
,
561 VMStateField
*field
, QJSON
*vmdesc
)
563 ARMCPU
*cpu
= opaque
;
565 /* Migration should never happen while we transition power states */
567 if (cpu
->power_state
== PSCI_ON
||
568 cpu
->power_state
== PSCI_OFF
) {
569 bool powered_off
= (cpu
->power_state
== PSCI_OFF
) ? true : false;
570 qemu_put_byte(f
, powered_off
);
577 static const VMStateInfo vmstate_powered_off
= {
578 .name
= "powered_off",
583 static int cpu_pre_save(void *opaque
)
585 ARMCPU
*cpu
= opaque
;
588 if (!write_kvmstate_to_list(cpu
)) {
589 /* This should never fail */
593 if (!write_cpustate_to_list(cpu
)) {
594 /* This should never fail. */
599 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
600 memcpy(cpu
->cpreg_vmstate_indexes
, cpu
->cpreg_indexes
,
601 cpu
->cpreg_array_len
* sizeof(uint64_t));
602 memcpy(cpu
->cpreg_vmstate_values
, cpu
->cpreg_values
,
603 cpu
->cpreg_array_len
* sizeof(uint64_t));
608 static int cpu_post_load(void *opaque
, int version_id
)
610 ARMCPU
*cpu
= opaque
;
613 /* Update the values list from the incoming migration data.
614 * Anything in the incoming data which we don't know about is
615 * a migration failure; anything we know about but the incoming
616 * data doesn't specify retains its current (reset) value.
617 * The indexes list remains untouched -- we only inspect the
618 * incoming migration index list so we can match the values array
619 * entries with the right slots in our own values array.
622 for (i
= 0, v
= 0; i
< cpu
->cpreg_array_len
623 && v
< cpu
->cpreg_vmstate_array_len
; i
++) {
624 if (cpu
->cpreg_vmstate_indexes
[v
] > cpu
->cpreg_indexes
[i
]) {
625 /* register in our list but not incoming : skip it */
628 if (cpu
->cpreg_vmstate_indexes
[v
] < cpu
->cpreg_indexes
[i
]) {
629 /* register in their list but not ours: fail migration */
632 /* matching register, copy the value over */
633 cpu
->cpreg_values
[i
] = cpu
->cpreg_vmstate_values
[v
];
638 if (!write_list_to_kvmstate(cpu
, KVM_PUT_FULL_STATE
)) {
641 /* Note that it's OK for the TCG side not to know about
642 * every register in the list; KVM is authoritative if
645 write_list_to_cpustate(cpu
);
647 if (!write_list_to_cpustate(cpu
)) {
652 hw_breakpoint_update_all(cpu
);
653 hw_watchpoint_update_all(cpu
);
658 const VMStateDescription vmstate_arm_cpu
= {
661 .minimum_version_id
= 22,
662 .pre_save
= cpu_pre_save
,
663 .post_load
= cpu_post_load
,
664 .fields
= (VMStateField
[]) {
665 VMSTATE_UINT32_ARRAY(env
.regs
, ARMCPU
, 16),
666 VMSTATE_UINT64_ARRAY(env
.xregs
, ARMCPU
, 32),
667 VMSTATE_UINT64(env
.pc
, ARMCPU
),
671 .size
= sizeof(uint32_t),
672 .info
= &vmstate_cpsr
,
676 VMSTATE_UINT32(env
.spsr
, ARMCPU
),
677 VMSTATE_UINT64_ARRAY(env
.banked_spsr
, ARMCPU
, 8),
678 VMSTATE_UINT32_ARRAY(env
.banked_r13
, ARMCPU
, 8),
679 VMSTATE_UINT32_ARRAY(env
.banked_r14
, ARMCPU
, 8),
680 VMSTATE_UINT32_ARRAY(env
.usr_regs
, ARMCPU
, 5),
681 VMSTATE_UINT32_ARRAY(env
.fiq_regs
, ARMCPU
, 5),
682 VMSTATE_UINT64_ARRAY(env
.elr_el
, ARMCPU
, 4),
683 VMSTATE_UINT64_ARRAY(env
.sp_el
, ARMCPU
, 4),
684 /* The length-check must come before the arrays to avoid
685 * incoming data possibly overflowing the array.
687 VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len
, ARMCPU
),
688 VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes
, ARMCPU
,
689 cpreg_vmstate_array_len
,
690 0, vmstate_info_uint64
, uint64_t),
691 VMSTATE_VARRAY_INT32(cpreg_vmstate_values
, ARMCPU
,
692 cpreg_vmstate_array_len
,
693 0, vmstate_info_uint64
, uint64_t),
694 VMSTATE_UINT64(env
.exclusive_addr
, ARMCPU
),
695 VMSTATE_UINT64(env
.exclusive_val
, ARMCPU
),
696 VMSTATE_UINT64(env
.exclusive_high
, ARMCPU
),
697 VMSTATE_UINT64(env
.features
, ARMCPU
),
698 VMSTATE_UINT32(env
.exception
.syndrome
, ARMCPU
),
699 VMSTATE_UINT32(env
.exception
.fsr
, ARMCPU
),
700 VMSTATE_UINT64(env
.exception
.vaddress
, ARMCPU
),
701 VMSTATE_TIMER_PTR(gt_timer
[GTIMER_PHYS
], ARMCPU
),
702 VMSTATE_TIMER_PTR(gt_timer
[GTIMER_VIRT
], ARMCPU
),
704 .name
= "power_state",
706 .size
= sizeof(bool),
707 .info
= &vmstate_powered_off
,
711 VMSTATE_END_OF_LIST()
713 .subsections
= (const VMStateDescription
*[]) {
718 /* pmsav7_rnr must come before pmsav7 so that we have the
719 * region number before we test it in the VMSTATE_VALIDATE
726 #ifdef TARGET_AARCH64